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NeRFFaceShop: Learning a Photo-realistic
3D-aware Generative Model of Animatable and
Relightable Heads from Large-scale In-the-wild 

Videos
Kaiwen Jiang, Feng-Lin Liu, Shu-Yu Chen, Pengfei Wan, Yuan Zhang, Yu-Kun Lai, Hongbo Fu, and Lin Gao*

Abstract—Animatable and relightable 3D facial generation
has fundamental applications in computer vision and graphics.
Although animation and relighting are highly correlated, previous
methods usually address them separately. Effectively combining
animation methods and relighting methods is nontrivial. In terms
of explicit shading models, animatable methods cannot be easily
extended to achieve realistic relighting results, such as shadow
effects, due to prohibitive computational training costs. Regard-
ing implicit lighting representations, current animatable methods
cannot be incorporated due to their inharmonious animation
representations, i.e., deforming spatial points. This paper, armed
with a lightweight but effective lighting representation, presents
a compatible animation representation to achieve a disentangled
generative model of 3D animatable and relightable heads. Our
represented animation allows for updating and control of realistic
lighting effects. Due to the disentangled nature of our represen-
tations, we learn the animation and relighting from large-scale,
in-the-wild videos instead of relying on a morphable model. We
show that our method can synthesize geometrically consistent
and detailed motion along with the disentangled control of
lighting conditions. We further show that our method is still
compatible with morphable models for driving generated avatars.
Our method can also be extended to domains without video data
by domain transfer to achieve a broader range of animatable
and relightable head synthesis. We will release the code for
reproducibility and facilitating future research.

Index Terms—Face animation, face relighting, volume disen-
tangling, neural radiance fields, neural rendering
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I. INTRODUCTION

Generating animatable and relightable 3D heads is a long-
standing problem in computer graphics and vision. Consistent
and photo-realistic generation of such heads opens up rich
possibilities for downstream applications, including AR/VR
telepresence, virtual avatar design, etc.

Recently, unconditional photo-realistic generation of 3D
heads (e.g., [6], [8], [16]) has achieved huge success by
combining Neural Radiance Fields (NeRFs) [39] and Gen-
erative Adversarial Networks (GANs) [19]. Built upon the
unconditional generation, several works (e.g., [4], [52], [61],
[64]) deform their 3D representations with the guidance of
morphable models [34] to achieve the animation control but
lack the understanding of illumination. Some works (e.g., [11],
[27], [46]) address the relighting control with either explicit
shading models or implicit lighting representations but still
cannot achieve animation control. We argue that animation
and relighting are highly correlated because the lighting effects
need to be correctly updated during the animation. To achieve
a disentangled generation of photo-realistic 3D heads, we
propose to solve animation and relighting simultaneously.

If we perceive the output of generation as pure images, a
trivial solution to the above problem is to use an animatable
method to generate a sequence of images and then apply a
single-shot 2D relighting method to adjust the lighting condi-
tions of the generated images. However, as discussed in [27],
maintaining consistency across different camera parameters
and expressions is challenging.

In contrast, this paper presents a disentangled generative
model of 3D animatable and relightable heads built upon
the tri-plane representation [6]. We observe the potential of
implicit lighting representation [27] and augment it with a
compatible animation representation to enable the animation
and relighting simultaneously as in Fig. 1.

Instead of updating the coordinates of 3D points to represent
the animation in previous works (e.g., [4], [52], [61]), we
propose deforming the convolutional features in the generator
[30] to ensure the consistent updating of lighting effects during
the animation. Furthermore, unlike previous works (e.g., [4],
[52], [61]) that rely on a statistical model constructed from
accurate 4D scan data [34] to enable the animation, we get
rid of this indirect reliance on the 4D scan data and learn
the animation and relighting from collected large-scale in-the-
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Fig. 1: We learn a photo-realistic 3D-aware generative model of animatable and relightable heads from large-scale in-the-
wild videos. Given the driving frames in the first row, we use an off-the-shelf estimator [17] to detect expressions as sets
of coefficients, which are visualized as meshes at the bottom right of the corresponding frames. The detected expressions
are then mapped to the animation space of our model to synthesize correspondingly driven heads in the second row. (a-d)
demonstrate the synthesized animatable and relightable human heads, while (I-IV) show the synthesized statue heads. (a) and
(I) show the synthesized geometry. (b) and (II) display the generated pseudo-albedo. (c-d) and (III-IV) demonstrate the driven
results rendered under different lighting conditions, which are visualized as spheres at the bottom right of the corresponding
synthesized images. Note that our animation can be controlled through the adopted expression estimator and can re-interpret
its coefficients to achieve detailed motion synthesis, which is more consistent with the driving frames, such as pouting in (c).
Please refer to the accompanying video for the animation effects.

wild videos, which are more easily accessible and extensible.
Our animation space is learned from scratch and is then able
to capture detailed animation and synthesize smooth motions.
By self-supervision, we could learn an encoder to map co-
efficient spaces from other morphable models (e.g., [34]) to
our animation space for driving. However, qualified video data
for a broader range of heads, such as cartoon characters and
statues, are hard or impossible to access. Armed with the
domain transfer techniques [1], [31], [69], we can finetune
our trained model on human heads into novel domains.

In summary, the contributions of our work include:
• We propose compatible animation and lighting repre-

sentations in a 3D GAN for consistently animating and
relighting heads such that textures, including lighting
effects, are correctly updated during the animation.

• We propose to train the representations by in-the-wild
videos to realize detailed motion synthesis. We show that
our animation representation is still compatible with ex-
isting morphable models for controlling motion synthesis.

• We conduct extensive experiments and comparisons to
show our method achieves state-of-the-art 3D-aware an-
imatable and relightable human head synthesis.

II. RELATED WORK

A. 3D-aware Portrait Synthesis

The combination of NeRFs [39] and GANs [19] leads
to great success in learning 3D-aware unconditional gener-
ative models of photo-realistic heads from in-the-wild image
datasets (e.g., [29]). Recent years have witnessed rapid im-
provement over the quality, diversity, and speed of uncondi-
tional synthesis by developing the representations and training
strategies (e.g., [6]–[8], [16], [20], [33], [40], [41], [48], [50],
[65], [71]). Subsequent works (e.g., [4], [13], [14], [27], [28],
[46], [51], [52], [61]) targeting disentanglement choose to

build upon 3D-aware unconditional generative models to enjoy
their synthesis quality. Our method chooses to build upon
the tri-plane representation [6] and enables the simultaneous
control of animation and lighting.

B. Facial Animation and Relighting in 3D GANs

Animating and relighting heads have been well-explored
by editing latent codes (e.g., [2], [15], [55], [68]) in GANs.
Extending the method of editing latent codes to 3D GANs
(e.g., [54]), however, comes with the problem of inconsistent
geometry during animation and relighting. Existing generative
methods typically achieve geometrically consistent animation
and relighting separately despite their correlation.

To achieve consistent animation, some works incorporate
morphable models [23], [34], [44] into their synthesis net-
works. AniFaceGAN [61], GNARF [4], and OmniAvatar [64]
update 3D points based on the morphing of corresponding
meshes. Next3D [52] and InvertAvatar [72] embed a mor-
phable mesh into the tri-plane representation [6] with separated
static and dynamic modeling for consistency. However, their
deformation is equivalent to altering the locations of 3D points
with fixed features. In their representations, appearance is
decoded mainly from features, leading to the fixed lighting
effects during the animation, but relighting usually requires a
global understanding of geometry, e.g., the visibility effects.
Recently, a new group of auto-encoding methods (e.g., [10],
[14], [35], [56], [57]) also observes the potential of video
data. They build upon [59] and finetune the model with
video data to enable the lifting from 2D images into 3D
while allowing expressions to change. However, they cannot
handle the relighting as well and they are not innate generative
models.

For consistent relighting, some works (e.g., [11], [25], [42],
[43], [46], [53]) choose to apply explicit shading models
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Fig. 2: Comparison of synthesized motions for different meth-
ods given the driving frame in the leftmost column. The result
of our method is the most consistent with the driving frame.

in their synthesis networks for relighting. However, there is
always a trade-off between required computation and achieved
realism. Another type of work [5], [27] uses an implicit rep-
resentation with careful regularization for solving the relight-
ing. It features lightweight computation and highly realistic
relighting results under natural lighting conditions.

Combining the aforementioned animation methods with
explicit shading models seems an option to enjoy both the con-
sistent animation and relighting. However, to achieve accurate
relighting results (e.g., visibility effects, subsurface scatter-
ing), the necessary adversarial training is still computationally
prohibitive, especially for dynamic avatars, as discussed in
[11]. Therefore, we propose to augment the implicit lighting
representation [27] with a compatible animation representation
to enable the animation while preserving its lightweight but
realistic relighting capability. We learn this animation repre-
sentation from data, i.e., large-scale in-the-wild videos, since
the 3D points deformation guided by morphable models [34]
cannot be easily incorporated. This choice also gives us the
advantage of synthesizing more detailed motion, as shown in
Fig. 2.

Additionally, recent works have explored ways to alter the
convolutional features. Learning animation directly from in-
the-wild videos might cause inconsistent geometry for static
facial regions like neck, resulting in noisy facial shapes. PV3D
[63] proposes to alter the features with synthesized residual
features. Their approach is effective to represent animation but
cannot ensure geometric consistency. In contrast, our method is
able to preserve geometric consistency and effectively achieve
both relighting and animation control.

C. Domain Transfer in GANs

Transferring learned generative models from one domain to
another is especially helpful for modeling domains with lim-
ited data, such as cartoon characters, animals, etc. The recent
advance (e.g., [1], [18], [31], [69]) can desirably preserve the
latent space property while adapting the domains. To overcome
the domain gap issue, DATID3D [31] proposes to leverage a
diffusion model [47] to translate the human face or cat images
into images of another domain but with the same viewpoint.
They successfully generate the data in this way for adversarial
training. We show that our method is compatible with the
domain transfer as well. By learning from human heads with
rich in-the-wild video data, our method is able to generalize to
new domains whose video data can be hard or even impossible
to access, such as cartoon characters, statues, etc.

III. METHOD

We first briefly discuss our backbone [27] in Sec. III-A. We
then discuss our augmented compatible animation representa-
tion in Sec. III-B. After that, we illustrate how to train our
pipeline with large-scale in-the-wild video data in Sec. III-C.
Additionally, we show how to train an encoder to drive the
generated identities using learned animation latent space in
Sec. IV-A. Lastly, we introduce how to apply domain transfer
techniques in our pipeline in Sec. IV-B.

A. Preliminaries

The approach of [27] uses a generator G [30] to transform
Gaussian noises and spherical harmonic (SH) [45] coefficients
into 3D head volumes, which can be used for rendering
any views with the volume rendering [39] given camera
parameters. It possesses two latent spaces: an albedo latent
space and a lighting latent space. Gaussian noises z ∈ R512

are first transformed into samples in the albedo latent space as
ω ∈ R512, and SH coefficients sh ∈ R9 are transformed into
samples in the lighting latent space as l ∈ R512. The lighting
control is therefore achieved by fixing ω and adjusting SH
coefficients only.

Specifically, G is composed of 9 consecutive synthesis
blocks [30] B = {B4, B8, ..., B256, B256

S(1) , B
256
S(2)}, where the

superscript denotes the resolution and we use this convention
in the following content, as shown in Fig. 3 , each of
which convolves a multi-channel feature map (referred as
“convolutional features”) from the previous block by con-
ditional adaptive instance normalization [26]. The first 7
blocks are conditioned on ω, while the remaining 2 blocks
are conditioned on both ω and l. By 1 × 1 convolution,
the convolutional features in the first 7 blocks F (ω) =
{F 4(ω), F 8(ω), ..., F 256(ω)} are transformed into albedo tri-
planes ∈ R96×256×256, and the convolutional features in
the last 2 blocks FS(ω, l) = {F 256

S(1)(ω, l), F
256
S(2)(ω, l)} are

transformed into shading tri-planes ∈ R96×256×256 as the
lighting representation. By sampling features from the albedo
tri-planes and shading tri-planes, 3D head volumes can be
determined with two additional lightweight decoders. With the
volume rendering [39], photo-realistic facial images I can be
rendered from 3D head volumes given camera parameters. An
image discriminator Dimage then discriminates whether I is
real or fake with the conditions of camera parameters and SH
coefficients for the adversarial training [19], [30]. The training
dataset is labeled with ground-truth camera parameters and
lighting conditions.

Notably, the lighting representation depends on the convo-
lutional features in the first 7 blocks but not on the albedo tri-
planes. Without special note, the implementation details agree
with [27]. Please refer to [27] for full details.

B. Compatible Animation Representation

We observe that the albedo tri-planes in [27] contain both
identity and animation information. We aim to distill the
animation control from the generation of albedo tri-planes.
To achieve this, we propose first to construct a separate
representation for animation.
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Fig. 3: An overview of our framework. Our pipeline is built on the tri-plane generator [6] G, but we roll out its convolutional
features as F 4, F 8, ..., F 256, F 256

S(1) , F
256
S(2) . In particular, we have three latent spaces: identity latent space, animation latent

space, and lighting latent space. For the animation representation, we append 1× 1 convolutions [30] to the first four blocks
B4, B8, B16, B32 in G to generate a shape deformation map δ32shape, which is conditioned on an identity latent code ω. We then
construct a separate generator Gmotion to synthesize an expression deformation map δ32exp, which is conditioned on an animation
latent code m. δ32shape(ω)◦δ32exp(m)◦(δ32shape)

−1(ω) is then applied to warp F 32, which represents the output convolutional features
of B32, to model the animation. For the lighting representation, the warped convolutional features are first passed into the
next three blocks B64, B128 and B256, which are conditioned on ω, to synthesize albedo tri-planes. The output convolutional
features are then passed into the last two blocks B256

S(1) and B256
S(2) , which are conditioned on both ω and a lighting latent code l

to synthesize shading tri-planes. Given certain camera parameters, portraits are rendered by volume rendering from the albedo
tri-planes and shading tri-planes. We sample two animation latent codes and two lighting codes for an identity latent code to
synthesize two portraits, which are concatenated channel-wise to pass into the video discriminator Dvideo and separately passed
into the image discriminator Dimage. The albedo is not passed into the discriminator.

A potential choice would be to apply spatial deformation to
the volume formed by the albedo tri-planes and shading tri-
planes. Different from the classic rendering pipeline, which
applies lighting effects after the geometric deformation, a
common problem with neural radiance fields is that the
shading and albedo are fused into the emission. Therefore,
the features associated with each point remain fixed in the
spatial deformation. And the albedos and shadings are decoded
deterministically from the features, the appearance of rendered
3D faces, therefore, remains unchanged, and the lighting
effects such as the visibility are unchanged. The animation rep-
resentation is then required to alter the convolutional features
to update the features of the tri-planes during the animation.

Another observation is that the animation refers to the
geometric changes, and the [30] architecture enjoys the prop-
erty of auto-disentanglement of geometry and appearance
in the consecutive synthesis blocks. Therefore, to achieve
animation control, we only need to alter the convolutional
features Fgeo(ω) = {F 4(ω), F 8(ω), F 16(ω), F 32(ω)} in the
first 4 synthesis blocks Bgeo = {B4, B8, B16, B32}, which
are responsible for the geometry. Moreover, inspired by [27],
to control different animations, we construct an additional
animation latent space to parameterize the alteration. The
original albedo latent space is then transformed into an identity
latent space, which contains all information expected for
animation and lighting.

We propose constructing interpretable alteration for convo-
lutional features. Observing the connection between tri-planes

and three orthogonal views as in [49], [52], we expect to
extend this connection to the convolutional features such that
the alteration can be interpreted as altering three orthogonal
views. We roll out the convolutional features as in [60]
to establish pixel-wise alignment between the convolutional
features and tri-planes, as shown in Fig. 3. We then alter the
convolutional features through 2D deformations, which can be
interpreted as 2D deformations on three orthogonal views. We
condition the generation of such 2D deformations on a motion
latent code m ∈ R128 sampled from the standard Gaussian
distribution.

Since the convolutional features F 32 lead to the generation
of 3D identities, they are assumed to already contain the
shape information. The 2D deformations which represent the
animation on the convolutional features therefore should be
relative to both the conditioned motion latent codes and the
underlying shape in the convolutional features. It then raises
a concern that due to the additional conditioning from the
underlying shape, the same motion latent codes may not
correspond to similar motions on different identities.

To resolve this issue, we explicitly decompose the deforma-
tion into an expression deformation in an assumed template
space shared by all identities and an invertible transformation
that transforms the template to each instance and vice versa.
Such assumed template space and the decomposition are
conceptually similar to the shape and expression decompo-
sition in the morphable models [34], but we deal with a
learned implicit animation representation instead of explicit
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vertices deformation. Specifically, we propose to decompose
the 2D deformations on the convolutional features for each
identity as the composition of 2D expression deformation
maps δ32exp : R2 7→ R2 in an assumed template space shared
by all identities, along with 2D shape deformation maps
δ32shape : R2 7→ R2, which transforms the template to each
instance. For each identity, we need to first transform the
convolution features from the instance space into the template
space, then impose the expression deformation, and finally
transform the deformed convolution features from the template
space into the instance space. Therefore, the final fused 2D
expression deformation maps for each identity is then given
as δ32shape ◦ δ32exp ◦ δ32

−1

shape , as shown in Fig. 3. Notice that, δ32exp
depends solely on the animation latent space, while δ32shape is
dependent solely on the identity latent space. In this way,
the same motion latent code is guaranteed to generate the
same expression deformation in the template space. As long
as the shape deformation does not embed any expression
deformation, which is further discussed in Sec. III-C, such
decomposition then guarantees that the same motion latent
code produces similar expressions on different identities.

In practice, we construct an independent 2D generator
Gmotion [30] to synthesize the 2D deformation map δ32exp from
a motion latent code m ∈ R128 sampled from the standard
Gaussian distribution. δ32shape is synthesized by transforming
first 4 synthesis blocks in G with a newly added 1 × 1
convolution [30], as shown in Fig. 3. Compared to representing
the 2D deformations on the convolutional features without this
decomposition, this design choice also gives us benefits to
ensure geometry consistency during animation, which will be
elaborated on in Sec. III-C3, and improve the generation qual-
ity and diversity. We further observe an interesting property
of the learned animation: the same δ32exp results in semantically
similar but not exactly the same expressions on different
identities due to different non-linear shape deformation δ32shape.
It makes it easier to transfer the expression without losing
personalities. In contrast, if we leverage off-the-shelf estima-
tors (e.g., [17]) to estimate 3DMM coefficients to act as the
motion latent codes, besides less expressive animation space
of morphable models, the ability of synthesizing personalized
motion with the same motion latent code will be lost.

Due to the skip connection architecture of [30], we also
conduct deformation on intermediate tri-planes. Fig. 3 illus-
trates the whole generation process. For further details, please
refer to the supplementary.

C. Supervision from In-the-wild Videos

Compared to 3D spatial deformation, 2D deformation on
the convolutional features cannot be trivially guided by ex-
ternal priors (e.g., [34]), and thus is learned from data.
However, it is challenging to ensure the learned expression
deformations correspond to expression animation instead of
random deformation. Image data cannot disambiguate it, and
available large-scale 4D scan data cannot be used for photo-
realistic generation. Therefore, we leverage video data where
differences between two frames for a single identity are mainly
composed of expression animation.

To ensure diverse and realistic generation, we collect avail-
able large-scale video data in the wild without assuming the
existence of neutral expressions or synchronous motions across
different identities. We also aim for motion synthesis beyond
the expressive scopes of existing morphable models. There-
fore, we learn the animation latent space from scratch. We
adopt a video discriminator Dvideo for learning the animation
besides the original image discriminator Dimage.

1) Training Objectives: Specifically, for real data, we sam-
ple a pair of RGB frames from a video sequence with an
adaptive sampling strategy as introduced in Sec. III-C2. For
fake data, we randomly sample two different animation latent
codes from the standard Gaussian distribution. We then sample
two different lighting latent codes and two different camera
parameters from the dataset, and an identity latent code from
the standard Gaussian distribution to generate a pair of facial
images. They are passed separately into Dimage with camera
parameters and SH coefficients as conditions. Each pair of
images is concatenated into 6-channel features to be passed
into Dvideo with their concatenated camera parameters and SH
coefficients as conditions for training, as shown in Fig. 3.

Same as [27], we use the non-saturating GAN loss with R1

regularization [38], density regularization, and lighting regu-
larization for training. Besides, we also apply the commonly
used minimal constraint over the deformation maps, as in other
works [58], [61], defined as:

Lminimal = α||δ32shape||2 + β||δ32exp||2,

where α is set to 1, and β is set to 0.1.
2) Adaptive Sampling: We observe that, in the in-the-

wild video data, the expression distribution is not uniform
and biased significantly towards certain modes, such as an
expression status when listening. Besides, since the animation
is learned through the differences between two sampled frames
in video sequences, we argue that the differences between two
sampled frames should be significant, such that the effects of
the traverse of the animation latent space are obvious.

Specifically, in a video sequence, we calculate the distance
between any two frames by measuring the distance of the
corresponding reconstructed meshes by [37]. We then apply a
greedy algorithm to split frames into groups. Initially, all the
frames are ungrouped. To create a new group, we choose the
next ungrouped sample as the center for the group, which will
include all the frames whose distances are below an empirical
threshold τ = 1.3 to the center frame. This process repeats
until every frame is in a group. The sampling of the first
frame is achieved by firstly sampling a group uniformly and
then sampling a frame in the group uniformly, such that the
sampling will not over-emphasize the largest group. After the
settlement of the first frame, the second frame is sampled with
the probability proportional to the distance to the first frame,
where we do not use groups anymore here. Notice that such
sampling guidance is rough but effective in practice, because
we do not want to rule out the possibility of sampling any two
frames.

3) Consistent Animation: Despite the benefits given by the
video data, it comes with the challenge of noises from un-
certainty in estimated camera parameters, especially for cases
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where heads have large angles of roll or eyes are closed. Since
the discriminators are not truly 3D-aware, there is room for
ambiguity in the regions that appear in one frame but disappear
in another. Therefore, the learned animation usually possesses
undesirable distortions, such as making heads sometimes
larger and sometimes smaller, as observed in [63]. Thanks
to the interpretability of our animation representation and the
assumed template space, the face region in the template space
corresponds to a deterministic area in δ32exp. After training, we
empirically define a mask M similar to [52] in the template
space to retain deformation only on faces across different
identities. Specifically, the generated δ32exp is first masked as
δ32exp ⊙M , and then fed into the generation process.

IV. APPLICATIONS

With an animatable and relightable 3D human face genera-
tive model in hand, we here discuss two potential applications:
1) cross-reenactment, where we use a reference human face to
drive the generated ones; 2) domain transfer, where we extend
the human face generative model into other domains.

A. Image-Driven Cross-reenactment.

After the generative model converges, we can then use the
learned animation latent space to drive the generated identities.
We could learn an additional encoder to map images into
motion latent codes for reenactment. However, considering
the enormous efforts (e.g., [9], [17]) devoted before to map
images or audios into the coefficients of the morphable model,
we illustrate a simpler design here to learn an additional
encoder to map coefficients of the morphable model [34] into
our animation latent space. Notice that neither should this be
perceived as the only way to drive the generated identities,
nor should the conclusion that our animation space is confined
within the animation space of 3DMM be assumed. However,
it turns out that we can even enrich the expressiveness of the
animation space of morphable model with our animation latent
space.

Specifically, we first use the generative model to generate
a batch of frontal images I with randomly sampled identity
latent codes, lighting latent codes, and animation latent codes
m. We then leverage an off-the-shelf estimator [17] to estimate
their corresponding expression and jaw coefficients c from
images. The coefficients are then passed to our encoder E to
predict the animation latent codes m̂. With the same identity
and lighting latent codes, but different animation latent codes
m̂, the generative model then produces frontal images Î . The
training objective is then defined as:

L = ||I − Î||1 + λLPIPSLLPIPS(I, Î),

where λLPIPS = 1 and LLPIPS denotes denotes the perceptual
loss [70].

It is noteworthy that even though the original estimator
is unable to represent certain expressions like pouting, the
learned encoder is able to express them through mapping its
biased coefficients into our animation latent space thanks to
our pure image-based supervision, as shown in Fig. 1 and
Fig. 4. Notice that while we take FLAME [34] as an example

here, the paradigm generalizes to other morphable models as
long as the corresponding estimators exist.

B. Adaptation to Novel Domains

After training on a domain with rich video data, we draw
inspirations from [31], [69] to extend the converged model
into novel domains, such as cartoon characters and statues,
with pure generated images.

For domains supported by [66], we first ask the gener-
ative model to generate a batch of 1, 000 images Ia =
G(ω, l, Gmotion(m)) in the source domain with randomly sam-
pled identity latent codes ω, lighting latent codes l, anima-
tion latent codes m, and camera parameters. They are then
transformed into images in the target domain as Ib by a style
transfer method [66]. To preserve the 3D-aware, animatable,
and relightable properties of the generator, transformed images
in the target domain should match the source images in aspects
of expression, lighting conditions, and camera parameters.
Since the style transfer method is not robust at preserving
the lighting conditions, we relabel the lighting conditions of
images in the target domain as l̂ with an estimator [73], which
we empirically find it to be robust on humanoid domains. We
then apply the reconstruction and adversarial loss in [69] to
fine-tune G only, while fixing Gmotion, to achieve the domain
transfer. The training objective is defined as:

L = LLPIPS(G(ω, l̂, Gmotion(m)), Ib) + λAdvLAdv,

where λAdv = 0.05, and LAdv denotes the non-saturating
adversarial loss [30].

For other domains, as in [31], we leverage a diffusion model
[47] with a prompt “an FHD photo of face of {target domain}”
to transform generated images into target domains. However,
we find that the diffusion model is not robust to maintain
expression and lighting conditions. The lighting conditions of
images in the target domain can be similarly relabeled with
a robust estimator [73], but the expression constraint cannot
be easily met. What introduces more challenges is that for
certain domains, such as statues, it is almost impossible to have
transformed images with expressions, except for the neutral
one, even though we explicitly insert words, such as “smiling”,
into the prompt. Therefore, we modify the initial generation
such that the sampled animation latent code m is fixed and
corresponds to the neutral expression. Also, the prompt used
in the diffusion model is explicitly modified as “an FHD photo
of neutral face of {target domain}”. After applying filtering
similar to [31], we can then apply the same training objective
to fine-tune G only.

V. EXPERIMENTS

A. Implementation Details

To facilitate convergence, we first train an unconditional
generation backbone of [6], where convolutional features are
rolled out, on the FFHQ dataset [29] with the Frechet Inception
Distance (FID) [24] of 4.7.

We then fine-tune on our trained backbone to train our
proposed animatable and relightable model with a combined
human head dataset of VFHQ [62] and CelebV-Text [67],
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Fig. 4: Qualitative evaluation for animation and relighting. Given the driving frames in the first column, we show their
correspondingly reconstructed meshes based on an off-the-shelf detector [17] in the second column. We then demonstrate
driven results for animation-only methods in the next two columns. For both animatable and relightable methods, given
lighting references in the fifth column, we display driven results rendered under novel lighting conditions in the last three
columns. Red rectangles emphasize on the animated eyes region. The calculated expression distances (ED) against the driving
frames are shown on the top-right corners of generated results.

Fig. 5: Visualization of the ablation study for the temporal consistency during the linear interpolation of the top and bottom
expressions. Textures along straight fixed lines on the hairline (red) and neck (blue) areas are displayed. Ideally, they should
be the same vertically.

containing ∼ 60k high-quality in-the-wild video sequences.
Following the convention of training generative models [6],
[29], [30], we do not split the dataset into training and
validation set. Besides, during evaluation, we do not use these
datasets seen in the training anymore.

We combine scripts in [3], [6], [27] to process the dataset.
Specifically, given hundreds of thousands of video sequences,
we first apply [21], [22] to crop and estimate camera parame-
ters for each frame. Specially, frames where the resolution of
detected largest face is less than 512 are abandoned since we
only want high-quality images. Frames where visible hands are
detected by [36] with confidence over 0.75 are also abandoned.
We then apply [37] to detect the FLAME coefficients [34] for
each frame. Videos whose standard deviation of expression
coefficients for all frames is less than 1.5 or standard devi-
ation of jaw coefficients for all frames is less than 0.02 are
abandoned since we only want to retain video sequences with
apparent motions. Finally, as in [27], we use [73] to label the
lighting conditions for each remaining frame. The optimizer
setup [32] is the same as [6], [27], and we train it for ∼ 5M
steps with 4 Tesla A100 GPUs. The batch size is set to 16. The
encoder in Sec. IV-A is trained by [32] with a learning rate
of 0.001 for one day with a batch size of 4 on an RTX 3090

Method Animation Metrics Lighting Metrics
AED↓ APD↓ ID↑ LE↓ LS↓

AniFaceGAN 0.25 0.049 0.73 / /
Next3D 0.23 0.032 0.71 / /

GenHead 0.29 0.047 0.56 / /
ShadeGAN / / / 1.0714 0.2149
EG3D+DPR / / / 0.7424 0.1594

NFL / / / 0.6377 0.1455
FaceLit / / / 0.6420 0.1207

3DFaceShop 0.26 0.042 0.79 0.5950 0.1208
EG3D+SF 0.21 0.033 0.25 0.9935 0.2191

Ours 0.25 0.030 0.80 0.6263 0.1317

TABLE I: Quantitative evaluation for animation and relighting.
“NFL” refers to NeRFFaceLighting, and “EG3D+SF” refers
to EG3D+StyleFlow. We bold the best method, italicize the
second-best method, and underline the third-best method.

GPU. As to the domain transfer, we have experimented with
the domains of cartoon characters and statues. The optimizer
and training setup are the same as that [69]. We train it for
∼ 20k steps with 4 Tesla A100 GPUs and set the batch size
to 16.
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Methods TI ↓ FID ↓ AED↓ APD↓ ID↑
Ours w/ M.F. 0.0847 13.97 0.23 0.033 0.73
Ours w/o Dec. 0.0725 15.61 0.26 0.032 0.76
Ours w/ Uni. 0.0568 14.95 0.27 0.035 0.79
Ours w/o M. 0.0702 13.62 0.25 0.031 0.79
Ours 0.0674 13.62 0.25 0.030 0.80

TABLE II: Ablation study on different choices of the anima-
tion representation for generation quality and animation capa-
bility. “TI” denotes the temporal inconsistency. We bold the
best method, italicize the second-best method, and underline
the third-best method.

B. Quantitative Evaluation

To evaluate the quality of animation, we follow the evalua-
tion protocol in [52] and compare our method with AniFace-
GAN, Next3D and GenHead [13], [14], as other state-of-the-
art animatable 3D generative models, based on the Average
Expression Distance (AED), Average Pose Distance (APD),
and Identity Consistency during animation (ID). For each
method, we randomly sample 500 identities and animate each
with randomly sampled 20 FLAME parameters of expressions
and poses from the FFHQ dataset. Then, we estimate the
FLAME parameters for these 10000 generated images and the
average distances between the driving FLAME parameters and
the reconstructed ones. For identity consistency, we randomly
sample 2000 poses, 2000 sets of FLAME parameters, and 1000
identities. Then we randomly select two poses and two sets
of FLAME parameters for each identity, generating a total of
1000 image pairs. We calculate consistency metric using a pre-
trained Arcface model [12] for each image pair and report the
average result.

For relighting, we follow the evaluation protocol in [27]
and evaluate our method ShadeGAN [43], EG3D+DPR [73],
NeRFFaceLighting [27], and FaceLit [46], as other relightable
3D generative models, based on the Lighting Error (LE) and
Lighting Stability (LS). For each method, we sample 1000
real images from the FFHQ dataset and ask the model to
generate 1 corresponding fake image for each real image with
the same lighting condition. We use the off-the-shelf lighting
estimator [17] to estimate the lighting conditions for each
pair, and measure and average the distance between them
for calculating the lighting error. For the lighting stability,
we sample 1000 real images from the FFHQ dataset and
ask the model to generate 100 corresponding fake images
for each real image with the same lighting condition. We
use the off-the-shelf lighting estimator [17] again to estimate
the lighting conditions for each generated 100 fake images
set, and measure and average the standard deviation among
them. In terms of both animation and relighting, we use the
same metrics introduced before to compare our method with
3DFaceShop [54] and EG3D+StyleFlow [2]. For our method,
we transform the coefficients of Flame [34] into our animation
latent codes by the proposed encoder in Sec. IV-A.

As shown in Table. V-B, our method achieves the best APD
and ID metrics, second-best LE metrics, and third-best AED
and LS metrics. As discussed in [27], 3DFaceShop sacrifices
relighting capability on regions outside of faces for consistency

Fig. 6: Demonstration of the learned shape deformation
δ32shape and assumed template space. We visualize two identities
(denoted as “Identity I” and “Identity II”). (a) We demonstrate
their rendered frontal images without imposing any expression
or shape deformations. We further detect and visualize the
landmarks of the rendered images in the second column. To
put more emphasis on the face region, we mask out the
irrelevant regions, including the hair and background, and
focus on the eyes and mouth. In the third column, we visualize
the landmarks detected on the other identity on the rendered
image to highlight the differences between the landmarks of
these two identities. Red circles are used to highlight the
misalignment of swapped landmarks. (b) We impose the δ32

−1

shape
alone to transform each identity from the instance space into
the template space. As in (a), we visualize the rendered frontal
images, landmarks and the swapped landmarks.

despite its best lighting error metrics. As shown in Sec. V-C,
our method more consistently synthesizes the motion details,
which the off-the-shelf detector is, however, not sensitive to.

C. Qualitative Evaluation

Fig. 4 provides a qualitative comparison of our method
against other methods. For animation-only methods, we com-
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Fig. 7: Demonstration of generated animatable and relightable
statues and cartoon characters. The portraits in the same rows
have the same expressions. The corresponding geometry is
visualized next to the portrait.

pare it with AniFaceGAN and Next3D. For both animatable
and relightable methods, we compare it with 3DFaceShop and
Next3D+DPR, where we apply [73] on animated results of
Next3D. For our method, we encode the driving frames into
coefficients by [17] and transform them into our animation
latent codes by our proposed encoder.

Our method successfully synthesizes more realistic lighting
effects, such as shadows, and more consistent motion details,
such as closed eyes and pouted mouth. However, the estimator
gives higher expression distances. This bias partly explains our
slightly worse metrics in Sec. V-B. We show more results in
Figs. 9, 10 and 8, which demonstrate the superior animation
and relighting quality of our method.

For the domain transfer, we demonstrate our transferred
model on two novel domains, i.e., cartoon characters and
statues, in Fig. 7. Our method can synthesize realistic heads
in the corresponding domains and achieve effective animation
and relighting control. Please find more results in the video.

D. Ablation Study

To validate our proposed animation representation, we
compare our design choices against various baselines. Since
the task of PV3D [63] is different from ours, we compare
with it by replacing our animation representation with PV3D’s
motion features, denoted as “Ours w/ M.F.”. We abandon the
proposed decomposition of 2D deformations and directly learn
it on the convolutional features, denoted as “Ours w/o Dec.”.
Instead of the proposed adaptive sampling strategy, we train
our model with uniformly sampled frames, denoted as “Ours
w/ Uni.”. Finally, we evaluate our full model but without
applying the masking, denoted as “Ours w/o M.”.

Quantitatively, we evaluate these baselines regarding tem-
poral inconsistency while animating the expression, generation
quality, and animation metrics introduced before. For the
temporal inconsistency, we randomly sample 1, 000 identities
and sample 100 expressions for each identity. We then use
an estimator [17] to calculate the standard deviation of shape
parameters for each identity and report the average result. We
evaluate the generation quality based on the FID [24]. Due to
the differences of datasets, we do not compare the generation
quality with those methods (e.g., 3DFaceShop, AniFaceGAN,
Next3D) that rely on an image dataset and cannot benefit

from the video dataset. As shown in Table II, our full model
achieves the best generation quality and expressive capabilities
of representing expressions while maintaining good temporal
and identity consistency.

Qualitatively, following [54], we evaluate the temporal con-
sistency during continuous animation in Fig. 5, by comparing
our full method with aforementioned baselines. Clearly, only
with the template space assumption and the masking can
temporal consistency be guaranteed. Besides, in Fig. 6, we
also visualize the effects of our proposed decomposition of 2D
deformation maps, i.e., decomposing it as the composition of
shape and expression deformations. Notice that, for “Identity
I” and “Identity II”, they have different mouth shapes which
incur the misalignment of swapped landmarks. Suppose we
only learn a 2D expression deformation map which is invariant
of the identity, even though such a deformation guarantees
the same expression for all identities, it cannot handle such
misalignment of facial parts of different identities. In contrast,
after imposing the shape transformation to transform each
identity into the template space, their mouth shapes are then
roughly aligned, which makes the 2D expression deformation
maps valid. Notice that our method automatically learns such
a template space without any supervision.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

Common solutions for consistently animating realistic 3D
generative heads based on neural rendering rely on deforming
3D points guided by the classic morphable models, which,
however, are incompatible with the lightweight and realistic
relighting method. In contrast, we have presented a compatible
animation representation with the relighting method to achieve
both animatable and relightable photo-realistic 3D head gener-
ation. We demonstrate how to train such representations with
easily accessed in-the-wild video data and achieve detailed and
smooth motion synthesis. We further show that our method is
still compatible with the coefficient spaces of other morphable
models for driving generated avatars. Our method can be
extended to domains with no video data for a broader range
of animatable and relightable head generation.

One of our limitations is that our model still cannot enable
animation on regions outside of faces, such as hairs, and
subtle or extreme expressions, such as iris movement in the
leftmost column of Fig. 10. However, since our animation
space is learned from easily accessed video data, it has great
potential to represent free motion. As future work, it would
be interesting to explore how to capture the wider animation
scope of human heads. It will also be helpful to explore how
to train an encoder to directly map images, which have richer
information than pre-computed coefficients, to our animation
latent space. It will also be interesting to explore how to
train an efficient encoder to achieve real-time animatable
and relightable single-shot 3D reconstruction. Besides, static
portrait animation, relighting and editing could be misused to
generate fake videos to tarnish the reputation or perform other
illegal purposes, causing a societal threat. We do not condone
such behaviors.
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Fig. 8: More results of synthesized animation and relighting results. Given the source identities in the first column, we show
the generated results which transfer the motion, pose and lighting in the target driving images in the first row.
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