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A B S T R A C T

This work develops predictive models for estimating equivalence ratio (ϕ), ammonia fraction (xNH3) and noxious 
emissions (NOx) from the flames of turbulent premixed NH3/H2 fuel blend stabilised using a tangential swirl 
burner. Bayesian Regularisation Artificial Neural Network (BR-ANN) is utilized to estimate both ϕ and xNH3 with 
excited ratios NH*/OH*, violet/OH* and NH2*/NO2* as inputs. NOx was predicted with NO*, OH*, NH*, NH2* 
and NO2* as input variables. The coefficient of determination (R2) was 0.98,0.95, 0.99,0.99 and 0.97 for the ϕ, 
xNH3, NO, NO2 and N2O models, respectively. The models show better performance when compared to the 
conventional ratio-based method of inferring crucial combustion features. The developed models operate within 
the ranges of ammonia-hydrogen blend (0.55 ≤ xNH3 ≤ 0.90), Reynolds numbers (4000 ≤ Re ≤ 7000), 
equivalence ratios (0.60 ≤ ϕ ≤ 1.40), room temperature and atmospheric pressure. The models have been 
explicitly presented in mathematical equations enabling easy deployment in a software. These models will serve 
as a crucial step towards the development of non-invasive sensors that will help designers easily determine 
location of interest, predict reaction zones formation according to ϕ and xNH3 and advance approaches that 
abate NOx emissions.

1. Introduction

Ammonia (NH3) is a carbon-free fuel with high energy density and an 
established global transport infrastructure, making it a promising 
candidate for clean energy applications. However, ammonia-only com
bustion faces significant challenges due to its low flame speed, high 
ignition temperature, and tendency to form harmful nitrogen oxides 
(NOx). These issues make stable combustion and emissions control 
difficult in engines and turbines. To address this, researchers are 
exploring fuel blending strategies, particularly with hydrogen (H2). 
Hydrogen is a clean, reactive fuel that enhances ammonia’s combustion 
properties but suffers from storage and distribution limitations. 
Blending hydrogen with ammonia significantly improves flame stability, 
reduces ignition delay, and lowers unburned ammonia emissions. This 
combination allows for more efficient and cleaner combustion, making 
it a strong candidate for low-emission energy systems. Ongoing research 
focuses on optimizing blend ratios and combustion conditions to support 
the transition to a carbon-neutral energy future. [1,2]. Several com
panies have keyed into the potentials of ammonia and hydrogen as en
ergy source to reduce carbon footprint worldwide. Mitsubishi Power had 

a successful demonstration of a fuel mixture with 30 % hydrogen in a 
J-series Air-Cooled (JAC) gas turbine. This is after they had completed 
tests on an NH3 single-fuel burner used for firing of coal by their parent 
company [3]. The likes of Doosan, KEPCO, and Samsung are also 
collaborating to develop a dual-fuel green NH3 power generation model 
that aims to deploy a 1 GW power plant in South Korea [4]. Amogy has 
retrofitted a tugboat to operate on cleanly-made ammonia, demon
strating the potential of ammonia as a carbon-free fuel in maritime ap
plications. The system splits ammonia into hydrogen and nitrogen to 
power an electric fuel cell helping in achieving zero carbon emissions 
[5].

The analysis of NOx emissions helps in the monitoring and optimi
sation of practical burner systems with flame supervision offering an 
efficient and safe method for achieving this. Ballester and Garcia- 
Armingol [6] noted that monitoring of practical combustion equip
ment can be done in several ways including using pressure transducers, 
probing, imaging techniques and optical sensors. The analysis of light 
released from excited species such as OH*,NH*,NH2* etc. after their 
production from chemical reactions during combustion is vital in com
bustion technology [7]. Recently, laser absorption spectroscopy has 
emerged as a highly promising method for the diagnosis of flames. The 
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reactions involving excited radicals are strongly correlated with tem
perature as well as contain oxidizing species and these combination 
makes the chemiluminescence emissions produced to be intricately 
linked to the flame properties. Due to its cost efficient and less compli
cated setup, chemiluminescence based diagnostics have been employed 
severally in the laboratory and industry to measure key combustion 
parameters [8,9] thus serving as a highly sensitive and non-invasive 
method for monitoring and optimisation. Precisely controlling equiva
lence ratios in fuel blends can help avoid blowoffs in gas turbines, 
pressure waves induced flashbacks and combustor damage owing to 
oscillations when turbines operate close to the limit of lean combustion 
[10,11].

Few studies have been conducted on ammonia flames due to its low 
combustion features. However, research on the spectrum of ammonia 
related flames have been carried out even as far back as 1931 when 
Fowler et al. [12] observed that hydrogen nitrous oxide flame in the 
spectral range of λ8225 to λ2250 is identical to the flame of ammo
nia/oxygen combustion with the exception of certain bands in the 
spectra owing to varying intensities. Later on Wolfhard et al. [13] 
explored ammonia-oxygen and ethylene-oxygen flames spectroscopi
cally using a flat flame technique. They quantitatively measured the 
molecular oxygen and OH radical concentrations with results showing 
that at atmospheric pressure, diffusion flames with oxygen have a 
similar structure as that of a flame whose rate is established by diffusion.

Using a nozzle-type burner, Hayakawa et al. [14] analysing the 
chemiluminescence of premixed NH3/air flames at various ϕ and pres
sures noted that the orange colour of the NH3 flame is influenced by H2O 
vapour spectra and the NH2 ammonia α band. NO production is 
restricted by H and OH radical consumption through the reaction OH +
H + M ⇔ H2O + M. Zhang et al. [15] utilising femtosecond laser-induced 
plasma spectroscopy (FLIPS),measured the chemiluminescence spectra 
of premixed NH3/air flames and concluded that the ratio NH (336 
nm)/N2 (337 nm) could sense ϕ.

To improve the combustion intensity of ammonia and reduce 
noxious emissions simultaneously, Valera-Medina et al. [16] investi
gated numerically and experimentally the combustion of a lean pre
mixed 50 % NH3/50 % H2 blend in a generic swirl combustor. They 
found that the mixture produced laminar flame speeds like methane and 
a potential for flashback caused by the high diffusivity of hydrogen. O 
and OH radicals identified in the study caused high NOx emissions. 
Stratification with hydrogen injection in low swirl combustors was 
recommended to deal with the instabilities. Pugh et al. [48] using a 
combination of OH*, NH2* and NH* chemiluminescence with ammonia 
flames and 70 % NH3/30 % H2 flames as a function of their inlet gas 
temperature observed that in rich NH3 flames, NH2* intensity serves as a 
good indicator for NO consumption.

In a recent study, Zhu et al. [17] explored this zero carbon blend and 
analysed its UV–visible chemiluminescence using a counterflow burner 
for expansive ranges of ammonia fractions (0.55 ≤ xNH3 ≤ 0.90), strain 

rates (50 ≤ a ≤300/s) and equivalence ratios (0.35 ≤ ϕ ≤ 1.70). They 
found that ratios OH*/violet and OH*/NO* are good indicators for ϕ for 
lean and rich NH3/H2 flames, respectively, insensitive to xNH3 and 
slightly sensitive to strain rate. Ratio red/blue served as a good surrogate 
for xNH3, but it is globally insensitive to strain rate. Based on the 
experimental data from the study, Konnov [18] developed a model that 
describes the production and consumption of radicals such as NH2*, 
NO2*, NH*and NO(A). He found good agreements with the experimental 
results for NO(A), OH*, and NH* with respect to the equivalence ratio 
and ammonia fraction. He also had quality captures of the chem
iluminescence intensities of NH*/OH*, OH*/NO(A) and NH*/NO(A) 
noting that the spectral regions defined by the study as “yellow”, “red”, 
“blue”, “orange”, and “green” have NO2* and NH2* are the key indicator 
regions and excited H2O* is responsible for the emission in the ”violet” 
spectral band.

It has been noted that the combustion of NH3 under slightly rich 
conditions lowers NO emissions with the resultant poor combustion 
efficiency and significant unburnt NH3, hence Zhu et al. [19] investi
gated the combustion of premixed ammonia-hydrogen under very lean 
to stoichiometric conditions. They discovered that NO mole fraction 
exhibited monotonic relationship with OH* suggesting that the low-cost 
OH* radical can be used as an indicator for NO mole fraction for the 
range (0.40 < ϕ < 0.90 and 0.25 < xNH3 < 0.90).

There have been several successes in the utilisation of ML techniques 
in predicting key features in the several engineering applications 
including carbon capture [20], climate change [21] and oil and gas 
exploration [22] etc. Following up on the success of Guiberti et al. [23] 
in utilising the experimental data from Zhu et al. [24] to train a Gaussian 
Process Regression (GPR) algorithm able to accurately predict ϕ and 
xNH3 using NH*, OH*,CH* and CN* as input parameters, Mazzotta et al. 
[25] utilising the same algorithm predicted equivalence ratio and 
ammonia fraction of premixed ammonia/hydrogen/air turbulent flames 
using NH*/OH*, violet/OH* and NH2*/OH* excited ratios across a wide 
range of combustion conditions. They also achieved satisfactory results 
by employing the same machine learning technique to estimate NO, NO2 
and N2O emissions using NO*, OH*, NH*, NH2* and NO2* as inputs. This 
is the first study that showcases the potential of machine learning and 
chemiluminescence intensities being capable of estimating key com
bustion features and NOx emissions in NH3/H2 flames.

However, it is thus evident that there is a shortage of studies in ac
ademic literature on the estimation of key combustion features and NOx 
using ML algorithms especially in NH3/H2. It is known that the explicit 
representation of models allows for easy predictions and effective 
comparison with other models [26]. While [23] explicitly presented ϕ 
and xNH3 models derived from linear regression, the better performing 
GPR predictions were not. Machine learning predictions done by Bal
lester et al. [27] using ANN also did not present their models explicitly. 
Tripathi et al. [28]and Mazzotta et al. [25] who utilized PLS-R in esti
mating ϕ of methane-air flames and GPR in predicting key combustion 

Abbreviations

a strain rate
AFT Adiabatic Flame Temperature
AAPE Average Absolute Percent Error
ANN Artificial Neural network
b1 Bias applied between input and hidden layers
b2 Bias applied hidden and output layers
BR Bayesian Regularisation
FLIPS Femtosecond Laser-Induced Plasma Spectroscopy
GPR Gaussian Process Regression
i Index representing the number of neurons
IW Input-Hidden layer weights

j Index representing the number of inputs
LW Hidden-Output layer weights
ML Machine Learning
MSE Mean Square Error
NN Neural Network
R2 Coefficient of determination
Re Reynolds number
RMSE Root Mean Square Error
xNH3 Ammonia fraction
xNH3n Normalised value of ammonia fraction
ϕ Equivalence ratio
ϕn Normalised value of equivalence ratio
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characteristics and NOx respectively had no mathematical representa
tions of their model. Rudin [29] is of the opinion that ML models need to 
be explainable and interpretable and posited that interpretable models 
are those that are fundamentally interpretable whereas the explainable 
models tend to require the provision of further explanations (with tools 
such as heatmaps, shapely tools, sensitivity analysis, relevancy factor 
analysis) for the opaque models. While the models in the works of [23,
25,27,28] can be said to be interpretable, there was the absence of the 
statistics tools that aid in their explainability. In summary, the limita
tions of previous studies lie in the lack of explicit presentation of the 
models and the use of statistics tools which offer interpretability and 
explainability of ML models. These gaps in the reviewed works are what 
this study sets out to cover. The novelty of this study thus lies in its 
successful development of explicit models predicting ϕ, xNH3 and NOx 
emissions.

The other sections of this study are as follows: Section 2 describes the 
experimental setup, and the ML method used in developing the models, 
Section 3 discusses the results of the study while section 4 concludes the 
study with the limitations. Finally, the areas for future studies are 
highlighted in Section 5.

2. Methodology

This section describes the swirl burner used in the combustion, the 
diagnostics of the flame, the pre-processing of the data obtained, and a 
brief overview of the machine learning algorithm used for predictions.

2.1. Experimental setup

The tangential swirl burner used in this study is shown in Fig. 1. The 
experiment is carried out with the ammonia-hydrogen blend (0.55 ≤
xNH3 ≤ 0.90), Reynold’s numbers (4000 ≤ Re ≤ 7000), and equivalence 
ratios (0.35 ≤ ϕ ≤ 1.70).

Experiments were conducted at room temperature (~288 K) and 
near atmospheric pressure (1.1 bar(a)). The flow rates for the inlet gases 
were prescribed by Bronkhorst flow controllers (with an accuracy better 
than ±0.5 % within 15–95 % of the full scale). Reynolds numbers were 
varied by the adjustment of the volumetric flow rates of fuels and air. 
The fuel-air mixture at 288K is radially swirled before being injected 
into the combustion chamber (a 156 mm diameter transparent cylin
drical GE214 quartz tube of height 300 mm) by means of an outer nozzle 
(d = 3.15 mm). Flame stabilisation was achieved with the use of a 22.5 

Fig. 1. Experimental setup for ammonia/hydrogen combustion.
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mm diameter central bluff-body. Ignition and avoidance of extinction 
during blow off is achieved using a CH4 pilot flame. The burner has a 
swirl number of (Sg = 1.05) and is calculated as shown in Equation (1).

Sg =
Anozrtan

Atanrnoz

(
Qtan

Qtot

)2

(1) 

where Anoz represents the burner exit nozzle area, Atan is the tangential 
inlet area, rtan is the effective radius of the tangential inlet, rnoz repre
sents the radius of the exit nozzle, Qtot is the total flow rate and Qtan 
depicts the tangential flow rate.

2.2. Emissions

An Emerson CT5100 quantum cascade laser analyser was used to 
measure the key species (NO, NO2, N2O, NH3, O2, H2O) in the exhaust 
gases. It operates at 463K having a sampling frequency of 1Hz (±1 % 
repeatability and 0.999 linearity). With wet readings above the range of 
detection of the analyser, the sample was diluted by N2 (10 % repeat
ability). To depict the transient variations in emissions, data are recor
ded over 120 s then, a segment of the data from stable portion of the 
emissions was selected thus avoiding shutdown periods or transient 
start-ups. The arithmetic mean of each emission component was 
computed over the selected timeframe and then the standard deviation 
calculated to quantify variability of measurement and ensure data 
reliability.

2.3. Measuring chemiluminescence

Placed at the in-flame zone (~30 mm from burner outlet) and post- 
flame zone (~120 mm from burner outlet) are two different bench 
spectrometers (Avantes AvaSpec ULS409CL-RS-EVO) and (StellarNet 
Inc BLUE-Wave) respectively which simultaneously capture and record 
chemilumiscence. Both spectrometers are located at 150 mm from the 
quartz cylinder to help provide suitable signal-to noise ratio (SNR) and 
avoid excessive exposure to heat which interferes with optical results. 
The specifications of the spectrometer used for the in-flame zone capture 
include its sensitivity in the range of 200 nm–1100 nm and a high res
olution of 0.3 nm enabling precision in the recognition of excited species 
and signals from the narrow bands in the spectrum. With a better res
olution of 0.5 nm and sensitivity in the range of 200 nm–1150 nm, the 
post-flame zone spectrometer presents exhaust gas emissions from the 
broadband. The exposure time of the detectors is 1 s and to enhance the 
SNR, an average of 20 scans of images is taken to achieve convergence of 
the mean especially for resolution of weak signals.

Numerical integration of the chemiluminescence spectrum was uti
lized to generate the intensities associated with excited radicals or 
precise wavelength ranges of the chemiluminescence intensities. For the 
OH*, NH* and NH2*, corrections were done on the background by 
subtracting the orange dashed line (220–350 nm) shown in Fig.A.1
(Appendix A) before integration is performed. The reader is referred to 
Refs. [30,31] for further information on this procedure.

2.4. Artificial neural network

Modelled on the human nervous system, Artificial Neural Network 
(ANN) makes use of several input signals associated with weights in 
what is described as simulated neurons. The ANN model multiplies the 
inputs and their connection weights (w), sums up the product obtained 
with an output produced when it passes the sum through an activation 
function. This output is then introduced into the next layer as an input. 
To vary the magnitude of this input, a bias term is added to the sum
mation function. The significance of the activation or transfer function is 
to perform the non-linear transformation to the input to enable it to train 
itself and perform complex jobs. Fazeli et al. [32] expresses the overall 
relationship between the input and output data in an ANN model as 

shown in Equation (2). 

yk = fo

[
∑

j
wkj.fh

(
∑

i
wjixi + bj

)

bk

]

(2) 

where the input vector is denoted by x, connection weight from the ith 
neuron in input layer to hidden layer’s jth neuron is represented by wji, 
jth hidden neuron’s bias is denoted as bj, kth output neuron’s bias is 
denoted as bk, the transfer functions for output and hidden neurons are 
represented as fo and fh respectively. For more information on the ANN 
technique, the reader is hereby referred to the works of [33,34].

2.4.1. Bayesian Regularisation algorithm
The merits of using Bayesian Regularisation Artificial Neural 

Network (BR-ANN) algorithm for this modelling study are numerous 
and include: 

(1) Offering robustness and reducing the need for cross-validation 
compared to conventional back-propagation networks [35].

(2) The ability to generalize well as they are not prone to overfitting 
after computation and training with an effective number of 
variables.

(3) MathWorks Inc. [36] which offers the neural network(NN) 
toolbox of the 2023 version of the software MATLAB notes that 
among Scaled Conjugate Gradient, Bayesian Regularisation and 
Levenberg-Marquardt algorithms, BR is best equipped for 
modelling involving small data set as that utilized in this study.

There are numerous studies that made use of the BR algorithm to 
model parameters e.g. estimation of solar irradiation [37] and estima
tion of bearing pressure on clay soil [38] etc.

2.4.2. Theory of BR
Bayesian Regularisation (BR) involves the use of a probability dis

tribution of the network weights leading to the generation of chance 
estimations from the network training [39]. During the training, the 
performance function represented by Equation (3) is utilized to estimate 
the error between predicted and observed data. 

F=ED(D|w,M)=
1
N
∑n

i=1
(t̂i − ti)

2 (3) 

where ED is the average sum of the squares of the errors; t̂i is the ex
pected output; ti is the actual output; D is the training dataset and M is 
the chosen topology that contains the number of layers, and the acti
vation function used in each unit of each layer. To achieve smoother 
mapping in a BR network, large weights are penalized using an extra 
term in the objective function. An optimisation algorithm that is 
gradient-based is applied to ensure the minimisation of the objective 
function according to Equation (3) [40]. EW represents the sum of 
squares of the weights. 

F=ED(D|w,M) + λEW(w|M) where 0 ≤ λ ≤ 1 (4) 

Regularisation of the regression is achieved using the symbol λ 
known as the regularisation parameter. This helps eliminate the problem 
of overfitting by making the insignificant weights tend to zero and this is 
made possible by the introducing the inverse probability law. This law 
uses conditional probability to generate reverse forecasts. The hyper
parameters α and β is introduced into Equation (4) to replace λ as shown 
in Equation (5). 

F= βED(D|w,M) + αEW(w|M) (5) 

where EW(w|M) is EW = 1
n
∑n

i=1w2
j are the sum of squares of the weights, α 

and β are estimatable hyperpararmeters. This term αEW(w|M) is the 
weight decay with α as the decay rate. Suppose there is Gaussian addi
tive noise in the targets of the acquired data, inverse probability law can 
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be used to revise the weight distribution to obtain Equation (6). 

P(w|D, α, β,M)=
P(D|w, β,M).P(w|α,M)

P(D|α, β,M)
(6) 

where D is the sample data used for training and the weight sharing is 
defined as in Equation (7). 

P(w|α,M)=
( α

2π

)m/2
exp
{
−

α
2
wʹw

}
(7) 

where w is the network weight vector, M is the neural network, 
P(w|α,M) represents the weights before the collection of data, m is the 
length of vector w, wʹ is the transpose of w and P(D|w, β,M) is the chance 
of an event happening with the network weights and is known as the 
likelihood function.

2.5. Source of data

In this study, the 203 data points were divided into 85 % for training 
set and 15 % for testing set. The adjustment of the weights of the neurons 
were performed by the training set while the testing data examined the 
performance of the network after finalization. The stopping criteria was 
determined by preset error indices (e.g. Mean Square Error) or when the 
default setting of 1000 epochs is reached.

There are 3 and 5 input parameters for combustion features (ϕ and 
xNH3) and NOx outputs, respectively. The input parameters for pre
diction include the radical ratios NH*/OH*, violet/OH* and NH2*/NO2* 
for combustion features estimation and NO*, OH*, NH*, NH2* and NO2* 
for NOx emissions prediction. Table 1 and Table A.1 in the supple
mentary material shows the statistical information of the input and 
output variables for combustion parameters and NOx emissions model 
prediction, respectively.

2.5.1. Exploratory data analysis (EDA)
This step takes place after collection of data with the aim of under

standing the basic features of the data. A summary of the characteristics 
of the data is made and patterns identified thus uncovering embedded 
relationships using statistical methods. The EDA utilized in this study is 
the Spearman correlation heatmap which investigates the multi
collinearity between the three inputs and the various outputs shown in 
Fig. 2a and b. The correlation coefficient (R) between the various pa
rameters is represented by each element in the matrix. It is observed that 
NH2*/NO2*exhibits the strongest correlation with ϕ at a value of 0.822 
and NH*/OH* contributes the weakest at 0.265. For the xNH3 model, 
NH2*/NO2* presents the strongest correlation with ammonia fraction at 
an R value of 0.342 and violet/OH* exhibits the weakest correlation at a 
value of − 0.210. Based on the matrices, it can be inferred that the 
absence of multicollinearity is highlighted by the low coefficients among 
the input variables. This analysis serves as a confirmation for the use of 
the three input parameters for the predictions and offers a general 
knowledge about the contribution of each variable.

2.5.2. Data normalisation
In Machine Learning (ML), normalisation is frequently used to pre

pare data. This ensures that the values of all the inputs and outputs are 

on a similar scale. This prevents variables with larger scales from gov
erning the training process thereby improving the accuracy of the model 
performance. In the dataset utilized in this study, Table 1 reveals that the 
data range for violet/OH* is about 10 times larger than the equivalence 
ratio and implies that if an analysis is run on that raw data, violet/OH* 
will falsely influence the prediction of ϕ owing to such significant dif
ference in data values. This necessitates the normalisation of the data 
before use.

The data used in this work is normalised using the max-min pro
cedure which scales the dataset to within the range − 1 and 1 with its 
formula shown in Equation (8). 

Xn =2
(

X − Xmin

Xmax − Xmin

)

− 1 (8) 

where Xn is the normalised value of a variable X, Xmin is the minimum 
value of variable X and Xmax is the maximum value of variable X.

From Table A.1, it is also evident that the raw data has widely 
varying ranges e.g. NO emissions is about 4000 times each of the input 
ranges and thus will require normalisation before being used in the BR 
algorithm. The normalisation formulas for each of the inputs and out
puts based on Equation (8) is shown in Eq. (A.1) to Eq. (A.8) in the 
supplementary material.

2.5.3. Determination of the optimum model architecture
The NN architecture systematically organizes neurons into layers 

and defines the interconnections between these layers, as well as the 
activation functions and learning methods used. The feed forward 
multiple layer neural network which works on information movement 
from the input layer to the hidden layer and finally the output layer. 
Optimum architecture of the models of ϕ ,xNH3 and NOx were gotten 
systematically. First, a small network made up of few hidden layers is 
tried out and then slowly increased until acceptable learning was real
ized. Trials with 1 neuron at a time were made in the hidden layer which 
accommodates a maximum of 20 neurons. To identify the optimal 
number of hidden layer neurons, each neuron was cloned 40 times, and 
the optimum number was determined to be 10. The optimal architecture 
is given as 3-10-1 and 5-10-1 for the combustion features and NOx 
models, respectively. A 3-10-1 architecture depicts that the model uses 3 
input parameters to predict 1 output processed by 10 neurons in the 
hidden layer of the network. The structure of the architecture for the ϕ 
model is shown in Fig.A.2 (Appendix A). When neurons transmit inputs, 
they calculate an aggregate sum of the input values and their corre
sponding weights, along with the bias referred to as (b1). The activation 
function (tanh) processes this result before it is sent to the hidden-output 
layer which has weights given as LW. The weighted sum of the solution 
from the preceding layer and the LW alongside bias b2 is estimated. 
Finally, this result is processed using a purelin-a linear activation 
function to obtain the equivalence ratio or ammonia fraction.

2.5.4. Criteria for model evaluation
Evaluating the performance of a developed ML model and ensuring 

constant improvements to it until the expected level of accuracy is 
reached is vital for the optimisation of any model. This evaluation is 
made possible by using statistical metrics namely coefficient of deter
mination (R2), Mean Square Error (MSE), Root Mean Square Error 
(RMSE) and Average Absolute Percentage Error (AAPE). A summary of 
the metrics is given in Table 2. The size of the data for the modelling is 
given as N, the value of the experimental data is given as yactual, the 
predictions obtained from the model is given as ypredicted and y is the 
mean of the experimental values.

3. Results and discussion

This section discusses the results of the diagnostics of the flame and 
NOx emissions from the experiments. Next, the details related to the 

Table 1 
Statistical dataset for equivalence ratio and ammonia fraction models.

NH*/OH* violet/OH* NH2*/NO2* ϕ xNH3

Unit a. u a. u a. u ​ ​
Minimum 0.0056 0.1286 0.1286 0.3000 0.5500
Maximum 2.5482 12.917 1.8170 1.7000 0.9000
Mean 0.7977 2.0349 0.8789 1.0093 0.6913
Median 0.6431 0.9589 0.7766 1.0000 0.7000
Range 2.5426 12.788 1.6327 1.3500 0.3500
Skewness 0.8418 2.1634 2.1634 0.0922 0.2208
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explicit expression of the neural network, its sensitivity analysis of input 
variables and performance. Finally, a comparative analysis of the 
working of the created models is discussed.

3.1. NOx emissions

The experimental results at constant Reynolds number of 6000 for 
both N2O and N2O emissions show greater emissions at lean conditions 
and tends to decrease as xNH3 increases following a similar trend in the 
as shown in Fig. 3a and b. NO2 increased with decreasing ϕ and showed 
negligible emissions at ϕ = 1.05 or higher. With N2O, negligible emis
sions set in at ϕ = 1.1 or higher caused by the decreased flame tem
peratures that are remotely induced by lower concentration of H2 in the 
flame.

The NO emissions tend to increase with increasing Reynolds 
numbers (4000–7000) due to thermal power increase. This phenomena 
is confirmed by Sato et al. [41] who noted that the shape of the burner 
determines the fuel and air flow rates where ϕ, Re and xNH3 are spec
ified conditions. Of note is the negligible emissions at conditions of ϕ =
1.2 and the much larger emissions at of ϕ = 0.8. At fuel lean conditions, 
previous studies [42,43] have shown that the reactions NH + OH→HNO 
+ H and NH2+O→HNO + H are the major sources of the HNO showing 
up in the main NO generation reaction HNO + H→NO + H2. The 
assertion that the NH and OH in the source reactions cause high NO 
emissions is corroborated by the fact that at lower ammonia fractions, 

Fig. 2. Correlation matrix for (a)equivalence ratio and (b)ammonia fraction models.

Table 2 
Statistical metric used in the study.

Formula Interpretation

R2 = 1 −

∑N
i=1

(
yactual − ypredicted

)2

∑N
i=1
(
yactual − y

)2

Range: 0 to 1 
R2 = 1 is a perfect model 
Range: 0 to ∞

MSE =
1
N
∑N

i=1

(
yactual − ypredicted

)2 MSE ≅ 0 represents a good model.

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1
N
∑N

i=1

(
yactual − ypredicted

)2
)√

√
√
√

Range: 0 to ∞.R MSE ≅ 0 represents a good 
model

AAPE =

100
N
∑N

i=1

⃒
⃒
⃒
⃒

yi actual − yi predicted
yi actual

⃒
⃒
⃒
⃒

AAPE < 10 % represents a highly accurate 
model, AAPE of 10 %–20 % represents a 
good prediction, AAPE of 20 %–50 % 
represents a reasonable prediction while 
AAPE > 50 % represents an inaccurate 
prediction.

Fig. 3. Emissions of (a) NO2 and (b)N2O at constant Re of 6000.
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OH* show stronger intensities. Results from NO emissions at different 
constant Re and at varying Re, show that as xNH3 increases, the NO 
emissions decrease. As H2 and H gotten from ammonia increases, there is 
a partial abundance of H2 and H but an oxygen deficiency in the reac
tion. This leads to the inhibition of O and OH radical generation which 
directly supresses HNO production. Studies such as [41,44] note that NO 
is mainly consumed by the reaction NH + NO→N2O + H. This lower NO 
emissions as ammonia fraction increases is evidenced by the strong 
presence of NH* and NH2* as shown in Fig. 4.

3.1.1. Flame temperature effects
The combustion chemistry for NH3/H2 is highly temperature sensi

tive. The reaction rates are accelerated by the higher flame temperatures 
with the potential of aiding NOx formation. While the reaction rates may 
be suppressed by low flame temperatures, it could affect stability of 
combustion [45]. Adiabatic flame temperatures (AFT) for the combus
tion of NH3/H2 have been studied using CHEMKIN and presented in Fig. 
A.3 (Appendix A). It was noted that an increase in xNH3 resulted in a 
decrease in AFT which is associated with reduced NOx emissions. Cases 
with varied pressures, flow rates and inlet temperatures will affect NOx 
formation. Localised hot spots and cooler regions in the flame zone also 
influence the production of emissions. Further modelling studies will 
look to consider these intricate variations.

3.2. Single excited radicals

The species monitored from spectral analysis come from the UV 
spectrum (OH*, NO*, NH*, violet) and UV–visible spectrum (NO2*, 
NH2*). For these excited radicals, the wavelength ranges are 
NO*:221.5–261.5 nm, OH*:302–326 nm, NH*:335–346 nm, 

violet:350–400 nm, NO2*:400–500 nm and NH2*:620–645 nm and are 
from the inflame zone. The OH* was the species with the maximum 
intensity in the UV spectrum and NH2* from the visible spectrum.

The trends of the measured intensities of the radicals OH*, NH*, NO* 
and violet qualitatively match those of the measured NO and N2O 
exhaust concentrations and thus can serve as useful surrogates in 
monitoring the performances of these noxious emissions [25]. In the 
visible spectrum, NH2* curves are bimodal and tend to increase in in
tensity with equivalence ratio. It is a bit complicated correlation with 
the emissions because of the active nature of many species for similar 
wavelengths. Due to its high intensity, NH2* plays a huge role in the 
consumption of NOx. These trends are similar to that obtained by Zhu 
et al. [17] for UV–visible chemiluminescence of laminar NH3/H2 flames.

It can be noticed from Fig. 5 [41] that for both ϕ = 0.8 and ϕ = 1 
conditions, the areas of intensity of OH*, NH*,NH2* get larger with 
increasing Re owing to the direct variation of Re with fuel rates at a 
constant equivalence ratio. The flame shape depends on the volumetric 
gas fuel rates as it is observed that the lower the Reynolds number, the 
more the flame is pulled towards the burner nozzle centreline as evi
denced by the behaviour of the exited OH* and NH*radicals. Equiva
lence ratio also affects the location of the flame as the spread of the flame 
comes with increase in production of both OH* and NH* at lean con
ditions. At rich conditions, the NH2* radical tends to have its centre of 
intensity located downstream and slightly displaced towards the sides of 
the burner. Signals for NH2* are much stronger in intensity when it is 
lifted and located near recirculation zones setting it up for a reaction that 
can lead to clean combustion. In a recent study, Vigueras-Zuniga et al. 
[46] corroborates this assertion and notes that that at rich conditions, 
the NH2* moves away from the centre of the burner and there emerges 
the production of NH2 by traces of OH in the flow where there is an 

Fig. 4. NO emissions at varying Reynolds numbers and ammonia fractions measures at equivalence ratio of 0.8 and 1.2.
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Fig. 5. OH*, NH*, NH2* Abel transformed chemiluminescence for(a) ϕ = 0.8 and xNH3 = 0.6 (b)φ = 1 and xNH3 = 0.6.

Fig. 6. Chemiluminescence intensity ratios as a function of equivalence ratios.
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increased recombination with NO through the path NH2+NO →  
N2+H2O. To arrive at a state of NOx-less ammonia/hydrogen combus
tion, this reaction path needs optimisation. With the knowledge of the 
locations and intensities of these influential species and the help of a ML 
technique to assist combustion engineers in predicting the equivalence 
ratio and fuel fraction at which they occur, these zones that are highly 
concentrated with NOx - causing excited radicals can be targeted and 
injected with other species to ensure pollutant reduction.

3.3. Chemiluminescence intensity ratios

Turbulent flames exhibit fluctuations of intensity owing to the 
alteration of the flame surface area. To eliminate this phenomenon, 
radical intensities are studied as ratios instead of single species. To assess 
the potential of a ratio in sensing a flame property, its sensitivity to that 
particular property is critical while being insensitive to other flame 
properties. In this study, many intensity ratios were created from the 
separated spectral ranges and tested for analysis, four of the most 
promising ratios are presented as a function of ϕ in Fig. 6 and examined 
for their sensitivity or otherwise to ϕ and xNH3.

NH*/OH*: This ratio increases monotonically until ϕ = 1 with 
minimal sensitivity to xNH3. This makes the ratio useful as a sensor for 
equivalence ratio in lean flames only. In richer flames, this ratio fails to 
sense ϕ as it varies non-monotonically with ϕ and as such it cannot be 
considered as a standalone surrogate for equivalence ratio.

Violet/OH*: This ratio shows a bit of promise in predicting equiv
alence ratio and ammonia fraction at ϕ ≤ 1.1 as it shows a very slight 
monotonic increase with both flame properties. At richer conditions, the 
ratio can serve as a good sensor for xNH3.

NH2*/NO2*: It increases monotonically with ϕ and xNH3 but it is not 
useful as a standalone surrogate due to its sensitivity to multiple flame 
features(ϕ and xNH3). The trend of this ratio agrees with that observed 
in Ref. [17] for laminar flames and labelled as Red/Blue.

NO*/OH*: This ratio decreases non-linearly with increasing ϕ for 
very lean flames and then is monotonic while having a slight increase for 
ϕ = 0.6 to 1.1. At higher equivalence ratios, it is slightly sensitive to 
xNH3. This ratio cannot be used on its own to sense either ϕ or xNH3.

To test the conventional ratio-based method of inferring equivalence 
ratio and fuel fraction, calibration curves are fitted to scatter plots of 
radical ratios plotted against these combustion features as shown in 
Fig. 7. It is evident that while a general trend developed in these plots 
and the 5th order polynomial curves can be used to estimate ϕ and xNH3 
in Fig. 7 a and b respectively, the predictions obtained from such were 

poor as the regression coefficients (0.79 and 0.54) suggests. Although 
some excited radical ratios have capabilities that can qualify them as 
suitable indicators for equivalence ratio and/or ammonia fraction in 
case specific applications, there is however no single ratio that can 
accurately predict either flame property across an extensive range of 
operating conditions. This leads to the introduction of a machine 
learning technique with the ability of utilising some or all these ratios as 
inputs in accurately sensing these key flame features.

3.4. Mathematical representation of models

This explicit presentation of the developed models helps demystify 
the concept of neural network black box and thus ensure their inter
pretability and transparency [26]. The equations presented show how 
the input variables correlate with the outputs. The weights and biases 
are deemed the coefficients and intercepts of the BR models, respec
tively. The influence of the inputs on the outputs depends on the value of 
the weights while the biases modify the neuron’s output by addition or 
subtraction. Table 3 shows the 40 wt and 11 biases for the ϕ model.

The ϕ model was obtained by multiplying the input variable and the 
corresponding sum of the weight across each row. Then the bias for each 
of these rows is added. The result obtained is processed by the tanh and 
thereafter multiplied by the LW weights producing a value for each row. 
For the ϕ model, these rows are 10 in number represented by a1 to a10 
and presented in the supplementary materials.

The sum of a1 to a10 in addition to the hidden output layer bias b2 
results in the normalised ϕ model shown in Equation (9). 

ϕn =
∑10

i=1
ai + 0.615 (9) 

The developed model for ϕ has been denormalised and presented in 
Equation (10). 

ϕ=0.675ϕn + 1.025 (10) 

The normalised form of the xNH3 model is derived from b1 to b10 in 
the supplementary material and presented in Equation (11). 

xNH3n =
∑10

i=1
bi + 0.13 (11) 

The developed model for xNH3 has been denormalised and presented 
in Equation (12)

xNH3 =0.175xNH3 + 0.725 (12) 

Fig. 7. Ratio-based methodology.
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where ϕ is the equivalence ratio of the blend, ϕn is the normalised value 
of ϕ, xNH3n is the normalised value of ammonia fraction, tanh is the 
hyperbolic tangent, NH*/OH* is the radical ratio of NH* and OH*, vi
olet/OH* is the radical ratio of violet and OH*, NH2*/NO2* is the radical 
ratio of NH2* and NO2*. For the NOx models, all the weight and biases 
and their denormalization formulas have been explicitly presented in 
the supplementary material.

3.5. Model performance evaluation

3.5.1. Equivalence ratio and ammonia fraction models
Three metrices (R2, MSE, AAPE) were used in evaluating the learning 

performance of the models. R2 shows the closeness of the network’s 
prediction to that of the experimental data and thus makes the models 
simple and interpretable. It has a range of 0 to 1 and values closer to 1 
signify that a bigger percentage of variance. ϕ model with its R2 value of 
0.9883 suggests that it can explain 98.83 % of the variance in the data. 
The MSE offers penalties to higher errors in the predictions. An MSE 
value close to zero shows the model is performing well. The effectiveness 
of the ϕ model is evidenced by its MSE value of 0.0047. The xNH3 model 
has R2 of 0.950 and MSE of 0.029 indicating its reasonable prediction 
abilities. Evaluated on their AAPE, ϕ and xNH3 models have 3.1 % and 
3.5 % errors respectively underlining their high level of accurate 
predictions.

The relationship between the network output variables and their 
targets is depicted by a regression plot. The small open circles represent 
the network output weights expected outputs plotted on the same graph. 
The ideal fit is shown by the dashed line while the solid green and blue 
lines stand for the best fit for test and training data, respectively. A 
perfect relationship between inputs and outputs is indicated by an R = 1 
while an R = 0 shows a non-linear relationship between inputs and 
outputs. In the regression plot for the ϕ model shown in Fig. 8, with its R 

value > 0.9 it can be concluded that the NN accurately estimates the 
equivalence ratio of the fuel blend. The regression plot for the xNH3 
model in Fig.A.4 (Appendix A) also show R values > 0.9. It is noticed 
that in the regression plots a substantial percentage of the data falls on 
the 45◦ diagonal, hence the developed models can accurately predict the 
emissions and equivalence ratio and ammonia fraction using the radical 
ratios NH*/OH*, violet/OH* and NH2*/NO2* as input variables.

On the regression plot, the y axis is named with an equation that 
relates the predicted (dependent) and expected (independent) values. 
The target has its coefficient called the angular coefficient indicating the 
proportionality between dependent and independent values. This coef
ficient dictates optimal performance since the closer to 1 it is, the more 
efficient it is. An error in form of the constant in the equation is added to 
cause a reduction in the difference between the projected output and 
scaled target. For the ϕ model, the angular coefficient of both train and 
test datasets is 0.98 while the linear constant approaches zero (0.00014 
and 0.017) for train and test datasets, respectively. In the regression 
plots for xNH3 (Fig.A.4), the angular coefficients and linear constants for 
both training and testing show similar results to that of the ϕ model. 
These plots therefore reinforce the prediction capabilities of the devel
oped models as well as the competence of the BR system.

The uniqueness of the ϕ and xNH3 NN models is in achieving R2 

values of 0.98 and 0.95 respectively while simultaneously presenting 
their mathematical formulas (Equations (10) and (12)) hence their high 
predictive capabilities, interpretability and transparency.

3.5.1.1. Parametric importance of inputs. The influence of each input 
parameter on the predictions is creäted by analysis of regression. This 
can be established using several methods such as Garson’s algorithm, 
shapley factor, relevancy factor, connection weights algorithm etc. This 
enhances the understanding of the ‘black box’ model. The relevancy 
factor (r) is utilized in this study to assess the effect of a particular input 

Table 3 
Weights and biases of the equivalence ratio model.

NH*/OH* violet/OH* NH2*/NO2* b1 LW b2

0.097633532 0.085191799 − 0.023197379 − 0.088905871 − 0.1659588 0.615505093
− 0.166863634 1.390072533 1.130772462 0.962930153 2.065010015 ​
0.032922488 0.021416151 − 0.009198536 − 0.027598124 − 0.049100218 ​
− 2.263675113 0.761226907 − 0.800331271 − 2.815980542 − 2.028360597 ​
1.762451992 0.316740164 1.823018066 − 0.220627015 − 1.067104343 ​
− 0.115188421 0.730027274 − 1.328555594 − 0.011106724 1.036647311 ​
− 1.644046381 0.44982809 1.521253807 − 3.074900209 1.737735493 ​
− 1.279822151 0.977315117 − 1.279140276 1.315958183 − 2.211677473 ​
− 0.089248918 − 0.069514848 0.022607711 0.07710659 0.14398539 ​
0.349422531 0.0754921 1.79747877 − 0.450524797 − 1.294573092 ​

Fig. 8. Training and testing plots for the equivalence ratio model.
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on the output. The method is deployed with directionality which helps 
in making the overall effects obvious. Equation (13) is used in the 
calculation of the r values of the ϕ model. 

r
(
Inp,ER

)
=

∑n
i=1
(
Inpk,i − Inpk

)
(ERi − ER)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅( ∑n
i=1
(
Inpk,i − Inpk

)2)∑n
i=1(ERI − ER)2

√ (13) 

where Inpk,i is the ith value of the ith input parameter; Inpk is the mean 
value of the ith input parameter, k are NH*/OH*,violet/OH* and NH2*/ 
NO2* and ϕ; ER i is the ith predicted equivalence ratio and ER is the 
mean predicted equivalence ratio.

From the results of the parametric importance presented in Fig. 9, it 
can be observed that for the equivalence ratio model, NH2*/NO2* has 
the highest effect (r = 0.82), violet/OH* follows closely with an r value 
of 0.76 while the least impact is from NH*/OH* with an r value of 0.26. 
These results are consistent with the work done by Refs. [41,47] where 
they noted that radical distributions have centres around the burner 
centreline at lower ϕ but tends to expand towards the walls of the burner 
as ϕ increases. They also noted that NH2* was more intense than OH* 
and NH* and increased with ϕ until ϕ = 1.2 from where the reduced 
oxygen availability decreases its impact. This explains why the rele
vancy factor of NH2*/NO2* was higher than that of the other inputs in 
determining the ϕ.Since xNH3-rich zones in the flame leads to increased 
production of NH2* according to Pugh et al. [48], then NH2*/NO2* will 
contribute the most compared to the other input ratios in estimating 
ammonia fraction thus confirming the relevancy factor analysis results 
for the xNH3 model.

3.5.1.2. Trend analysis. The ability of the developed models to accu
rately characterize the physical phenomena is the function of trend in
dicators. This is especially useful when the model is developed using an 
opaque algorithm [49]. If the predictions are expected to follow a 
relationship confirmed by experiments to be non-monotonic, the trend 
analysis will confirm if the reaction of the algorithm follows a 
non-monotonic form. The experimental data used was from the work of 
Sato et al. [41] where chemiluminescence intensity radicals OH*, NH*, 
NH2* and NOx emissions were studied at varying Reynolds numbers, 
ammonia fractions and equivalent ratios. The equivalence ratio and 
ammonia fraction models were subsequently estimated and then 
compared to the experimental results as shown in Fig. 10. At ϕ = 1.2, 
xNH3 = 0.6, the maximum deviation from the experimental values was 
4.1 % while at ϕ = 0.8, xNH3 = 0.7 and ϕ = 1, xNH3 = 0.8,the greatest 
percentage errors were 4 % and 3.2 % respectively showing that 

reasonable predictions of the equivalence ratios were obtained using the 
inputs of NH*/OH*, violet/OH* and NH2*/NO2* radical intensities as 
shown in Fig. 6.

The results from the trend analysis clearly highlights the good ca
pabilities of the developed models to monitor emissions and thus play a 
huge role in the net-zero carbon economy expected in few years to come.

3.5.1.3. BR algorithm robustness to experimental errors. To account for 
the errors that may be existent in the experimental measurements of the 
excited radicals, input errors ± X% was introduced to the NH*/OH*, 
violet/OH* and NH2*/NO2* ratios used for training and testing. The 
ideal MSE and R2 for each introduced error was noted and the deviations 
from the R2 for the prediction with no input error was represented with 
error bars. Fig. 11 a shows robust performance for predictions of ϕ for 
input errors up to ± 20 % as evidenced by the high R2 which stay above 
0.98. For errors of between ± 5 % and ± 10 %, the R2 is slightly higher 
than that obtained with a no input error. This phenomenon confirms the 
fact that ML algorithms tend to exhibit robustness to generalization 
when noise is introduced to the dataset [50].

Ammonia fraction predictions also showed robustness to the error in 
measurement because all the R2 for the errors stayed above 0.94 (Fig. 11

Fig. 9. Relevancy factor of input variables for (a)equivalence ratio and (b)ammonia fraction models.

Fig. 10. Comparison of experimental and predicted equivalence ratio as a 
function of Reynolds number.
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b). Between ± 5 % and ± 15 %, the R2 showed better performance than 
that with no input error corroborating the phenomenon noted in 
Ref. [50]. For ϕ and xNH3 and at input error of more than ± 20 %, the R2 

falls below that obtained when no input error is introduced. With this 
error analysis, it is evident that the BR algorithm developed in this study 
is robust enough to accommodate the errors obtainable in chem
iluminescence intensity ratios measurements in turbulent swirl flames.

3.6. Leverage approach analysis

There exists a range of input conditions which a model can be relied 
on to make reasonable predictions, and the identification of these 
domain is essential to ensure the generalizability and accuracy of the 
model. Some datapoints lie outside the training range or fail to follow a 
well-defined pattern. These can be due to errors from measurements or 
some data out of the range of the model. Analysing these outliers allow 
the enhancement of the robustness of the model. In this study, leverage 
plots are used to analyse the model’s domain to detect outliers. It is seen 
from the leverage plot for the ϕ model in Fig. 12 that about 5 data points 
out of 203 data points fall outside the applicability domain [− 3 to 3] 
which is 2.4 % of the total data points. This shows the reliability of the 

model. Calculation of hat matrices H are done with Equation (14), while 
the standardized residuals (Ri) and the critical leverage value (H*) and 
can be obtained with Equation (15) and Equation (16), respectively. The 
leverage plots for the models of xNH3 and NOx are shown in Fig.A.5
(Appendix A). 

H=X
(
XTX

)− 1XT (14) 

Ri =
ei

[MSE (1 − Hi)]
0.5 (15) 

H* =
3 × (N + 1)

M
(16) 

where X is a 2D matrix (M × N), M is the number of data points, Hi 
depicts the ith leverage value, Ri represents standardized residuals, N is 
number of input variables, T is the transpose matrix and ei is the value of 
the error.

3.7. NOx predictions

Figs. 3 and 4 shows quantity of the NO2, NO2 and NO emissions from 
experiments. NO2 achieves its peak close to ϕ = 0.85 before gradually 
falling and reducing to negligible emissions at ϕ ≈ 1.1. N2O is formed 
under very lean conditions. NO emissions resemble that of NO2 quali
tatively. The chemiluminescence intensities of single radicals qualita
tively mirror those of the emissions discussed here, hence Bayesian 
Regularisation algorithm is deployed to estimate the NOx emissions 
using the inputs NO*, OH*, NH*, NH2* and NO2*. The comparison of the 
experimental data points with the predictions of NOx from BR is shown 
in Fig. 13.

With the data divided into 142 for training and 61 for testing, the 
algorithm developed highly accurate models with R2 values of 0.99,0.99 
and 0.97 for NO, NO2 and N2O, respectively. The models closely follow 
the NOx emissions trend shown in Fig. 3 and. Fig. 4. For the NO model, 
the angular coefficient of both train and test datasets is 0.98 while the 
linear constant approaches zero (0.01 and 0.0058) for train and test 
datasets, respectively. The best angular coefficient was 1 (train and test) 
from the N2O model while the lowest was 0.83 (test) from the NO2 
model. The NOx angular coefficients for both training and testing show 
similar results as those of the NO model. The training/testing regression 
and the relevancy factor analysis plots for the NOx models are shown in 
Fig.A.6 and Fig.A.7 (Appendix A). The OH* radical contributes most to 
the prediction of NOx while NH2* has the least influence on the outputs. 

Fig. 11. Coefficient of determination for (a)equivalence ratio and (b) ammonia fraction as a function of inputs error introduced into the training and test data.

Fig. 12. Leverage plot for the equivalence ratio model.
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This is corroborated by the work of [19] where it is found that OH* 
chemiluminescence intensities produces a monotonic relationship with 
the NO mole fraction for a wide range of conditions. Again OH* quali
tatively mirror the emissions of NO2 and N2O and as such will offer 
profound impact on the estimation of these emissions.

These plots reinforce the prediction capabilities of the developed 
models as well as the competence of the BR system. These results pro
vide a solid foundation for the development of devices that can be used 
to estimate and control NOx emissions. The explicit representations of 
the NOx models are shown in in the supplementary materials as Eq. 
(A.10), Eq. (A.12) and Eq. (A.14) for the NO, NO2 and N2O models, 
respectively.

Comparing the predictions in this study to a similar work in [25], the 
BR-ANN showed better predictions for NOx and equivalence ratio as 
evidenced by the R2 values and also presents its models explicitly. This is 
illustrated in Table 4.

3.8. Inference latency of the models

The duration required for a NN to make its prediction is known as the 
latency. This is affected by the architecture of the network, software 
environment and hardware platform [51]. This section will focus on 
calculating the inference latency of the ϕ and xNH3 models. It is assumed 
that the computing device has a processing speed of 1.7 GHz 

corresponding to 1.7 billion cycles/second. Each cycle is estimated to 
take 755 picoseconds/cycle. Gomar et al. [52] estimates the number of 
clock cycles needed to process the tanh function to be 5 cycles. For ϕ and 
xNH3 models, the architecture is[3-10-1] and thus requires 40 wt and 11 
biases. The hidden and output layers need 50 and 5 cycles, respectively. 
This adds up to 55 cycles required for the activation function. 
Computing the total number of required cycles for a prediction gives 40 
+ 11+55 = 106 cycles. Consequently, the inference latency is evaluated 

Fig. 13. Comparison of experimental (a)NO emissions at xNH3 = 0.80, (b)NO2 emissions at xNH3 = 0.75and (c)N2O emissions at xNH3 = 0.70 with their BR models.

Table 4 
Comparison of developed models with existing models.

Author ML technique Fuel blend Coefficient of 
determination 
R2

Model 
presentation

Mazzotta 
et al. 
[25]

Gaussian process Ammonia/ 
Hydrogen

ϕ 0.953 Implicit
xNH3 0.989
NO 0.908
NO2 0.954
N2O 0.973

This study ANN (Bayesian 
Regularisation)

Ammonia/ 
Hydrogen

ϕ 0.98 Explicit
xNH3 0.95
NO 0.99
NO2 0.99
N2O 0.97
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by obtaining the product of the total cycles required and the time/cycle 
which gives 106 × 755 = 80 ns.

For the NOx models, the architecture is [5-10-1] which thus uses 71 
wt and 11 biases. The activation function requires 55 cycles and thus the 
total number of cycles required is 71 + 11+55 = 137 cycles. The 
inference latency gives 137 × 755 = 103 ns. The models are expected to 
perform optimally if deployed to predict ϕ and xNH3 and NOx emissions 
due to its high degree of accuracy and the small amount of latency.

4. Conclusions and recommendations

In this work, chemiluminescence radicals from practical premixed 
NH3/H2 turbulent swirl flames were studied and then used to infer key 
flame features like ϕ, xNH3 and NOx utilising the BR artificial neural 
network algorithm. The following key conclusions are deduced from the 
findings of this study. 

i. NO emissions decrease as xNH3 increases due to the reduction in 
OH* intensity as ammonia fraction increases. At higher xNH3, the 
dominant species are NH* and NH2*, prompting NO to be mainly 
consumed by the reaction NH + NO→N2O + H thereby reducing 
NO emissions. NO2 emissions follow a similar trend to NO. The 
peak emissions of NO2 are noted to be about 40 times that of NO. 
All three emissions (NO, NO2, N2O) show negligible emissions at 
rich equivalence ratios.

ii. NO emissions increase as Reynolds number increases, but this is 
influenced by the equivalence ratio.

iii. The explicitly expressed and interpretable models developed in 
this study advances knowledge in the area of NH3/H2 combustion 
as it can be implemented as part of real-time system aimed at 
monitoring flames of this blend, targeting the zones of crucial 
emission producing species such as OH*, NH*, NH2* etc by direct 
injection of other species that can reduce pollutant emissions via 
stopping the decay of NOx-causing radicals.

5. Study limitations and future recommendation

i. As much as this work serves as a solid base for subsequent devel
opment of non-invasive sensors to assist in the monitoring of tur
bulent swirl flames of the NH3/H2 fuel blend, the range of conditions 
taken into consideration and small amount of data employed in the 
development of the models constrains their use and may affect the 
generalisation abilities of the models.

ii. Further research in this area will focus on developing ML models 
capable of estimating ϕ and xNH3 for stratified and humidified 
flames of NH3/H2 at higher powers.
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