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Abstract 

Understanding consumer attitudes towards electric vehicle (EV) purchasing is 

essential for addressing the slow adoption rate. Traditional aggregated models of EV 

adoption employ a top-down approach, yet often fail to capture individual-level 

attitudes. In contrast, agent-based modelling (ABM) enables a bottom-up approach 

that reflects the heterogeneity in consumer decision-making and simulates social 

interactions. This study introduces an integrated model to analyse consumer attitudes 

towards EV adoption, incorporating empirical data and synthesised social interactions 

through ABM. The model undergoes micro-validation and optimisation through 

parameter variation experiments and supervised machine learning (SML) methods. 

Results indicate that consumer attitudes towards EV purchasing are positively 

influenced by early adopters and environmental factors. These attitudes are further 

shaped by observing EVs in residential areas and receiving positive feedback from 

social circles. Perceptions of EVs as an environmentally friendly alternative also 

significantly enhance these attitudes. These findings suggest that marketers should 

develop targeted strategies for specific consumer segments, and policymakers should 

prioritise environmental awareness campaigns to drive positive public EV attitudes in 

the UK. This study emphasises the importance of incorporating consumer 

heterogeneity and social interactions in attitude formation, which offers insights into 

EV promotion within Rogers’s Diffusion of Innovations Theory. 

 

Keywords: consumer attitudes; electric vehicle purchasing; social interaction; model 

micro-validation; model optimisation; agent-based modelling. 

 

1. Introduction 

Electric vehicles (EVs), including battery, hybrid, and plug-in hybrids, are integral to 

replacing traditional internal combustion engines (Onat et al., 2014; van Staden et al., 

2024). The wide replacement aims to reduce greenhouse gas emissions, decrease fossil 

fuel reliance, and advance sustainable transportation (He et al., 2013; Sierzchula et al., 

2014; Xing et al., 2024). Numerous countries have implemented initiatives to increase 

EV adoption through subsidies, expanded public charging infrastructure, and R&D 
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funding (Nie et al., 2016; Song & Potoglou, 2020; Liu et al., 2023). For example, the 

UK aims to ban new petrol and diesel car sales by 2030 and transition to zero-

emissions vehicles by 2035 (DfT, 2020). However, EVs accounted for only around 

11% of new car sales in 2020 (IEA, 2021). Similar trends in France and the 

Netherlands underscore the challenges in boosting EV adoption despite supportive 

policies (IEA, 2021). 

Recent research highlights a gap between consumer attitudes, intentions, and 

actual behaviour as a central factor limiting EV adoption (Lane & Potter, 2007; Martin 

et al., 2016). This discrepancy arises partly due to perceived limitations in EV 

technology, including limited driving range (He et al., 2014), high purchase costs 

(Kim et al., 2020), and insufficient charging infrastructure (Berkeley et al., 2018), all 

of which contribute to consumer hesitancy towards EV purchases. Conversely, studies 

show that consumer attitudes can be favourably influenced by factors like 

environmental awareness (Mairesse et al., 2012) and hands-on experience, such as test 

drives (Schmalfuß et al., 2017). These findings suggest that while technological and 

infrastructure-related barriers exist, targeted inventions focusing on education and 

experiential engagement can positively shift consumer perceptions of EVs. 

Consumer attitudes play a crucial role in decision-making for innovation 

adoption (Rogers, 1976; 2003) and can reliably predict intentions and behaviours 

when measured accurately (Kokkinaki & Lunt, 1997). During the early stages of 

adoption, most consumers may hold negative attitudes towards EVs (Carley et al., 

2013; Kim et al., 2016), making it challenging for policymakers and marketers to 

obtain accurate data on consumer intentions and behaviours. Understanding these 

attitudes is vital for designing strategies to foster early adoption and positively 

influence consumer perceptions. 

Statistical analysis provides valuable insights into consumers’ attitudes, 

intentions, and actual purchasing behaviours. Traditional models often predict EV 

market trends from a top-down perspective (Gόmez Vilchez et al., 2013; Gόmez 

Vilchez & Jochem, 2019), but they typically overlook the heterogeneity in individual 

decision-making (Shim et al.,2018; Agliari et al., 2010). This can result in overly 

optimistic forecasts (Wardle et al., 2015; Wolinetz & Axsen, 2017). In contrast, ABM 

captures consumer diversity (Eppstein et al., 2011, 2015; Iftekhar et al., 2011; 

Kiesling et al., 2012) and simulates social interactions within artificial networks 

(Zhang & Vorobeychik, 2017), enabling detailed validation of individual attitudes and 
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providing a comprehensive, bottom-up examination of complex consumer decision-

making processes. 

This paper introduces a novel model to analyse consumer attitudes towards EV 

purchasing within a synthesised, socially interactive environment. By integrating 

ABM and SML, the model synthesises new data from relevant theories and empirical 

sources to improve model performance. A key contribution of this study is the 

establishment of a framework for micro-validation and optimisation of agent-based 

models through parameter variation experiments and SML methods. This model is 

applied to analyse consumer attitudes towards EV purchasing in Great Britain, 

utilising empirical survey data (ONS, 2015). 

The structure of this paper is as follows. Section 2 introduces relevant theories 

and compares traditional modelling approaches with newer methods. Section 3 details 

the methodologies and data sources used in the study. Section 4 presents experiment 

results and discusses model performance. Section 5 concludes the study and outlines 

future research directions. 

2. Theories and related literature 

2.1 Attitude-intention-behaviour theories 

Attitude, intention, behaviour are critical constructs in consumer decision-making. 

Fishbein and Ajzen (1975) posit that consumer attitudes towards behaviours precede 

both behavioural intentions and actual behaviour, measurable through salient beliefs. 

Fishbein (1979) later incorporated subjective norms in the Theory of Reasoned Action, 

while Ajzen (1985) extended this further, adding perceived behavioural control to 

develop the Theory of Planned Behaviour (TPB). 

TPB views individual attitudes as largely static, overlooking the dynamic 

interplay between subjective norms and attitudes towards behaviour, a point critiqued 

by researchers such as Prislin & Wood (2005), Lui et al. (2015), and Wan et al. (2017). 

Despite these critiques, studies show that consumer attitude significantly mediates the 

influence of subjective norms on intentions (Bananuka et al., 2019), although they 

often fail to account for various social influences like descriptive norms (Cialdini et 

al., 1990; Barth et al., 2016). This limited view of complex social contexts contributes 

to the observed gap between attitudes and behaviours (Peattie, 2010; Axsen & Kurani, 

2014) and has led to less emphasis on studying attitudes compared to intentions in 

predicting consumer purchasing behaviour. 
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Social influence theory (Kelman, 1958) acknowledges TPB by acknowledging 

that beliefs, attitudes, intentions, and behaviours are shaped by social contexts. 

According to the theory, individuals tend to align their actions and beliefs with those 

of others (Prislin & Wood, 2005; Grindrod & Higham, 2012) and are influenced by 

various social norms, including descriptive, injunctive, subjective, and provincial 

norms (Cialdini et al., 1990; Castro-Santa et al., 2023). For instance, consumer 

acceptance of EVs can increase if close friends hold favourable views EVs (subjective 

norm) or if EVs are commonly observed in their community (provincial norm), 

demonstrating the impact of peer perceptions and social contexts on individual 

decisions (Barth et al., 2016). 

Rogers’s Theory of Diffusion of Innovations (Rogers, 1976, 2003) asserts that 

consumer attitudes are fundamental in shaping intentions and behaviours towards 

adopting innovations (Fry et al., 2018). Rogers outlines a five-step decision-making 

process: (1) gaining initial awareness with little knowledge, (2) forming beliefs and 

attitudes through learning and persuasion, (3) developing an intention to adopt or reject; 

(4) trialling the innovation, and (5) confirming the adoption decision. Variability in 

adoption outcomes is attributed to individual differences in initial conditions (e.g., 

innovativeness), characteristics (such as socioeconomic status), and perceptions of the 

innovation (e.g., its relative advantage) (Arts et al., 2011). 

 

2.2 Aggregated and disaggregated models of innovation diffusion 

In innovation adoption research, the primary distinction between aggregated and 

disaggregated models, based on Bass's hazard model (1969), lies in how they treat 

adoption behaviour across a population (Guseo & Mortarino, 2014). Aggregated 

models, such as system dynamics models, consider the entire population as a 

homogeneous group (Widiarta et al., 2008). Adoption rates are treated as a function 

of time, generalising the probability of adoption across the population (Mahajan & 

Muller, 1979). This approach enables a simplified, closed-form solution that captures 

the overall diffusion of innovation, accounting for external influences (e.g., 

advertising) and internal influences (e.g., word-of-mouth) under the assumption of 

uniform adoption tendencies (Kiesling et al., 2012; Goldenberg et al., 2000). 

In contrast, disaggregated models, such as ABM, recognise heterogeneity by 

dividing the population into subgroups based on distinct demographic, psychographic, 

or behavioural characteristics. This approach allows for variations in adoption 
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likelihood among individuals, capturing differences due to factors such as age, 

socioeconomic status, or lifestyle (Bell & Mgbemena, 2018; An, 2012; Baltas & 

Yannacopoulos, 2019; Foramitti et al., 2024). While disaggregated models offer a 

more granular and accurate representation of diffusion patterns, they are 

computationally complex, as they often require modelling individual differences and 

interactions without a close-form solution (Garcia, 2005; Ma & Nakamori, 2005). 

Building an agent-based model involves a complex calibration and validation 

process that lacks standardisation (Gürcan et al., 2013). The current practice typically 

uses black-box validation, in which models are evaluated by comparing the predicted 

adoption curves with actual adoption trends (Robinson, 2014). However, black-box 

validation faces two main criticisms: first, the limited availability of long-term 

historical data, which restricts the accuracy of adoption curves (Kiesling et al., 2012; 

Zhang & Vorobeychik, 2017) — a particularly significant limitation in the early stages 

of innovation adoption when data is crucial for informing policy and marketing 

strategies. Second, there is a risk of overlooking Type I errors (false positives) when 

relying on predicted curves for model accuracy assessment (Nisbet et al., 2009; 

Japkowicz, 2013). 

Despite the advantages of ABM in capturing heterogeneous decision-making 

and simulating social interactions, its effectiveness depends on accurately replicating 

real-world decision-making processes (Jäger, 2019). Rand and Rust (2011) highlight 

the importance of micro-validation to ensure the reliability of agents’ decision-making 

rules within these models, emphasising that detailed validation at the individual level 

is essential for producing robust, credible model outcomes. 

 

2.3 Inference of consumer attitude 

Consumer attitudes towards innovation can be inferred through their salient beliefs, as 

outlined by Fishbein and Ajzen (1975) and further supported by Barsyte and Fennis 

(2023). SML offers a data-driven approach for analysing consumer attitudes, 

bypassing traditional requirements such as subject-matter assumptions in data 

collection, theoretical foundations for variable selection, and detailed parameter 

interpretation (McFadden, 1981; Flynn et al., 2014; Aboutaleb, 2021; Moulaei et al., 

2024). 

The development of an SML model involves three critical phases: training, 

validation and testing (Sarle, 2002). A high-fidelity SML model aims to minimise 
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empirical risk, reduce overfitting, and ensure generalisability to new datasets, with 

performance assessed through quantifiable metrics (Nisbet et al., 2009). By effectively 

capturing and analysing consumer beliefs and attitudes, SML provides a robust tool 

for inferring and predicting consumer responses to innovation. 

 

2.4 Integrating ABM and SML 

Integrating ABM and SML offers a robust approach to researching innovation 

adoption, leveraging their complementary strengths (Furtado, 2020). SML excels at 

identifying patterns through data-driven feature selection (Brathwaite et al., 2017; 

Peysakhovich & Naecker, 2017; Abbasi et al., 2024), while ABM captures complex 

interdependencies using precise rules that govern agent behaviours and social 

networks. 

Recent efforts to integrate SML and ABM have led to three main approaches. 

First, SML classifiers inform agents’ decision-making. For example, Zhang et al. 

(2016) used SML to model decision processes in a study on rooftop solar adoption, 

where agents’ decisions were guided by data-driven classification. Similarly, Ravaioli 

et al. (2023) developed a data-driven agent-based model to explore the impact of 

policy incentives on agriculture land usage, with agents’ decisions modelled solely by 

SML algorithms. Second, ABM-generated social interaction data enhances SML 

predictions. Hassouna (2012) exemplified this by using ABM to model social 

interactions and analyse their effects on customer retention in the UK mobile market. 

Zhou & Lund (2023) employed ABM to simulate interactions among prosumers, 

consumers, retailers, and aggregators, examining the influence of stakeholder 

interactions on renewable energy adoption. Third, SML validates ABM outputs, as 

seen in  Lamperti et al. (2017), who used machine learning for intelligent sampling in 

parameter selection to optimise ABM performance. Kotthoff & Hamacher (2022) 

applied a gradient-based SML model to validate ABM predictions on innovation 

diffusion, focusing on true positive rates to assess model accuracy. 

Our research addresses three critical gaps in studying consumer attitudes 

towards innovation adoption: 

(1) Undervaluation of Consumer Attitudes: Despite the importance of 

consumer attitude in decision-making, it remains underutilised as an indicator of 

innovation adoption. This paper introduces a novel framework that positions consumer 
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attitudes as a central factor, linking attitudes to purchasing behaviour in a socially 

interactive environment. 

(2) Need for Micro-level Validation in ABM: While ABM captures consumer 

heterogeneity, it often lacks micro-level validation, limiting its accuracy and 

applicability. Our approach addresses this gap by integrating ABM with SML, 

facilitating the micro-validation of agent decision-making rules using empirical data. 

(3) Incorporating Social Interactions and Consumer Beliefs: Existing models 

frequently overlook the roles of social interactions and consumer beliefs in decision-

making, both of which are essential for accurately simulating innovation adoption. 

This paper contributes to this area by synthesising social interactions and 

incorporating relevant consumer beliefs within our model, enhancing its predictive 

ability for consumer attitudes and adoption behaviour. 

By applying this integrated ABM-SML framework to analyse consumer 

attitudes towards EV purchasing in Great Britain, using empirical survey data, we 

provide a robust, data-driven model that addresses these gaps and offers new insights 

into the role of attitudes in EV adoption. 

3. Methodology 

This study employs an SML approach to address two primary objectives: (i) to 

construct a Supervised Machine Learning - Attitude Classifier (SML-AC) for 

identifying respondent features associated with attitudes towards EV purchasing, and 

(ii) to develop a Supervised Machine Learning - Parameter Validator (SML-PV) for 

validating and optimising model parameters. An agent-based model was also 

developed, incorporating the SML-AC to define agents’ decision-making rules and 

the SML-PV to support model validation and optimisation. 

Section 3.1 introduces the primary data sources, Section 3.2 details the 

development of the SML-AC, Section 3.3 provides an overview of the ABM 

framework, and Section 3.4 outlines the specifics of the SML-PV. 

 

3.1 Data 

The data for this study was sourced from the "Public Attitudes Towards 

Electric Vehicles" survey, conducted as part of the Opinions and Lifestyle Survey by 

the UK Data Service (2014) and ONS (2015). This survey included 1,996 responses 

from individuals aged 16 and over living in Great Britain, with 962 samples collected 

in February 2014 and 1,034 in February 2015. Stratified random sampling based on 
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household postcodes, coupled with face-to-face interviews, were the primary data 

collection methods. After excluding unit non-responses and respondents unaware of 

EVs, the final valid sample sizes were 900 for 2014 and 943 for 2015. 

To ensure compatibility with modelling requirements, data processing 

included adjustments to address potential biases due to questionnaire design features 

(e.g., skip logic, multiple-response questions, multipurpose design, non-substantive 

response options) (Vaus, 2002). Data preparation involved variables screening, 

recoding, dealing with missing values to avoid distorting the relationships between 

feature and target variables. The data preparation was verified by Pearson’s test of 

independence. 

The final dataset comprises 66 feature variables and one target variable. 

Feature variables are categorised as: (1) demographic and socio-economic 

characteristics - car ownership, driving license ownership, and travel frequency; (2) 

key considerations while buying a car - costs (purchase, fuel, maintenance, resale 

value, et al.), comfort, environment friendliness, electrically powered techniques, 

style/design, interior space, driving range, safety, speed; (3) concerns discouraging EV 

purchase – concerns like costs, limited model availability, lack of knowledge, battery 

range limitations, recharging constraints, safety, speed, and perceived unreliability  of 

electrically powered technology; and (4) factors encouraging EV purchase - costs, 

model variety, environmental friendliness, effective battery range, recharging 

convenience, safety, vehicle size/aesthetics, and perceived reliability of electrically 

powered technology. Most feature variables had unbalanced distributions in their 

specific categories, and the feature variables have unbalanced distributions across their 

categories, yet both datasets exhibited similar distributions of feature variables (DfT, 

2016). For simplification, features listed in (1) are referred to as information features, 

while those in (2) - (4) are referred to as belief features. 

The target variable has two categories: (i) a positive attitude towards buying 

EVs, including respondents who “already own EVs”, “are thinking about buying EVs 

quite soon”, “thinking about buying EVs but don’t know when” and “thought about 

buying EVs but decided not to”; and (ii) a negative attitude, including those who “have 

not really thought about buying EVs” and “don’t drive”. The target variable is 

unbalanced, with positive attitude corresponding to 19.6% of the 2014 data and 19.9% 

of the 2015 data. Both datasets were used to train, test, and validate the proposed SML 

classifiers and agent-based models. 
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The prepared survey datasets were imported into AnyLogic to construct 

consumer agents - 900 agents for 2014 and 943 agents for 2015. Each consumer agent 

represents a survey respondent, carrying the same socio-demographic, attitudinal, and 

behavioural characteristics as the corresponding respondent. To enhance model 

stability, a fourfold replication of the respondent population was implemented, 

resulting in approximately 3,600 agents for 2014 and 3,772 agents for 2015 (see 

Section 3.3 for details). 

 

3.2 SML-AC 

To develop the SML-AC, we employed several machine learning techniques using 

SPSS Modeler 18.2.2 (IBM, 2018). Our primary objective was to ensure unbiased 

performance evaluation and optimal algorithm selection, achieved through K-fold 

cross-validation (𝐾 = 5). In this approach, the dataset 𝐷 was divided into 𝐾 equal-

sized subsets 𝐷1, 𝐷2, …, 𝐷𝐾, with 𝐾 − 1 subsets used for training and the remaining 

subset used for testing, repeating this process across all folds (Ozdemir, 2016; Clark 

2003). The cross-validation error was calculated as follows: 

𝐶𝑟𝑜𝑠𝑠 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑒𝑟𝑟𝑜𝑟 =  
1

𝐾
∑ 𝑒𝑟𝑟𝑜𝑟(𝐷𝑖

𝑡𝑒𝑠𝑡)          (1)

𝐾

𝑖=1

 

where error (𝐷𝑖
𝑡𝑒𝑠𝑡) represents the classification error for the 𝑖𝑡ℎ fold. Reducing this 

error minimises the risks of overfitting and selection bias. 

To identify relevant features for predicting attitudes toward EV adoption, we 

used a filter-based feature selection method, applying Pearson’s chi-square test of 

independence (Fishbein & Ajzen, 1975; Ranganathan et al., 2017). For each feature 𝑖, 

the chi-square statistic 𝜒𝑖
2 was calculated as: 

𝜒𝑖
2 =  ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
                                          (2) 

where 𝑂𝑖 is the observed frequency, and 𝐸𝑖 is the expected frequency. This allowed us 

to rank features by their statistical association with the target variable and eliminate 

features with low correlation. In our experiment, features with a Pearson’s chi-square 

value higher than 0.95 were selected for subsequent modelling, indicating a significant 

correlation between the feature and the target. 

To address the issue of data imbalance, we applied the Synthetic Minority 

Oversampling Technique (SMOTE) with the M-nearest neighbours algorithm. 
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SMOTE generates synthetic samples of the minority class by interpolating between 

existing instances and their nearest neighbours, as follows: 

𝑋𝑛𝑒𝑤 =  𝑋𝑖 +  𝜆(𝑋𝑗 −  𝑋𝑖)                             (3) 

where 𝑋𝑖 is a minority class sample, 𝑋𝑗 is one of its nearest neighbours, and λ is a 

random number between 0 and 1. This approach improves training data balance 

without introducing noise (Chawla, Bowyer & Hall, 2002; Luengo et al., 2010). Our 

experiment set the value of M to 5, a commonly used value recommended by Pertiwi 

et al. (2020). By applying SMOTE to our data, 176 samples with a positive EV attitude 

were synthesised. 

We applied several classification algorithms, including logistic regression, 

Classification and Regression Tree (CART), Chi-Square Automatic Interaction 

Detector (CHAID), and C5.0 decision tree. These algorithms were chosen due to their 

effectiveness with categorical variables, aligning with the structure of the ONS 

datasets (Song & Lu, 2015; Hoffmann, 2016). More importantly, these algorithms 

offer a clear explanation of the relationship between independent and dependent 

variables, which is essential for providing insights into how independent variables 

influence the dependent variable in ABM simulations. While more complex 

algorithms, such as support vector machines and neural networks, could have been 

used, they were not selected because they do not provide a transparent understanding 

of these relationships (Clark 2003). 

The logistic regression model is defined as: 

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐸𝑉 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒) =  1
1 + 𝑒−(𝛽0+ ∑ 𝛽𝑖𝑋𝑖

𝑛
𝑖=1 )⁄         (4) 

where 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐸𝑉 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒)  is the probability of an agent holding a positive 

attitude towards EV purchasing, 𝑋𝑖 are predictor variables (e.g., attitudinal beliefs and 

demographic factors), and 𝛽𝑖 are coefficients estimated from the data. 

The decision tree algorithms (CART and C5.0) split the dataset into 

homogenous subgroups based on predictor variable values. For CART, the splitting 

criterion is based on Gini impurity: 

𝐺𝑖𝑛𝑖(𝐷) = 1 −  ∑ 𝑝𝑖
2

𝐶

𝑖=1

                           (5) 

where 𝑝𝑖 is the proportion of instances of class 𝑖 in dataset 𝐷, and 𝐶 is the number of 

classes. Each node splits to maximise the reduction in Gini impurity, refining the 

homogeneity of the subgroups. 
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The models were evaluated using K-fold cross validation (as described above) 

to calculate performance metrics such as sensitivity, specificity, and G-mean (Nisbet 

et al., 2009). Sensitivity and specificity are defined as follows: 

Sensitivity = 𝑇𝑃 ( 𝑇𝑃 + 𝐹𝑁)⁄                   (6) 

Specificity = 𝑇𝑁 ( 𝑇𝑁 + 𝐹𝑃)⁄                    (7) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false 

negative. The G-mean, representing the geometric mean of sensitivity and specificity, 

is calculated as: 

𝐺 − 𝑚𝑒𝑎𝑛 =  √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦   (8) 

This ensures that the classifier is assessed not only on its accuracy in 

identifying positive cases but also on its ability to minimise false positives. We 

evaluated and compared three decision tree algorithms and logistic regression on the 

2014 data, followed by further testing on the 2015 data to ensure generalisability. 

 

 

 

3.3 Agent-based modelling 

An ABM was developed to (1) synthesise social interaction data as agent-level social 

interaction features, and (2) simulate consumer attitudes towards EV adoption based 

on synthesised social activities and decision-making rules. 

 

Agent initialisation 

This agent population represents a microcosm of the ONS dataset, with each 

characteristic’s distribution designed to match the empirical data. Probability 

distribution functions for each characteristic were defined based on the ONS data, 

ensuring that both population-wide and individual-level characteristics were realistic. 

Mathematically, each agent 𝐴𝑖 is initialised as a vector using Equation (9): 

𝐴𝑖 = [𝑎𝑔𝑒𝑖, 𝑔𝑒𝑛𝑑𝑒𝑟𝑖, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖 , 𝑐𝑎𝑟𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖
, 𝑏𝑒𝑙𝑖𝑒𝑓𝑠𝑖]  (9) 

 

Synthesis of agent-agent interaction 

Agent-agent social interactions were synthesised by assigning each agent to a social 

network (Hamill and Gilbert, 2009; 2016). Each agent was placed within a social circle 

composed of close friends, modelled using a distance-based network in AnyLogic 
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(version 8.7.3 University). Let 𝐺 = (𝑉, 𝐸) represent the agent network, where 𝑉 is the 

set of agents, and 𝐸 is the set of edges denoting bidirectional links between agents. A 

link was established between two agents 𝐴𝑖 and 𝐴𝑗 if the Euclidean distance 𝑑(𝐴𝑖 , 𝐴𝑗) 

was below a predefined threshold 𝑑𝑚𝑎𝑥, mathematically defined as: 

𝑑(𝐴𝑖 , 𝐴𝑗)  ≤ 𝑑𝑚𝑎𝑥                (10) 

These social links allowed agents to communicate their attitudes with close 

friends, facilitating Discussions with Friends (DF) interactions. Attitude changes 

resulting from DF interactions were modelled using a social influence model (Hamill 

& Gilbert, 2016; Barth et al., 2016; Bennett & Vijaygopal, 2018). When an agent 𝐴𝑖′𝑠 

attitude was influenced by the attitudes of their social circle, the change in attitude was 

governed by the following function: 

𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒̂
𝐷𝐹 = 𝑓(𝛼𝐷𝐹 , 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒̂

𝑝𝑟𝑒𝑣, 𝑓𝑟𝑖𝑒𝑛𝑑𝑠_𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝑠)   (11) 

where 𝛼𝐷𝐹  represents the influence coefficient, capturing the strength of social 

influence from friends. 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒̂
𝑝𝑟𝑒𝑣  is the agent’s prior attitude. 

𝑓𝑟𝑖𝑒𝑛𝑑𝑠_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 is the aggregated attitude of the agent’s close friends. This setup 

allowed for realistic simulation of how peer influences shape individual attitudes, 

particularly in the context of consumer attitudes towards EV adoption. 

The potential for attitude change was modelled probabilistically using a 

uniform random variable. The probability of an agent being influenced by a DF 

interaction, denoted 𝑃𝐷𝐹 , was calculated as follows: 

𝑃𝐷𝐹 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) < 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦        (12) 

where 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  controls the likelihood of an attitude change due to DF 

interaction. This parameter was initially assigned a value referring to the Amazon 

Mechanical Turk (AMT) survey (Krupa et al., 2014) (see Table 1 below) to enable 

model development and testing. The value was then calibrated through sensitivity 

analysis (i.e., parameter variation experiment in AnyLogic) to align with the attitudinal 

patterns observed in the ONS survey. Additionally, demographic distributions of 

respondents from the ONS and AMT surveys were compared in Appendix C, 

indicating similarities in gender and income distributions. 

Referring to AMT survey findings, we assumed that respondents in the AMT 

survey shared similar sensitivities to social interactions as subgroups with comparable 

attitudes towards EV purchasing in the ONS data. This assumption provided an initial 

parameter value for configuring and testing the model, with values subsequently 
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validated and optimised using empirical data in the final experiments. This method 

ensures that the assumption does not introduce bias into the experimental results. 

 

Synthesis of agent-environment interaction 

In addition to social interactions, agents could be influenced by their environment 

through the observation of EVs on roads (OR interaction). Each agent was assigned to 

an artificial residential environment based on geographical information from the ONS. 

Within this environment, agents could observe EVs in their vicinity, with the OR 

interaction as a provincial norm effect (Barth, Jugert, & Fritsche, 2016). 

The attitude changes due to OR interaction was modelled using a social 

infection model (Hamill & Gilbert, 2016). For each agent, the likelihood of being 

influenced by observing EVs was calculated as: 

𝑃𝑂𝑅 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) < 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   (13) 

where 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 represents the probability that an agent’s attitude shifts due to 

the observation of EVs on roads. This parameter was fine-tuned through sensitivity 

analysis, drawing on observed patterns from the AMT survey. Table 1 below provides 

an overview of 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 values based on Krupa eat al. 

(2014), linking the AMT-reported probabilities of attitude changes due to DF and OR 

interactions with corresponding agent attitudes. 

If the condition is met, the agent's new attitude, denoted as 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒̂
𝑂𝑅 , is 

influenced by the proportion of EVs within the residential environment. 

Mathematically, the change in attitude is represented as: 

𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒̂
𝑂𝑅 = 𝑓(𝛼𝑂𝑅 , 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒̂

𝑝𝑟𝑒𝑣, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐸𝑉𝑠)  (14) 

where 𝛼𝑂𝑅is the OR interaction coefficient, reflecting the strength of environmental 

influence. 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐸𝑉𝑠 represents the number of EVs observed within the agent's 

environment. 

 

Table 1. 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, based on Krupa et al. (2014). 

AMT data Agents based on ONS data 

Attitude of 

respondents 

Probability 

of attitude 

change 

due to DF 

Probability 

of attitude 

change 

due to OR 

Attitude 

of agents 

Initial value 

for 𝐷𝐹 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Initial value 

for 𝑂𝑅 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
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Would 

consider 

buying EVs 

28.3% 12.7% 

Already own 

EVs 

28.3% 12.7% Thinking about 

buying EVs 

quite soon 

Might 

consider 

buying EVs 

24.7% 9.3% 

Thinking about 

buying EVs but 

do not know 

when 24.7% 9.3% 

Thought about 

buying EVs but 

decided not to 

Would not 

consider 

buying EVs 

20.4% 5.7% 

Have not 

thought about 

buying EVs 
20.4% 5.7% 

Do not 

drive/don’t need 

a car 

 

This configuration allows agents to adjust their attitudes in response to the 

visibility of EVs in their local surroundings, capturing the influence of environmental 

exposure on consumer attitudes towards EV adoption. By calibrating the OR 

interaction parameter, the model can accurately reflect the influence of observed EV 

density, adding realism to the simulation of provincial norms and environmental 

effects. 

 

Agent decision-making rule with social interactions 

In our agent-based model, agent activities were governed by decision-making rules 

(DMR) that integrated both social interactions (DF and OR) and outputs from the 

SML-AC classifier. These rules determined whether an agent's attitude would shift 

based on social interactions. 

For instance, with the decision-making rule incorporating DF interaction, 

denoted as 𝐷𝑀𝑅𝐿𝑅+𝐷𝐹, expressed the agent’s attitude as: 

𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑀𝑅_𝐿𝑅+𝐷𝐹
̂ = 𝑓(𝛼𝐷𝐹 , 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑀𝑅_𝐿𝑅

̂ )              (15) 
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where 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑀𝑅_𝐿𝑅
̂  is the agent’s attitude predicted by the logistic regression 

classifier (that is SML-AC), and 𝛼𝐷𝐹 is the coefficient representing the influence of 

DF interaction. 

Similarly, the decision-making rule incorporating OR interaction, denoted as 

𝐷𝑀𝑅𝐿𝑅+𝑂𝑅, was governed by: 

𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑀𝑅_𝐿𝑅+𝑂𝑅
̂ = 𝑔(𝛼𝑂𝑅 , 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝑀𝑅+𝐿𝑅

̂ )              (16) 

These decision-making rules were evaluated by comparing the predicted agent 

attitudes against the actual observed attitudes from the ONS data. To optimise model 

performance, sensitivity analysis was conducted by varying the parameters 𝛼𝐷𝐹 and 

𝛼𝑂𝑅, allowing for fine-tuning of social influence effects on agent decision-making. 

 

3.4 SML-PV 

The parameters 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  and 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  represent the likelihood of 

agents changing their attitudes due to the DF and OR social interactions, respectively. 

These parameters capture the heterogeneity in agents' social interactions and play a 

crucial role in shaping the simulated patterns of agent attitudes across the population. 

To determine the optimal values, we conducted parameter variation experiments by 

systematically varying these parameters and assessing evaluate the model’s 

performance. 

The experiments involved varying 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 from 

0 up to twice the values in Krupa et al. (2014), with increments set as one-quarter of 

the final value. For each set of parameter values, the model’s performance was 

evaluated using G-mean (see Equation 8 in Section 3.2). The goal was to optimise 

these metrics by identifying parameter values that maximised both the model's ability 

to correctly classify both positive and negative cases. 

To further analyse the results of the parameter variation experiments and 

identify the optimal parameters, an SML based Parameter Validator (SML-PV) was 

constructed. The following techniques were applied to build the validator: 5-fold 

cross-validation (Eq. 1 in Section 3.2) for unbiased performance evaluation, SMOTE 

with M-nearest neighbours algorithm (Eq. 3 in Section 3.2) to address data imbalance, 

logistic regression (Eq. 4 in Section 3.2) and decision trees (C5.0 and CART, Eq. 5 in 

Section 3.2) for algorithm comparison. 

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf019/8153877 by guest on 13 June 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 

 

17 

 

The SML-PV enabled a structural exploration of parameter spaces, enhancing 

model robustness by ensuring the selected parameters align with empirical data while 

achieving optimal classification performance. 

 

3.5 SML-ABM approach for the integrated model 

The model integrating SML and ABM consists of five functional modules (Figure 1):  

1. SML-AC (Attitude Classifier): The first module involved constructing a 

logistic regression classifier (as described in Section 3.2) to identify key 

features associated with respondents’ attitudes towards EV adoption. 

2. Synthesis of Social Interaction Features: The second module synthesised 

social interaction features, which were not present in the ONS datasets, by 

using ABM and incorporating insights from the AMT datasets as along with 

Social Influence Theory. These synthesised features enabled realistic social 

dynamics within the agent population. 

3. Decision-Making Rules for Attitude Formation: In the third module, the 

synthesised social interaction features were combined with the logistic 

regression output from the SML-AC to formulate agents’ decision-making 

rules for attitude formation 

4. Parameter Variation with SML-PV: This module involved assessing these 

decision-making rules through parameter variation experiments in the ABM. 

Optimised parameters for social interactions were selected using a C5.0 

decision tree classifier, as outlined in the SML-PV (Section 3.4). 

5. Simulation of Consumer Attitudes: Finally, the agent-based model, now 

equipped with the optimised social interaction parameters, was used to 

simulate consumer attitudes towards EV adoption. 

 

Figure 1. Model structure. 
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The integrated SML-ABM approach allowed for data-driven exploration of 

consumer attitudes, providing a robust framework to simulate and predict the impact 

of social and environmental influences on EV adoption. 

 

4. Integrated model and results 

4.1 SML-AC classifier for consumer attitude 

To build the SML-AC, logistic regression, CHAID, CART, and C5.0 decision tree 

algorithms were initially selected. The performance of these algorithms was evaluated 

using several metrics, shown in Table 2, based on 5-fold cross-validation experiments. 

Logistic regression was selected as the final model due to its superior performance in 

key metrics, such as the area under the receiver operating characteristic curve (AUC), 

sensitivity, and G-mean, with a low standard deviation (SD). Compared to other 

classifiers, logistic regression demonstrated the highest mean sensitivity, which is 

crucial for accurately identifying consumers with a positive EV attitude, ensuring the 

accuracy of subsequent ABM simulations. While CHAID, CART, and C5.0 were also 

tested, they showed either lower means or higher SDs in sensitivity and specificity, 

indicating less stability in classification. Specifically, CHAID exhibited a high SD in 

specificity (7.4%), suggesting instability in classifying negative attitudes. CART and 

C5.0 also displayed high SDs, further supporting the choice of logistic regression. 

When trained on the ONS 2014 data and tested on the 2015 data, the logistic regression 

classifier achieved a sensitivity of 70.74%, specificity of 61.46%, and a G-mean of 

65.94%, confirming its generalisability. Additionally, logistic regression’s 

computational efficiency and ability to handle categorical data without overfitting 

made it the preferred model for this work. 

 

Table 2. Metrics for SML-AC, 5-fold cross validation experiment. 

SML-AC 

candidates 

AUC 

(Mean, SD) 

Sensitivity 

(Mean, SD) 

Specificity 

(Mean, SD) 

G-mean 

(Mean, SD) 

CHAID (70.53%, 2.29%) (70.72%, 3.51%) (62.86%, 7.40%) (66.52%, 2.99%) 

Logistic 

regression 
(71.30%, 3.52%) (70.11%, 3.77%) (59.42%, 3.54%) (64.48%, 1.56%) 

CART (66.10%, 3.83%) (64.24%, 7.16%) (62.82%, 10.78%) (63.11%, 4.23%) 

C5.0 (66.85%, 3.59%) (53.42%, 14.0%) (70.83%, 8.53%) (60.63%, 6.42%) 
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Table 3 presents the B parameter (B), standard error (S.E.), Wald statistic, 

degrees of freedom (df), significance level (Sig.), and odds ratio (Exp(B)) for the 

predictors in the logistic regression classifier. Results indicate that three belief factors 

and two demographic features significantly affect consumer attitudes (Sig < 0.05). 

Belief factors included the importance of environmental friendliness, the significance 

of electrically powered technologies, and concerns about limited battery range. For 

example, respondents who rated “environmental friendliness as important when 

buying a car or van” were more likely to have a positive attitude towards EV 

purchasing compared to those who responded “do not know” (the reference category). 

Demographically, car ownership and the highest level of qualification also played 

significant roles. 

 

 

 

 

 

 

 

Table 3. Predictors and parameters of logistic regression classifier. 

Predictors and parameters in the selected SML-AC 

 B S.E. Wald df Sig. Exp(B) 

Environmental friendliness as an important 

factor 
  22.201 2 .000  

No 3.169 1.075 8.698 1 .003 23.784 

Yes 3.654 1.072 11.621 1 .001 38.648 

“Do not know or refusal (spontaneous only)” is coded as the reference category for 

“environmental friendliness as an important factor”. 

Electrically powered technologies as an 

important factor 
  19.342 1 .000  

No -1.272 .289 19.342 1 .000 .280 

“Do not know or refusal (spontaneous only)” and “yes” are combined due to their small 

proportions (8.4% and 5.4%, respectively), and coded as the reference category for 

“electrically powered technologies as an important factor”. 

Limited battery range as a deterrent   16.537 2 .000  

No .986 .326 9.168 1 .002 2.680 
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Yes 1.309 .335 15.245 1 .000 3.701 

“Do not know or refusal (spontaneous only)” is coded as the reference category for “limited 

battery range as a deterrent”. 

Car ownership   40.259 3 .000  

None -.472 .348 1.842 1 .175 .624 

One car .600 .300 4.017 1 .045 1.823 

Two cars .953 .311 9.418 1 .002 2.594 

“Three or more cars” is coded as the reference category for “car ownership”. 

Highest level of qualification   64.652 3 .000  

Degree of equivalent 1.978 .280 49.829 1 .000 7.230 

Below degree level 1.062 .273 15.097 1 .000 2.891 

Other qualifications 1.557 .318 23.942 1 .000 4.746 

“None (no formal qualifications)” is coded as the reference category for “highest level of 

qualification”. 

Constant -5.009 1.109 20.413 1 .000 .007 

Sig. was calculated at the significant level of 0.05 

 

The logistic regression classifier labelled 42% of the 2014 respondents as 

having positive attitudes – higher than the actual figure of 19.6% - leading to over-

optimistic predictions. This difference stemmed from sampling biases in the 

imbalanced data on consumer attitudes during early stages of innovation adoption 

(Rogers, 2003; Kiesling et al., 2012), resulting in a Type I error, where many negative 

cases were misclassified as positive. 

While undersampling is commonly used to improve classifier performance on 

unbalanced datasets, it may lead to data loss and potential misinterpretations (Mao et 

al., 2021; Krupa et al., 2014). An alternative approach involves adding effective 

predictors to the classifier, which can improve accuracy. Here, ABM was used to 

synthesise social interaction features, which may lead to more accurate classification 

of consumer attitudes (Barth, Judgert & Fritsche, 2016; Gallagher et al., 2018). 

 

4.2 Synthesis of social interaction features using ABM 

An agent-based model was constructed to synthesise social interaction features based 

on the ONS data, by situating agents within a distance-based social network and a 

modelled residential environment. Agents engaged in predefined social activities, 

allowing them to interact with their social circles (DF interaction) and environment 
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(OR interaction) through the observation of EVs on roads. These interactions were 

integrated into a social interaction component, augmenting the agents’ original 

decision-making rules (as described in Section 3.3). The performances of the 

augmented rules, DMR_LR+DF and DMR_LR+OR, were then evaluated. 

The synthesised social interaction features displayed similar patterns to the 

societal attitudes of AMT respondents towards EV adoptions (Krupa et al., 2014). 

Figure 2 presents the population distributions of AMT respondents and simulated 

agents whose attitudes towards EV adoption were influenced by social interaction 

activities, namely “discussions with close friends” and “observation of EVs on roads”. 

These results indicate that the simulated social interactions are compatible with 

empirical data, validating their application in our model to investigate the impact of 

social interactions on consumers’ attitudes towards EV adoption. 

 

Figure 2. Agents influenced by (A) “discussions with close friends”, and (B) 

“observation of EVs on the roads” (AMT / Synthesised data). 

 

Figure 3 (A-C) illustrates the model performance for individual agent attitude 

classification under three rules: DMR_LR, DMR_LR+OR and DMR_LR+DF. The 

evaluation metrics were averaged over 30 replications to achieve statistically stable 
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results. Paired sample t-tests across different rules indicated statistically significant 

differences among all test groups. Figures 3(D) and 3(E) show that a high rank 

indicates that the predicted attitude ratio is closer to empirical data, while a low rank 

signifies greater deviation from empirical data. 

The sensitivity results across models with different decision-making rules 

(Figure 3 (A)) indicate that adding the OR interaction improved model sensitivity, 

whereas including the DF interaction resulted in reduced sensitivity. The 

DMR_LR+OR rule improved the true positive rate, correctly simulating 71.05% (502) 

of positive cases as positive. Additionally, 28.95% (204) of positive cases were 

incorrectly labelled as negative, indicating a reduction in Type I errors compared to 

the DMR_LR rule, which lacks the social interaction feature. Regarding specificity 

(Figure 3 (B)), the DMR_LR+DF was superior, accurately simulating 70.1% (2,029) 

of negative cases as negative. 

 

Figure 3. Performance comparison: DMR_LR, DMR_LR+DF and DMR_LR+OR. 

 

The overall model performance was assessed using the G-mean, which 

represents the geometric mean of sensitivity and specificity. Figure 3 (C) shows that 

the DMR_LR+OR rule achieved a higher G-mean than the rule incorporating DF 

interaction, making DMR_LR+OR the preferred decision-making rule. This rule 

captures individual attitudes with acceptable accuracy by combining the data-driven 

logistic regression function with the OR interaction, which reflects the provincial norm 

effect through “observation of EVs on the roads”. 

Figures 3 (D-E) highlight how different decision rules affect population 

attitude simulations, revealing discrepancies linked to Type I and Type II errors 
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(Nisbet, Minger & Yale, 2009). Differences between individual and population 

simulations underscores the importance of micro-level validation in ABM to 

accurately capture individual heterogeneity. Previous models’ inaccuracies may stem 

from insufficient micro-level data, sampling biases, and uncalibrated decision rules. 

Validating decision rules at the micro level ensures that simulated attitudes align with 

actual attitudes, thereby reducing errors and enhancing ABM accuracy. 

 

4.3 SML-PV validator to evaluate the impact of social interaction parameters on 

agent-based model performances 

Social interaction parameters were initially adopted from the AMT data (Krupa et al., 

2014) and evaluated through parameter variation experiments to improve model 

performance. Specifically, OR interaction controlling parameters, 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 , 

were selected from a predefined value range to generate various decision-making rules 

for agents. Applying these rules within an agent-based model produced a dataset of 

agents’ OR interaction features, which SML algorithms analysed performance patterns 

and reduce parameter bias. This approach allowed for capturing agent heterogeneity 

in OR interaction features by optimising model performance. 

A pilot study was first conducted on six sets of 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖  values to 

evaluate the model’s performance under controlled conditions. Subsequently, a 

comprehensive parameter variation experiment using 15,625 sets of 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 

values was conducted to reveal the relationship between OR interaction parameters 

and model performance. The SML-PV was used for validation, applying C5.0, CART, 

and logistic regression algorithms. 

Figure 4 visualises the relationship between OR interaction parameters 

(𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1, 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦4, 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦5) and model performance. The 

G-mean of DMR_LR+OR surpasses that of  DMR_LR when 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦4  = 

0.1395, but was lower when 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦5  = 0.0285, with 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1  ∈ 

{0.0000, 0.0635, 0.1270} and other 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖  = 0. These results suggest 

enhancing DMR_LR+OR G-mean by increasing OR interaction probability, 

especially for agents who considered buying EVs but refrained. 
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Figure 4. Parameters variation experiment on ORprobability. 

 

Comprehensive parameter experiments analysed how adjustments to social 

interaction controlling parameters could improve agent-based model performance. 

Optimised parameters were validated for application in attitude classification datasets 

(e.g., ONS) lacking initially collected social interaction features. 

The OR interaction controlling parameters were restricted to an explorable 

range to reduce iterations and runtime. This range (Table 4) is reasonable, aligning 

with values suggested by Bass (1969) and Rand & Rust (2011), with agent influence 

probability ranging from 0.026 to 0.6541 for potential adopters. This approach resulted 

in 15,625 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  parameter combinations (𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 - 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦6) used to evaluate model performance. 

Table 4. OR interaction controlling parameters. 

OR interaction controlling parameters Values 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 {0, 0.0635, 0.1270, 0.1905, 0.2540} 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 {0, 0.0635, 0.1270, 0.1905, 0.2540} 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦3 {0, 0.0465, 0.0930, 0.1395, 0.1860} 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦4 {0, 0.0465, 0.0930, 0.1395, 0.1860} 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦5 {0, 0.0285, 0.0570, 0.0855, 0.1140} 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦6 {0, 0.0285, 0.0570, 0.0855, 0.1140} 

 

The GmeanImprovement metric was used to assess decision-making rule 

performance. A value of 0 indicated that for 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 , the G-mean of the 
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DMR_LR+OR was lower than or equal to that of DMR_LR, while a value of 1 

indicated the opposite. The SML-PV classifier was constructed to recognise patterns 

in GmeanImprovement, visualise data, and determine suitable 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

parameter sets for OR social interaction formulation. SML-PV classifiers were trained 

and validated using the 2014 results (section 3.2). 

Table 5 presents evaluation metrics for SML-PV with 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. The 

C5.0 algorithm outperforms others, achieving a mean AUC of 99.46%, sensitivity of 

99.44%, specificity of 96.94% and G-mean of 98.18%. Testing the SML-PV with C5.0 

on the 2015 simulation yielded an AUC of 97.80%, sensitivity of 99.09%, specificity 

of 89.71%, and G-mean of 94.28%, demonstrating generalisability. This approach 

effectively recognised the relationship between OR social interaction controlling 

parameters and DMR_LR+OR performance, largely attributed to simplified OR 

interaction patterns and GmeanImprovement. Future research could explore more 

complex relationships with enhanced computing power. Appendix A presents the first 

five layers of the SML-PV with C5.0 for OR interaction parameters, showing 

consistency with AMT empirical data (Section 4.2). 

 

Table 5. Metrics for SML-PV in 5-data-point parameter variation experiment for 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 validation. 

SML-PV 

candidates 

AUC 

(Mean, SD) 

Sensitivity 

(Mean, SD) 

Specificity 

(Mean, SD) 

G-mean 

(Mean, SD) 

𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Logistics regression (94.16%, 0.56%) (88.59%, 2.8%) (84.66%, 0.93%) (86.60%, 5.3%) 

C5.0 (99.46%, 0.11%) (99.44%, 0.49%) (96.94%, 0.49%) (98.18%, 0.27%) 

CART (97.34%, 0.71%) (95.63%, 1.89%) (91.37%, 1.42%) (93.47%, 0.88%) 

 

DF interaction parameters were also examined using a 5-data-point parameter 

variation experiment (Table 6), validated with SML-PV. The results, presented in 

Table 7, indicate that C5.0 performed best across all metrics. Testing SML-PV with 

C5.0 on the 2015 parameter variation experiment yielded an AUC of 99.80%, 

sensitivity of 97.86%, specificity of 96.34%, and G-mean of 97.10%, showing strong 

generalisability. Appendix B visualising the first five layers of the SML-PV with C5.0 

for DF interaction parameters. 

 

Table 6. DF interaction controlling parameters. 
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DF interaction 

controlling parameters 

Values in 5-data-points parameters 

variation experiment 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 {0, 0.1415, 0.2830, 0.4245, 0.5660} 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 {0, 0.1415, 0.2830, 0.4245, 0.5660} 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦3 {0, 0.1235, 0.2470, 0.3705, 0.4940} 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦4 {0, 0.1235, 0.2470, 0.3705, 0.4940} 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦5 {0, 0.1020, 0.2040, 0.3060, 0.4080} 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦6 {0, 0.1020, 0.2040, 0.3060, 0.4080} 

 

The OR and DF interaction values with the highest G-mean were selected to 

parameterise the final optimised DMR_LR+OR and DMR_LR+DF, respectively. The 

highest G-mean value signifies the closest alignment with empirical data for the 

predicted positive attitude ratio. 

 

Table 7. Metrics for SML-PV in 5-data-point parameters variation experiment for 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 validation. 

SML-PV 

candidates 

AUC 

(Mean, SD) 

Sensitivity 

(Mean, SD) 

Specificity 

(Mean, SD) 

G-mean 

(Mean, SD) 

𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

Logistic 

regression 
(95.06%, 0.65%) (94.47%, 1.08%) (85.48%, 0.66%) (89.86%, 0.72%) 

C5.0 (99.50%, 0.35%) (98.15%, 1.32%) (97.72%, 1.04%) (97.93%, 0.68%) 

CART (97.34%, 0.71 %) (95.63%, 1.89%) (91.37%, 1.42%) (93.47%, 0.88%) 

 

In summary, SML-PV classifiers determine optimised social interaction 

parameters, enhancing their efficacy in simulating consumer attitudes towards EV 

purchasing via agent-based models. When DF and OR interaction controlling 

parameters are empirically accessible, the social interaction components of the ABM 

can be further refined for case-specific attitude classifications. This data-driven 

approach minimises biases in synthesised social interaction features, facilitating the 

optimisation of decision-making rules to closely align with ONS respondents’ 

attitudes towards EV adoption. As a result, this model provides a robust, adaptable 

tool for accurately capturing consumer attitudes in dynamic, socially interactive 

environments. 

 

4.4 Agent-based model to simulate consumer attitudes 

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpaf019/8153877 by guest on 13 June 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 

 

27 

 

The optimised decision-making rules DMR_LR+OR and DMR_LR+DF were applied 

to simulate ONS consumer attitudes, as illustrated in Figure 5. Figure 5(A) shows the 

sensitivity of each model for both 2014 and 2015, with the optimised DMR_LR+OR 

outperforming the others. Figure 5(B) represents specificity, where the optimised 

DMR_LR+DF performs better, while the optimised DMR_LR+OR has lower 

specificity. Figure 5(C) demonstrates G-mean, where the optimised DMR_LR+OR 

again leads in both years. When simulating consumer attitudes using 2014 data, the 

optimised DMR_LR+OR model achieved a sensitivity of 71.54%, specificity of 

64.92%, and a G-mean of 68.15%, significantly outperforming the DMR_LR rule. A 

similar performance pattern was observed with the 2015 data, indicating consistent 

model accuracy across different datasets. 

Furthermore, the optimised DMR_LR+OR outperformed the rule 

incorporating the OR interaction synthesised from the AMT data (as described in 

Section 4.2). These results confirm that the optimised decision-making rule effectively 

captures the nuances of consumer attitudes towards EV adoption in the context of ONS 

data, offering a robust tool for simulating and analysing consumer behaviour in 

socially interactive settings. 

 

 

Figure 5. Performance of optimised DMR_LR+OR, optimised DMR_LR+DF, and 

DMR_LR. 

 

5. Discussion and conclusion 

This study presents a novel integrated model that combines ABM and SML methods 

to explore the relationship between consumer attitudes and social interactions in the 

adoption of EVs. The integrated model identifies key consumer features from 

empirical data and synthesises missing or “unseen” social interaction data, thereby 

accounting for consumer heterogeneity in attitude simulations. Through micro-level 
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model validation and optimisation, the method leverages ONS survey data from 2014 

and 2015 to simulate consumer attitudes towards EV adoption in Great Britain. 

Our results underscore the critical influence of social interactions in shaping 

consumer attitudes during the early stage of EV diffusion, a period marked by low 

adoption rates and limited purchasing behaviour data. This work offers a template for 

applying attitude-intention-behaviour theories in a comprehensive, bottom-up 

approach to consumer attitude analysis. 

This research introduces a modularised model that not only identifies key 

consumer features and classifies attitudes, but also synthesises social interaction data 

to address information gaps. For instance, the model augments missing data on social 

influence effects by integrating insights from relevant theories and additional sources 

like AMT data. Furthermore, micro-validation and optimisation of consumers’ 

decision-making rules ensure that the model accurately reflects consumer 

heterogeneity in social interactions and their impacts on attitude formation. 

Key findings reveal five influential factors driving EV adoption attitudes: 

environmental concerns, importance of technology, battery range limitations, car 

ownership, and education level. Incorporating social interactions into the decision-

making rules, such as “discussions with close friends” and “observation of EVs on 

roads”, significantly improved the model’s performance in attitude classification. 

Our findings suggest that marketers should develop tailored strategies 

targeting specific consumer segments to encourage EV adoption. This 

recommendation is based on the observation that consumers with similar socio-

demographic profiles exhibit similar attitudes towards EV adoption. These strategies 

should be periodically updated to reflect different stages of the adoption process. 

Additionally, advancing battery technology and capital investments are essential to 

enhancing EV battery range, which remains a significant consumer concern. 

Policy implications from this work suggest that policymakers should prioritise 

public awareness campaigns on environmental protection in Great Britain, as our 

finding indicate that individuals with strong environmental concerns are more likely 

to adopt positive attitudes towards EVs. Effective measures may include public 

awareness campaigns through social media, TV, and print advertisements, 

environmental education in schools, and community engagement initiatives. 

Moreover, our study provides empirical recommendations for fostering 

positive attitudes towards EV adoption by promoting social activities and increasing 
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EV visibility. Findings indicate that positive social interactions with close friends and 

greater visibility of EVs in residential areas contribute to favourable consumer 

attitudes. Suggested measures include EV demonstrations at community events, EV-

friendly festivals and exhibitions, expanded charging facilities in prominent locations, 

EV ridesharing and taxi services, and collaborations with influencers and 

environmental advocates. 

The findings of this study align with Social Influence Theory and extend the 

Theory of Planned Behaviour by demonstrating the role of social interactions in 

sharping attitudes towards EV adoption. We propose enhancements to the theoretical 

framework, highlighting the mediating role of consumer attitudes in the relationship 

between subjective norms and behavioural intentions. By validating decision-making 

rules at the micro level, our approach mitigates potential evaluative biases in agent-

based models, facilitating the application of Diffusion of Innovations Theory to better 

understand attitudes towards innovation adoption. 

Compared to the work of Liu & Xiao (2018), which used a top-down system 

dynamics approach to predict EV adoption, our model enables tracking individual 

consumer behaviours. Given the availability of empirical data for model validation 

(data from 2014 and 2015 in this study), our model assesses how accurately consumers’ 

attitudes were predicted across both years using evaluation metrics such as sensitivity, 

specificity and G-mean. Unlike top-down approaches, our model offers more granular 

insights that align closely with real-world data, demonstrating its effectiveness in 

capturing the complexities of decision-making in EV adoption. 

Potential extensions to this model include the dynamic incorporation of various 

forms of social influences and periodic updates to decision-making rules with new 

empirical data. Future research could also integrate intentional and behavioural 

components for a complete decision-making process, making the model applicable 

beyond EV adoption studies. 

The study has several limitations. Firstly, a more detailed categorisation of 

attitudes related to the data would enhance accuracy. Additionally, the Great Britain-

specific data may limit the direct application of our findings to other regions or 

countries with distinct cultural and regulatory environments. For example, our 

research identifies that environmental concerns positively influence EV adoption 

among UK consumers, a result consistent with findings on Chinese consumers (Wu et 

al., 2019). However, Qiao & Dowell (2022) found that environmental concerns play 
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a less significant role in the adoption of environmentally friendly products like Tesla 

among US consumers, who prioritise vehicle performance. This variation may reflect 

cultural differences in the impact of environmental concerns on EV adoption. To 

improve generalisability, further studies should consider populations from diverse 

countries and regions. Nevertheless, our integrated ABM and SML approach can be 

directly applied to data from the other regions to investigate public attitudes towards 

EV adoption. Furthermore, while the model may not capture all dimensions, it 

establishes a foundation for more comprehensive research on consumer attitudes in 

the context of innovation adoption. 
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Appendix A. The first five layers of SML-PV C5.0 based on 5-data-point parameters variation experiment on 𝑂𝑅𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
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Appendix B. The first five layers of SML-PV C5.0 constructed based on 5-data-point 

parameters variation experiment on 𝐷𝐹𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 
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Appendix C. Comparison of the demographic distribution between the ONS and the 

AMT respondent populations. 

Demographic ONS Survey (%) AMT Survey 

(%) 2014 2015 

Age 

16-24 8.8 6.9 29.5 

26-44 28.4 30.2 52.2 

45-54 17.7 15.0 12.1 

55-64 16.9 18.6 5.1 

65 and over 28.2 29.4 1.1 

Gender 

Female 51.8 53.0 61.5 

Male 48.2 47.0 38.5 

Education level 

Degree or equivalent 23.9 25.5 43.0 

Below degree level 43.9 43.8 11.0 

Other qualifications 11.9 10.3 30.4 

None 20.3 20.5 15.6 

Income 

Lower than median income 

before tax 

70.9 67.1 56.7 

Equal or higher than median 

income before tax 

29.1 32.9 43.3 

 

The table compares the demographic distribution of the respondent populations from 

the ONS and the AMT surveys, including age, gender, education level, and income. 

From the table, we observe that the ONS survey respondents are similar to the AMT 

survey respondents in that (1) there are more female respondents than male, and (2) a 

higher percentage of respondents have incomes below the median income before tax, 

compared to those with incomes at or above the median. However, AMT survey 

respondents tend to be younger and more highly educated. 

In this work, we assumed initial values on social interaction features of ONS agents 

based on ATM survey findings. These initial values are applied for initial model 
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development and testing and have been validated in parameter variation experiments. 

As a result, the difference between AMT and ONS sample characteristics do not 

influence the experimental results. 
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