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ABSTRACT
BACKGROUND: Copy number variants (CNVs) may increase the risk for neurodevelopmental conditions. The neurobi-
ological mechanisms that link these high-risk genetic variants to clinical phenotypes are largely unknown. An important
question is whether brain abnormalities in individuals who carry CNVs are associated with their degree of penetrance.
METHODS: We investigated whether increased CNV penetrance for schizophrenia and other developmental
disorders was associated with variations in cortical and subcortical morphology. We pooled T1-weighted brain
magnetic resonance imaging and genetic data from 22 cohorts from the ENIGMA (Enhancing Neuro Imaging
Genetics through Meta Analysis)-CNV consortium. In the main analyses, we included 9268 individuals (aged 7–90
years, 54% female), from which we identified 398 carriers of 36 neurodevelopmental CNVs at 20 distinct loci. A
secondary analysis was performed including additional neuroimaging data from the ENIGMA-22q consortium,
including 274 carriers of the 22q11.2 deletion and 291 noncarriers. CNV penetrance was estimated through
penetrance scores that were previously generated from large cohorts of patients and controls. These scores
represent the probability risk of developing either schizophrenia or other developmental disorders (including
developmental delay, autism spectrum disorder, and congenital malformations).
RESULTS: For both schizophrenia and developmental disorders, increased penetrance scores were associated with
lower surface area in the cerebral cortex and lower intracranial volume. For both conditions, associations between
CNV-penetrance scores and cortical surface area were strongest in regions of the occipital lobes, specifically in the
cuneus and lingual gyrus.
ª 2025 Society of Biological Psychiatry. Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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CONCLUSIONS: Our findings link global and regional cortical morphometric features with CNV penetrance, providing
new insights into neurobiological mechanisms of genetic risk for schizophrenia and other developmental disorders.

https://doi.org/10.1016/j.bpsc.2025.05.010
Copy number variants (CNVs) are structural variations in the
genome that involve deletions or duplications of over 1000
base pairs of DNA. Several rare recurrent CNVs have been
proposed as pathogenic, leading to genomic disorders and
increased risk for neurodevelopmental disorders (NDDs) (1,2)
such as schizophrenia, autism spectrum disorder (ASD), and
developmental delay (DD) (3). Different CNVs can lead to similar
clinical conditions, although with variable penetrance. For
example, 22q11.2 deletions are among the strongest genetic risk
factors for schizophrenia (odds ratio . 28), whereas 15q11.2
breakpoint (BP)1-BP2 deletions impart low-level risk (odds ratio =
1.3–2.2) (2,4). Genetic studies suggest that distinct CNVs are
likely to converge in the path from genome to clinical phenotypes
(2,5–8), leading to a degree of similar cognitive and anatomical
brain effects across CNVs. Relatively large studies, which have
compared wide-ranging phenotypic manifestations across a
number of different CNVs, have supported this hypothesis by
showing similar effects across traits (9,10).

Several magnetic resonance imaging (MRI) studies have
informed on how CNVs at 22q11.2, 1q21.1 distal, 7q11.23,
16p11.2 (BP2-BP3 and BP4-BP5), and 15q11.2 BP1-BP2 loci
affect brain macro- and microstructure (8,11–18). The majority
of these CNVs were shown to impact global brain morphology,
with variable regional effects. ENIGMA (Enhancing Neuro Im-
aging Genetics through Meta Analysis)-CNV and ENIGMA-22q
consortia have published studies on cortical and subcortical
alterations in 22q11.2 (16,17), 16p11.2 BP2-BP3 (13), 1q21.1
distal (12), and 15q11.2 (14) CNV carriers compared with
noncarrier controls. Modenato et al. summarized cortical and
subcortical findings from 76 studies on 20 pathogenic CNVs in
a systematic review (11). Carriers of 15q11.2 BP1-BP2, 1q21.1
distal, 22q11.2, and 7q11.23 deletions and 16p11.2 BP4-BP5
duplications show similar effects on global measures (lower
surface area and lower total brain volume), whereas 16p11.2
BP4-BP5 deletion carriers show opposite effects (higher sur-
face area and higher total brain volume). Effects on global
cortical thickness were more variable, with 15q11.2 BP1-BP2,
22q11.2, and 7q11.23 deletions showing higher and 16p11.2
BP4-BP5 duplications showing lower cortical thickness.
Emerging studies have looked at both convergent and CNV-
specific effects (19–22). A study that combined neuroimaging
data from 8 neuropsychiatric CNVs highlighted similar effects
on regional volumes across CNV carriers when compared with
noncarrier controls—particularly in the cingulate gyrus, insula,
supplementary motor cortex, and cerebellum—but the largest
proportion of effects was distinct across CNVs (20). However,
it is unclear whether specific brain features in individuals who
carry CNVs are associated with increased disease risk.

A previous multimodal neuroimaging study investigated
how penetrance of each CNV for schizophrenia and other
developmental disorders was correlated with brain features in
21 adult participants carrying CNVs with variable penetrance
(23). Penetrance scores were used as a measure of CNV
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
penetrance, reflecting the probability of developing either
schizophrenia or other developmental disorders (including DD,
ASD, and congenital malformations [CMs]) given the presence
of a certain CNV. These scores were previously calculated for
each CNV by Kirov et al. (24) using large patient cohorts from
previous studies. Higher CNV penetrance for either schizo-
phrenia or developmental disorders was associated with
changes in the curvature of the cingulum and with volumetric
interrelationships between segments of the corpus callosum
(23). No associations were found between gray matter features
and penetrance scores, possibly because the small sample
size affected the statistical power.

In this study, we used a much larger neuroimaging dataset
(N = 9268) from the ENIGMA-CNV consortium, including 398
carriers of 36 CNVs with potential risk for NDDs. We utilized
previously estimated CNV-penetrance scores for schizo-
phrenia and developmental disorders (including DD/ASD/CMs)
from Kirov et al. (24) and updated these scores with control
frequency from UK Biobank data (25). We analyzed associa-
tions between CNV penetrance and subcortical volumes,
intracranial volume (ICV), as well as global and regional surface
area and thickness measures of the cerebral cortex. We aimed
to identify brain features that are related to neuro-
developmental disease risk across multiple CNVs. This is a key
question both mechanistically and clinically because brain
mechanisms that are most related to pathogenicity may
represent relevant treatment targets.

METHODS AND MATERIALS

Sample Description

The main sample comprised MRI and genotyping data from 22
cohorts from the ENIGMA-CNV consortium (12) (see Table S1
for cohort details). We considered 93 CNV regions (3)
(Table S2) as having potential risk for NDDs (hereafter desig-
nated as NDD-CNVs). This includes reciprocal deletions/du-
plications of confirmed neurodevelopmental CNVs even if
evidence for the pathogenicity of the reciprocal CNV is unclear
(25). In the main dataset, comprising 9268 individuals, we
identified 398 carriers of 36 NDD-CNVs (at 20 CNV loci). We
considered individuals carrying none of the 93 CNVs as the
noncarrier group. Demographic information is provided in
Table 1. Neuroimaging data were collected from 40 acquisition
sites up until September 30, 2019, with different ascertainment
methods (family, clinical, population studies, and case-control
studies for psychiatric disorders) (Table S1). Information on
psychiatric or neurological medical conditions was based on
available reports from different cohorts. We conducted an
additional analysis including independent MRI data from the
ENIGMA-22q consortium, comprising 274 individuals carrying
the 22q11.2 (3 Mb) deletion, as well as 291 matched noncarrier
controls. Demographic information for cohorts included in
ENIGMA-22q is described in Table S6, and details of exclusion
October 2025; 10:1093–1106 www.sobp.org/BPCNNI
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Table 1. Demographic Data for NDD-CNV Carriers and Noncarrier Control Participants From the ENIGMA-CNV and ENIGMA-22q Cohorts

NDD-CNVs

Deletions Duplications

n PenSZ PenDD Age, Years, Mean (SD) Sex n PenSZ PenDD Age, Years, Mean (SD) Sex

ENIGMA-CNV (Main Sample)

Carriers

1q21 TAR 2 1.89% 14.85% 58.8 (2.51) 2 male 9 1.00% 5.86% 45 (24.4) 3 female, 6 male

1q21.1 BP3-BP4 (Distal) 19 4.95% 22.91% 24.5 (14.4) 9 female, 10 male 10 2.24% 13.58% 41.7 (18.2) 4 female, 6 male

2p16.3 (NRXN1) 2 3.54% 9.77% 33.3 (14.6) 1 female, 1 male – – – – –

2q11.2 2 3.60% 9.18% 29.5 (12.1) 2 male 1 1.91% 11.67% 47 1 male

2q13 (NHP1) 72 0.99% 3.25% 42.5 (19.4) 36 female, 36 male 48 1.12% 7.59% 41.4 (20.3) 25 female, 23 male

2q13 1 1.00% 15.87% 26.4 1 female – – – – –

3q29 2 15.35% 48.65% 34.4 (20.6) 2 male – – – – –

10q11.21q11.23 5 1.74% 5.32% 42.8 (15.5) 3 female, 2 male 1 1.85% 9.20% 14.1 1 female

13q12.12 3 0.97% 3.21% 34.7 (17.1) 3 female – – – – –

15q11.2 BP1-BP2 26 1.56% 6.15% 39.2 (20.9) 15 female, 11 male 42 1.04% 3.67% 44.7 (22) 22 female, 20 male

15q11q13 BP3-BP4 1 0.00% 11.66% 68 1 female 1 2.33% 1.28% 37.2 1 female

15q13.3 BP4-BP5 2 5.09% 45.96% 30 (4.53) 2 male 7 1.15% 6.64% 33.4 (17) 3 female, 4 male

15q13.3 (CHRNA7) 1 6.67% 30.80% 14.7 1 female 53 0.79% 3.88% 38.2 (23.7) 27 female, 26 male

16p13.11 2 1.61% 15.83% 14.3 (0.69) 1 female, 1 male 21 1.85% 5.46% 41.1 (20.4) 14 female, 7 male

16p12.1 7 2.80% 7.96% 23.5 (8.45) 2 female, 5 male 6 0.52% 2.40% 40.9 (17.7) 5 female, 1 male

16p11.2 BP2-BP3 (Distal) 3 1.41% 21.98% 22.5 (9.45) 1 female, 2 male 8 1.40% 9.61% 36 (20.5) 4 female, 4 male

16p11.2 BP4-BP5 (Proximal) 3 0.77% 36.82% 46.4 (33) 2 female, 1 male 2 7.00% 22.10% 51.1 (2.75) 2 female

17p12 3 1.20% 3.54% 42 (22.3) 3 male 5 0.78% 8.15% 33.8 (22.4) 3 female, 2 male

17q12 2 2.05% 54.78% 31.7 (0.99) 2 female 9 1.99% 13.27% 45.9 (23.5) 3 female, 6 male

22q11.1 (3 Mb) 11 9.98% 83.98% 22.6 (14.1) 5 female, 6 male 6 0.20% 14.13% 33.7 (17.1) 4 female, 2 male

n Age, Years, Mean (SD) Sex

Noncarriers (Controls) 8870 40.6 (21.4) 4783 female, 4087 male

ENIGMA-22q

n PenSZ PenDD Age, Years, Mean (SD) Sex

22q11 (3 Mb)
Deletion Carriers

274 9.98% 83.98% 18.52 (9.59) 144 female, 130 male

Noncarriers (Controls) 291 18.34 (9.47) 132 female, 159 male

PenSZ and PenDD for each CNV were previously calculated using large cohorts, as described in Kirov et al. (24), and recalculated in Kendall et al. (25) using control frequency from the UK Biobank data. Penetrance
scores were calculated by multiplying the probability of carrying a specific CNV, given disease status, by the frequency of the disease in the population (which was estimated at 1% for schizophrenia and 4% for
developmental disorders [including developmental delay, autism spectrum disorder, and congenital malformations]) (24).

CNV, copy number variant; ENIGMA, Enhancing Neuro Imaging Genetics through Meta Analysis; NDD, neurodevelopmental disorder; PenDD, penetrance scores for developmental disorders; PenSZ, penetrance
scores for schizophrenia.
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criteria, genotyping, and scanner parameters are described in
Sun et al. (16) and Ching et al. (17).

Genotyping, CNV Calling, and CNV Quality Control

Genotypes were obtained using commercially available plat-
forms and conducted at each participating site (Table S1). All
cohorts had CNVs called and identified in a unified manner as
described previously in Sønderby et al. (12). Briefly, CNVs were
called using PennCNV (26) and appropriate population fre-
quency files and GC (content) model files (Table S3). Samples
were filtered and CNVs identified based on standardized
quality control metrics. CNVs overlapping the regions of in-
terest were identified with the R package iPsychCNV, Select-
SamplesFromRoi with parameters OverlapMin = 0.4 and
OverlapMax = 5. Individuals with a minimum overlap of 0.4 to
regions with known pathogenic CNVs were excluded regard-
less of copy number status.

Image Acquisition and Processing

Structural T1-weighted MRI data were collected and pro-
cessed locally at each site (12) using standardized neuro-
imaging protocols from the ENIGMA consortium (http://
enigma.ini.usc.edu/protocols/imaging-protocols/), using Free-
Surfer software (27). Brain measures consisted of volumes for
left and right hemispheres of 7 subcortical regions and surface
area and thickness for left and right hemispheres of 34 cortical
regions, as well as total cortical surface area, mean cortical
thickness, and ICV according to the Desikan-Killiany atlas (28).
Scanner parameters and processing details are described in
Table S4.

CNV-Penetrance Scores

Penetrance scores represent the probability risk of developing
either schizophrenia (PenSZ) or other developmental disorders
(PenDDs) for individuals carrying a specific CNV. These scores
were previously calculated in Kirov et al. (24) and were recently
updated using control frequency from UK Biobank data in
Kendall et al. (25). Penetrance scores are documented in
Table 1. Briefly, the authors utilized data from large studies/
samples of patients with schizophrenia and developmental
disorders (including DD/ASD/CMs) to estimate the frequency
of 70 CNVs in these disorder populations. Penetrance scores
for either schizophrenia or developmental disorders were
calculated on the basis of these frequencies by multiplying the
frequency of a specific CNV in the disease population (either
schizophrenia or developmental disorders) by the disease
frequency in the general population (estimated at 1% for
schizophrenia and 4% for DD/ASD/CMs) (24) and dividing by
the frequency of the CNV in the general population (24).

Statistical Analyses

Statistical analyses were performed in R version 4.1.2 (29). Prior
to analyses, left and right hemispheric measures were averaged,
and individual measures were excluded if they deviated more
than 64 SDs from the mean for each individual scanner site. We
used ComBat harmonization to account for scanner effects while
preserving differences between noncarriers (controls) and CNV
carriers, as well as age and sex (30). Effects of age, age2, sex, and
ICV were regressed out separately using linear regression on
1096 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
ComBat harmonized data. ICV was not regressed out when
analyzing ICV. We used the entire sample for data harmonization,
including data from noncarriers, to preserve biological differences
across CNVs that were not explained by age, sex, or scanner
differences. Covariance-corrected residuals were normalized and
used in downstream analysis for each brain measure. Penetrance
scores were log-transformed and normalized before analyses.
Data from ENIGMA-22q were not included in the main analysis
given the high number of 22q11.2 deletion carriers because such
a highly penetrant CNV would likely influence the analysis. A
separate analysis was performed including this dataset.

General linear models were used to identify associations
between normalized log-transformed penetrance scores and
normalized brain measures (23). To ensure that effects were
associated with CNV penetrance and not simply due to the
presence of NDD-CNVs, noncarriers were removed from the
analyses. NDD-CNV carriers (as a group) were also compared
with noncarriers to verify this assumption using a binary clas-
sification and correcting for age, age2, sex, and ICV.

We used the Benjamini–Hochberg false discovery rate (FDR)
(q , .05) to account for multiple testing, taking 78 brain
measures into account (7 subcortical volumes, 34 regional
cortical surface area, 34 regional cortical thickness, and 3
global measures, see above). We also provide adjusted p
values using Bonferroni correction in the main analysis, which
is a more conservative approach. Regional cortical visualiza-
tion was done with the R package “fsbrain” (version 0.5.3) (31).

We conducted sensitivity analyses repeating the main
analysis after excluding 1) participants who were younger than
18 years, 2) individuals with known neurological or psychiatric
diagnoses, 3) first-degree and second-degree relatives, 4) in-
dividual CNVs to assess whether individual CNVs were driving
significant associations, and 5) CNVs with ,3 individuals. We
also repeated the analyses without regressing out the effects
of ICV.

RESULTS

Sample Characteristics

The main dataset consisted of 398 carriers of 36 NDD-CNVs
(20 deletions and 16 duplications at 20 CNV loci) and 8870
noncarriers (Table 1). In this sample, 601 individuals had a
medical diagnosis (6.5%), 57 of whom were NDD-CNV car-
riers; among these, 481 individuals (447 noncarriers and 34
NDD-CNV carriers) had a neurological disorder, NDD, or psy-
chiatric diagnosis (Table S5). The sample comprised 1920 in-
dividuals younger than 18 years (20.7%), 82 of whom were
NDD-CNV carriers. There was a negative correlation between
age and both PenSZ and PenDD (t = 23.03, p , .001 and
t = 23.04, p , .001, respectively), indicating that carriers of
highly penetrant CNVs were younger on average.

CNV Penetrance Is Associated With Total Surface
Area and Intracranial Volume

Among 398 NDD-CNV carriers, increased PenDD was asso-
ciated with lower cortical surface area (PenDD: b = 20.17,
t = 23.39, pFDR = .01). PenSZ had a marginal effect on cortical
surface area (PenSZ: b = 20.14, t = 22.72, pFDR = .07). Both
PenDD and PenSZ were associated with lower ICV (PenSZ:
October 2025; 10:1093–1106 www.sobp.org/BPCNNI
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b = 20.24, t = 25.01, pFDR , .001; PenDD: b = 20.18,
t = 23.56, pFDR = .01). There were no significant associations
between penetrance scores and mean cortical thickness or
subcortical volumes (Figure 1 and Table S7). When we
compared all NDD-CNV carriers (as a group) to noncarriers,
there were no significant effects on global measures
(Table S8A).

Associations Between CNV Penetrance and Surface
Area Are Strongest in the Occipital Lobes

The largest effects for regional cortical surface area were found
in the occipital lobes (Figures 2 and 3), where higher PenSZ
was associated with lower surface area in the lingual gyrus,
cuneus, and pericalcarine area (b = 20.2, t = 23.95, pFDR =
.002; b = 20.2, t = 24.09, pFDR = .002; and b = 20.15,
t = 22.99, pFDR = .04, respectively). Higher PenDD was
associated with lower surface area in the lingual gyrus and
cuneus (b = 20.19, t = 23.78, pFDR = .007 and b = 20.17,
t = 23.3, pFDR = .01, respectively). Additionally, higher PenSZ
was associated with lower surface area in the frontal lobe
(medial orbitofrontal and lateral orbitofrontal) and cingulate
cortex (caudal anterior cingulate). Higher PenDD was associ-
ated with lower surface area in the frontal lobe (pars orbitalis),
cingulate cortex (caudal anterior cingulate), parietal lobe
(postcentral), and temporal lobe (superior temporal and fusi-
form gyrus). No significant associations were found between
penetrance scores and regional cortical thickness (Figure 2
and Table S7).

When comparing NDD-CNV carriers to noncarrier controls,
there were no significant effects on regions associated with
CNV penetrance. Significant effects were found in surface area
(smaller in NDD-CNV carriers) in the lateral occipital, pre-
central, and temporal pole and in cortical thickness (smaller in
NDD-CNV carriers) in the parahippocampal and frontal pole
(Table S8A).

Inclusion of Data From 22q11.2 Deletion Carriers
From the ENIGMA-22q Consortium

The inclusion of a large number of 22q11.2 deletion carriers
substantially influenced the results in that several new asso-
ciations became significant (Table S9). New associations were
not only found in regional cortical surface area measures but
also in subcortical volumes and cortical thickness measures.
The association between PenSZ and surface area in the lateral
orbitofrontal became nonsignificant following the inclusion of
ENIGMA-22q data.

Sensitivity Analyses

The associations between penetrance scores and surface area
of the cuneus and lingual gyrus in the occipital lobes were the
most robust findings (Tables S10–S15) in that the association
between PenSZ and surface area in the cuneus survived all
sensitivity tests (it was only reduced to trend level when we
excluded carriers younger than 18 years; PenSZ association in
the cuneus: b = 20.17, t = 23.05, pFDR = .06). When we
excluded carriers younger than 18 years, associations between
brain features and both penetrance scores were still nominally
significant while showing the same trend of effect (Table S10).
Some of the associations became nonsignificant after
Biological Psychiatry: Cognitive Neuroscience and Neuroim
excluding individuals with NDDs and neuropsychiatric condi-
tions (Table S11). However, the associations between both
penetrance scores and surface area in the cuneus and lingual
gyrus remained significant, as well as the association with ICV.
There was no effect on the direction of results from excluding
any CNVs (results not shown), but the exclusion of 1q21.1
distal and 22q11.2 deletions had an impact on the size of the
association effects (Table S13): the association between
penetrance scores and ICV was largely influenced by the
presence of 1q21.1 distal deletion carriers, whereas associa-
tions with PenSZ and PenDD were no longer significant after
removing this CNV; however, the direction of effect was pre-
served (PenSZ: b = 20.11, t = 22.24, pFDR = .2; PenDD: b =
20.07, t = 21.29, pFDR = .5). The omission of 1q21.1 distal or
22q11.2 deletion carriers also affected associations between
PenDD and surface area in the cuneus and lingual gyrus; re-
sults were no longer significant after omission (the association
between PenSZ and surface area in the cuneus remained
significant even after the omission of 1q21.1 distal or 22q11.2
carriers) (Figure S1).

Carriers of highly penetrant CNVs were younger than car-
riers of lower-penetrant CNVs even after removing carriers
younger than 18 years (PenSZ w age: t = 23.17, p = .002;
PenDD w age: t = 22.69, p = .008). To assess whether as-
sociations between penetrance scores and brain measures
could be caused by age differences, we looked at age effects
on brain measures in noncarriers. Generally, each brain mea-
sure decreased significantly with age (Table S16), meaning that
older participants had lower cortical surface area and lower
cortical thickness than younger participants on average.

Because cortical surface area and ICV are known to be
correlated (32), we repeated the analyses without adjusting for
ICV. This led to more brain features showing significant as-
sociations with both PenSZ and PenDD, in particular wide-
spread associations in surface area (Table S15A). Given the
influence of 1q21.1 distal deletion on ICV associations with
CNV penetrance, we repeated the analysis without correcting
for ICV and excluding individuals carrying the 1q21.1 distal
deletion. Results were similar to the ones that were seen in the
main analysis, with a few more regions (lateral occipital,
postcentral, precuneus, superior parietal, and total surface
area) showing associations between PenSZ and surface area
(Table S15B).
DISCUSSION

We assessed whether brain morphology was associated with
risk for NDDs, as measured by penetrance scores for schizo-
phrenia and other developmental disorders (including DD,
ASD, and CMs), in individuals carrying NDD-CNVs. To our
knowledge, this study analyzed the broadest cross-CNV neu-
roimaging sample to date, including 398 carriers of 36 NDD-
CNVs. Higher PenSZ and higher PenDD were each associ-
ated with both smaller cortical surface area and smaller ICV,
whereas no associations were found for cortical thickness
measures. Associations between both penetrance scores and
surface area were strongest in the occipital lobes, specifically
in the cuneus and lingual gyrus. When we compared NDD-CNV
carriers (as a group) to noncarriers, no significant effects were
found in brain measures/regions showing associations with
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Figure 1. Copy number variant (CNV)-penetrance scores for schizophrenia (PenSZ) and developmental disorders (PenDD) (including developmental delay,
autism spectrum disorder, and congenital malformations) are associated with total cortical surface area and intracranial volume (ICV). Standardized beta
coefficients (bs) derived from the linear regression analysis for associations between penetrance scores (PenSZ and PenDD) and (A) global brain measures
(mean cortical thickness, total cortical surface area, and ICV) and (B) subcortical volumes. *p , .05, ***p , .001 (C–F) Scatterplots showing linear associations
between normalized logarithmic-transformed penetrance scores and normalized scanner harmonized and covariance-corrected residuals for both total surface
area and ICV. Increased PenSZ for each CNV is represented with increasing red color intensity, and increased PenDD is represented with increasing blue color
intensity.
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CNV penetrance, suggesting that these findings are related to
CNV penetrance and not simply due to the presence of an
NDD-CNV.

Our findings suggest that higher risk for both schizophrenia
and developmental disorders is associated with smaller
1098 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
cortical surface area and smaller ICV in NDD-CNV carriers. The
association with ICV was influenced by the 1q21.1 distal
deletion, which is a CNV known to cause decreases in head
circumference (33) and ICV (12). Our findings are consistent
with previous ENIGMA-CNV and ENIGMA-22q studies that
October 2025; 10:1093–1106 www.sobp.org/BPCNNI
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Figure 2. Associations between copy number variant-penetrance scores and surface area measures are strongest in the occipital lobes. Effect sizes
(standardized bs) for linear associations between penetrance scores for schizophrenia (PenSZ) and developmental disorders (PenDD) (including developmental
delay, autism spectrum disorder, and congenital malformations) and (A) regional cortical surface area and (B) regional cortical thickness measures. *p , .05,
**p , .01.
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used the same sample; carriers of the 15q11.2 BP1-BP2,
1q21.1 distal, and 22q11.2 deletions showed lower total
cortical surface area, and 1q21.1 distal deletions showed lower
ICV than noncarrier controls (12,14,16). Our findings are also
consistent with a UK Biobank study in which Caseras et al. (19)
showed that carriers of 6 schizophrenia-associated CNVs (as a
group) had smaller total cortical surface area and increased
mean cortical thickness compared with noncarriers. When we
compared the carriers of all 36 NDD-CNV to noncarriers, we
did not find significant differences in global measures. How-
ever, our sample included predominantly lower-penetrant
CNVs (Table 1), and some of these CNVs may lead to oppo-
site effects in the brain. We repeated the analysis including
only CNVs that were analyzed in the Caseras et al. study and
Biological Psychiatry: Cognitive Neuroscience and Neuroim
found reduced surface area in a few regions and increased
regional cortical thickness as well as decreased ICV in CNV
carriers (Table S8B). Our approach of characterizing brain
features based on penetrance scores (rather than treating all
CNVs as a homogeneous group) allows us to distinguish brain
features that are most related to pathogenicity (in our case
reduced cortical surface area) from those that are not (in our
case variations in cortical thickness, which were not signifi-
cantly associated with CNV penetrance).

In a large-scale study from ENIGMA-Schizophrenia (34),
patients with schizophrenia showed global decreases in
cortical surface area, consistent with our findings, and wide-
spread cortical thinning. Disease severity and antipsychotic
medication treatment were associated with cortical thinning
aging October 2025; 10:1093–1106 www.sobp.org/BPCNNI 1099
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Figure 3. Associations between copy number variant (CNV) penetrance and surface area in the cuneus and in the lingual gyrus were the most robust
findings. Brain plots showing effect sizes (standardized bs) for linear associations between CNV-penetrance scores for (A) schizophrenia (PenSZ) and (B)
developmental disorders (PenDD) (including developmental delay, autism spectrum disorder, and congenital malformations) and regional cortical surface area
and thickness. Significant areas (after false discovery rate correction) are delineated with black lines. Scatterplots showing linear associations between
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covariance-corrected residuals for surface area in the cuneus and lingual gyrus. Increased PenSZ for each CNV is represented with increasing red color
intensity, and increased PenDD is represented with increasing blue color intensity.
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but not with surface area. In our study, although not statisti-
cally significant, there were trend-level increases in cortical
thickness with higher CNV penetrance. Notably, 22q11.2
deletion carriers have smaller cortical surface area but wide-
spread higher cortical thickness; however, 22q11.2 deletion
carriers with psychotic illness have lower cortical thickness
than those without psychosis, with no differences in cortical
surface area (16). ENIGMA-attention-deficit/hyperactivity dis-
order (ADHD) found lower surface area and cortical thinning in
children with ADHD, with no differences in adolescent or adult
groups (35). Notably, lower surface area was also found in
unaffected siblings, suggesting that changes in surface area
occur independently of disease onset. Reduced cortical
surface area in patients with schizophrenia and ADHD and
NDD-CNV carriers may indicate a premorbid risk for neuro-
developmental conditions, whereas reduced cortical thickness
in patients with schizophrenia (contrasting with increased
thickness in NDD-CNV carriers) may be influenced by disease
onset, illness progression, medication, and age.

Surface area and thickness are distinct features of cortical
structure (32,36). A large-scale genome-wide association
study of MRI data (32) suggests that surface area is influenced
1100 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
by genetic variants involved in neural progenitor cell activity
during fetal development, whereas thickness is influenced by
adult-specific processes (e.g., pruning, branching, or myeli-
nation). Notably, the authors found genetic correlations and
evidence for causation of surface area with both general
cognitive functioning and educational attainment, as well as
correlations with other traits and disorders. The thickness of
some regions showed genetic correlations with general
cognitive function and educational attainment but no evidence
of causal relationship, adding to the hypothesis that cortical
thickness changes reflect environmental influences or effects
of illness progression/treatment.

Associations between cortical surface area and CNV
penetrance could indicate shared disease mechanisms
affecting corticogenesis, which may be points of convergence
across NDDs and CNVs (37,38). Evidence suggests that CNVs
affect progenitor cell proliferation: an LgDel mouse model of
the 22q11.2 deletion exhibited deficits in intermediate pro-
genitor cell proliferation (39), and cortical surface area alter-
ations in human 22q11.2 deletion carriers were associated with
expression of genes involved in cell proliferation and apoptosis
(40). Moreover, 1q21.1 distal deletions altered neural
October 2025; 10:1093–1106 www.sobp.org/BPCNNI
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progenitor cell proliferation in induced pluripotent stem cell–
derived cells (41), and 16p11.2 BP4-BP5 CNVs altered the
proportion of neurons and progenitor populations in cerebral
organoids (42). Disruptions in cell proliferation may profoundly
affect brain size, resulting in macro- and microcephaly, which
are known phenotypes associated with some CNVs (e.g.,
1q21.1 distal and both 16p11.2 BP2-BP3 and BP4-BP5)
(33,43). More research is needed to understand how CNVs
affect cortical development and developmental trajectories.

We found the strongest and most robust associations be-
tween CNV penetrance and surface area in the medial occipital
lobes (cuneus and lingual gyrus), which include major early-
forming sulci of the brain. The medial occipital lobes are cen-
ters for long-range association fibers (44), which supports
involvement in roles beyond basic visual processing, such as
language and memory (45). Both the lingual gyrus and cuneus
are involved in processing of emotional facial expressions
(46,47), which is disrupted in schizophrenia (48) and ASD (49).
Volumetric abnormalities in the occipital lobes predict severity
of ultra-high-risk prodromal symptoms of psychosis in 22q11.2
deletion carriers (50). In a linear mixed effects model, we found
a significant interaction between brain region and CNV
penetrance on surface area (PenSZ: region, p , .001;
PenDD: region, p , .001). However, larger effect sizes in
specific regions could be affected by the accuracy of ComBat
harmonization, which may vary by region (51).

This study has some limitations. Carriers of highly penetrant
NDD-CNVs were younger than less-penetrant NDD-CNV car-
riers. Age effects were accounted for before statistical anal-
ysis, using data from noncarriers to preserve CNV effects.
Furthermore, cortical surface area decreases with age
(Table S16), suggesting that age effects are unlikely to explain
the association between increased CNV penetrance and
reduced cortical surface area. Nevertheless, NDD-CNV carriers
may display altered trajectories of cortical development (52),
and evidence from ENIGMA-ADHD and ENIGMA-
Schizophrenia suggest that there are age-dependent effects
in these conditions (34,35). Our sample includes a wide age
range in most CNVs (Figure S2), but it does not include suffi-
cient numbers of carriers in each age bracket across CNVs to
reliably investigate effects of age. Future studies with age-
balanced samples are needed to examine possible age and
penetrance interaction effects. ENIGMA-CNV is a multisite
consortium with carriers and noncarriers scanned at each site.
Nevertheless, the inclusion of both clinically and nonclinically
ascertained cohorts might have introduced some bias. How-
ever, we found similar results after excluding participants with
known psychiatric or neurological diagnoses (Table S11).
Factors related to medication could not be investigated
because medication information was not universally available.
Although our study comprised a large number of CNVs, CNVs
were not equally represented, and as was expected given the
sample ascertainment, there were more carriers of lower-
penetrance CNVs than of rarer, higher-penetrance CNVs
(Table 1). Therefore, although our study had adequate power to
detect an effect of CNV penetrance, it was not powered to
detect effects of individual higher-penetrant CNVs. The inclu-
sion of a large number of 22q11.2 deletion carriers (a highly
penetrant CNV) from the ENIGMA-22q dataset (n = 274) led to
additional significant findings (Table S9). However, these
Biological Psychiatry: Cognitive Neuroscience and Neuroim
findings may be related to specific effects of the 22q11.2 locus
(16,17). Future studies with a higher number of carriers across
higher-penetrant CNVs are needed to reliably study the effects
of CNV penetrance on the brain. Some effects may be dosage-
dependent given reports that deletions and duplications can
lead to opposite effects for certain brain traits in 22q11.2
(16,17), 16p11.2 proximal (43,53,54) and distal (13), and
15q11.2 BP1-BP2 (14,55) CNVs. Notably, the effect sizes for
the associations that were found in this study are considered
small according to Cohen’s criteria (56), even for the strongest
associations that we found in the cuneus and lingual (b
z 20.2). This is in contrast with previous studies on CNV
versus non-CNV carrier comparisons, where effect sizes were
moderate to strong (57). Future studies that include more
carriers per CNV are needed to understand relationships be-
tween brain alterations, issues related to gene dosage, the
potential role of other genetic variants, and risk for NDDs.

Conclusions

Increased risk for schizophrenia and other developmental
disorders (including DD, ASD, and CMs) in CNV carriers, as
measured through penetrance scores, was associated with
variations in brain morphology, specifically with lower ICV and
lower cortical surface area. Penetrance for schizophrenia and
developmental disorders was associated with lower cortical
surface area in parts of the occipital and frontal lobes, as well
as in the anterior cingulate cortex. Penetrance for develop-
mental disorders was also associated with lower cortical sur-
face area in parts of the parietal and temporal lobes. Our
findings suggest shared mechanisms across NDD-CNVs that
affect cortical development.
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