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ABSTRACT:  
Cable-stayed bridges are complex structures requiring precise determination of 
cable shape parameters for design, analysis, and construction management. With 
increasing bridge spans, geometric nonlinearities complicate the resolution of 
catenary equations. Traditional methods demand high expertise and involve intricate 
calculations, creating barriers to practical implementation. This study introduces a 
Cable-Catenary Physics-Informed Neural Network (CC-PINN) as an end-to-end, 
high-precision method for solving cable catenary problems. The proposed approach 
features a dual-parameter optimization strategy that simultaneously updates neural 
network parameters and catenary characteristic angle parameters with different 
learning rates, addressing unique challenges in cable modelling. Numerical 
experiments compare CC-PINN with traditional Newton and Secant methods across 
various cable configurations. Results demonstrate that CC-PINN achieves higher 
terminal accuracy than Newton's method and matches the precision of the Secant 
method at boundary conditions. Statistical analysis confirms no significant 
differences in characteristic angle calculations between CC-PINN and traditional 
approaches. Analysis shows a learning rate of 0.01 for angle parameters achieves 

optimal performance, balancing stability and convergence speed—especially for 

longer cables, where efficiency improves by up to 54.9%.By lowering technical 
barriers while maintaining analytical rigor, CC-PINN enables broader application of 
advanced modeling techniques in practical bridge engineering, contributing to more 
efficient design and construction of cable-stayed bridges. 
 
KEYWORDS:  Cable-stayed bridges; Catenary equation; Physics-Informed Neural 
Networks; Dual-parameter optimization.  

 

1. INTRODUCTION 
Cables are integral to the structural integrity of 

cable-stayed bridges, serving as critical load-
bearing elements. Precise determination of their 
shape parameters is essential for the foundational 
processes of design, analysis, and construction 
management (Wu et al., 2015). As bridge 
engineering has advanced, the expansion in span 

lengths has introduced unique challenges related to 
geometric nonlinearity, complicating the resolution 
of the catenary equation. Traditional approaches, 
laden with intricate derivation and integration steps, 
demand high expertise and are not easily 
accessible, necessitating a simpler and highly 
accurate method for bridge construction. 
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The catenary equation, first derived by James 
Bernoulli in 1691, poses significant computational 
challenges due to its transcendental functions. With 
advancements in computational techniques, 
numerical methods such as the secant method, the 
Levenberg-Marquardt method, and Newton's 
method have been employed to solve the catenary 
equation (Abelson and diSessa, 1981; Dennis and 
Schnabel, 1996; Marquardt, 1963). However, these 
methods are complex, requiring expertise and not 
easily accessible. This limits their practical use in 
engineering. Hence, there is an imperative need for 
an approach that is both simple and highly accurate 
to facilitate the construction of bridges. 

To develop an end-to-end, high-precision 
method for solving the catenary equation of cable-
stayed bridges, this paper proposes a Cable-
Catenary Physics-Informed Neural Network (CC-
PINN) adapted for catenary equation solutions. The 
main contributions of this research are as follows: 

1) Based on the catenary theory of cable-stayed 
bridges, the transcendental catenary equation is 
derived, and its boundary conditions are defined. A 
CC-PINN is constructed to solve this equation, thus 
realizing an end-to-end solution method.  

2) A novel self-learning method for solving 
transcendental equations, specifically aimed at 
determining the catenary characteristic parameter, 
has been established. This innovative approach 
enhances the traditional Physics-Informed Neural 
Network (PINN) framework through the 
implementation of an asynchronous learning 
strategy. As a result, the method enables rapid 
learning of catenary characteristic parameter.  

 
2. Related work 
 

2.1 Traditional methods 
In modern bridge design and construction, the 

catenary equation is applied to analyze and design 
the cable systems of bridges. Irvine's work laid the 
foundation for the application of the catenary 
equation in the design of cable-stayed bridges 
(Connor and Faraji, 2013). Building on Irvine's 
research, Jayaraman and colleagues were the first 
to propose a method for constructing elastic 
catenary cable elements (Jayaraman and Knudson, 
1981). Song et al. (Song et al., 2020) conducted in-
depth research on the catenary problem using an 
improved secant method and proposed a new 
iterative algorithm for calculating the unstressed 
length of long cables, significantly improving the 
stability and efficiency of the computation. Smith 
and Johnson utilized the Levenberg-Marquardt 
algorithm to study the relationship between the 
vertical force components at the cable ends and the 
unstressed cable length, proposing a new nonlinear 

iterative solution technique (Bergou et al., 2020). In 
recent years, further advancements have been 
made in the numerical solutions of the catenary 
equation for bridge applications. Cao et al. (Cao et 
al., 2022) have proposed a new method for finding 
the catenary line shape of bridges within a special 
cable surface, improving the traditional segmented 
catenary method and enhancing computational 
accuracy. Recent advances in suspension bridge 
cable modelling have progressed from traditional 
approaches to sophisticated computational methods, 
including improved particle swarm optimization 
(Song et al., 2024), explicit analytical iterative 
techniques based on elastic catenary theory (Cao, 
Hongyou et al., 2017). These developments have 
significantly enhanced modelling accuracy, 
providing more precise representations of actual 
cable geometries and system behaviours. However, 
the field continues to be hindered by inherent 
computational complexity and laborious iteration 
processes, creating a substantial gap between 
theoretical capabilities and practical engineering 
implementation. This disconnect highlights the 
pressing need for a streamlined, end-to-end 
catenary solution algorithm that maintains analytical 
rigor while dramatically reducing the technical 
expertise required for application, thereby enabling 
broader adoption of advanced cable analysis in real-
world bridge engineering projects.  

 
2.2 Recent Advances in Numerical Methods 

Recent studies have indicated that more 
advanced numerical methods, such as those based 
on Physics-Informed Neural Networks (PINNs) and 
deep learning techniques, are beginning to be 
explored for solving various engineering problems. 
PINNs are new machine learning technologies for 
solving Partial Differential Equations (PDEs) in 
recent years (Cuomo et al., 2022; Guo and Fang, 
2023; Mao and Meng, 2023). The core idea of 
PINNs is integrating the prior knowledge of control 
differential equations and adding the PDEs’ residual 
loss term representing the initial conditions, 
boundary conditions and internal collocation points 
to the traditional loss function. Unlike traditional 
numerical methods for solving PDEs, Physics-
Informed Neural Networks (PINNs) reframe the 
problem by transforming the solution of control 
equations into an optimization task focused on 
minimizing a loss function. This innovative approach 
streamlines the computational process and offers a 
more efficient pathway to solving complex PDEs. 

In 2017, Raissi et al. proposed the PINNs in two 
papers, and then published a merged version in 
2019 (Raissi et al., 2019). The paper introduced and 
demonstrated the use of PINNs to solve 
Schrodinger, Allen Cahn, and Burgers equations, 
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which can solve both forward and inverse problems 
within the same framework. So far, many studies 
have adopted the PINNs to solve PDEs. It has 
become one of the most popular research fields in 
computational mechanics. Haghighat et al. 
(Haghighat et al., 2021) solved the displacement 
and stress of elastic and elastic-plastic problems 
using PINNs. Samaniego et al. (Samaniego et al., 
2020) used PINNs to solve solid mechanics from an 
energy perspective. In their work, the principle of 
minimum potential energy was adopted as the 
physical law of the problem, and different optimizers 
were used to find the minimum value of total 
potential energy. Raissi and Karniadakis (Raissi and 
Karniadakis, 2018) demonstrated the effectiveness 
of the PINNs for solving Navier-Stokes, Schrödinger, 
Kuramoto Sivashinsky and time-dependent linear 
fractional equations. Mao et al. (Mao et al., 2020) 
demonstrated the correctness of the PINNs in 
solving forward and inverse problems in high-speed 
flow. Tartakovsky et al. (He et al., 2020) presented 
the PINNs for estimating hydraulic conductivity in 
saturated and unsaturated flows governed by 
Darcy's law. 

It is crucial to recognize that while the PINNs have 
demonstrated significant potential in various 
domains of computational mechanics and solving 
PDEs, their application to catenary problems, 
particularly in solving catenary lines, remains an 
unexplored frontier. This gap in knowledge presents 
a compelling research opportunity. The challenge is 
further compounded by the fact that catenary 
equations are transcendental in nature, 
characterized by their deceptively simple form yet 
notoriously difficult to solve. Traditional PINNs 
frameworks struggle to directly address these 
equations, as they are fundamentally different from 
the differential equations that PINNs typically handle. 
Exploring how PINNs can be adapted and applied to 
solve catenary equations not only represents a 
significant technical challenge but also holds the 
promise of delivering novel insights and solutions in 
bridge engineering and related fields. Such 
advancements could potentially revolutionize our 
approach to designing and analysing cable-stayed 
structures, marking a significant leap forward in 
structural engineering practices. 

 
3. Methods 
 

3.1 Cable-stayed Catenary Theory 
 
3.1.1 Fundamental Assumptions 

The fundamental assumptions for the catenary 
shape of cable-stays under self-weight are as 
follows: 

1) Flexibility Assumption: The cable-stay is 
considered an ideal flexible cable that cannot resist 
lateral bending in the absence of tension. 

2) Linear Elasticity Assumption: The cable-stay 
is assumed to be a linearly elastic material, 
conforming to Hooke's law. 

3) Homogeneity Assumption: The cable-stay is 
treated as a homogeneous body with a constant 
cross-section. This means that changes in the 
cable's cross-section before and after deformation 
are not considered, and its self-weight intensity 
remains constant along the length of the cable. 

4) Load Assumption: The cable-stay is assumed 
to be subjected only to a uniformly distributed 
vertical downward load along its length, apart from 
the support reactions at both ends. 
These assumptions form the basis for analysing the 
catenary shape of cable-stays in bridge engineering, 
providing a simplified yet effective model for 
understanding their behaviour under self-weight. 
 
3.1.2 Catenary Equation 

The Cartesian coordinate system is presented in 
Figure 1, with its origin located at point A. The 

tension at the left end is Ti, which can be 

decomposed into horizontal force component Hi and 

vertical force component Vi. Similarly, the tension at 

any point (x, y) of the stay cable is T, which can be 

decomposed into horizontal force component H and 

V vertical force component. 𝛽 and 𝛼 are the angles 

of tension forces Ti and T, respectively. mcb is the 
weight of the cable per unit length. 

 
Figure 1. Schematic diagram of force analysis for stay 
cable. 

According to equilibrium conditions, the 
equilibrium equation can be established: 

∑𝑀𝐴 = 0:−𝐻𝑦 + 𝑉𝑥 − ∫ (1 + 𝑦′2)𝑑𝑥
𝑥

0

= 0 (1) 

∑𝐹𝑥 = 0:𝐻 − 𝐻𝑖 = 0 (2) 

   

 

∑𝐹𝑦 = 0: 𝑉 − 𝑉𝑖 −∫ 𝑚𝑐𝑏√1 + 𝑦′
2

𝑥

0

𝑑𝑥 = 0 (3) 
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Solve H and V respectively from equations (2) 
and (3), and substitute them into equation (1) to 
obtain: 

−𝐻𝑖𝑦 + (𝑉𝑖 +∫ 𝑚𝑐𝑏√1 + 𝑦′
2𝑑𝑥

𝑥

0

) 𝑥 −

∫ 𝑚𝑐𝑏𝑥√1 + 𝑦′
2𝑑𝑥

𝑥

0

= 0 (4)

 

Taking the derivative of x on both sides of 
equation (4) yields 

−𝐻𝑖𝑦
′ + 𝑉𝑖 +∫ 𝑚𝑐𝑏√1 + 𝑦′

2𝑑𝑥
𝑥

0

= 0 (5) 

Again taking the derivative of x on both sides of 
equation (5) yields the final catenary equation

 −𝐻𝑖𝑦
′′ +𝑚𝑐𝑏√1 + 𝑦′

2 = 0 (6) 

Solving the above equation can be solved as 

follow  

𝑦 =
𝐻𝑖
𝑚𝑐𝑏

𝑐𝑜𝑠ℎ (
𝑚𝑐𝑏𝑥

𝐻𝑖
+ 𝐶1) + 𝐶2 = 0 (7) 

Where C1 and C2 are constants. In order to 
obtain a unique solution to the catenary equation, 
boundary conditions need to be given:  

𝑦(𝑙0) = 𝑙0 𝑡𝑎𝑛 𝛾 (9)

 𝑦′(0) = 𝑡𝑎𝑛 𝛼 (10) 
This study aims to improve the PINNs’ structure 

by utilizing neural networks to learn the control 
equations and boundary conditions of cable-stay 
catenary. The goal is to train an appropriate neural 
network that can replace the conventional catenary 
equation. Unlike traditional PDEs, the boundary 
conditions in this case contain unknown parameters. 
In other words, during the learning process, the 
neural network must not only learn its internal 
parameters but also the angular characteristic 
parameter 𝛼. 

To address this challenge, the angular 
characteristic parameter is incorporated as 
learnable parameters. These parameters are 
optimized and updated jointly with the internal 
parameters of the neural network through gradient-
based methods. This end-to-end approach to 
solving the cable-stay catenary equation 
circumvents the complexity inherent in traditional 
numerical methods that require indirect solutions, 
thereby significantly reducing the difficulty of the 
problem. 

 
3.2 Cable-Catenary Physics-Informed Neural 
Networks Algorithm 

Regarding the problem of solving the cable 
catenary equation, this study improves upon the 
classic PINNs framework (Karniadakis et al., 2021) 
and proposes a CC-PINN algorithm. The specific 
implementation method is shown in Figure 2. Firstly, 
a uniform sampling method is applied to the feasible 

domain of the catenary, forming datasets used to 
optimize both the physics-constrained loss and the 
data-driven loss. Here, 𝜃  represents the set of 

neural network parameters, while  𝛼 represents the 
learned catenary characteristic parameters. 

 
Figure 2. Pseudocode for CC-PINN 

As shown in Figure 3, a neural 
network𝒩(𝑥; 𝜃，𝛼)  is then constructed with the 
cable-stay catenary position 𝑥  as input and the 

cable-stay line 𝑦  as output. The main difference 
between the CC-PINN and classic PINN lies in the 
additional self-learning parameters. These 
parameters are not directly related to the main 
neural network but participate in parameter updates 
during gradient backpropagation. 

 
Figure 3. The CC-PINN framework  

Based on the catenary theory formulas (6), (8), 
(9) and (10), an overall loss function can be 
constructed: 

𝐿(𝑥; 𝜃，𝛼) = 𝐿data(𝑥; 𝜃，𝛼) + 𝐿physics(𝑥; 𝜃，𝛼) =

(𝑁(𝑥 = 0) − 0)2 + (𝑁(𝑥 = 𝑙0) − 𝑙0 ⋅ 𝑡𝑎𝑛 𝛾)
2 + (𝑁(𝑥 = 0)′ − 𝑡𝑎𝑛 𝛼)2⏟                                            

Data Loss

 

+(−𝐻𝑖𝑁(𝑥)
′′ +𝑚𝑐𝑏√1 + 𝑁(𝑥)′

2 − 0)
⏟                        

Physical Loss

 (11)
 

 The loss function is composed of two parts: the 
data-driven loss 𝐿data  and the physics-informed loss 

𝐿physics. The data-driven loss primarily incorporates 

known boundary conditions, such as the position 
coordinates of the catenary endpoints. Additionally, 
there are unknown boundary conditions, as the 
catenary characteristic parameter 𝛼  is initially 
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unknown and require continuous updating and 
iteration throughout the learning process. Notably, 

the catenary characteristic parameter θ  is also part 

of the loss function construction, which distinguishes 
it from classic PINNs equation. On the other hand, 
the physics-informed loss is derived from the 
catenary equation. The key distinction from 
traditional solution methods lies in the substitution of 
the catenary function y with a neural network 
representation. 

The optimization process necessitates the 
simultaneous adjustment of two classes of 

parameters: the neural network parameters θ and 

the catenary characteristic parameter α . To 

accommodate this dual optimization, distinct 
learning rates are established for each parameter 
class. The specific steps are as follows: 

Step 1: Initially, the gradient is computed for each 
set of parameters: 

gt,u = ∇uL(ut−1, anglet−1) (12) 
         

gt,angle = ∇angleL(ut−1, anglet−1) (13) 
                                      
𝐿  represents the loss function, while ut−1  and 

anglet−1  denote the model parameters and angle 
parameters from the previous iteration, respectively. 
The algorithm proceeds to update the first-order and 
second-order moment estimates based on the 
gradients, applies bias correction, and ultimately 
updates the parameters. 

Step 2: Update parameters: 

θ
t
=θ

t−1
−

λ
θ

√v̂t,θ + ϵ
m̂t,θ 

(14) 

α
t
=α

t−1
−

λ
α

√v̂t,α + ϵ
m̂t,α

(15) 

                                       

λ
θ

 and λ
α

 represent the learning rates for the 

model parameters and angle parameters, 
respectively. m̂t,θ  and m̂t,α  are the bias-corrected 

values for the first-order moments, while v̂t,θ  and 

v̂t,α  are the bias-corrected values for the second-

order moments. ϵ is a small positive number used to 
prevent division by zero errors. 

Due to the complexity and unique nature of the 
CC-PINN, setting different learning rates for the 
model parameters and additional parameters 
enhances the flexibility and efficiency of parameter 
updates during model training. This differentiated 
parameter update strategy provides an effective 
solution for addressing specific challenges in 
complex model training processes, thereby 

enhancing training stability and optimization 
efficiency. 
4. Numerical Experiments 

To ensure generality, this study employs 
conventional stay cable specifications and 
arrangement forms for validation. The specific 
parameters are presented in Table 1. As evident 
from Table 1, the cable lengths from C1 to C4 
gradually increase, representing the typical 
progression from short to long cables encountered 
in engineering practice. These design parameters 
possess significant engineering representativeness. 
This study will initially compare the accuracy of 
solutions obtained through the Newton's method 
and the Secant method—both commonly used in 
engineering—with the proposed CC-PINN. 

 
Table 1. Design Parameters of Cables 

Cable 
Numb

er 

Deck Anchor 
Coordinates 

Tower Anchor 
Coordinates Cable 

Specificat
ion 

Linear 
Weigh

t / 
(kN·m
⁻¹) 

Cabl
e 

Forc
e / 
kN 

xi / m yi / 
m 

xi / m yi / m 

C1 0 0 20.2
59 

43.9
64 

PES7-
121 

0.389 2392
.6 

C2 -
35.10

0 

-
0.1
75 

20.1
66 

54.2
01 

PES7-
139 

0.448 2997
.8 

C3 -
78.10

0 

-
0.3
90 

20.1
03 

66.5
53 

PES7-
199 

0.632 3947
.8 

C4 -
122.1

00 

-
0.6
10 

20.0
73 

80.3
26 

PES7-
241 

0.761 4984
.2 

 
4.1 Accuracy Analysis 

Whether employing traditional methods such as 
Newton's method and the Secant method, or the 
novel CC-PINN approach, the primary objective is to 
solve the catenary equation. Consequently, the 
solution process must satisfy the equation's 
boundary conditions. Therefore, in the comparative 
analysis, the three boundary conditions and the 
linear function of results are crucial metrics for 
evaluating the solution accuracy. Table 2 presents 
the boundary condition solutions for four 
representative cables, obtained using Newton's 
method, the Secant method, and CC-PINN. The 
accuracy of the results at x=0 is consistent across 
all three methods. However, at x=L, Newton's 
method exhibits slightly lower precision compared to 
the Secant method and CC-PINN.  

Regarding the third boundary condition y′(0) =
tan α, since there is no target value for alpha, it is not 
possible to directly assess the error. Given that the 
Secant and Newton methods have been extensively 
studied in both academic and industrial contexts, a 
hypothesis testing approach was introduced to more 
scientifically evaluate the degree of difference 
between CC-PINN and traditional methods. A paired 
t-test was employed to analyze the disparities in 
angle calculations among CC-PINN, the Secant 
method, and Newton's method. The null hypothesis 
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posited that there were no significant differences 
between CC-PINN and the Secant method, as well 
as between CC-PINN and Newton's method in angle 
calculations. The resulting p-values were 0.40964 
for CC-PINN versus the Secant method, and 0.4250 
for CC-PINN versus Newton's method. As both p-
values substantially exceed 0.05, the null 
hypothesis cannot be rejected. In other words, from 
a statistical perspective, although there are slight 
variations in angle calculations among CC-PINN, 

the Secant method, and Newton's method—with a 

maximum difference of 0.039 degrees—there is no 

statistically significant difference among the three 
methods. This demonstrates that CC-PINN 
possesses comparable capability in angle 
calculation to the established methods. Meanwhile, 
Figures 5(a)-(d) illustrate the cable profiles for 
parameters C1-C4, respectively, as computed by 
the three methods. It is evident that the cable 
shapes derived using CC-PINN align closely with 
those obtained through traditional methods. 

 
Table 2. Calculation results for different models 

Boundary 
Conditions 

 
Target 
value 

Secant 
method 

Newton's 
method 

CC-
PINN 

𝒚(𝟎) = 𝟎 

C1 0 0 0 0 

C2 0 0 0 0 

C3 0 0 0 0 

C4 0 0 0 0 

𝒚(𝒍𝟎)
= 𝒍𝟎 𝒕𝒂𝒏𝜸 

C1 43.964 43.964 43.987 43.964 

C2 54.376 54.376 54.409 54.376 

C3 66.943 66.943 66.971 66.943 

C4 80.936 80.936 80.962 80.936 

𝜶 

C1 

/ 

65.165 65.176 65.169 

C2 44.299 44.316 44.291 

C3 33.832 33.843 33.857 

C4 29.031 29.039 29.000 

 

 
(a) C1 Profile 

 

 
(b) C2 Profile 

 
(c) C3 Profile 

 
(d) C4 Profile 

Figure 5. Cable Catenary Profiles Solved by Different 
Methods 
 

Although CC-PINN achieves end-to-end solution 
of cable catenary equations, simplifying the solving 
process and lowering the barrier to use, the 
separate updating of characteristic angle 
parameters means that different learning rates can 
have a significant impact. 

 
(a) Angle learning 
process of C1 
 

 
(b) Angle learning process 
of C2 
 

 
(c) Angle learning 
process of C3 

 
(d) Angle learning process 
of C4 

Figure 6. Learning process of self-learning angle 
parameter with different learning rates 

According to the CC-PINN algorithm proposed in 
this study, the uncertainty of characteristic angles 
brings great difficulty to model optimization. Thus, 
the focus is on analyzing rapid learning methods for 
characteristic angles. Figure 6 shows the angle 
learning process for C1-C4 cables' parameters 
under angle learning rates of 0.001, 0.01, and 0.1. 

Larger learning rates result in greater fluctuations 
during the optimization process. When the angle 
learning rate is set to 0.1, the angle optimization 
does not show a stable trend towards equilibrium. 
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This is mainly because the high learning rate causes 
excessive correction of angle parameters in each 
epoch during optimization. The characteristic angle 
parameters of the catenary require high-precision 
fine-tuning during the learning process. However, 
when the learning rate is too low, set at 0.001, the 
angle learning process is more stable compared to 
the 0.1 learning rate. The angle gradually stabilizes 
from the initial value as learning progresses, but the 
learning speed is relatively slow. When the angle 
learning rate is set to 0.01, it compensates for both 
the convergence difficulty of high learning rates and 
the slow convergence of low learning rates. It can be 
seen that a learning rate of 0.01 converges to the 
target accuracy in less time. 

More notably, the advantage of the 0.01 learning 
rate is more pronounced when solving more 
challenging long cables. For cable C3, this learning 
rate improves learning efficiency by 24.1% and 30.6% 
compared to learning rates of 0.1 and 0.001, 
respectively. For cable C4, it improves efficiency by 
32.5% and 54.9% compared to rates of 0.1 and 
0.001. Therefore, choosing an angle learning rate of 
0.01 is more appropriate, enabling rapid 
convergence. 
4. CONCLUSION 

Due to the complexity of traditional methods, this 
study proposes a high-precision, end-to-end 
solution for cable catenary problems. CC-PINN was 
established, along with an analysis of its key 
parameters in the context of stay cables. The 
following conclusions were drawn: 

1)  This study proposes the CC-PINN, featuring a 
dual-parameter optimization approach that 
simultaneously updates both neural network 
parameters and catenary characteristic angle 
parameters with different learning rates. This 
innovative method effectively addresses the unique 
challenges in cable catenary modeling. 

2) The CC-PINN achieves higher terminal 
accuracy than Newton's method and matches the 
precision of the Secant method at boundary 
conditions. For the characteristic angle parameter, 
despite minor fluctuations between methods, 
statistical analysis (p-values > 0.05) confirms no 
significant differences between CC-PINN and 
traditional methods. 

3) The learning rate of 0.01 for angle parameters 
provides optimal performance, balancing the 
instability of higher rates (0.1) and the slow 
convergence of lower rates (0.001). This 
optimization is especially important for longer cables, 
improving efficiency by up to 54.9%. 

By providing an end-to-end solution framework, 
CC-PINN effectively lowers the technical barriers to 
accurate cable catenary analysis, potentially 
enabling broader application of advanced modelling 

techniques in practical bridge engineering projects 
without sacrificing analytical rigor. 
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