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Abstract
With underground engineering projects becoming deeper and more complex, the
associated safety problems, especially rockburst, have increasingly increased.
Despite decades of research, effective management of rockburst continues to be a
formidable challenge in underground excavations. This study presents a scien-
tometric visualization analysis of 2449 papers and conducts a comprehensive
review of 336 key studies to explore the state‐of‐the‐art developments in rockburst
research. With a primary focus on the prediction and prevention of rockburst,
this review identifies existing research gaps and proposes a novel framework
aimed at addressing these challenges in underground excavations. The results
underscore a critical disconnect between advanced prediction methods and
engineering practices, which limits the ability of engineers to carry out reliable
assessments of rockburst potential. This disconnection prevents the prompt
development of targeted prevention strategies, further aggravated by inadequate
data sharing across large‐scale projects. The review also describes the limitations
of relying solely on data‐driven methodologies to address the complex challenges
in the lifecycle management of underground excavations. To overcome these
challenges, this study proposes an innovative framework based on an ontological
knowledge base. This framework is designed to integrate multisource data and
diverse analysis techniques, exploring the means toward better decision‐making in
future digital underground projects.
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Highlights
• A scientometric analysis of 2449 journal articles and critical review of
336 papers were conducted.

• Challenges and research gaps in rockburst prediction and prevention were
discussed and identified.

• An ontology‐based framework for better decision‐making for underground
excavations was proposed.

1 | INTRODUCTION

Rockburst is a hazardous phenomenon encountered during
underground excavations, especially in projects involving
brittle and hard rocks (Blake & Hedley, 2003). The earliest
report of a rockburst dates back to 1738 in a tin mine in
England, although it was not officially recorded until 1938,

in a coal mine in Stafford, England (Askaripour et al., 2022).
Globally, similar incidents with varying intensities and con-
sequences have been reported in mines, tunnels, and hy-
dropower caverns across China, the United States, Africa,
Australia, Canada, and so on (Kaiser et al., 1996; Keneti &
Sainsbury, 2018; Leger, 1991; Li et al., 2012; Mark, 2016;
Rehbock‐Sander & Jesel, 2018; Simser, 2019). Nowadays,
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the challenge of ensuring the safety and stability of increas-
ingly deep and complex underground engineering has
intensified, resulting in substantial casualties and property
damage. Addressing this pressing issue remains a formidable
challenge as the demand for underground space and
resources grows.

The term “rockburst” was originally introduced by
Terzaghi (1946) to define the spalling or failure of hard rock
from tunnel walls under the influence of high stress. This
phenomenon is primarily characterized by the sudden release
of strain energy due to high geo‐stress disturbances during
underground excavation, leading to severe and violent
damage (Singh, 1987; Zhang et al., 2021). Due to complex
influencing factors, such as the geomechanical conditions,
rock mass characteristics, and excavation strategy, it remains
difficult for scholars even today to arrive at a universally
accepted definition or to fully comprehend its causation and
progression mechanisms (Brown, 1988; Zhou et al., 2018).
As a result, how to develop comprehensive strategies for
rockburst management during underground construction is
still an open question.

In response to this challenge, the past several decades
have witnessed substantial progress in the development of
rockburst control methodologies. These prediction meth-
ods range from rockburst classification to criteria, includ-
ing empirical (Kwasniewski et al., 1994; Russenes, 1974;
Turchaninov et al., 1972), numerical simulation (Huang &
Wang, 1999; Qian & Zhou, 2011; Zubelewicz &
Mroz, 1983), and mathematical approaches (Ghasemi
et al., 2020; Li, Feng, et al., 2017; Liu, Xue, et al., 2023;
Wu, Wu, et al., 2019). They can effectively forecast rock-
burst in terms of various aspects, resulting in significant
advancements in rockburst prediction. However, the com-
plexity and variability of conditions in underground en-
gineering conditions have hindered the establishment of an
applicable and practical criterion for rockburst prediction.
The variation and inconsistency in the threshold values
among different criteria further complicate the timely
identification and assessment of rockburst potential (Afraei
et al., 2019; Kaiser & Cai, 2012). Improvement of predic-
tion accuracy is a key focus in the digital‐driven era, but
design and implementation of effective prevention systems
targeting rockburst are even more important for engineer-
ing. Unlike support systems at shallower depths, which
mainly aim to manage the self‐weight of rock to prevent
falls, support designs for deep excavations must consider
the capacity to bear and mitigate the effects of dynamic
loads to prevent the disintegration of fractured rock (Bacha
et al., 2020; Cai, 2013; Kaiser & Cai, 2013). The selection of
appropriate support measures requires a reliable assess-
ment of rockburst risks tackling instability problems in
high geo‐stress conditions. Nevertheless, the unpredictable
nature of rockburst and the uncertainties of underground
conditions make the design of effective support systems a
complex task, often delaying the implementation of timely
preventive measures.

As mentioned above, reduction of the risk of
rockburst still remains a significant challenge for en-
gineers and researchers worldwide. The lack of effective
rockburst management technologies may significantly
increase the risk of severe disasters in deep underground
engineering under high geo‐stress. There have been

several reviews summarizing the state‐of‐the‐art
advancements in the rockburst research, for example,
He et al. (2023) provided a comprehensive analysis of
rockburst based on experiments, theories, and simula-
tions. Askaripour et al. (2022) reviewed the classification
and mechanism of rockburst and summarized the current
empirical methods of rockburst prediction. Pu, Apel, Liu
et al. (2019) and Basnet et al. (2023) surveyed the current
applications of machine learning in rockburst prediction
and discussed their features and performances, respec-
tively. Zhou et al. (2018) and Zhou, Zhang, et al. (2023)
discussed rockburst classification and characteristics, and
reviewed research related to rockburst prediction and
prevention. Ghorbani et al. (2020) provided a critical
review of the advancement of rock support systems in
high geostress conditions and discussed the uniqueness of
support systems in this area. Despite providing a com-
prehensive review of rockburst mechanisms, prediction,
and prevention, these articles have not further explored
a holistic and feasible framework for underground
engineering in the age of artificial intelligence (AI).
Therefore, to bridge these gaps, this paper first reviews
the rockburst research based on the publications in the
Web of Science Core Collection (WoSCC) database.
With the aid of CiteSpace software, a scientometric
analysis on rockburst research from 2000 to 2023 is
presented, covering the number of studies, journal
co‐citation, document co‐citation, and keywords analysis
(Section 3). Subsequently, by conducting a comprehen-
sive review of rockburst prediction methods (Section 4)
and prevention strategies (Section 5), key tasks and
challenges in underground engineering are identified and
discussed. Based on the above review and analysis, a novel
ontology‐based framework throughout the underground
engineering lifecycle is proposed (Section 6).

2 | REVIEW AND ANALYSIS
METHODOLOGY

This study reviews the literature on rockburst in under-
ground engineering using theWoSCC database, which is an
influential database specifically in science and engineering
fields. TheWoSCC offers advanced retrieval capabilities for
comprehensive literature searches, including logical opera-
tors such as “AND” and “OR” to refine searches
(Vanderstraeten & Vandermoere, 2021). As illustrated in
Figure 1, the literature retrieval process comprised three
steps. In Step 1, a basic search was executed with the search
code: TS= (Rockburst* OR Rock burst*), where “TS”
signifies the article's topic and “*” is for fuzzy searches.
Meanwhile, only articles and review articles published
between January 1, 2000 and December 31, 2023, in Eng-
lish and Chinese, were selected. After preliminarily filtering
out unrelated papers, a total of 2449 papers focused mainly
on rockburst prediction and prevention were collected.
Then, Step 2 refined the rockburst search in terms of the
aspects of prediction and prevention using keywords that
are commonly used in rockburst publications: “prediction,”
“evaluation,” “assessment,” “estimation,” “prevention,”
“protection,” “control,” and “support.” To ensure that no
potential papers were omitted, the snowballing technique

2 | YAN ET AL.

 27701328, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dug2.70034 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [13/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



was also to be used in the subsequent comprehensive review
analyses. Ultimately, Step 3 utilizes CiteSpace for sciento-
metric analysis of the 2449 articles to identify research
hotspots and trends in rockburst and critically analyzes 336
articles to summarize the latest developments in rockburst
prediction and prevention.

3 | LITERATURE
SCIENTOMETRIC ANALYSIS

CiteSpace (Chen & Song, 2019) is a specialized tool for
scientometric analysis and provides insights into the
development, hot topics, and future trends of a research

field. The scientometric analysis is conducted in four
parts: analysis of number of studies, journal co‐citation
analysis, reference co‐citation analysis, and keywords
analysis. These analyses aid in comprehensively visua-
lizing the state‐of‐the‐art development of the rockburst
field and provide possible directions for future research.

3.1 | Analysis of number of studies

The trend in publication volumes within the rockburst
field can be a key indicator for examining the field's
development and forecasting future directions, as shown
in Figure 2a. Since the 21st century, rockburst research

FIGURE 1 Steps to search for papers in the Web of Science Core Collection database.

FIGURE 2 (a) Numbers of annual publications and total publications, (b) research countries and institutions, and (c) major journals in the field
of rockburst.
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has roughly progressed through three phases.
In the initial sprouting phase before 2010, 142 papers
were published, constituting only 5.8% of the total lit-
erature and marking the early exploration of rockburst
studies. During this period, the limited scholarly research
resulted in a slow increase in publications. From 2010 to
2017, rockburst research entered a stable growth phase,
with a consistent increase in publication numbers, indi-
cating the growing importance of rockburst in under-
ground engineering research. Since 2018, there has been
an exponential surge in rockburst publications, with 1875
papers making up 76.6% of the total output, signaling
a period of rapid development and the heightened
academic interest in rockburst.

Figure 2b shows the leading countries and their key
research institutions in rockburst research. The top six
countries in terms of publication volume are China
(1539), Australia (175), Canada (149), the United States
(122), Poland (97), and Russia (79). Notably, China, the
largest contributor to rockburst research in underground
engineering over the past two decades, represents 67.3%
of all publications. The China University of Mining and
Technology leads as the primary issuing institution in
China, contributing 21.5% of the total publications, sig-
nificantly ahead of the second‐ranked Shandong Uni-
versity of Science and Technology, which contributes
6.23%. These figures suggest China's dominance in
rockburst research and indicate that rockburst issues are
nowadays formidable challenges and hotspots in mining
and underground engineering.

3.2 | Journal co‐citation analysis

The journal co‐citation network for rockburst research in
underground engineering, as shown in Figure 3, reveals
the citation relationships and influence among academic
journals. Each node in this map signifies a journal, with

the node's size indicating the journal's co‐citation fre-
quency, reflecting its impact in the rockburst field. The
International Journal of Rock Mechanics and Mining
Sciences, Rock Mechanics and Rock Engineering, and
Tunneling and Underground Space Technology have the
top three co‐citations, with over 1300 co‐citations each
and more than 100 rockburst publications (Figure 2c).

Additionally, the centrality of journals can also
suggest the journals' central roles within the network, as
shown in Table 1. For instance, with a centrality value
of 0.40, the International Journal of Rock Mechanics and
Mining Sciences occupies a central position in the
knowledge map, showing its significant influence in
rockburst research. These analyses provide guidance
in identifying key journals and literature in the
rockburst field.

FIGURE 3 Journal co‐citation network.

TABLE 1 Cited journals sorted by count.

Cited journals Count Centrality

International Journal of Rock Mechanics and
Mining Sciences

1922 0.40

Rock Mechanics and Rock Engineering 1596 0.15

Tunnelling and Underground Space
Technology

1327 0.07

Chinese Journal of Rock Mechanics and
Engineering

1055 0.12

Engineering Geology 1020 0.13

International Journal of Mining Science and
Technology

866 0.02

Journal of Rock Mechanics and Geotechnical
Engineering

866 0.03

Bulletin of Engineering Geology and the
Environment

724 0.01
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3.3 | Document co‐citation analysis

In scientometric analysis, co‐citation analysis of refer-
ences is also a common way to identify key research and
influential scholars in a field. Figure 4 shows the refer-
ence co‐citation network, where each node represents an
article. The size of a node indicates the citation frequency
of this document, labeled with the first author's name and
publication year. Table 2 lists the top 10 documents by
the citation count. Notably, the articles by Keneti and
Sainsbury (2018) and Zhou et al. (2018) have over 130
citations, highlighting the high level of interest that their

research has attracted from academia. Gong's three
publications (Gong et al., 2018; Gong, Si, et al., 2019;
Gong, Yan, et al., 2019), with a total of 281 citations,
also show his influence in the rockburst field.

Further analysis of centrality, as shown in Table 3,
identifies key publications that function as connectors in
the reference co‐citation network. The articles of He et al.
(2015, 2018), Ma, Tang, et al. (2018), Zhao and Cai
(2015), and Chen et al. (2015), with centrality values of
0.1 or higher, are also shown to be key and foundational
literature. Therefore, all the papers listed above can be
deemed critical reference materials for rockburst

FIGURE 4 Document co‐citation network.

TABLE 2 Cited documents sorted by count.

CiteSpace metrics WoSCC citation metrics

Cited references Count Centrality Publication

Review of published rockburst events and their contributing factors (Keneti & Sainsbury, 2018) 135 0.16 176

Evaluation method of rockburst: State‐of‐the‐art literature review (Zhou et al., 2018) 133 0.12 272

Experimental simulation investigation on rockburst induced by spalling failure in deep circular
tunnels (Gong et al., 2018)

113 0.08 184

Experimental investigation of strain rockburst in circular caverns under deep three‐dimensional
high‐stress conditions (Gong, Si, et al., 2019)

86 0.03 123

Numerical modeling of rockburst near fault zones in deep tunnels (Manouchehrian & Cai, 2018) 86 0.04 119

A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic
monitoring (Cai et al., 2018)

84 0.10 144

A peak‐strength strain energy storage index for rock burst proneness of rock materials
(Gong, Yan, et al., 2019)

82 0.07 166

Rockburst mechanism research and its control (He et al., 2018) 77 0.01 115

Rock burst assessment and prediction by dynamic and static stress analysis based on micro‐seismic
monitoring (He et al., 2017)

76 0.04 146

Case studies of rock bursts under complicated geological conditions during multiseam mining at a
depth of 800 m (Zhao et al., 2018)

73 0.01 145

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 5
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research, providing meaningful guidance for future
direction.

3.4 | Keywords clustering and burst analysis

Keywords succinctly capture the essence of academic pa-
pers, providing a concise overview of the research focus.
Using the log likelihood ratio (LLR) clustering algorithm
from CiteSpace (Chen, 2017), an analysis of keywords and
trends in the rockburst field was conducted. The keyword
clustering analysis can not only reveal relationships between
keywords (Figure 5) but can also provide insights into their

time evolution (Figure 6). Cluster #0 “rockburst predic-
tion,” the largest cluster, includes keywords related to
prediction models, classification methods, and rockburst
proneness. Clusters #1 “splitting,” #2 “fracture,” and #3
“microseismic monitoring” represent the main directions in
exploring rockburst mechanisms and on‐site rockburst
monitoring technologies. Meanwhile, recent advances in
computer technology have made machine learning and AI
growing trends in rockburst prediction. Cluster #4 “rock-
burst prevention” focuses on another aspect of rockburst
research, namely, reducing rockburst risks through en-
gineering design optimization, construction method ad-
justments, and new technologies.

TABLE 3 Cited documents sorted by centrality.

CiteSpace metrics WoSCC citation metrics

Cited references Count Centrality Publication

Review of published rockburst events and their contributing factors (Keneti & Sainsbury, 2018) 135 0.16 176

Evaluation method of rockburst: State‐of‐the‐art literature review (Zhou et al., 2018) 133 0.12 272

Rockburst laboratory tests database—Application of data mining techniques (He et al., 2015) 37 0.11 119

Rockburst mechanism and prediction based on microseismic monitoring (Ma, Tang, et al., 2018) 72 0.11 112

A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic
monitoring (Cai et al., 2018)

84 0.10 144

Influence of specimen height‐to‐width ratio on the strainburst characteristics of Tianhu granite
under true‐triaxial unloading conditions (Zhao & Cai, 2015)

30 0.10 64

Rock burst intensity classification based on the radiated energy with damage intensity at Jinping II
Hydropower Station, China (Chen et al., 2015)

51 0.10 131

FIGURE 5 Main clusters in the field of rockburst (#0: rockburst prediction, #1: spalling, #2: fracture, #3: microseismic monitoring, #4:
rockburst prevention, and #5: behavior).
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Interestingly, Figure 5 shows a noticeable overlap
between #0 cluster “rockburst prediction” and #4 cluster
“rockburst prevention,” indicating their close interrelation.
This relationship underscores rockburst research's main
dual aims: predicting rockburst occurrences and adopting
effective rockburst control strategies. These two research
areas complement each other; accurate predictions lead to
better control measures, which in turn improve prediction
model accuracy. Therefore, the subsequent sections will
critically review rockburst research in terms of prediction
and prevention, aiming to explore gaps and provide
guidance toward developing a comprehensive rockburst
risk management framework.

4 | ROCKBURST PREDICTION

Since rockburst issues received attention, development of
reliable and accurate prediction models has been a primary
goal for researchers in this field. Significant efforts have
been made, from case analyses to experimental studies to
computational models, for laying a preliminary foundation
for addressing rockburst problems. This review does not
aim to exhaustively summarize every model but to explore
and analyze the key challenges and issues that current
research encounters. For more detailed research on rock-
burst prediction, the following references are recommended
(Adoko et al., 2013; Afraei et al., 2018; Cai et al., 2016;
Farhadian, 2021; Gong et al., 2023; He et al., 2021; Li, Li,
et al., 2017; Liang, Zhao, Wu, et al., 2019; Liu et al., 2013;
Miao et al., 2016; Wang et al., 2015, 2019; Wu et al., 2023;
Zhou et al., 2012). Thus, this section will examine the three
principal methodologies in rockburst prediction: empirical,

simulation, and AI‐based techniques. By reviewing their
advantages and limitations, it aims to identify research gaps
and analyze future directions in rockburst prediction
research. The classification of rockburst used in this study
is shown in Table 4.

4.1 | Empirical methods

Empirical methods are the most commonly used
approach in rockburst prediction, utilizing a series of
parameters or indicators to assess the intensity and risk
of rockburst. Their wide application stems from opera-
tional simplicity and proven effectiveness in many case
studies (Dai et al., 2022; Feng, Chen, Li, et al., 2012; Liu,
Wang, et al., 2023; Ma, Chen, et al., 2018). Generally,
empirical methods can be divided into two categories:
single‐indicator and multi‐indicator prediction methods.

The single‐indicator empirical criterion method, one of
the earliest and simplest, is based in a summary from
historical rockburst cases and theoretical analysis, for
example, the brittleness ratio (BR, ratio of the uniaxial
compressive (σc) to the tensile strength (σt) of rock)
(Qiao & Tian, 1998), the stress ratio (SR, ratio of the
maximum tangential stress (σθ) to the uniaxial compres-
sive strength of rock) (Russenes, 1974), and the mean
stress (ratio of the uniaxial compressive strength of rock to
the maximum principal stress) (Hou & Wang, 1989).
These indicators mainly focus on the rock's mechanical
properties and its in situ stress conditions, which can also
be called stress index‐based criteria. Another main single‐
indicator criterion emphasizes the analysis of energy for
describing rockburst types and intensities, such as the

FIGURE 6 Timeline chart for rockburst keywords.

TABLE 4 Common classification of rockburst.

Rockburst intensity Failure characteristics

None No rockburst activities have been observed.

Weak The surrounding rock experiences deformation accompanied by cracks or rib spalling with weak sound without any
ejection phenomena.

Moderate The surrounding rock is deformed and fractured. There is considerable rock chip ejection, and loose and sudden
destruction, accompanied by crisp crackling noises, frequently occurring in the local cavern of surrounding rock.

Strong The surrounding rock bursts severely, with rock suddenly being expelled or ejected into the tunnel, accompanied by a
strong burst and a roaring sound that quickly spreads to the deeper surrounding rock.

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 7
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elastic strain energy index (Wet) (Wang & Park, 2001), the
rock mass integrity coefficient (KV) (Zhou et al., 2012),
and the linear elastic energy and burst potential index
(BPI) (Singh, 1988). These energy‐based criteria are con-
sidered to reflect the rockburst tendencies and origins
more directly because of the close relationship between
rockburst and energy dynamics of rock masses.

In fact, the empirical criteria with a single indicator
may have some limitations due to the complex con-
tributing factors of rockburst. To address this problem,
some researchers have attempted to develop multi‐indi-
cator integration methods for comprehensive risk as-
sessments (Qiu et al., 2011; Shang et al., 2013;
Zhang, 2008; Zhang et al., 2016). Although this
approach takes various factors into account, it may
complicate rockburst classification, as the mechanical
meanings of its integrated parameter could be unclear.
Additionally, different empirical criteria may provide
different rockburst predictions or even contradictions.
For instance, as shown in Table 5, the predicted rock-
burst risks from the two systems with the same rock
brittleness coefficient might be the opposite. Such
potential confusions could lead to complex challenges for
underground engineering construction.

4.2 | Simulation methods

In this study, simulation methods in rockburst prediction
are the approaches used to reproduce rockburst through
experimental or numerical simulations. Currently, the
common experiment tests for rockburst research include
the triaxial unloading test, true triaxial rockburst tests, and
the load relaxation test after the peak value. These tests are
designed to mimic the complex stress states that rocks
encounter during excavation, making them valuable ap-
proaches for analyzing the failure processes of rockburst.
In addition to experiment tests, laboratory simulations
serve as a powerful tool for further investigating rockburst
mechanisms, offering detailed insights that may be difficult
to obtain through physical experiments alone (Gong
et al., 2015; Shirani Faradonbeh, Taheri, et al., 2020; Su
et al., 2017). Although these tests provide direct data on
rockburst, limitations due to certain experimental condi-
tions and the influence of size effects make them suitable
for exploring rockburst failure mechanisms and evolution,
rather than for direct rockburst prediction.

Hence, numerical simulations form the bulk of simu-
lation research on rockburst prediction (Cai, 2008; Sepehri
et al., 2020; Xue et al., 2021), divided into continuum,
discontinuum, and hybrid methods. Continuum methods,
like the finite element method (FEM) and the finite dif-
ference method (FDM), are widely used for their well‐
developed software and lower computational costs. For

example, Blake (1971) used FEM to study pillar bursts and
considered high‐stress concentrations as indicators of
rockburst locations. Zubelewicz and Mroz (1983) per-
formed quantitative analyses of rockburst by superposing
dynamic disturbances on initial static calculations. Tang
et al. (1998) introduced the realistic failure process analysis
(RFPA), a novel linear continuum mechanics approach, to
reveal the evolution process of microcracks during rock
failure. Wang et al. (2012) used FEM to simulate the
evolution of rockburst zone and strain energy release,
elucidating the rock's irreversible damage mechanism.

However, sometimes, continuum methods may
struggle to simulate rock fracturing process and the
dynamic characteristics of rockburst, a challenge that
can be addressed by the use of discontinuum and hybrid
methods. Ryder (1987) proposed the discrete element
method (DEM) and the excess shear stress (ESS) index to
assess rockburst potential and fault impacts. Procházka
(2004) investigated rockburst mechanics with discrete
hexagonal elements and particle flow code (PFC). Sun
et al. (2007) combined RFPA and DDA to study failure
modes and rockburst prevention in high geostress tun-
nels. Although effective in simulating microcrack evolu-
tion, the high computational costs and complicated
demands for micro‐parameter calibration limit their
widespread engineering application.

Currently, existing numerical simulations provide a
scientific basis for rock failure analysis, rockburst
potential assessment, and prevention strategy develop-
ment, and yet, most studies are based on static analysis.
Although static numerical methods could reveal rock
failure's progressive evolution and provide a qualitative
rockburst assessment, it may struggle to accurately reflect
real dynamic processes of rockburst (Wang et al., 2021).
Additionally, the results of simulation methods heavily
rely on the chosen constitutive model and input
mechanical parameters, still requiring further validation
through engineering cases. Hence, sole dependence on
simulation methods for an effective and comprehensive
rockburst prediction system remains a challenge.

4.3 | Artificial intelligence (AI)‐based
methods

AI, a key technology of the Fourth Industrial Revolution,
has shown significant potential and advantages in geo-
technical engineering, particularly in underground en-
gineering (Jong et al., 2021; Phoon & Zhang, 2022;
Zhang & Phoon, 2022; Zhang et al., 2020, 2022). Com-
pared to traditional methods, AI provides a more efficient
way to handle complex, nonlinear, and multidimensional
problems. This data‐driven method applies prediction just
by learning from the input and output data, avoiding

TABLE 5 Empirical criteria based on the brittleness coefficient.

Prediction method Equation No rockburst Weak Moderate Strong

Wang and Park (2001) σ σ/c t >40 26.7–40.0 14.5–26.7 <14.5

Zhang et al. (2003) <10 10–18 >18
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oversimplification problems or excessive assumptions, as
shown in Figure 7.

In the field of rockburst prediction, AI technologies,
especially machine learning (ML) models, have been
proven to be powerful tools for building reliable pre-
diction models (Liang, Zhao, Wang, et al., 2019;
Mahesh, 2020; Pu, Apel, & Xu, 2019; Qiu & Zhou, 2023;
Xu et al., 2018). These models generally use physical and
mechanical parameters of rock (e.g., σθ, σc, σt, BR, SR,
Wet, etc.) as inputs to predict rockburst intensity.
The ML models for rockburst prediction can be divided
into supervised and unsupervised learning. Supervised
learning uses labeled data to identify patterns and re-
lationships between inputs and outputs. Pioneers like
Feng and Wang (1994) used neural networks for rock-
burst prediction, assessing the risk with a trained data-
base of labeled cases. Zhao (2005) used Support Vector
Machines for risk classification, and Ghasemi et al.
(2020) applied C5.0 decision trees to predict rockburst
occurrence and intensity. Zhou, Li, et al. (2016) com-
pared 10 supervised learning algorithms for rockburst
prediction, highlighting the superior performance of
gradient‐boosting machine and random forest algo-
rithms, based on 246 cases, as shown in Figure 8.

Sometimes, it is difficult to determine the rockburst
intensity in engineering cases, or there are inconsistencies
in rockburst classification, which poses a challenge in
rockburst prediction. To consider this scenario, some
scholars suggest using unsupervised learning methods to
manage the uncertainty and vagueness of rockburst (Pu,
Apel, & Xu, 2018; Zhou & Gu, 2004; Zhou, Yun,

et al., 2016). The main feature of unsupervised learning is
its ability to reveal hidden patterns by finding common-
alities in unlabeled data sets. This implies that after
grouping or classifying data sets, the different rockburst
risk can be identified without predefined rockburst
intensities. For example, Gao (2015) used a biomimetic
clustering method, the ant colony algorithm, to assess
rockburst risk. Chen et al. (2015) proposed a new
quantitative grading method for rockburst using hierar-
chical clustering analysis based on radiated energy data
from the Jinping II Hydropower Station. Shirani Far-
adonbeh, Shaffiee Haghshenas, et al. (2020) conducted
clustering analysis of rockburst using self‐organizing
map and fuzzy c‐mean techniques, exploring the poten-
tial relationships between rockburst‐related parameters.

5 | ROCKBURST PREVENTION

As mentioned by Hoek and Marinos (2009), the com-
plete elimination of rockburst occurrences remains an
elusive goal, especially under overstressing conditions.
However, there are several support methods that can be
adopted to at least mitigate their impacts, as shown in
Figure 9. The generally accepted strategies for rockburst
prevention are as follows: (i) optimization of construc-
tion designs to reduce the incidence of rockburst;
(ii) preconditioning technology of the rock mass to alle-
viate stress concentration during excavation; and (iii) use
of a strategic rockburst support system in rockburst‐
prone excavation. It is worth noting that the executed

FIGURE 8 Comparison of 10 supervised learning methods (Zhou, Li, et al., 2016).

FIGURE 7 General process of machine learning (ML) methods (modified from Basnet et al., 2023).

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 9
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sequence of these strategies is critical as well. The final
rockburst support should be considered and deployed
only after preliminary efforts. This section aims to pro-
vide a succinct overview of these strategies for rockburst
prevention, while recognizing the existing gaps. For more
comprehensive and detailed information about the
support measures and technologies, further reading is
recommended.

5.1 | Optimization of the project layout
scheme

The primary objective in rockburst research is to avoid
conditions conducive to rockburst, thereby minimizing
or potentially eliminating the necessity for rockburst
support in excavation (Kaiser & Cai, 2013). This suggests
that the priority of rockburst prevention is not the
immediate consideration of a support system against
rockburst, but rather an assessment into the feasibility of
inherently preventing rockburst occurrences. Thus, an
effective and optimized engineering construction design
becomes crucial, as it presents possibilities for control
rockburst with less support. The “three‐step strategy” for
rockburst prevention, as proposed by Feng, Chen, Ming,
et al. (2012), begins with “reducing energy accumula-
tion.” Their first step also explains the significance
of optimizing the project scheme from the perspective of
rockburst mechanisms. Minimizing the build‐up of inter-
nal energy due to excavation activities, while ensuring
the project's function, is the principal consideration in
rockburst engineering design.

Several optimization techniques for construction
plans include the following: (i) Sectional size and shape
optimization: It is known that larger excavation is pre-
disposed to stability challenge, and thus, achieving a
more suitable section is critical for rockburst‐prone ex-
cavation. For example, excavation sections with circular
geometries tend to alleviate stress concentration, which is
effective for rockburst prevention. (ii) Appropriate ex-
cavation methodology: Tunnel boring machines (TBM)
is often used for rapid and highly mechanized excava-
tion. However, in rockburst‐prone locales, traditional
drilling and blasting techniques may be optimal options
sometimes, as they can effectively mitigate rockburst risk
by stress relief. (iii) Excavation strategy optimization:
Considerable research suggests a direct correlation

between the unloading rate (i.e., excavation velocity) and
the extent of resultant rock failure (Karakuş &
Fowell, 2004; Tonon, 2010). Thus, adopting a deliberate
excavation pace and zoning, for example, the new Aus-
trian tunneling method (NATM), is another critical
factor for rockburst prevention.

5.2 | Rock mass preconditioning

The preconditioning of surrounding rock serves as a
proactive approach in rockburst prevention, before or at
the initial stages of excavation. This method focuses on
changing the rock mass's properties, from external con-
ditions to internal factors, to facilitate the prerelease or
redistribution of the rock's stored energy. Borehole stress
relief is a standard preconditioning technique in low to
moderate rockburst areas. For high‐risk rockburst,
advance stress relief blasting is commonly employed,
using targeted blasting to relieve stress concentrations in
particular zones (Drover et al., 2018; Roux et al., 1957).
Targeting the internal factors of rockburst, techniques
like high‐pressure water jetting or borehole water injec-
tion are usually applied to mitigate the risk of rockburst
at the workface. As shown in many studies (Cai
et al., 2021; Luo, 2020; Zhou, Cai, et al., 2016), water
decreases the strength of hard rock. Despite the effec-
tiveness of such water‐based methods, they are usually
considered supplementary in rockburst prevention due to
their limited range of effect. As localized solutions, it is
essential to combine them with additional control strat-
egies to obtain an effective rockburst prevention system.

5.3 | Support in rockburst‐prone excavation

Although early proactive prevention strategies play an
important role in avoiding rockburst, it is often
impractical to eliminate all potential risks of rockburst.
The development of a support system that is both timely
and effective during the excavation is essential for im-
proving rock stability and maintain project safety
(Wang et al., 2020; Wu, Jiang, et al., 2019). Based on
practical experience, as shown in Figure 10, Cai and
Champaigne (2009) have introduced seven guiding
principles for designing rockburst support. These prin-
ciples are intended to offer rockburst engineers a

FIGURE 9 Methods to reduce damaging effects of excessive stress in underground mining (Mitri, 2000).
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fundamental framework for tackling the many
challenges presented by rockburst.

The first principle focuses on avoiding rockburst: The
most effective strategy for avoiding rockburst involves
proactive risk reduction through careful early‐stage
planning and design optimization, as discussed in
Section 5.1 and 5.2. By minimizing the potential for
rockburst, these early prevention strategies lower the
requirement for extra support measures to fortify the
surrounding rock against loads and stresses. The second
principle involves the utilization of deformable support
components: Given that brittle rock failure often ac-
companies significant expansion deformation, the design
of rockburst support should consider the volumetric
changes of the surrounding rock mass. By reinforcing the
rock and absorbing the dynamic energy produced during
a rockburst, these deformable support components con-
tribute to the overall stability of the rock structure. The
third principle focuses on addressing the weakest link
within the support system. The design of the support
system must prioritize the reinforcement of the structural
junctions among its components, as the overall capability
of the system is highly dependent on its most vulnerable
part (Ansell, 2005; Ortlepp, 2000). Through targeted
optimization of these critical connections, the system's
overall performance can be markedly improved with
relatively modest efforts. Accordingly, the fourth prin-
ciple advocates the creation of an effective and integrated
support system. An ideal rockburst support system is not
solely assessed by a single component's energy absorp-
tion capabilities, but by the effective integration of

diverse elements to develop a feasible, deformable, and
comprehensive support system. The following two prin-
ciples advocate for the simplicity (the fifth) and efficiency
(the sixth) in the design of support systems for rockburst.
It is imperative to understand that while initial costs for
these rockburst support measurements may exceed those
of conventional supports, such expenditures are justified
when contrasted with considering the significant mainte-
nance costs incurred by potential incidents. Data from
numerous cases indicate that the maintenance cost can be
10–20 times more than the initial investment, highlighting
the economic efficacy of rockburst support. Thus, the
adoption of efficient and easy‐to‐use support systems not
only mitigates the risk of rockburst but also provides
notable economic benefits especially in rockburst en-
gineering. The last principle is related to risk management
in rockburst‐prone projects to “anticipate and adapt.”
Because of the difficulty in precisely predicting rockburst
events, combined with the complexity of the underground
rock masses and the unpredictability of excavation activ-
ities, the initial design of support strategies frequently
fails to fulfill later support requirements. Therefore, it is
essential to assess in a timely manner potential rockburst
risks and to adjust the support system in accordance with
the real‐time engineering conditions. Cai (2019) also
defined four primary support functions, namely, reinforce,
retain, hold, and connect, as shown in Figure 10. These
foundational design principles for rockburst support,
together with the required functions of such support,
provide a comprehensive framework for managing
rockburst risks during underground excavation.

FIGURE 10 Seven rockburst support principles and the support functions (Cai, 2019).

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 11
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6 | DATA ‐DRIVEN ONTOLOGY ‐
SUPPORTED DECISION ‐MAKING
FRAMEWORK FOR
UNDERGROUND EXCAVATIONS

6.1 | Semantic web technology

The semantic web, as proposed by Berners‐Lee and Hendler
(2001), extends the capabilities of the world wide web
(WWW) by addressing its inherent limitations in data
interoperability and automated processing. By incorporating
explicit, machine‐readable semantics into data, the Semantic
Web enables efficient information exchange and intelligent
processing, especially for automated reasoning based on
knowledge models (Rožanec et al., 2022). According to the
world wide web consortium (W3C), the Semantic Web's
primary goal is to provide data with explicit meanings
closely linked to real‐world entities. Through the use of
structured graph representations, the Semantic Web facili-
tates data unification and reusability, offering substantial
advantages in managing large‐scale, heterogeneous data sets
(Schmachtenberg et al., 2014). This innovative technology
has found extensive applications in architecture, engineering,
and construction (AEC), where it supports the integration
of diverse engineering data across multiple stakeholders
(Niknam & Karshenas, 2017; Venugopal et al., 2015;
Yang & Zhang, 2006). The Semantic Web's contributions to
the AEC industry are typically classified into three key
perspectives: interoperability, linking across domains, and
logical inference and proofs (Pauwels et al., 2017), as shown
in Figure 11.

1. Interoperability: The Semantic Web enhances seamless
collaboration across various systems and programs by
standardizing data formats and using ontologies for
better understanding and processing (Zhou, Zhang,
et al., 2023). Unlike traditional Web environments, where

data often occur in siloed applications and formats, cre-
ating integration challenges, the Semantic Web addresses
these issues through its standards, including the resource
description framework (RDF) and the web ontology
language (OWL). These standards establish a unified
framework for data exchange, improving information
reusability and interoperability. Figure 11a shows a sim-
ple RDF graph, which is used to represent the
graph structure of the RDF triples {subject, predicate,
object}. Each entity or relationship is explicitly defined
and uniquely identified using uniform resource identifiers
(URIs), thereby enabling more efficient data sharing and
reuse. Additionally, this standardized data representation
allows systems to flexibly incorporate new data resources
without necessitating extensive custom integration efforts.

2. Linking across domains: In the AEC industry, multi-
disciplinary collaboration is crucial during the design,
construction, and operational phases. Effective integra-
tion of diverse elements, including geological explora-
tion, structural design, construction methodologies, and
engineering management, is critical for the smooth ex-
ecution of projects. Semantic Web technology offers
significant promise in this context by enabling the inte-
gration of heterogeneous data from domains such as
building information modeling (BIM), geographic
information systems, real‐time monitoring systems, and
simulation data into a unified data network. This inte-
grated network supports informed decision‐making
throughout the project lifecycle. As illustrated in
Figure 11b, Le and David Jeong (2016) proposed a
lifecycle data exchange mechanism tailored for multi-
domain decision‐making in project management. This
mechanism transforms disparate data sources across the
project lifecycle into meaningful and actionable insights
for users. It operates through three primary stages:
domain and merged ontologies, data wrappers, and a
data query and reasoning system.

FIGURE 11 Three benefits of Semantic web technologies in the architecture, engineering, and construction industry (a) RDF triple structure
example, (b) cross‐domain data integration, and (c) semantic inference process (Le & David Jeong, 2016; Pauwels et al., 2017; Zangeneh &
McCabe, 2020).
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3. Logical inference and proofs: Semantic Web tech-
nology allows computers to perform inferring tasks
for extra knowledge based on the information in RDF
and OWL. OWL plays a pivotal role in this process,
as it supports the definition of complex relationships
between concepts through its advanced semantic
capabilities. By extending the vocabulary of RDF
Schema and incorporating more expressive elements,
OWL enhances the system's ability to process and
infer information with higher precision (Pauwels
et al., 2017). For more complex logical reasoning,
semantic web technologies utilize specialized rule
languages such as the semantic web rule language and
the rule interchange format (RIF). These languages
allow the creation of customized logical rules, signif-
icantly improving the accuracy and robustness of
inference processes. When integrated with compre-
hensive knowledge models, these rules enhance the
system's capability to derive actionable insights and
provide robust decision support. As illustrated in
Figure 11c, this integration not only improves the
intelligence of the system but also extends their
applicability to complex data analysis and decision‐
making challenges in large‐scale projects.

6.2 | Ontology applications

Ontology, originally a philosophical concept about the
nature of existence, has evolved significantly with the
development of computer science. Today, ontology is a
pivotal concept in information technology, particularly in
the realms of semantic web development and artificial
intelligence, where it plays a critical role (Ashraf
et al., 2015; Farghaly et al., 2023; Zhou & El‐
Gohary, 2017). In computer science, ontology is most
commonly defined as a formal and explicit specification of
a shared conceptualization within a specific domain (Studer
et al., 1998; Zhang et al., 2023). This definition indicates its
utility in facilitating a formalized, structured representation
and exchange of knowledge through clear ontological
definitions, enabling a common understanding and con-
sensus among diverse systems and users. Additionally,
ontology allows for the flexible extension of frameworks,
making it easier to integrate and apply across virous
domains (García‐Castro & Gómez‐Pérez, 2010). This
adaptability is especially beneficial in complex projects such
as underground excavation, which are often characterized
by numerous data and information, including geological
conditions, structural parameters, construction monitoring,

and so on (Gao et al., 2022; Khadir et al., 2021; Kuster
et al., 2020; Meng et al., 2021; Wang, 2021; Yu et al., 2023).
For these benefits, there has been a significant surge in
research over the past two decades focusing on ontology‐
based models for project management in the AEC industry.
Farghaly et al. (2023) summarized the 10 primary appli-
cations of ontology in the AEC industry, which include
smart cities, monitoring and control, operation and main-
tenance, health and safety, process, cost, sustainability,
heritage BIM, compliance, and miscellaneous. These
ontological application areas span the entire engineering
lifecycle, demonstrating that ontology has become a potent
framework to improve project management by integrating
disparate pieces of information from various aspects (Chen
et al., 2024; Costin & Eastman, 2019; Leite et al., 2016).
This integration, driven by ontology, not only helps in
reducing project costs but also significantly improves
the quality of decision‐making and engineering safety.
Figure 12 illustrates a commonly used methodology for
ontology development.

Specifically, domain ontologies are widely studied
and applied across various engineering fields, providing a
sophisticated and intelligent strategy for diverse pur-
poses. Hou et al. (2015) developed an ontology model for
concrete structure design, focusing on a sustainability
index for bridge maintenance decisions. Zhang et al.
(2018) proposed an intelligent ontology framework for
the preliminary phase of structural design, with three key
aspects: safety, environmental impact, and cost effi-
ciency. Jiang et al. (2023) introduced an approach com-
bining ontologies with machine learning to evaluate
bridge corrosion, thereby enhancing structural safety.
Zhou, Bao, et al. (2023) presented a novel dam safety
monitoring model that integrates BIM technology with
domain ontology, effectively improving data analysis
and dam safety. Du et al. (2016) used a hybrid method-
ology combining hierarchical clustering techniques with
ontologies to predict tunnel settlements, facilitating the
identification of causative factors and the selection of
appropriate preventive or support measures. Cui et al.
(2023) designed an ontology‐based model for seismic risk
assessment of subway stations, using Monte Carlo sim-
ulations to provide a scientific foundation for managing
seismic risks and improving emergency strategies. Hai
et al. (2021) introduced a comprehensive ontology‐driven
corridor risk assessment model, incorporating Bayesian
networks to offer a systematic tool for project manage-
ment and decision‐making. Collectively, these applica-
tions highlight not only the theoretical sophistication of
ontology‐based methodologies but also their significant

FIGURE 12 Seven steps to ontology development.
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practical potential in addressing engineering challenges.
The integration of ontology‐based models into en-
gineering lifecycle provides innovative solutions for
managing complex, multi‐domain, and multi‐objective
problems, empowering researchers and practitioners to
enhance decision‐making processes and improve project
outcomes.

6.3 | Intelligent underground engineering
management ontological framework

While the idea of a Semantic Web that seamlessly con-
nects all human knowledge may seem overly ambitious,
focusing on expanding the range of information acces-
sible to computers represents a more pragmatic and
attainable goal. From this perspective, Semantic Web
development transcends the Web itself, influencing a
wide range of domains. Its core capabilities—such as
data integration, annotation, information retrieval, and
natural language processing—demonstrate remarkable
potential across diverse research and industrial fields
(Abanda et al., 2013; Jung, 2009; Tah & Abanda, 2011).
Building on these capabilities, this section explores how
Semantic Web technology can support decision‐making
in the context of underground excavation.

Table 6 outlines the challenges faced in rockburst risk
management in the era of artificial intelligence
(Aydan, 2019; Masoudi & Sharifzadeh, 2018; Pu,
Apel, & Lingga, 2018). While data‐driven approaches
provide a more efficient way to address problems com-
pared to conventional approaches, there remains a sig-
nificant gap between advanced prediction techniques and
engineering practice. This disconnect notably limits en-
gineers' ability to accurately predict rockburst, which in
turn impedes effective rockburst prevention measures.
One of the key issues is the complexity and uncertainty of
geological conditions, which vary significantly during
project construction. The variability in construction en-
vironments further complicates underground projects,
particularly those that are long term and large scale.
Such projects often require collaboration between mul-
tiple stakeholders, making it difficult to maintain real‐
time updates and ensure accurate risk assessments. For
instance, dynamic optimization of rockburst control re-
lies heavily on real‐time data to adjust support measures
as conditions change. However, in practice, the sharing
of critical information at project sites may be delayed or
prone to inaccuracies. This lag in data transfer can
impede the timely deployment of support systems, which

not only increases the risks associated with rockburst
events but also drives up the overall cost of underground
construction projects.

The integration of AI and real‐time monitoring is
crucial, but it must be combined with more advanced
management frameworks to address these challenges
effectively. A holistic and intelligent approach is
required, one that can integrate real‐time data, AI‐based
predictions, and decision‐making processes into a cohe-
sive system. In this context, ontologies—a framework for
representing knowledge in a structured manner—have
emerged as a potential solution. With their ability to
bridge the gap between complex data analysis and
practical engineering, ontologies can facilitate better
communication between stakeholders, ensuring that data
are both accurate and timely. This would allow for more
efficient risk management, improved decision‐making
processes, and a more responsive approach to the
dynamic conditions encountered in underground ex-
cavation projects.

Although the potential and benefits of ontology are
widely acknowledged, there is, to the best of the authors'
knowledge, a notable gap specifically targeted toward
ontological frameworks for underground excavations.
This gap underscores the necessity for focused research
aimed at bridging these gaps and exploring avenues for
future advancements in the field of underground en-
gineering. As illustrated in Figure 13, the proposed
ontology‐based framework provides a comprehensive
solution for managing the lifecycle of underground ex-
cavation projects. The framework is designed to enhance
the efficiency of information integration, sharing, and
analysis by unifying heterogeneous data sources into a
semantically rich, machine‐readable structure. It facili-
tates improved decision‐making by enabling automated
reasoning, real‐time analysis, and cross‐disciplinary
collaboration.

The proposed methodology is composed of three
main components: (1) data collection and preliminary
processing; (2) ontology knowledge base and data anal-
ysis; and (3) intelligent decision support system. At the
core of this framework lies the ontological model, which
seamlessly integrates data, analysis, and decision‐making
processes to ensure a smooth and efficient operation. The
detailed workflow of the methodology is outlined as
follows: (1) Data collection and preliminary processing:
Initially, data and information from various domains,
such as geological surveys, structural designs, monitoring
systems, and construction activities, are collected and
subjected to preliminary processing to ensure data

TABLE 6 Challenges in rockburst management.

Rockburst prediction Rockburst prevention

• Lack of general applicable empirical standards • A certain understanding of the rockburst mechanism for support
designers

• Project applicability of numerical simulation methods remains to
be verified

• Support systems involve many factors, making the dynamic design
process complex

• Limitations of data sets in data‐driven methods • Lack of effective collaboration between prediction and prevention
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quality and consistency. These processed data are then
uploaded to a cloud‐based database, making them
readily accessible for subsequent analysis and processing.
(2) Ontology knowledge base and data analysis: When a
user submits an engineering requirement through the
user interface, the ontology knowledge base executes
semantic queries and facilitates data transfer to identify
and retrieve the relevant data corresponding to the
specified requirement (illustrated by the blue line in the
workflow). The ontological model then collaborates with
advanced data‐driven technologies, such as machine
learning algorithms, simulation models, or finite element
analysis, to analyze the data tailored to the specific en-
gineering context. This stage leverages the semantic
richness of the ontology to ensure accurate data inter-
pretation and analysis. (3) Intelligent decision support
system: The results of the data analysis and semantic
reasoning are synthesized and fed back to the user in an
intuitive and actionable format (depicted by the red line
in the workflow). This enables stakeholders to make in-
formed decisions based on a comprehensive under-
standing of the underlying data and inferred insights.

The proposed framework represents an open, com-
putable, and evolvable knowledge‐driven model built on
big data principles, specifically tailored for underground
excavation projects. These key characteristics are
defined as follows: Openness: The framework accom-
modates diverse data sources, including geological

exploration data, structural design parameters, con-
struction engineering records, expert knowledge,
industry standards, socio‐environmental information,
and real‐time monitoring data. This inclusiveness en-
sures that the framework remains adaptable to multi-
disciplinary engineering contexts. Computability: By
leveraging the ontological model, the framework uses
various analytical technologies and methodologies to
uncover hidden patterns and relationships within
dynamically evolving engineering data sets. This enables
efficient and scalable processing of complex, multi‐
dimensional data. Evolvability: The framework is
designed to continuously update and expand its
knowledge base and analytical capabilities, incorporat-
ing new data sources, evolving technologies, and
emerging challenges. This adaptability ensures that the
system remains robust and forward‐compatible, capable
of addressing future needs in underground engineering.

By integrating these components and capabilities, the
framework provides a comprehensive and intelligent
approach to managing the complexities of underground
excavation. It not only enhances decision‐making pro-
cesses but also promotes higher efficiency, safety, and
sustainability throughout the entire project lifecycle. The
methodology bridges the gap between traditional en-
gineering practices and advanced knowledge‐driven
technologies, paving the way for a more intelligent,
data‐centric future in underground engineering.

FIGURE 13 An ontological framework for risk management of underground engineering.
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7 | CONCLUSION

Rockburst, as one of the major unsolved issues in geo-
science, poses a major challenge to the safety and stability
of underground projects. This paper presents a compre-
hensive review and comprehensive literature analysis of
rockburst research published in the 21st century. Based on
the scientometric analysis of 2449 relevant articles, an
intuitive discussion for the development, hot topics, and
future trends of rockburst is provided. Subsequently, a
comprehensive review focusing on the rockburst predic-
tion and prevention was conducted to explore the current
challenges in managing rockburst. The analysis suggests
that while the application of data‐driven methods provides
new insights into rockburst prediction, there is still a sig-
nificant disconnect between these techniques and en-
gineering practice, potentially hindering effective
rockburst prevention. In addition, the complex design of
rockburst support systems necessitates timely and effective
optimization, but the challenges of delayed and inaccurate
data sharing in large‐scale engineering projects exacerbate
these issues. To address these challenges, this paper
introduces a novel methodology for managing under-
ground excavations. Based on the ontology, the frame-
work seeks to integrate multisource data and use
advanced analysis techniques to improve decision‐making,
information sharing, and safety throughout underground
excavations. This ontological framework includes three
key components: data collection and preliminary proces-
sing, ontology knowledge base and data analysis, and an
intelligent decision support system. The proposed meth-
odology provides a systematic guide for digital advance-
ments in underground excavations; however, it requires
further validation and optimization in future research to
guarantee its efficacy and reliability.
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