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ABSTRACT
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of 
combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together 
a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this 
annual event fosters indeed essential conversations and fruitful exchanges on how to address existing 
challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad 
Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, 
highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for 
extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we 
critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual 
ImmunoRad Conference.
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Introduction

Over the past decade, considerable efforts have been dedicated 
to the development of safe and effective combinatorial regi-
mens involving radiation therapy (RT) and immunotherapy 
(IT) for clinical cancer management, building on the notion 
that – at least when employed according to specific dose and 
fractionation schedules, and when delivered focally to limited 

target volumes that do not involve tumor-draining lymph 
nodes (TDLNs) and/or considerable amounts of circulating 
lymphocytes – RT can mediate robust immunostimulatory 
effects.1–4 Importantly, while a few randomized clinical trials 
demonstrated that RT indeed can be safely and effectively 
combined with IT in specific oncological settings, e.g., patients 
with stage III, unresectable non-small-cell lung carcinoma 
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(NSCLC) receiving an immune checkpoint inhibitor (ICI) 
specific for CD274 (best known as PD-L1) after 
chemoradiotherapy,5 many others failed to document any clin-
ical benefit from the addition of ICIs to RT employed accord-
ing to standard-of-care (SOC),6–8 pointing to the existence of 
numerous obstacles against the widespread applicability of RT- 
IT combinations in the clinic.1,9,10

The ImmunoRad conference has been jointly established by 
Dr. Silvia Formenti from the Weill Cornell Medical College 
(New York, US) and Dr. Eric Deutsch from Gustave Roussy 
(Paris, France) in 2016, with the specific aim to understand the 
nature of – and hence ultimately circumvent – such obstacles, 
de facto fostering progress at the interface between RT and IT 
to achieve superior clinical outcome for an ever increasing 
number of patients with cancer. Since then, with the only 
exception of year 2020 as imposed by the COVID-19 
pandemic,11,12 the conference has been held annually, alternat-
ing between New York and Paris, attracting an ever wider and 
more diverse group of attendants.13,14

The 8th Annual ImmunoRad Conference has been held on 
October 3rd to 5th, 2024, at the Weill Cornell Medical College in 
New York City, continuing such a tradition of excellence. 
This year, the conference welcomed no less than 430 partici-
pants from over 19 different countries worldwide and featured 
more than 30 thought-provoking presentations from estab-
lished and emergent scientists working on RT-IT combina-
tions, encompassing an opening Keynote lecture from 
Dr. Laurence Zitvogel (Gustave Roussy), 4 lectures delivered 
as part of a CME-accredited primer on the ability of RT to alter 
the immunological tumor microenvironment (TME) plus 21 
main talks, 4 short talks selected from abstracts, as well as 
a closing panel discussion with 4 panelists from industry. 
Alongside, the event hosted more than 25 poster presentations 
by trainees and young researchers cultivating an interest in the 
possibility to achieve superior therapeutic outcomes by com-
bining RT and IT. Following up on previous editions of the 
event, outstanding contributions from young investigators in 
the fields were recognized with travel awards and poster prizes. 
The conference program incorporated discussions on tumor– 
host interactions, predictive biomarkers for patient stratifica-
tion, and innovative clinical trial design, overall providing an 
interactive platform for sharing new knowledge and fostering 
promising research and clinical collaborations. For how the 
ImmunoRad Conference is built, all attendees enjoyed the 
chance to directly engage with key opinion leaders, facilitating 
in-depth discussions on the most pressing challenges and 
opportunities in RT-IT combinations.

Here, we report on the main topics that have been discussed 
at the occasion of the 8th Annual ImmunoRad Conference in 
New York City as we set the stage for the 9th installment of this 
exciting event, which will be held in Paris, on September 17th 
to 19th, 2025.

The dirty secrets of radiation oncology

As part of the opening Keynote lecture, Prof. Laurence Zitvogel 
(Gustave Roussy) provided critical insights into the influence 
of the gut microbiota – i.e., the bacterial, viral and fungal 
communities populating the intestinal tract15 – on RT and IT 

outcomes in patients with cancer.16–18 Over the past decade, 
pivotal work from Dr. Zitvogel and others underscored indeed 
the critical impact of the gut microbiome on the systemic 
immune set point, affecting the sensitivity of various tumor 
types to various therapeutic interventions.19–22 In this context, 
microbiota-targeting strategies such as fecal microbiota trans-
plantation (FMT) and probiotics were highlighted as effective 
approaches to overcome treatment resistance and improve 
disease outcome.23–26 Moreover, Dr. Zitvogel presented com-
pelling evidence supporting the value of intestinal low-dose 
radiotherapy (ILDR) as a combinatorial partner for stereotactic 
body radiotherapy (SBRT) and ICIs in metastatic pancreatic 
ductal adenocarcinoma (PDAC).27 Mechanistically, ILDR 
appears indeed to elicit immunogenic changes in the gut 
microbiome that result in a reduced development of gut- 
derived regulatory T (TREG) cells and improved tumor infiltra-
tion by non-exhausted CD8+ T cells.27 These findings point to 
ILDR as to safe and effective strategy to modulate the gut 
microbiome in support of superior disease outcome in patients 
with cancer receiving RT-IT combinations.

Radiation therapy-induced modulation of the tumor 
immune microenvironment

The first main session of the 8th annual Immunorad 
Conference was CME-accredited Primer on the capacity of 
RT to influence the TME.

Dr. James W. Welsh (MD Anderson Cancer Center) dis-
cussed strategies to overcome resistance to IT in patients with 
cancer through the so-called “radscopal effect”, i.e., the ability 
of low-dose RT (LDRT) to reprogram the TME in favor of 
tumor-targeting immune responses.28,29 In this context, 
Dr. Welsh emphasized the importance of optimizing radiation 
doses to activate specific immune cell populations, notable 
natural killer (NK) cells with low-dose radiation and CD8+ 

cytotoxic T lymphocytes (CTLs) with high-dose RT (HDRT). 
Moreover, he presented data supporting the notion that 
a beneficial increase in the intratumoral CTL/TREG cell ratio 
requires the early administration of pembrolizumab, an ICI 
specific for programmed cell death 1 (PDCD1, best known as 
PD-1), coupled with stereotactic body radiotherapy (SBRT) 
optionally along with functionalized hafnium oxide nanopar-
ticles or C-C motif chemokine receptor 8 (CCR8)-targeting 
strategies.30,31

Dr. Fernanda G. Herrera (University of Lausanne) followed 
up on Dr. Welsh presentation by providing additional data on 
the promise of using LDRT as a strategy to recruit immune 
effector cells, notably CD8+ CTLs, to the TME in support of 
superior therapeutic responses to ICIs.32,33 Her team found 
that such an beneficial effect can be elicited by RT doses as 
low as one fraction of 1 Gy in preclinical models of ovarian 
cancer, resulting in improved intratumoral CTL/TREG cell ratio 
and the local expression of pro-inflammatory cytokines and 
costimulatory molecules.34 Alongside, Dr. Herrera presented 
results from the RACIM trial, which tested a combination of 
LDRT plus ICIs, cyclophosphamide and prostaglandin 
E synthase 2 (PTGES2, best known as COX2) inhibitors in 
patients with solid tumors exhibiting poor lymphocytic infil-
tration. In this clinical study, responders experienced an 
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increase in intratumoral CD8+ CTLs, whereas the TME of non- 
responders appeared to promote the accumulation of macro-
phages, which are generally associated with local 
immunosuppression.35 These findings highlight the clinical 
potential of LDRT as a strategy to optimize IT outcomes.

Dr. Eric Deutsch (Gustave Roussy) further explored the 
importance of RT dose in the context of RT-IT combinations. 
Indeed, while SBRT can effectively control tumor growth in 
a variety of settings, and (at least in some cases) elicit immu-
nological alterations that can be harnessed with ICIs,36 it can-
not always be employed in a safe manner (for instance when 
target volumes are in the close proximity to an organ at risk). 
In the case of metastatic disease, LDRT may hence offer 
a complementary strategy to HDRT for lesions that are ineli-
gible to the latter, resulting in superior systemic disease control 
in the context of IT with ICIs. Dr. Deutsch also emphasized the 
notion that spatially varied RT doses create considerable 
degrees of immune heterogeneity in the TME, with areas 
enriched in CD8+ CTLs alongside regions abundantly infil-
trated by with monocytes and neutrophils.37 Importantly, tar-
geting these immunosuppressive myeloid cell populations was 
shown to improve tumor control in preclinical models of 
colorectal and breast cancer, de facto compensating for the 
regional detrimental effects of heterogeneous RT doses.37 In 
conclusion, the presentation by Dr. Deutsch reinstated the 
need for further research into optimal dosing, treatment inter-
vals, and irradiation areas for improved therapeutic outcomes 
in patients receiving RT plus IT.38

Dr. Lorenzo Galluzzi (Weill Cornell Medical College) sum-
marized an abundant preclinical and clinical literature demon-
strating that – depending on a number of RT-related, cancer- 
related and host-related variables – RT can have both beneficial 
and detrimental effects on lymphocytes and their interactions 
with malignant cells, which has major implications for the 
development of effective RT-IT combination. To exemplify 
this concept, Dr. Galluzzi alluded to the fact that while circu-
lating lymphocytes including T and B cells are highly sensitive 
to the cytotoxic effects of RT, intratumoral CD8+ CTLs, espe-
cially tissue-resident CD8+ T cells, persist upon RT in support 
of tumor-targeting immunity.39 Moreover, he commented on 
the ability of low-dose total body irradiation (TBI) delivered 
before CAR T cell infusion to improve the therapeutic effects of 
the latter in preclinical models of leukemia and pancreatic 
cancer,40,41 and presented unpublished results from his team 
demonstrating that hypofractionated RT in 3 doses of 10 Gy 
each prevents CDK4/6 inhibitors from eliciting the secretion of 
C-C motif chemokine ligand 2 (CCL2) in a uniquely transla-
tional model of HR+ breast cancer,42–45 thus impeding the 
recruitment of immunosuppressive γδ T cells to the TME. 
These data exemplify the highly context-dependent effects of 
RT on lymphocytes.

Radiation therapy and antigen presentation

Dr. Laura Santambrogio (Weill Cornell Medical College) 
discussed the critical role of the brain lymphatic system in 
maintaining homeostasis through meningeal lymphatics and 
deep cervical lymph nodes.46,47 More specifically, she 

presented unpublished data demonstrating that disruptions 
in this drainage, whether through lymphatic ligation, cau-
terization, or ablation, result in metabolic stress and oxida-
tive damage. Using state-of-the-art metabolomic 
approaches,48 her team identified a shift from the NAD+ 

salvage pathway to de novo synthesis, coupled with an 
increased flux through the pentose phosphate pathway and 
consequent glutathione neosynthesis, as major conse-
quences of disruptions in the brain lymphatic system, cul-
minating with markers of neurodegeneration including 
synaptic loss, disrupted neurogenesis, and protein aggrega-
tion. As emphasized by Dr. Santambrogio, these findings are 
highly relevant for patients with head and neck squamous 
cell carcinoma (HNSCC) receiving RT as the potential of the 
latter to impair lymphatic clearance may contribute to the 
development of neurodegenerative conditions like 
Alzheimer’s disease. This research underscores the critical 
importance of preserving brain lymphatic function during 
cancer therapy to limit long-term neurological side effects.

Dr. Dörthe Schaue (David Geffen School of Medicine) dis-
cussed the connection between RT and antigen processing and 
presentation. RT is indeed known to promote antigen presen-
tation by malignant cells via a number of mechanisms, includ-
ing the upregulation of multiple components of the antigen 
presentation machinery (APM), generally culminating in 
increased cancer cell immunogenicity and visibility to CD8+ 

CTLs.49,50 However, malignant cells often acquire APM 
defects, most likely as a strategy to evade anticancer 
immunity,51–53 which also prevents RT from stimulating 
CD8+ CTL responses. Dr. Schaue noted that increased expres-
sion levels of APM components such as proteasome 20S sub-
unit beta 8 (PSMB8, best known as LMP7) is critical for 
immunological tumor control, correlating with improved 
tumor infiltration by immune cells and superior overall survi-
val across various cancer types,54–57 pointing to LMP7 and the 
associated APM as potential therapeutic targets for the devel-
opment of more effective RT-IT combinations.

Dr. Andrew Godkin (Cardiff University) went on to first 
discuss the ability of cyclophosphamide to modulate the 
immune response of solid tumors, based on findings from 
animal models of colorectal carcinoma (CRC) as well as 
human CRC samples, proposing cyclophosphamide as 
a potential combinatorial partner for RT. Specifically, he high-
lighted that low-dose cyclophosphamide effectively depletes 
intratumoral TREG cells, as demonstrated in preclinical tumors 
models,58,59 as well as in a clinical trial testing cyclophospha-
mide optionally in combination with a cancer vaccine in 
patients with metastatic CRC.58 Previous findings support the 
notion that cyclophosphamide may also improve the interac-
tion between RT and IT by depleting.60 He also showed that 
cyclophosphamide can modulate the gut microbiome, result-
ing in further neoantigen recognition.58

Finally, he noted that high biologically effective doses (BEDs 
>100 Gy) of RT have been associated with immunosuppressive 
effects as illustrated by an elevated neutrophil-to-lymphocyte 
ratio (NLR) as a biomarker of worsened progression-free sur-
vival (PFS), and concluded by commenting on how RT can 
alter the nature of peptides presented by MHC molecules.
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Immune inhibitory effects of radiation therapy

In the last session of Day 1, Dr. Nir Ben Chetrit (Weill Cornell 
Medical College) discussed the potential of reprogramming 
tumor-associated macrophages (TAMs) in combination with 
RT to improve disease outcome in cancer patients.61 Using 
single-cell RNA sequencing (scRNAseq), he demonstrated 
that TAMs commonly found in breast cancer can either sup-
port immune effector cells (tumor-niche macrophages, TNMs) 
or suppress anticancer immunity (stromal-associated macro-
phages, SAMs), the latter contributing to poor disease out-
comes and hence representing promising targets for novel 
immunotherapeutic interventions.62 Dr. Ben Chetrit also pre-
sented results from macrophage reprogramming CRISPR 
screens in TAMs suggesting that inhibiting notch receptor 4 
(NOTCH4) may constitute a valid approach to reprogram 
SAMs toward an immunostimulatory TNM-like phenotype, 
at least in preclinical models of breast and ovarian cancer.

Dr. Taha Merghoub (Weill Cornell Medical College) dis-
cussed the critical impact of intratumoral neutrophils on the 
efficacy of multiple (immuno)therapeutic anticancer agents, 
including RT. He explained that co-stimulatory molecules 
and ICIs not only promote the recruitment of neutrophils to 
the TME, but also activate effector mechanisms including the 
release of so-called “neutrophil extracellular traps” (NETs) and 
nitric oxide synthase 2 (NOS2)-dependent cytotoxicity.63 This 
may be particularly relevant for tumors that evade immune 
recognition by adoptively transferred T cells by losing the 
expression of the antigenic target of the latter.63 

Dr. Merghoub also highlighted the considerable therapeutic 
challenges posed by tumor heterogeneity, which characterizes 
most (if not all) solid tumors,64 and local 
immunosuppression,65 calling for the development of combi-
natorial strategies targeting both malignant and immune TME 
components. Finally, he explored the potential of combining 
RT with immunostimulatory antibodies and ICIs, which (at 
least in some settings) rely on neutrophil function to maximize 
T cell responses. Such an approach stands out as a promising 
strategy to eradicate highly heterogeneous tumors that are 
resistant to conventional (immuno)therapeutics.

Dr. Dmitry I. Gabrilovich (AstraZeneca) closed Day 1 by 
discussing the dual role of myeloid cells in cancer sensitivity to 
RT and IT, emphasizing their two main functional states: classi-
cal (pro-inflammatory) and pathological (immunosuppressive).-
61,66 He commented on the mechanisms through which TAMs 
and MDSCs contribute to tumor progression, metastasis, and 
resistance to (immuno)therapy, including the activation of 
transforming growth factor beta (TGF-β) and vascular endothe-
lial growth factor (VEGF) signaling, the release of immunosup-
pressive factors such as interleukin 10 (IL10), as well as the 
remodeling of the tumor stroma via matrix metalloproteases 
(MMPs). Dr. Gabrilovich also discussed on the possibility of 
activating ferroptosis, a regulated form of cell death driven by 
oxidative stress and consequence lipid peroxidation, as 
a therapeutic strategy against cancer.67,68 RT has been shown 
to elicit ferroptosis in malignant cells,69 but whether ferroptosis 
potentiates or suppresses anticancer immunity remains a matter 
of debate.70–72 Moreover, the ferroptotic death of intratumoral 
MDSCs and neutrophils potently suppresses anticancer 

immunity by CD8+ CTLs,73 suggesting that caution should be 
employed when developing ferroptosis-promoting strategies for 
cancer (immuno)therapy.

Oral presentations (day 2)

Day 2 started with two oral presentations that were selected 
from the pool of abstracts submitted to this edition of 
ImmunoRad.

Following up on a first oral communication by Anne-Gaëlle 
Goubet (University of Geneva), Donna Li (University of 
Wisconsin) presented her research on the role of NF-κB acti-
vation by RT-elicited DNA damage on anticancer immune 
responses.74–76 Her unpublished results – originating from 
mice lacking a critical component of the canonical machinery 
for NF-κB signaling,77 which results in impaired NF-κB 
responses to genotoxic stress – demonstrate that RT-driven 
NF-κB activation supports tumor infiltration by CD8+ CTLs. 
Interestingly, such a beneficial reconfiguration of the TME was 
accompanied by the repolarization of TAMs toward an immu-
nostimulatory state, as demonstrated by reduced colony stimu-
lating factor 1 receptor (CSF1R) expression. These findings 
suggest that targeting the immunosuppressive receptor 
CSF1R may improve the susceptibility of some tumors to RT.

Rectal cancer as a model for studying RT-induced 
immune modulation

Dr. Encouse Golden (Weill Cornell Medical College) presented 
adenosine signaling as a significant obstacles to RT-driven 
anticancer immune responses.78–81 RT favors indeed the accu-
mulation of adenosine in TME, which mediates considerable 
immunosuppressive effects on both myeloid and lymphoid 
cells.82 In line with this notion, blocking the extracellular 
enzyme that converts AMP into adenosine, namely 5’- 
nucleotidase ecto (NT5E, best known as CD73), has been 
shown to improve both local and distant tumor control by 
RT in preclinical models of various cancer types including 
CRC, alongside markers of response indicating improved 
tumor-targeting immunity.82,83 These observations led to the 
initiation of clinical studies including PANTHER and ARC-9 
testing potent dual adenosine receptor inhibitors (e.g., etruma-
denant) in combination with RT and/or ICIs and chemother-
apy in patients with rectal cancer or metastatic CRC, 
respectively.84,85 Preliminary results from these studies are 
promising. Two patients with rectal cancer who experienced 
a complete response to treatment were indeed presented by 
Dr. Golden, highlighting the potential of this specific RT-IT 
combination.

Dr. Alan A. Melcher (Institute of Cancer Research) next 
presented on the capacity of neoadjuvant RT for rectal cancer 
triggers immunological changes that resemble those elicited by 
viral infection, a beneficial situation commonly known as viral 
mimicry,86,87 specifically in patients with pronounced 
responses to therapy.88 He also highlighted the promise of 
using oncolytic virotherapy with T-Vec, a genetically engi-
neered variant of herpes simplex virus (HSV-1),89,90 as 
a strategy to kill malignant cells through immunogenic cell 
death (ICD),91 resulting in a reshaped intratumoral TCR 
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repertoire in favor of highly active CD8+ CTLs over their 
dysfunctional counterparts.92,93 Finally, Dr. Melcher reported 
on yet another HSV-1-derived oncolytic virus, i.e., RP1. Similar 
to T-vec, RP1 could be favorably combined with PD-1 blockers 
in preclinical models of thyroid carcinoma and melanoma, 
resulting in superior tumor control along with 
a reconfiguration of the intratumoral T cell compartment 
toward the enrichment of ICI-sensitive pre-exhausted CD8+ 

T cells.94,95 Globally, these observations suggest that oncolytic 
viruses may inform strategies to improve the sensitivity of 
patients with cancer exhibiting limiting infiltration by CD8+ 

CTLs to RT-IT combinations.
Dr. Kristina H. Young (Providence Cancer Institute) dis-

sected the dual role of TGF-β signaling in rectal cancer devel-
opment and sensitivity to treatment. Indeed, while TGF-β acts 
as a prominent oncosuppressive factor at early stage of rectal 
carcinogenesis,96–98 it potently promotes immunoevasion and 
tumor progression at later stages of the disease.98–100 Adding 
an extra layer of complexity, a number of nonmalignant com-
ponents of the TME, notably cancer-associated fibroblasts 
(CAFs) can produce high levels of TGF-β, hence compensating 
for potential defects in TGF-β production by neoplastic 
cells.101,102 A number of preclinical studies demonstrated that 
blocking TGF-β considerably improves local and distant tumor 
control by RT-IT combinations, alongside eliciting signs of 
superior anticancer immunity including a favorable increase 
in the intratumoral CTL/TREG cell ratio.103–107 In this context, 
Dr. Young highlighted the results of a Phase 2 trial testing 
neoadjuvant galunisertib (a small molecule inhibiting TGF-β 
signaling) with chemotherapy and RT to improve pathological 
complete response (pCR) rates in patients with locally 
advanced rectal cancer, demonstrating good tolerability and 
an overall response rate (ORR) of 32%.108,109 That said, gene 
expression studies suggest that specific CRC subtypes includ-
ing CMS3 and CMS4 might respond differently to RT plus 
TGF-β, raising the need for the development of personalized 
approaches to implement this specific RT-IT combination in 
patients with CRC.

Radiation therapy and immunotherapy in the 
management of solid tumors

Dr. Gaorav P. Gupta (University of North Carolina) discussed 
the potential of combining RT with ICIs for the treatment of 
early stage breast cancer. He emphasized that while RT can 
elicit immunostimulatory mechanisms including ICD activa-
tion and CD8+ CTL recruitment, it can also promote immu-
nosuppressive pathways including PD-L1 upregulation on the 
surface of malignant cells and TREG recruitment to the TME.1 

Clinical trials enrolling women with triple-negative breast can-
cer (TNBC), such as PEARL and P-RAD, have shown that 
combining PD-L1 or PD-1 blockers with appropriate RT 
doses improves pCR rates, with cancer-related factors like 
MHC Class I expression levels influencing disease 
outcome.110,111 The analysis of post-treatment samples from 
these clinical studies indicated that combining RT in 3 frac-
tions of 8 Gy each with a PD-1 blocker stimulates immune 
responses in primary tumors and (at least in some patients) 
causes the regression of non-irradiated lymph nodes bearing 

metastatic disease. Dr. Gupta also noted that tumor biology, 
especially “cancer ecotypes” as defined by transcriptional pro-
files of the TME, may play a significant role in treatment 
response. In this context, optimizing RT dosing and delivery 
schedule with respect to ICIs stands out as a promising avenue 
to enhance efficacy in the context of acceptable toxicity.112 

Advances in digital pathology and spatial immune phenotyp-
ing are expected to assist the identification of biomarkers of 
response, ultimately leading to improved disease outcome in 
a number of oncological settings amenable to receive RT-IT 
combinations.113

Dr. Julien Sage (Stanford University) presented existing 
challenges for the treatment of small cell lung carcinoma 
(SCLC), a highly aggressive cancer associated with poor survi-
val rates owing to its intrinsically metastatic and treatment- 
resistant nature.114,115 Indeed, as most SCLCs are poorly infil-
trated by CD8+ CTLs and express reduced MHC Class I levels, 
ICIs targeting PD-1 or PD-L1 have provided only modest 
survival benefits to a limited number of patients with 
SCLC.116 In this context, tarlatamab – a bispecific T-cell enga-
ger (BiTE) targeting delta-like canonical Notch ligand 3 
(DLL3) – appears to holds some promise for improved treat-
ment outcomes.117 Dr. Sage also presented results from his 
team demonstrating that combining RT, a cornerstone in 
SCLC treatment, with inhibitors of the antiphagocytic ligand 
CD47 results in improved local and distant disease control 
along with improved macrophage-dependent anticancer 
immunity in preclinical models of SCLC.118–120 Ongoing 
research focuses on optimizing RT dosing, exploring combina-
tions with DLL3-targeting BiTEs, and identifying predictive 
biomarkers to overcome IT resistance and improve disease 
outcomes in patients with SCLC.

In continuation, Dr. Anna Wilkins (Institute of Cancer 
Research) discussed strategies to target the bladder TME to 
enhance RT sensitivity. More specifically, an association 
between an intratumoral enrichment of specific CAF popula-
tions and poor disease outcomes after RT, outlining that the 
most common CAF subpopulations found in bladder cancer 
that express high levels of podoplanin (PDPN), presumably 
independent of TGF-β signaling and immune exclusion.121–123 

Dr. Wilkins reinstated the promise of combining TGF-β inhi-
bitors with RT to improve disease outcome across multiple 
cancer types, especially neoplasms characterized by an intense 
fibrotic response, by highlighting an abundant preclinical, 
preclinical103–106 and clinical108,109,124 literature. Moreover, 
she presented unpublished results demonstrating that RT- 
induced fibrosis can arise rapidly and independently of TGF- 
β via a lymphocyte-dependent mechanism that ultimately 
affects tumor infiltration by immune cells. In this setting, 
targeting PDPN may constitute an effective strategy to enhance 
therapeutic responses to RT in bladder cancer and other tumor 
types.

Role of radiotherapy and immunotherapy 
combinations in metastatic disease

Dr. Arta M. Monjazeb (UC Davis School of Medicine) 
reported on strategies combining RT with immunothera-
peutic agents that extend beyond ICIs. First, he discussed 
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novel approaches focused on enhancing the immunostimu-
latory effects of RT as an in situ vaccine, including the 
intralesional delivery of recombinant IL2 to irradiated 
tumors, as currently investigated in preclinical settings as 
well as in the context of a clinical trial enrolling patients 
with metastatic NSCLC (NCT03224871). Strategies employ-
ing dendritic cell (DC)-activating immunotherapeutics were 
also discussed.125 While RT per se may act indeed as in situ 
vaccine, exposing tumor-associated antigens and delivering 
potent immunostimulatory signals including type 
I interferon (IFN) via ICD induction,126–128 the RT-driven 
activation of adaptive anticancer immunity strictly depends 
on DCs,129,130 implying that boosting DC functions may 
enhance the immunostimulatory effects of RT. Such DC 
stimulators include CpG, a Toll-like receptor (TLR9) ago-
nist that can be directly delivered to the tumor,131–133 as 
well as epacadostat, an oral inhibitor of the immunosup-
pressive enzyme indoleamine 2,3-dioxygenase 1 
(IDO1).134,135 Dr. Monjazeb highlighted the ability of 
both CpG and epacadostat to increase the local and distant 
tumor control in preclinical tumor models, correlating with 
reduced levels of intratumoral TREG cells and immunosup-
pressive MDSCs.131,134,135 Results from a canine clinical 
trial lend further support to the validity of this approach 
to safely exacerbate the therapeutic activity of RT.134 While 
these findings have already been translated into early-stage 
clinical trials with promising results, additional work is 
needed to fully elucidate the efficacy of DC-activating 
agents as combinatorial partners for RT.

Dr. Julie Constanzo (University of Montpellier) reported 
unpublished data on the ability of extracellular vesicles (EVs) 
released by cancer cells exposed to targeted radionuclide therapy 
(TRT) to promote beneficial immunological alterations of the 
TME that may be harnessed with ICIs.136–138 Recent data suggest 
indeed that TRT may represent a powerful inducer of ICD, hence 
representing an optimal therapeutic partner for ICIs.136,139,140 Her 
research demonstrates that mouse melanoma cells exposed to 
TRT in vitro release large EVs that can be used to elicit therapeu-
tically relevant anticancer immune responses in vivo downstream 
of DC activation upon intratumoral administration. 
Dr. Constanzo went on to show that blocking EV release limits 
the anticancer activity of TRT, suggesting that EVs are crucial 
mediators of its immunostimulatory activity, hence representing 
potential targeting for the development of novel combinatorial 
partners thereof.

Dr. Sean Pitroda (University of Chicago) discussed the 
benefits of combining SBRT with dual PD-1 and cytotoxic 
T lymphocyte-associated protein 4 (CTLA4) blockade in 
patients with metastatic non-small cell lung carcinoma 
(NSCLC).141 Such an approach resulted in improved T cell 
activation, increased TCR diversity and superior local and 
distant tumor control, de facto outperforming SBRT alone.142 

Of note, SBRT combined with dual PD-1 and CTLA4 blockade 
appeared particularly beneficial for patients bearing NSCLC 
with elevated degrees of aneuploidy, which typically correlates 
with immunosuppression and weaker responses to ICIs 
employed as standalone immunotherapeutics.141,143 Ongoing 
research is focusing on understanding the mechanisms 

through which aneuploid cells evade anticancer immunosur-
veillance and refining strategies for best combining RT and 
ICIs in patients with NSCLC and other tumor types.

Cancer immunogenomics and RT

Dr. Timothy A. Chan (Cleveland Clinic) discussed the impact 
of genetic alterations and DNA repair defects on the efficacy of 
RT and IT in cancer. He explained that ICI sensitivity varies 
considerably across cancer types – for instance being high in 
melanoma and NSCLC, but limited in sarcoma and CRC – 
correlating with tumor mutation burden (TMB), neoantigen 
expression, and immunological features of the TME.144–148 In 
this context, RT may enhance the sensitivity of some tumors to 
ICIs by reprogramming the TME toward an ICI-responsive 
status, although optimal biomarkers for combining RT and IT 
remain to be identified.149 Importantly, clinical trials like 
NICHE-2 demonstrate the efficacy of neoadjuvant ICIs in 
patients with locally advanced CRC bearing defective mis-
match repair (dMMR),150 not only emphasizing the need for 
personalized treatment approaches to improve disease out-
comes in response to IT, but also adding to an expanding 
literature revealing superior effects from neoadjuvant ICI 
administration.151 Such a change in treatment paradigm may 
have profound implications for the development of effective 
RT-IT combinations.

Dr. Anguraj Sadanandam (Institute of Cancer Research) high-
lighted the critical importance of dissecting tumor heterogeneity 
for the development of effective cancer regimens, not only intra-
tumorally, but also across distinct neoplastic lesions from the 
same patient, in both the spatial and temporal 
dimension.64,152,153 Progress in this respect can only be achieved 
by state-of-the-art technologies that provide (spatial) single-cell 
resolution coupled with modern artificial intelligence/machine 
learning tools, ultimately enabling the integration of complex 
genomic, epigenomic, transcriptomic and proteomic spatial data-
sets from (whenever possible longitudinal) tissue samples.154–156 

Such a highly integrated approach may indeed offer critical 
insights toward the development of personalized treatment stra-
tegies. Dr. Sadanandam presented examples of molecular stratifi-
cations in CRCs and pancreatic neuroendocrine tumors, 
illustrating their profound therapeutic implications.153,157,158 

Ongoing research in this field aims at improving precision med-
icine through global collaborations and the development of public 
platforms with the goal of enhancing survival outcomes using 
biomarker-driven combination therapies.

Dr. Brian D. Brown (Icahn School of Medicine at Mount 
Sinai) concluded Day 2 by discussing the importance of the 
genetic factors that affect the TME in shaping tumor behavior 
and responses to therapy.159 More specifically, he introduced 
Perturb-Map, a new technology that combines CRISPR screen-
ing with spatial proteomics and transcriptomics to study gene 
function in tissues, including the TME.160,161 This method 
enabled Dr. Brown’s team to identify genes including suppres-
sor of cytokine signaling 1 (Socs1) and transforming growth 
factor beta receptor 2 (Tgfbr2) as critical determinants of 
tumor infiltration by CD8+ CTLs in preclinical models of 
lung cancer,160 as well as tumor-derived IL4 as a major driver 
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of resistance to PD-1 blockers in preclinical models of ovarian 
carcinoma.162 This novel technology stands out as a powerful 
tool to identify novel determinants of resistance to RT-IT 
combinations.

Oral presentations (day 3)

Day 3 started with two oral presentations that were selected 
from the pool of abstracts submitted to this edition of 
ImmunoRad.

Dr. Sierra McDonald (University of North Carolina) pre-
sented the P-RAD clinical trial, a randomized phase II study 
testing neoadjuvant pembrolizumab with RT in patients with 
early-stage node-involved TNBC.111 Preliminary results sug-
gest that combining pembrolizumab with 3 RT fractions of 3  
Gy or 9 Gy each not only causes a dose-dependent enrichment 
in transcriptional signatures associated with CD8+ CTL func-
tions, macrophage activation and inflammation, but also 
improves pCR rates compared to pembrolizumab alone. 
Unpublished data from a genetically engineered mouse 
model of TNBC mimicking the P-RAD study appear to reca-
pitulate these effects and hence may assist the identification of 
determinants of response and resistance. Dr. McDonald con-
cluded that combining RT with pembrolizumab as 
a neoadjuvant intervention holds potential for improving dis-
ease outcome in patients with early-stage TNBC eligible to 
surgery.

Dr. Erik Wennerberg (Institute of Cancer Research) dis-
cussed the role of ADP-ribosyltransferase 1 (ART1) in 
cancer immune evasion. Signaling via purinergic receptor 
P2× 7(P2RX7) as driven by extracellular ATP and NAD is 
indeed critical for optimal T cell fitness in the tumor 
microenvironment,163,164 and ART1 expression by malig-
nant cells actively interfere with such an immunostimula-
tory mechanism by promoting P2RX7 mono-ADP- 
ribosylation, a detrimental effect that is exacerbated when 
ADP-ribosyl cyclase CD38 is inhibited.165 This is particu-
larly relevant for RT-IT combinations – as demonstrated in 
NSCLC patients receiving SBRT plus a PD-L1 inhibitor166 – 
because RT promotes ART1 upregulation in malignant 
cells. These findings point to ART1, CD38 and P2RX7 as 
potential targets to promote the efficacy of RT-IT 
combinations.

Novel approaches

Dr. Chandan Guha (Albert Einstein College of Medicine) pre-
sented the immunological consequences of carbon ion RT 
(CIRT).167,168 Specifically, he provided unpublished evidence 
suggesting that CIRT productively jumpstarts the cancer- 
immunity cycle,169 resulting in effective release of tumor- 
associated antigens, delivery of immunostimulatory cues to 
DCs and ultimately cross-priming of a therapeutically relevant 
tumor-targeting immune response. By scRNAseq, Dr. Guha’s 
team demonstrated that while conventional RT promotes the 
expansion of immunosuppressive component 1, 
q subcomponent, and alpha polypeptide (C1QA)-expressing 
TAMs infiltrating mouse KPC pancreatic tumors, CIRT limits 
the abundance of C1QA+ TAMs while increasing the 

expression of pro-inflammatory cytokines like C-X-C motif 
chemokine ligand 10 (CXCL10). Thus, CXCL10 secretion and 
the consequent reduction of C1QA+ TAMs appear to underlie 
the immunostimulatory effects of CIRT, at least in preclinical 
models of pancreatic cancer.

Drs. Aisha Hasan (Johnson & Johnson, USA) discussed the 
evolving role of RT in the era of IT, particularly for the clinical 
management of NSCLC. She reinstated the ability of RT to act 
as an in situ vaccine, especially when combined with IT,170 

highlighting promising clinical results as obtained by combin-
ing SBRT with ICIs targeting CTLA4, PD-1 or PD-L1 in 
patients with NSCLC.5,166,171,172 Finally, she commented on 
the potential for interventional oncology to promote the effi-
cacy of RT in the context of reduced systemic toxicityfor 
instance, upon the intratumoral delivery of 
immunotherapeutics.89,90

Dr. Jalal Ahmed (Icahn School of Medicine at Mount Sinai) 
focused on the impact of DCs on CAR T cell therapy.173,174 

Successfully employing CAR T cells and other adoptively 
transferred lymphocytes for the management of solid neo-
plasms faces indeed considerable challenges, largely reflecting 
the harsh metabolic conditions that most characterize their 
TME.80,173,175 At least in mouse tumor models, combining 
CAR T cell infusion with low-dose TBI has been shown pro-
mote disease control alongside improved CAR T cell expansion 
and (at least some degree of) cytotoxicity against antigen-loss 
cancer cell variants.40,41 Moreover, recent preclinical data sug-
gest that focal LDRT can support the therapeutic activity of 
CAR T cells by engaging endogenous CD8+ CTLs upon DC- 
dependent crosspriming.176 Ongoing research is focusing at 
the development of safe and effective strategies to combine 
RT with CAR T cells in eligible patients toward the rapid 
implementation of innovative clinical studies.

Panel discussion

Day 3 concluded with a panel discussion with four panelists 
from industry that was moderated by the conference Chairs 
Dr. Silvia Formenti (Weill Cornell Medical College) and 
Dr. Eric Deutsch (Gustave Roussy).

Dr. Philippe Szapary (Johnson & Johnson) highlighted the 
value of interventional oncology as a novel approach to achieve 
superior therapeutic efficacy in the context of limited systemic 
toxicity via the rational combination of intratumorally admi-
nistered therapeutics such as oncolytic viruses or chemother-
apy depots combined with systemic IT with ICIs. Specifically, 
he emphasized the promising potential of combining RT with 
investigational radioenhancing agents like JNJ-1900 (a functio-
nalized hafnium oxide nanoparticles also known as NBTXR3) 
for the management of HNSCC and NSCLC.30,31,177

Dr. Howard Kaufman (Ankyra Therapeutics) introduced 
ANK-101, an aluminum hydroxide-anchored IL12 variant 
that exhibit superior retention within the TME upon intratu-
moral delivery, resulting not only in single agent activity across 
a variety of preclinical tumor models, but also in the activation 
of systemic immune responses effectively targeting distant 
tumors, especially in combination with otherwise inactive 
ICIs delivered systemically, pointing to ANK-101 as 
a promising agent for clinical development.178
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Dr. Sébastien Paris (Nanobiotix) further commented on JNJ- 
1900, which – while initially conceived as a radioenhancer179 – 
has turned out to considerably enhance the ability of focal RT to 
elicit anticancer immune responses with systemic outreach, at 
least in preclinical tumor models, prompting clinical develop-
ment in patients with a variety of cancer eligible to 
irradiation.180,181

Dr. Dhan Chand (Agenus) discussed the promise of novel 
agents like botensilimab, a second generation CTLA4 
inhibitor,182,183 AGEN1423, a dual inhibitor of CD73 and 
TGF-β,184 AGEN2373, an agonist of the immunostimulatory 
receptor TNF receptor superfamily member 9 (TNFRSF9, best 
known as CD137),185–187 and AgenT-797, an allogenic cell 
therapy showing promising results in combination with 
RT.188,189

Concluding remarks

Dr. Formenti and Dr. Deutsch closed the meeting by empha-
sizing the importance of additional preclinical and clinical 
investigation for RT-IT combinations to be safely and success-
fully implemented into the clinical management of an increas-
ing number of malignancies, as they recognized the progress 
that has been achieved over the past decade by the crosspolli-
nation between radiation oncology and clinical immunother-
apy. The ImmunoRad Conference has considerably fostered 
such an advantageous interaction and will continue to do so at 
the Cordeliers Research Center in Paris, on September 17th to 
19th 2025. You are all welcome to participate!
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