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ABSTRACT

Context. Dynamical interactions in star clusters are an efficient mechanism to produce the coalescing binary black holes (BBHs) that
have been detected with gravitational waves (GWs).
Aims. We want to understand how BBH coalescence can occur during – or after – binary-single interactions with different mass
ratios.
Methods. We perform gravitational scattering experiments of binary-single interactions using different mass ratios of the binary
components (q2 ≡ m2/m1 ≤ 1) and the incoming single (q3 ≡ m3/m1). We extract cross-sections and rates for (i) GW capture during
resonant interactions; (ii) GW inspiral in between resonant interactions and apply the results to different globular cluster conditions.
Results. We find that GW capture during resonant interactions is most efficient if q2 ≃ q3 and that the mass-ratio distribution of
BBH coalescence due to inspirals is ∝ m−1

1 q2.9+α, where α is the exponent of the BH mass function. The total rate of GW captures
and inspirals depends mostly on m1 and is relatively insensitive to q2 and q3. We show that eccentricity increase in direct (that is,
non-resonant) encounters approximately doubles the rate of BBH inspirals in between resonant encounters. For a given GC mass and
radius, the BBH merger rate in metal-rich GCs is approximately double that of metal-poor GCs, because of their (on average) lower
BH masses (m1) and steeper BH mass function, yielding binaries with lower q.
Conclusions. Our results enable the mass-ratio distribution of dynamically formed BBH mergers to be translated to the underlying
BH mass function. The additional mechanism that leads to a doubling of the inspirals provides an explanation for the reported high
fraction of in-cluster inspirals in N-body models of clusters.
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1. Introduction
The first binary black hole (BBH) coalescence was detected
in 2015 by LIGO (the Laser Interferometer Gravitational Wave
Observatory) (Abbott et al. 2016). In the first three observing
runs of the LIGO-Virgo-Kagra (LVK) Collaboration, a total of
90 compact binary coalescences (CBCs) were reported, involv-
ing black holes (BHs) and neutron stars (NSs) (Abbott et al.
2021). At the time of writing, around 80 more were found in
O4a. Gravitational wave (GW) astronomy allows us to observe
the Universe from a completely new perspective, unveiling phe-
nomena that remain invisible to the traditional electromagnetic
observations. The dominance of BHs involved CBCs has raised
the question of how these binaries form and eventually inspi-
ral. The literature on this topic is rich and multiple formation
scenarios have been proposed for CBC. We refer to the review
by Mandel & Broekgaarden (2022) and references therein for
an overview. Important for this work is that – especially for
massive BBHs – dynamical assembly has been suggested to be
an efficient mechanism for creating GW sources (e.g. Portegies
Zwart & McMillan 2000; Rodriguez et al. 2015; Banerjee 2018;
Di Carlo et al. 2019).

In this paper, we are concerned with the dynamical interac-
tions of BHs that lead to mergers within the cores of globular
⋆ Corresponding author: bruno.randof@gmail.com

clusters (GCs). In GCs, there is a large number of stellar rem-
nants such as BHs and NSs, which are formed during the early
stages of the cluster, when the massive stars end their lives.
Those compact remnants sink towards the centre of the cluster
due to dynamical friction. It is in this environment where inter-
actions are frequent, and the formation of BBHs is driven by the
energy need for the relaxation of the GC (Hénon 1975; Breen &
Heggie 2013). Tight binaries harden as the result of interactions
(Heggie 1975), and give away part of their energy to their sur-
roundings in the form of kinetic energy. After many encounters,
the BBHs can be compact enough to merge through the emission
of GWs. It is believed that these binary systems could be respon-
sible for a significant fraction of the massive mergers identified
by the LVK collaboration to date (e.g. Rodriguez et al. 2016;
Antonini et al. 2023). The interactions that drive the hardening
process of the BBH can be binary-single encounters, or higher
order configurations such as binary-binary encounters (Zevin
et al. 2019).

The topic of this study is the eventual coalescences of BBHs
in GCs through binary-single encounters. Particularly, we con-
duct scattering experiments as in Hut & Bahcall (1983), but with
unequal component masses. Because BHs of different masses
coexist and interact in GCs, the inclusion of different masses
in our simulations allows us to better understand the phenom-
ena surrounding these BH interactions. For example, including
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arbitrary masses can shed light on the mass-ratio distribution
from mergers detected by the LVK collaboration. To better rep-
resent binary-single encounters in GCs, we weigh our scattering
events according to the mass distributions of the three bod-
ies, which are obtained from a model for BBH coalescences
in GCs (as in Antonini & Gieles 2020b). Although useful, the
unequal-mass regime further complicates the already complex
equal-mass three-body problem. It is for this reason that we use
Newtonian dynamics: this allows us to determine the dynamics
of the system not by the absolute masses, but rather by the mass
ratios of the BHs, reducing the dimension of the parameter space
by one and simplifying the analysis. The elephant in the room is
that we aim at understanding the physics surrounding BH merg-
ers with Newtonian dynamics, which at first glance appears to
be contradictory. The work of Samsing et al. (2014); Samsing
(2018); Samsing et al. (2020), Antonini & Gieles (2020b) shows
that the rate of inspiral in post-Newtonian scattering experiments
can be well described by simple Newtonian theory using a min-
imum distance/eccentricity criterion for inspiral to occurs. We
can, therefore, determine a posteriori which of the Newtonian
interactions would lead to mergers.

In parallel to the GW implications of binary-single encoun-
ters, we also use our unequal-mass simulations to revisit some
generalities of the three-body problem. Extensive work has been
done in the equal-mass case (Hut & Bahcall 1983; Heggie & Hut
1993), as well as in the unequal-mass case (Hills & Fullerton
1980; Spitzer 1987; Sigurdsson & Phinney 1993; Heggie et al.
1996; Quinlan 1996). The main work has been put into the dif-
ferent outcomes that can result from a binary-single encounter,
such as exchanges of one of the components, close approaches,
and eccentricity or energy changes in the initial binary. With the
growing interest in GWs, later literature on binary-single inter-
actions also includes the possibility for CBCs (Gültekin et al.
2006; Samsing et al. 2014; Ginat & Perets 2023). We build upon
their work by exploring some yet unknown intricacies of reso-
nant interactions. As we will explain later on, during a resonant
binary-single interaction, a bound but unstable three-body sys-
tem is formed, where the three components approach each other
repeatedly. After such an encounter, the remaining binary usu-
ally has an increased binding energy, and its eccentricity can be
completely different from its initial value. We study how this
energy change, the final eccentricity distribution, and the number
of repeated approaches depend on the masses of the triplet.

This paper is organised as follows: in Section 2 the termi-
nology and settings of the binary-single scattering problem are
explained. We also describe the initial conditions required to
fully determine a scattering experiment, followed by a descrip-
tion of the software package used to run the simulations. In
Section 3 we present general results of the binary-single scat-
tering experiments. In Section 4 we apply the results of the
scattering experiments to different GC conditions. In Section 5
we focus our analysis to the specific case of BBH coalescences
happening in GCs. The limitations of our analysis are discussed
in Section 6, and our findings are summarised in Section 7.

2. Methods: Scattering experiments

2.1. The binary-single scattering problem

Binary-single scattering refers to the specific scenario where a
binary interacts gravitationally with a single body. This work
seeks to understand the dynamics, outcomes, and effects of these
interactions, with a particular focus on encounters involving BHs
of different masses. The simulations are done in the Newtonian

point-mass limit. It is for this reason that in this Section and in
Section 3, the point masses will be referred to as bodies. From
now on, the components of the initial binary are labelled as 1 and
2, with 1 being the heaviest, and the single body is labelled as 3.

The terminology used in the gravitational scattering problem
has some analogies with particle physics experiments. When the
final three-body system has no bound states between bodies, we
say that the system is ionised. Furthermore, when the final binary
is composed of two different bodies than the initial binary, we
refer to the outcome as an exchange, while a preservation refers
to a final binary with the same components as the initial binary.
More analogies with particle physics are found in Appendix A,
where we discuss the use of cross-sections.

The gravitational three-body problem is in almost all cases
chaotic, and some of the scatterings can allow for temporarily
bound three-body systems: we call these interactions resonant.
A way to clearly define whether an interaction is resonant is
through the number of minima in s2 as a function of time, defined
as

s2 ≡ r2
12 + r2

23 + r2
13, (1)

where ri j is the distance between bodies i and j. For very early
and very late times, s2 is arbitrarily large, because at least one
of the three bodies is at infinite distance from the binary. During
the closest interaction, s2 can have either one or multiple min-
ima: this number of minima is called the number of intermediate
states NIMS. If the interaction is such that NIMS > 1, we label it
as resonant. Otherwise, if s2 has a single minimum (NIMS = 1)
the interaction is non-resonant, or direct (Heggie et al. 1996). We
consider two consecutive minima to be distinct if the value of s2

at the maximum is at least twice that of the minima (following
McMillan & Hut 1996).

Among resonant interactions, we distinguish democratic res-
onances from hierarchical resonances (Heggie & Hut 1993).
Democratic resonances are those that do not favour the inter-
actions of a single pair of bodies with respect to the other two
pairs, while hierarchical resonances are characterised by hav-
ing a pair of bodies strongly interacting, with the third body on
a wider orbit around them. Even though sometimes it is easily
seen which kind of resonance corresponds to a given interaction,
there is no exact line that separates democratic and hierarchical
interactions. For example, in nature some resonant interactions
will live enough to oscillate from democratic to hierarchical (and
vice versa), making the classification problematic. It is for this
reason that we are not separating on this classification, but it
is worth mentioning, to illustrate the richness and depth of the
gravitational scattering problem.

Moreover, one may also consider the formation of stable
three-body systems. If systems like the Sun-Earth-Moon exist,
then why are we not considering them as possible outcomes of a
scattering? The answer to this question is that scattering events
are unable to form stable and bound three-body systems, because
the set of initial conditions that lead to a stable three-body sys-
tem is of measure zero with respect to the initial hyperparameter
space. A rigorous proof can be found in Chazy (1929), but Hut &
Bahcall (1983) give an intuition for this unlikeliness. A stable
three-body system that formed from a binary-single scattering
event should be stable for the infinite future. But, if we consider
Newton’s time reversibility, we expect the system to be stable for
the infinite past, which contradicts the assumption of the system
being created by a scattering event.

Our methods to identify GW captures and inspirals in
our Newtonian simulations are defined in Section 5.1 and
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Table 1. Parameters needed to specify the initial conditions of a
scattering simulation, including their corresponding ranges and the
distributions.

Param. Values Description Distribution

q2 [0.1, 1] Mass of body 2 Uniform
q3 [0.1, 1] Mass of body 3 Uniform
e [0, 1) Initial eccentricity e2

ṽ 0.1 Relative velocity ...
b [0, bmax) Impact parameter b2

ϕ [0, 2π) Phase of binary ϕ
θ [0, π/2] Angle of incidence cos θ
ψ [0, 2π) Orientation of body 3 ψ
f [0, 2π) Projected true anomaly E′ − e sin E′

Section 5.2, respectively. For extended bodies, an additional pos-
sible outcome is a direct collision (for stellar collisions, see e.g.
Fregeau et al. 2004). The cross-section (defined in Appendix A)
for a collision between NSs is orders of magnitude lower than
that of the other types of mergers (Samsing et al. 2014), and
because we only consider BHs, we do not consider collisions
in this work.

2.2. Description of the code and units

To simulate the binary-single scattering events, we use the
STARLAB software package. STARLAB is a collection of tools
designed to simulate and analyse the dynamical evolution of star
clusters, which is described in McMillan & Hut (1996). Within
STARLAB, the module SCATTER3 simulates binary-single scat-
tering events using Newtonian physics. It uses a fourth-order
variable time step Hermite integrator (described in Makino &
Aarseth 1992). To keep integration errors under control, SCAT-
TER3 uses a technique developed in Hut et al. (1995) that ensures
the symmetry in time, which guarantees that the energy and
momentum are kept constant in periodic orbits.

Part of the complexity of the three-body problem is the
amount of parameters that need to be specified in order to fully
determine the initial conditions. In the point-mass limit, each
body requires information of its position, velocity and mass,
a total of seven parameters. Therefore, three bodies require 21
parameters. Thankfully, the symmetries of the system allow for
a considerable reduction in the number of parameters. In addi-
tion, the scale invariance in the physical dimensions of length,
time and mass allow for a further reduction of parameters.

We adopt units in which the semi-major axis (SMA) a of the
initial binary, the gravitational constant G, and the mass of the
initial binary m12 are G = a = m12 = 1. The initial conditions
required to simulate a binary-single scattering can be reduced
to nine parameters, given in Table 1 (Hut & Bahcall 1983). The
impact parameter is given in units of a, and the velocity v is the
relative velocity between the binary and the field BH at infin-
ity. We define ṽ as the velocity in units of the critical velocity
vc, defined as the relative velocity that makes the energy of the
three-body system to be zero:

v2
c = G

m1m2m123

m3m12

1
a
, (2)

with m123 ≡ m12 + m3. Note that if ṽ < 1, the energy of the
three-body system is negative, which implies that ionisation is
physically impossible. If ṽ > 1, the energy of the system is

positive. Therefore, bound three-body systems are not permitted,
and resonant interactions do not happen.

For this work, we define the mass ratios q2 ≡ m2/m1 and
q3 ≡ m3/m1. We explore different values of q2 and q3 in the
range [0.1, 1], spaced in steps of 0.05. For each combination
of q2 and q3, 31 250 encounters were simulated (for a total of
O(107) encounters). This order of magnitude was selected to
make the statistical error of mergers in each bin sufficiently
low. Following Table 1, the encounters were simulated with
eccentricities sampled from a thermal distribution pe(e) = 2e
(Jeans 1919), randomly sampled angles, a velocity v = 0.1, and
impact parameters equispaced in b2 in the range b ∈ [0, bmax].
The maximum impact parameter bmax is chosen heuristically by
imposing the condition that no resonant encounters happen for
b ≳ 0.6bmax. Fewer than 0.1% of the encounters were discarded,
either because they were unresolved or because NIMS > 5001.

3. Results: Generalities of unequal-mass
encounters

In this section we present results obtained from our binary-single
scattering events with unequal-masses. These results are not
restricted to BHs, but are general for all binary-single scatterings.
The focus is on understanding how the behaviour of resonant
interactions varies with the masses of the different bodies.

3.1. Binding energy change for arbitrary masses

Here we obtain the mean change in the binding energy of the
binary after a resonant interaction. First, we define E as the
absolute value of the binary binding energy

E =
Gm1m2

2a
. (3)

This binding energy can increase or decrease through inter-
actions with a third body. The relative change in E is ∆, defined
as

∆ ≡
E(t −→ ∞) − E(t −→ −∞)

E(t −→ −∞)
. (4)

Note that ∆ goes from −1, corresponding to binary ionisation, to
∞, implying the collapse of the binary.

From here on we will focus on ∆r, which defines the energy
change only due to resonant interactions (see Appendix A).
It is generally assumed that during a binary-single resonant
encounter, the binary increases its binding energy by around
a 20% (Spitzer 1987; Heggie & Hut 1993; Quinlan 1996;
Portegies Zwart et al. 2010). Nonetheless, the validity of this
result is restricted to the equal-mass case. In Fig. 1 we show how
⟨∆r⟩ behaves as a function of m3/m12, where we have realised the
fit

⟨∆r⟩ ≃ ∆0

[
1 − exp

(
−A

m3

m12

)]
, (5)

with ∆0 ≡ ⟨∆r⟩ (m1 = m2 = m3) = 0.2 and A = 7.0. This fit is
restricted to m3 ≤ m12. From now on, Equation (5) is used
for all calculations that require ∆r. We stress that the value of
⟨∆r⟩ is independent of the cross-section, and well-behaved when

1 These are a minority of encounters and they require a vast amount
of integration steps, and are prone to accumulating errors. We therefore
discarded them.
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Fig. 1. ⟨∆r⟩, in units of ∆0, as a function of m3/m12. Each data point
represents a different combination of q2 and q3. The solid line is the
fitted function.

bmax → ∞. We choose as x-axis the ratio m3/m12 rather than q3,
because for the latter the data is noisier at low values of q3.

Although our results agree qualitatively with what Hills &
Fullerton (1980) found, our values of ⟨∆r⟩ are a factor of ∼2
higher for m3/m12 ≲ 0.1 and a factor of ∼4 lower for m3/m12 ∼ 1.
We note that their encounters were head-on, and we can repro-
duce their results with our runs with b = 0. These head-on events
are unrealistic, and they are physically different from more real-
istic scatterings with b , 0 due to the difference in angular
momentum and in ⟨∆r⟩.

A dynamically assembled BBH in a GC tends to contain the
two most massive BHs in the cluster. The eventual binary-single
encounters happen with the binary’s stellar surroundings, where
bodies generally have masses below m12. In the case of interac-
tions with stars, the difference in mass can even reach two orders
of magnitude. In this scenario, Equation (5) implies that ⟨∆r⟩ is
generally lower than 0.2. For the BH mass functions assumed
in Section 4 we find typical values of ∆r ≃ 0.15−0.17, not very
different from the equal-mass value of 0.2.

3.2. Number of intermediate states

The number of intermediate states in a resonant encounter, NIMS,
is crucial, as the GW capture probability depends linearly on it
(see Section 5). For equal masses, ⟨NIMS⟩ ≃ 20 (Samsing 2018),
but its behaviour for unequal masses is unknown.

In Fig. 2 we show how ⟨NIMS⟩ behaves in the unequal-mass
case. This quantity is maximised in the region where m2 ≃ m3,
which also includes the equal-mass case. In this region, ⟨NIMS⟩ ≃

20, but outside of it ⟨NIMS⟩ drops considerably.
We can intuitively understand this as follows: if one of the

bodies is less massive than the other two, then that body is most
likely to be ejected (Heggie 1975; Sigurdsson & Phinney 1993;
Heggie et al. 1996). The probability of ejection per intermedi-
ate state is high and fewer IMSs are, therefore, needed to end a
resonant interaction. Meanwhile, if m3 ≃ m2, the probability of
ejection per IMS is lower because there is no obvious candidate
for ejection and more IMSs are required to end the interaction.
The highest number is for equal masses, when the interaction is
democratic.

We now present a more rigorous explanation for the
behaviour of NIMS. In this derivation, we followed the derivation

found in Samsing (2018) and Fabj & Samsing (2024), but gen-
eralising it to arbitrary masses (some steps are explained more
in detail in the referenced papers). Let us begin by decompos-
ing the triplet during one IMS into a temporary binary of SMA
aIMS and (positive) binding energy EIMS, and a single body that
orbits the binary on a wider orbit. We assume that, during each
IMS, the energy of the binary is randomly sampled from a dis-
tribution pE(EIMS) ∝ E−γIMS, where we specify the value of γ later
on. In the hard binary limit, if EIMS is higher than the energy of
the initial binary E0, then the remaining energy necessarily goes
to the single, and the interaction ends with an ejection. In the
other hand, if EIMS < E0, the binary absorbs part of the single’s
energy and it remains bound until the next IMS. Then, NIMS can
be approximated by (Samsing 2018)

⟨NIMS⟩ ≃
P(EIMS < E0)
P(EIMS > E0)

≃

(
amax

a0

)γ−1

, (6)

where amax is the maximum value that aIMS can have, or equiv-
alently, the SMA at which EIMS is minimised. Consider the case
q3 < q2, and we assume that the temporary binary is always com-
posed by the two heaviest bodies in the triplet (in this particular
case, bodies 1 and 2). EIMS attains its minimal value when the
system is not decomposed into a binary and a single any more,
but by three bodies orbiting each other at the same SMA amax.
From energy conservation, this condition is fulfilled when
amax

a0
= 1 +

m3m12

m1m2
= 1 + q3 +

q3

q2
. (7)

In combination with Equation (6), we obtain

⟨NIMS⟩ ≃

(
1 + q3 +

q3

q2

)γ−1

, q3 < q2. (8)

Because of symmetry we have

⟨NIMS⟩ ≃

(
1 + q2 +

q2

q3

)γ−1

, q3 ≥ q2, (9)

because after the first intermediate state there is no memory of
the initial conditions and the same arguments apply. As for the
exponent γ, in Stone & Leigh (2019) it is set at a value between
3.5 and 4, depending on the angular momentum of the system,
while Heggie (1975) finds 4.52.

The predictions from Equation (9) are displayed in Fig. 3,
where we choose γ = 3.75, so that ⟨NIMS⟩ ≃ 20 in the equal-
mass regime. We can see that, even though Equation (9) does
not predict exactly the behaviour observed in the simulations, it
can explain qualitatively why ⟨NIMS⟩ peaks if q2 = q3, and also
it can explain the weaker dependence on q2 × q3. As it can be
seen, the theoretical peak is narrower than the experimental one.
This difference between theory and experiment can stem from
the assumption that the temporary binary always contains the
two most massive bodies. It may be the case that the peak widens
by relaxing this condition, and allowing the temporary binary to
sometimes contain the lightest body. The distribution would also
be broader for smaller values of γ.

3.3. Eccentricity distribution

It is often assumed that the eccentricity of the binary that
remains after a resonant encounter follows a thermal distribution
2 Note that these exponents are originally used for the distribution of
the final energy, which is not necessarily the same as the distribution
of the energy during one intermediate state, yet for this derivation we
assume that they are the same.
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Fig. 2. Left: ⟨NIMS⟩ for resonant encounters with different mass ratios. Right: ⟨NIMS⟩ for resonant encounters, as a function of q3/q2. The error bars
correspond to

√
2 times the standard error of the mean.
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Fig. 3. Left: theoretical ⟨NIMS⟩ for resonant encounters with different mass ratios. Right: theoretical ⟨NIMS⟩ for resonant encounters, as a function
of q3/q2.

pe (e) = 2e. Stone & Leigh (2019) show that for high angular
momentum binary-single interactions3 the resulting eccentric-
ity distribution is mildly super-thermal: pe (e) = (6/5)e (1 + e).
In Fig. 4 we compare the eccentricity distribution in the equal
and unequal-mass regimes with both the thermal and the mildly
superthermal distributions. The eccentricity in the equal-mass
case agrees with the mildly superthermal distribution, which
agrees with the result of Stone & Leigh (2019). Meanwhile,
in the unequal-mass regime, the data agrees with a thermal
distribution. According to Ginat & Perets (2023), an equal-
mass binary interacting with a lower mass body is theoretically
expected to have a highly superthermal distribution. This dis-
crepancy is explained by the lower limit in the angular momen-
tum of the system. While in the referenced paper the lower

3 We simulate a range of impact parameters hence angular momenta,
but the majority of encounters have high b because of the uniform sam-
pling in b2. In the equal-mass limit and with ⟨e⟩ = 2/3, the angular
momentum of the binary-single orbit is an order of magnitude higher of
that of the binary.

limit is zero, a lower limit close to the one found in our scat-
terings can reproduce the results from Fig. 4 (Ginat, private
communication).

Note that in the unequal-mass case, although the eccentric-
ity agrees with a thermal distribution, there is a peak at e ≃ 1.
This peak is an artefact from our simulations that appears in
encounters with q3 ≃ 1, q2 ≃ 0.1 and zero impact parameter.
For these encounters, the secondary component of the binary
is so light that it barely perturbs the other two bodies. There-
fore, the secondary mass orbits a principal mass that is nearly
sitting still. In the other hand, the single body, as massive as the
primary mass and with zero impact parameter, follows a head-
on collision towards the binary’s centre of mass, almost where
the primary mass rests. In this regime, the eventual interactions
are extremely eccentric. This artifact appears because of the way
that b is sampled: we simulate a lot more encounters with impact
parameter being exactly zero than in nature, where the proba-
bility of a head-on encounter is zero. If we exclude the set of
interactions with b = 0, this artifact disappears.
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Fig. 4. Eccentricity distribution after a democratic resonance. For the
approximate equal mass case, the data points were selected by impos-
ing the condition q2, q3 ∈ [0.5, 1]. For the unequal-mass case, the
data points were selected by imposing the condition q2 ∈ [0.1, 0.4] or
q3 ∈ [0.1, 0.4]. The dashed lines represent the thermal distribution, and
the solid line represents the mildly superthermal distribution.

4. Binary-single BH interactions in globular
clusters

In this Section, we describe a simple model for a globular cluster,
which includes the properties of its BH population and its central
BBH. Our model follows closely the model of Antonini & Gieles
(2020b).

4.1. Globular cluster properties

We start by considering the total energy of the cluster, which is
given by Ecl ≃ −0.2GM2

cl/rh, with Mcl the cluster mass and rh the
half-mass radius. In steady post-collapse evolution, the rate of
change of Ecl (excluding the negative energy locked in binaries)
is (Hénon 1961; Gieles et al. 2011; Breen & Heggie 2013)

Ėcl = ζ
|Ecl|

trh
, (10)

with ζ ≃ 0.1 (Hénon 1961; Alexander & Gieles 2012; Gieles
et al. 2011), and trh the half-mass relaxation time, given by
(Spitzer & Hart 1971)

trh = 0.138

√
Mclr3

h

G
1

⟨mall⟩ψ lnΛ
. (11)

Here, ⟨mall⟩ ≃ 0.5 M⊙, lnΛ ≃ 10, is the Coulomb logarithm
which we assume to be constant, and ψ = 1 for equal-
mass clusters. The one-dimensional velocity dispersion of the
cluster is

σ ≃

√
GMcl

6rh
. (12)

For a King (1966) model with W0 = 7, the central escape velocity
is given by (Antonini & Gieles 2020b)

vesc ≃ 35 km/s
(

Mcl

105 M⊙

)1/2 (
1 pc
rh

)1/2

. (13)

4.2. Properties of the BH and BBH populations

We assume the presence of a single BBH at the core of the
cluster, which contains the heaviest BH within the GC, with
mass m1 = mmax, and the second heaviest BH, with mass
m2 ∈ [5 M⊙,m1]. In this range, we assume a power-law mass
function with slope α and adopt two values for α and mmax
to mimic metal-poor and metal-rich progenitor stars. We use
the rapid single-star evolution (SSE) code (Hurley et al. 2000)
with recent updates for massive star winds and BH masses
by Banerjee et al. (2020) to determine BH mass functions for
0.01 solar (Z = 1.4 × 10−4; [Fe/H] = −2) and solar metallicity
(Z = 0.014; [Fe/H] = 0). We find mmax ≃ 25 M⊙ for metal-rich
clusters, and mmax ≃ 50 M⊙ for metal-poor clusters. Following
Heggie (1975); Antonini et al. (2023), the BBH has a mass ratio
q2 that follows a distribution p2 (q2) ∝ qα2

2 , with α2 = 3.5 + α.
Here, α = −0.5 for metal-poor clusters, and α = −2.3 for metal-
rich clusters. At the core, we assume a density of field BHs nc ∝

mα+1
3 , where the additional +1 in the index (i.e. flatter) is because

of mass segregation (Portegies Zwart et al. 2007)4. The field
BHs that interact with the binary have a mass m3 ∈ [5 M⊙,m1]
that follows a distribution p3 (m3) ∝ nc(m3)m1/2

3 ∝ mα3
3 , with

α3 = 3/2 + α. The additional flattening of +1/2 with respect
to the central BH mass function is because of the assump-
tion of equipartition, which (in the gravitational focusing limit)
increases the interaction rate with more massive BHs because
of their lower velocities (Antonini & Gieles 2020b). In princi-
ple, it is possible that m3 > m1. In fact, if we let m3 in the same
range as m1, then around 15% (5%) of the times m3 is larger than
m1 for metal-poor (metal-rich) clusters. Nevertheless, if the pri-
mary mass happened to not be the heaviest mass in the cluster,
then the first interaction between the binary and that heaviest BH
would most likely result in an exchange (Hills & Fullerton 1980),
where the heaviest BH becomes the new primary. We therefore
only consider m3 < m1.

Additionally, we assume that the principle of equipartition
holds true for the BH population (Heggie 1975). The principle
states that the kinetic energy is the same for all BHs, imply-
ing that β = (m3σ

2
3)−1 is a constant of the BH population. This

allows us to relate the one-dimensional velocity dispersion of
one mass species σ3, of mass m3, with the one-dimensional
velocity dispersion of the cluster

σ3 = σ

√
mref

m3
, (14)

where we set mref to be the mass species whose velocity dis-
persion is equal to the cluster’s. This mass of reference is set at
10 M⊙.

4.3. SMA of the BBH

We now consider the dynamically formed BBHs. The maximum
SMA that such a BBH can have, denoted by ahs, corresponds to
the hard-soft boundary: E = ⟨β−1⟩ = mrefσ

2 (Heggie 1975), such
that

ahs =
Gm1m2

2mrefσ2 . (15)

We do not consider higher SMAs because binaries with E <
mrefσ

2 can be easily ionised by field BHs. Due to energy and

4 We note that this flattening was not considered by Antonini & Gieles
(2020b).
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momentum conservation, after the BBH interacts with a single
BH, it experiences a recoil kick v2

kick ≃ ∆rGm1m2m3/(am123m12).
When the binary’s SMA is sufficiently low, the recoil kick can
exceed the escape velocity of the cluster. The critical SMA at
which ejection happens, denoted by aej, is obtained imposing
vkick = vesc (Antonini & Rasio 2016):

aej = ∆rG
m1m2m3

m123m12

1
v2

esc
. (16)

For a ≤ aej and m3 = ⟨m3⟩, the average three-body interaction
ejects the binary from the cluster. The binary can also inspiral
before it reaches aej. If the BBH is initially assembled at the hard-
soft boundary, in between each interaction there is a chance that
the BBH inspirals. Eventually, after many encounters, the proba-
bility of inspiral adds up to 1, and the sequence stops. We define
the SMA at which this happens as aGW. Following Antonini &
Gieles (2020b), the value of aGW is obtained by imposing the
condition l2GW(aGW) = 10/7∆r(1 + ∆r)−1, which leads to

aGW = 1.52
(

1 + ∆r

∆r

)7/10 [
G4(m1m2)2m12

c5Ėcl
∆r

]1/5

. (17)

A more detailed derivation can be found in the referenced paper.
The value of the minimum SMA the BBH can attain, denoted by
am, is

am = max
(
aGW, aej

)
. (18)

Depending on the values of aej and aGW, the gradual hardening
of the binary ends up either with an ejection or with an inspiral.

In-cluster binaries then have a SMA a ∈ [am, ahs]. The exact
distribution of a is obtained following Hénon’s principle (Hénon
1975). According to it, the flow of energy through the half-mass
radius is independent of the precise mechanisms for energy pro-
duction within the core, and the heat supplied to the cluster is
assumed to be predominantly coming from the binding energy
of the central BBH

Ė = Ėcl, (19)

with Ecl the energy of the cluster. Note that both energies have
equal signs because E is defined in Equation (3) as the abso-
lute value of the binding energy. Because Ėcl is approximately
constant during the binary life cycle (Hénon 1975), it follows
that

pa (a) =
ahsam

ahs − am

1
a2 . (20)

In practise only one BBH is present in a cluster (Marín Pina &
Gieles 2024), such that pa(a) represents the probability for the
BBH to have a SMA in the range [am, ahs].

5. Results: Implications for GWs

In this Section we combine the GC model of Section 4 with the
binary-single simulations of Section 3 to study the GW implica-
tions of unequal-mass BH encounters. From now on, the bodies
that constitute our simulated binary-single scatterings are going
to be referred as BHs.

5.1. GW captures

During a resonant encounter two of the three BHs can merge
if they pass sufficiently close such that GW emission causes a
coalescence before the interaction would end. We refer to this as
a GW capture. Following Samsing et al. (2014) we can determine
a posteriori what encounters undergo this outcome. A binary-
single resonant encounter can be approximated as a sequence of
NIMS intermediate states composed of a temporary BBH with
SMA aIMS and eccentricity eIMS, and a single bound BH orbiting
the binary in a wider orbit. We can define a critical distance rGW,
below which the binary merges due to GW energy loss before the
return of the single BH. In Samsing (2018), rGW is set to be the
binary’s pericentre at which a single passage radiates GW energy
equal to the binding energy of the initial binary. The distance rGW
is then obtained from Hansen (1972):

rGW ≃ 2.68
[
G5/2

c5 mim j

(
mi + m j

)1/2
a
]2/7

, (21)

where mi and m j are the masses of the involved BHs. For a fixed
SMA, only highly eccentric orbits have a small enough pericen-
tre to trigger a GW capture. For this reason we have taken the
limit e→ 1.

According to Samsing (2018), the probability that a binary-
single resonant interaction ends with a GW capture (denoted by
Pcap) is approximated by

Pcap ≃ ⟨NIMS⟩
2rGW

a
. (22)

In Fig. 5 we present the observed Pcap from our scattering exper-
iments, as a function of the mass ratios q2 and q3. From this we
see that Pcap is maximum if q2 ≃ q3. This is because then ⟨NIMS⟩

is highest (Section 3.2).

5.2. In-cluster inspirals

In addition to GW captures, BBHs can also merge between
resonant interactions. We refer to this outcome as an inspiral.
Throughout a binary’s life inside the cluster, successive inter-
actions with single BHs or stars decrease the binary’s SMA.
This gradual hardening of the binary can lead to two different
outcomes: either the binary is ejected from the cluster from the
recoil it experiences after a resonant interaction, or the SMA is
small enough that the BBH inspirals before its next interaction
with another single BH or star. The timescale between two suc-
cessive resonant interactions, τr, can be obtained by noting that
the binding energy increases on average by a fraction ∆r, given in
Equation (5). The timescale τr is then obtained after the relation
Ė ≃ ∆rE/τr (Heggie & Hut 2003). As explained in Section 4.3,
the value of Ė follows from the cluster relaxation process, and is
set to be equal to Ėcl. At later times, the evolution of the SMA is
dominated by GW energy loss, described by Peters (1964)

ȧGW = −
64
5

G3mim j

(
mi + m j

)
c5a3l7

(
1 +

73
24

e2 +
37
96

e4
)
, (23)

ėGW = −
304
15

G3mim j

(
mi + m j

)
c5a4l5

(
e +

121
304

e3
)
, (24)

where l ≡
√

1 − e2 is the dimensionless angular momentum. The
timescale of GW inspiral is then τGW = a/|ȧGW|. In this model,
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Fig. 5. Left: Pcap as a function of q2 and q3. Right: Pcap as a function of q2/q3. For that, we used m1 = 45 M⊙, a = aGW, and assumed a metal-poor
cluster with Mcl = 5 × 105 M⊙ and rh = 1 pc. The error bars are computed via

√
2Ncap/Nbin, with Nbin the number of resonant events in the bin, and

Ncap the number of GW captures among them.

the BBH inspirals if τGW < τr. Equivalently, this happens when
the dimensionless angular momentum is lower than (Antonini &
Gieles 2020a)

l < lGW ≡

85
3

G4
(
mim j

)2 (
mi + m j

)
c5a5Ėcl

∆r


1/7

, (25)

where we have taken the limit e → 1. From this expression we
define the critical value of the eccentricity eGW, above which the
BBH inspirals.

5.3. Differential merger rates

A GC can be characterised by its Mcl, rh and metallicity. The
metallicity affects mostly the properties of the BH mass function,
while Mcl and rh determine the GW signature.

The mass ratio of merging BBHs, q, also depends on the GC
properties. In this section we explore how the merger rate, R,
depends on the mass ratio q, that is, dR/dq, and we derive a
theoretical prediction for it.

Binary-single interactions can lead to mergers between BHs
1-2, 1-3 and 2-3, as the result of both GW captures and inspirals
in between resonant interactions (hereafter referred to as inspi-
rals). As we will later see, the majority of mergers come from
inspirals between the BHs that constitute the initial binary (with
mass ratio q = q2). Hence, for the purpose of this derivation, we
approximate all mergers to come from this channel.

Under the assumption that there is a single BBH at any time,
the differential merger rate can be written as

dR
dq
= Γb(m1, q)p2(q), (26)

where Γb(m1, q) is the mass-dependent binary formation rate and
p2(q) is the probability that a dynamical binary has mass ratio q
(see Section 4). Γb(m1, q) is the inverse of the time that it takes
for the BBH to harden from the hard-soft boundary to aGW. From
Hénon’s principle it follows that

Ėcl =
d
dt

(Gm1m2

2a

)
. (27)

By integrating this differential equation from ahs to aGW we
obtain

Γb(m1, q) ≃
2aGWĖcl

Gm1m2
, (28)

where we assumed aGW ≪ ahs and the explicit value of aGW is
given in Equation (17) such that

Γb(m1, q) ∝
1

m1

(1 + q)1/5

q3/5 . (29)

Consequently

dR
dq
∝

1
m1

(1 + q)1/5

q3/5 p2(q). (30)

Note that the previous equation can be approximated by

dR
dq
∝

1
m1

q2.9+α, (31)

with α the exponent of the BH mass function. Because Mcl and
rh only enter into Equation (30) through Ėcl in the constant of
proportionality, the shape of dR/dq is entirely determined by the
shape of the BH mass function, which is a function of metal-
licity and the stellar initial mass function. This means that the
observed dR/dq of dynamically formed BBH can be used to infer
the underlying BH mass function.

We now compare the result from Equation (30) to the differ-
ential rates that were found combining our scattering events with
our GC model. The exact methodology used to obtain dR/dq
from the scattering experiments is described in Appendix B.
Contrary to Equation (30), here we take mergers from both GW
captures and inspirals into account, involving BHs 1-2, 1-3 and
2-3. We can see in Fig. 6 the results for metal-poor and metal-rich
clusters, along with their respective predictions from Equation
(30). The results from the scattering experiments for both metal-
licities agree with the result of Equation (30). We previously
assumed that the majority of mergers involve the two BHs that
were in the initial binary. Here we quantify this: approximately
70% of mergers are between BH 1 and 2; 20% are between BH 1
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Fig. 6. Mass-ratio distribution of in-cluster mergers, for a metal-
poor (black) and metal-rich (red) clusters with Mcl = 2 × 105 M⊙ and
rh = 3 pc. The dashed lines represent the theoretical slopes given in
Equation (30) and the dotted lines represent p2(q2). Both the dashed
and dotted lines have been normalised to the same normalisation con-
stant as the data points.

and 3 and mergers between the BH 2 and BH 3 contribute around
10%.

As seen in Fig. 6, for equal Mcl and rh, metal-rich clusters
exhibit a higher rate of mergers than metal-poor clusters, by
about a factor 2. This is to be expected from Hénon’s principle.
A cluster requires its central BBH to provide a fixed quantity
of energy per unit of time, independently of the characteristics
of the BBH. A metal-rich cluster hosts a less massive central
BBH, and to keep up with the energy demand of the cluster, the
central BBH needs to shrink its orbit at a faster rate, leading to
a quicker coalescence. This is explicitly seen in Equation (29)
(Γb ∝ m−1

1 ). We adopted a primary mass for the metal-rich clus-
ter that was half that of the metal-poor clusters, increasing the
rate. In addition, the steeper BH mass function at higher metal-
licity (α = −2.3 vs. α = −0.5) results in binaries with lower q,
preferentially increasing the rates at low q.

5.4. Rate of mergers

By integrating the differential rates shown in Fig. 6, we obtain
the total rates that are expected for clusters with Mcl = 2 ×
105 M⊙ and rh = 3 pc, that is, typical values of GCs. This results
in Rmr = 3.7 Gyr−1, and Rmp = 1.5 Gyr−1, for the metal-rich and
metal-poor cluster, respectively.

These rates were computed using a distribution of m2 and
m3. To estimate the effect of considering unequal masses, we
also compute these rates assuming all interactions to happen
among BHs of equal masses. That is, we use p2(q2) = δ(1 −
q2) and p3(q3) = δ(1 − q3) (therefore, all masses involved in
the three-body problem are equal to the primary mass). The
resulting equal-mass rates are REM,mr = 3.5 Gyr−1 and REM,mp =

1.5 Gyr−1. These values are within a 5% of the unequal-mass
rates shown above, which implies that the equal-mass assump-
tion is a good approximation of the more realistic unequal-mass
case. Nonetheless, this approximation is good as long as the
involved masses are all equal to the primary mass, which is
considered the highest mass in the cluster.

We now present the rate of mergers that is expected from a
Milky Way-like GC population. We sample Mcl and rh from the

log-normal distributions

ϕM (Mcl) ∝
1

Mcl
exp

− log2
10 (Mcl/µM)

2σ2
M

 , (32)

ϕρ (ρh) ∝
1
ρh

exp

− log2
10

(
ρh/µρ

)
2σ2

ρ

 , (33)

with ρh ≡ 3Mcl/(8πr3
h) the half-mass density, µρ = 5 ×

102 M⊙pc−3, σρ = 0.75, µM = 2 × 105 M⊙, σM = 0.5, and with
the limits Mcl ∈ [102, 107] M⊙ and ρh > 0. For a number den-
sity of GCs in the Universe of 4 × 109 Gpc−3 (Antonini & Gieles
2020a), we obtain

Rmr = 4.4+1.6
−1.2 ×

fmr

0.5
Gpc−3yr−1, (34)

Rmp = 2.0+0.8
−0.4 ×

1 − fmr

0.5
Gpc−3yr−1, (35)

where fmr is the fraction of metal-rich clusters. For this computa-
tion, we sampled 1000 different clusters, and to save computation
time we used the equal-mass approximation.

5.5. Inspirals driven by direct encounters

As explained in Section 5.2, inspirals happen when the binary
has an eccentricity sufficiently high so that the timescale of
merger is shorter than the timescale between resonant interac-
tions. As considered in Antonini & Gieles (2020b), these high
eccentricities can be achieved when, after a resonant interaction,
the post-encounter eccentricity has a value above eGW. Nonethe-
less, in our simulations only around 60% of the inspiraled
BBHs achieved their high e through this channel. The remain-
ing 40% achieved it after a direct (i.e. non-resonant) encounter.
As described in Heggie & Rasio (1996), direct encounters can
modify the binary’s eccentricity, both positively and negatively,
while the energy change is negligible. For a binary that is just
below the critical eccentricity, this can cause a positive change
in its eccentricity, potentially pushing it into an inspiral. This
mechanism is referred to as a direct inspiral (Trani et al. 2024).
Given how frequent direct encounters are in comparison to reso-
nances, these two channels end up producing approximately the
same number of inspirals.

Fig. 7 represents the initial (e0) and final (ef) eccentrici-
ties of the subset of binaries from our scattering experiments
that undergo a direct inspiral. These inspirals can happen for
field BHs that approach the binary with a distance of up to
∼10a0, but the further away the approach, the closer e0 has
to be to eGW in order for the binary to inspiral. For distances
below ∼3a0, some inspirals happen with ef above the solid line.
For these close encounters, the binary’s SMA decreases after
the encounter, changing eGW to lower values. For this subset
of close encounters, what drives the inspiral is not only the
increase in eccentricity, but also the decrease of the SMA. In
Appendix C, we derive an approximation of the cross-section
of direct inspirals (Σins

d ), and we compare it to the cross-section
of inspirals coming from resonances (Σins

r ). We find a ratio of
Σins

d /Σins
r ≃ 0.84, reasonably close to the experimental ratio of

around 2/3.
Most direct inspirals were found to happen in interactions

with an inclination of θ ∼ π/2. This is expected from Equation
(15) of Heggie & Rasio (1996), which states that δe ∝ sin2θ,
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Fig. 7. Eccentricity of the subset of binaries that undergo direct inspi-
ral, as a function of the minimum distance at which the field BH
approaches one of the two components of the binary rmin. In red, the
initial eccentricity, and in blue, the final eccentricity. The solid line rep-
resents the critical eccentricity eGW, calculated with Mcl = 5 × 105 M⊙,
rh = 1pc and α = −0.5. The binary has equal-mass components with
m12 = 40 M⊙, a SMA of 0.5 AU, and the field BH has a mass in the
range m3 ∈ [0.1, 0.5]m12.

therefore maximising the changes in eccentricity when θ = π/2.
In addition, direct inspirals may have a different eccentricity
signature than inspirals coming from resonant interactions.

Direct inspirals are not included in fast models for dynamical
production of BBH inspirals, such as CBHBD (Antonini et al.
2023). There is currently a gap in the prediction of in-cluster
mergers between these fast models and more accurate N-body
models (Rastello et al. 2018; Kremer et al. 2020; Banerjee 2021;
Barber et al. 2024), where the latter finds a higher proportion
of BBHs coalescing inside the cluster relative to coalescences
that occur after BBHs are ejected. Marín Pina & Gieles (2024)
suggest that the aforementioned fast models lack an important
ingredient which may compensate for the lack of in-cluster
mergers, namely interactions between the dynamically active
BBH and wide BBHs that form dynamically at a high rate.
Direct inspirals provides an additional ingredient to bridge the
gap between fast models and N-body simulations. Additionally,
Monte Carlo codes analogous to the one described in Fregeau &
Rasio (2007) account for direct encounters, but only if they are
also strong encounters. This may overlook direct inspirals that
occur during weak encounters, which are possible, as shown in
Fig. 7.

So far, we have only considered BHs as the perturbers that
trigger these direct inspirals. As it can be seen in Equation (C.3),
Σins

d ∝ m5/3
3 . This implies that the cross-section for direct inspi-

ral decreases rapidly for lower mass perturbers. Namely, for
stars, m3 decreases by around a factor ≳20, from ⟨m3⟩ ≃ 10 M⊙
for BHs, to ⟨m3⟩ ≃ 0.5 M⊙ for stars, which implies that Σins

d
decreases by a factor ≳150. In order for stars to become rele-
vant perturbers, their number density should surpass that of BHs
by around that factor, which is very unlikely in the core of a GC.

According to Heggie & Rasio (1996), the cross-section for
a change in eccentricity δe is symmetric with respect to the
sign of δe. This symmetry implies that both eccentricity exci-
tation and de-excitation are equally possible. Note that, so far,
we have focused on the possibility of BBHs inspiraling due to

an eccentricity increase through a direct encounter, but there is
also the possibility of the opposite to happen. What if, through
eccentricity de-excitation, direct encounters prevent BBHs from
coalescing?

Here, we argue why we believe this is unlikely. Let us con-
sider a BBH in the process of inspiraling (that is, with e > eGW).
By definition, this binary fulfils τGW < τr, with τGW the upper
limit of the remaining lifetime of the BBH, and τr the timescale
between resonant interactions. Using again the symmetry argu-
ment in the sign of δe, we approximate the cross-section of a
direct inspiral (with timescale τins

d ) to be the same as the cross-
section of a direct encounter to decrease the eccentricity of a
BBH with e > eGW to lower values (a coalescence prevention,
with timescale τd). Therefore, τd ≃ τins

d . As mentioned previ-
ously, we find in our scattering experiments that Σins

d ≲ Σ
ins
r ,

hence τins
r ≲ τ

ins
d . In this last step, we just assumed that timescales

and cross-sections are inversely proportional. Moreover, mergers
caused by resonant interactions are only a subset of all resonant
interactions. Consequently, τr is shorter than τins

r . Summarising,
we have

τGW < τr < τ
ins
r ≲ τ

ins
d ≃ τd. (36)

In other words, τGW < τd implies that, by the time a direct
encounter arrives to prevent the coalescence, it is already too
late.

6. Discussion

Our model is similar to that of Antonini & Gieles (2020b), and
we add the variations of the two mass ratios that are involved
in binary-single interactions. In this section we describe the
ingredients that are missing in our analysis.

6.1. Missing ingredients

We did not include evolutionary effects such as GC mass loss
and the dynamical ejection of BH. This means that the BH mass
function is always fully populated. This biases our mergers to
low q, because in an evolving GC, the most massive BHs gradu-
ally get ejected from the GC and are therefore no longer available
for mergers. This is more important for metal-rich GCs that start
with a lower m1 and eject BHs at a faster rate. Moreover, we
assumed the presence of a single BBH in the core of our GC that
only interacts with single BHs. The assumption of a single BBH
is supported by results of N-body simulations (Marín Pina &
Gieles 2024), but the authors also show that there is a high rate
of interactions between the hard BBH and shorted-lived (soft)
BBHs. In addition, a large fraction of primordial massive bina-
ries is expected to turn into BBHs, that can interacts with the
dynamical BBHs (Barber et al. 2024). Although less frequent,
binary-binary interactions are estimated to contribute 25–45%
of all highly eccentric mergers (Zevin et al. 2019; Marín Pina
et al. 2025). Including them may change our analysis in a way
that has not been explored.

Additionally, we only consider first generation mergers, that
is, we do not consider mergers where at least one of the
BHs has merged previously, referred to as hierarchical merg-
ers. According to Ye & Fishbach (2024), hierarchical mergers
approximately account for ∼20% of mergers and may populate
the pair-instability mass gap (Antonini et al. 2023). In order to
account for hierarchical mergers, GW kicks must be taken into
account. Due to linear momentum conservation, the post-merger
BH receives a GW kick that, depending on q and the BH spins,
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can go from zero for non-spinning BHs with q = 1, to several
hundreds-thousands of km/s, which is enough to eject the post-
merger BH from the cluster (Antonini & Rasio 2016). Therefore,
we should expect hierarchical mergers to have a higher relevance
in clusters with a high vesc, where post-merger BHs are more
likely to be retained in the cluster. It is for this reason that we
expect the results from Section 5.3 to be more accurate for GCs
of low vesc. In clusters where hierarchical mergers are indeed
relevant, the post-merger BH, with mass ≲m1 + m2, eventually
falls back to the cluster’s core and forms a new binary with the
second-heaviest object in the cluster. Consequently, this second
generation binary is likely to have a lower mass ratio than the pre-
vious first generation binary. As seen in Antonini et al. (2023),
including hierarchical mergers increases the number of mergers
at lower mass ratios.

6.2. Newtonian dynamics

The simulations were carried out using Newtonian dynamics,
which allows us to determine the dynamics of the system not
by the absolute masses, but rather by the mass ratios. This
reduces the dimension of the parameter space by one and sim-
plifies the analysis, but it does so at the cost of accuracy during
close encounters (Gültekin et al. 2006). Therefore, our method
to determine GW captures is only a rough approximation. Nev-
ertheless, in-cluster coalescences are dominated by inspirals
(Rodriguez et al. 2018; Antonini & Gieles 2020b), which in
our model are predicted not by close approaches during reso-
nant encounters, but by the semi-major axes and eccentricities
attained after them, which are less sensitive to post-Newtonian
terms. Therefore, the lack of post-Newtonian terms may affect
primarily GW captures, which are subdominant with respect to
inspirals. In addition, in Appendix D we find 1st order post-
Newtonian effects are safe to ignore in the specific case of direct
inspirals.

7. Conclusions

In this study, we have investigated unequal-mass binary-single
interactions in the Newtonian point-mass limit. For that, we have
simulated a total of O(107) scattering events using STARLAB.
Our key findings are:
1. The fractional change of binding energy following a res-

onant interaction, ∆r, can be well described by ∆r =
0.2

[
1 − exp(−Am3/m12)

]
with A ≃ 7.0 for m3 < m12;

2. The number of intermediate states peaks at NIMS ≃ 20 if
the two lightest bodies in the triplet have similar masses
(m2 ≃ m3). Outside of this regime, NIMS drops considerably,
reducing the probability for GW captures;

3. In agreement with Stone & Leigh (2019), we found a mildly
superthermal distribution of eccentricities near the equal-
mass case with high angular momentum. Outside of the
equal-mass case and considering lower m3, the eccentricity
distribution after resonant interactions is closer to thermal.

We used our scattering experiments in combination with a model
for the evolution of a BBH in a GC to explore the GW implica-
tions of unequal-mass encounters of BHs in GCs. We summarise
the main results below.
1. The differential merger rate for different mass ratios is

dR/dq ∝ m−1
1 q−3/5(1 + q)1/5 p2(q), with p2(q) the mass-ratio

distribution of dynamically formed BBHs, which depends
on the underlying BH mass function. For a power-law BH
mass function with index α, this can be well approximated

by dR/dq ∝ m−1
1 q2.9+α. This means that the mass-ratio dis-

tribution of mergers is slightly flatter than the mass-ratio
distribution of the dynamical binaries (∝ q3.5+α);

2. In equal conditions of cluster mass and radius, metal-rich
clusters have approximately double the merger rate as metal-
poor clusters;

3. We compared the rate of mergers obtained assuming both
the equal and the unequal-mass regimes, and found that the
equal-mass case can approximate within a 5% error the rates
predicted by the latter, as long as the chosen masses are equal
to the primary mass;

4. While BBHs inspiral when their eccentricity is above a
threshold eGW(a) (according to our model), only 60% of the
inspiraled BBHs were found to attain their high eccentrici-
ties through resonant interactions. The other 40% obtained
their high eccentricity after a direct encounter. This mecha-
nism was denominated as direct inspirals, and its contribu-
tion to mergers may be the missing ingredient that bridges
the current gap between fast models and more accurate
N-body models.
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Appendix A: Cross-sections

Analogously to particle physics, we can study binary-single
interactions using cross-sections. We define the cross-section for
an event X to happen as

ΣX = πb2
maxPX, (A.1)

where PX is the fraction of interactions with an impact parame-
ter b < bmax that undergo an outcome X (e.g. resonant, exchange,
etc.). When bmax → ∞, nearly all interactions are distant fly-
bys that do not perturb the binary, making PX → 0 such that
ΣX converges5. In practice, bmax is an infrared cutoff chosen to
be sufficiently large so that ΣX converges. The choice of bmax
is described in Section 2.2. The average energy change of the
binary, ⟨∆⟩ (equation 4), depends on the arbitrary choice of bmax,
making it an ill-defined quantity. Because resonant interactions
only occur within a finite bmax, the mean value of ∆r (obtained
in Section 3.1) is a well-defined quantity. Furthermore, given a
cross-section ΣX, one can compute the rate RX at which encoun-
ters of type X happen between the binary and its surrounding
bodies:

RX = n⟨vΣX⟩. (A.2)

where n is the density of the surrounding bodies.
When computing cross-sections, there are two sources of

errors (Hut & Bahcall 1983). The first is the statistical error
present in all probabilistic processes, given by

δstatΣX =
ΣX
√

NX
, (A.3)

where NX is the number of interactions of type X. The second
source of error comes from the computation: to keep in check
this source of numerical inaccuracies, the integration steps must
be kept small enough. As it is stated in Section 2.2, the error
in the total energy of the system is kept under control, hence
making the systematic errors that come from numerical inaccu-
racies negligible, much less than 1 % (McMillan & Hut 1996).
It is difficult to have a measure of the computational error, so we
conservatively assume it is equal to the statistical error. In addi-
tion, our definition of a minimum in s2 (Section 2.1) is a source
of error when classifying events as resonant or non-resonant.
This source of error is again difficult to estimate analytically,
and as a first approximation it is considered to be within the
computational error.

Appendix B: Derivation of dR/dq from the
scattering experiments

Here we show how we obtain the differential merger rate, dR/dq,
for a GC with arbitrary Mcl, rh and metallicity based on the
results of the gravitational scattering experiments presented in
Section 3. According to Hénon’s principle, the rate at which the
central BBH releases energy is determined by the cluster, and is
independent of the BBH’s properties. Assuming the binary only
releases its energy through resonant binary-single interactions,
this rate can be expressed as (see Section 5.2)

Ė =
⟨∆r⟩E

τr
. (B.1)

5 As long as the outcome X is not possible above a finite impact param-
eter, ΣX converges. This does not happen with, for example, flybys,
which are allowed for any arbitrary impact parameter.

We define Rr ≡ 1/τr as the rate at which the BBH undergoes
resonant interactions. The rate at which BHs i and j coalesce,
denoted by Ri j, is Rr times the number of mergers per resonant
interaction, which is obtained via

Ri j = Rr
Σi j

Σr
, (B.2)

where Σi j and Σr are the cross-sections for i − j mergers and
resonant interactions respectively. We find ⟨∆r⟩ from

⟨∆r⟩ =

∫ mmax

mmin

∆0

[
1 − exp

(
−A

m3

m12

)]
p3(m3)dm3, (B.3)

where we use the fitting function given in equation (5), and
p3(m3) is given in Section 4.2. We assume a pre-existing BBH
with mass ratio q2, and an interaction with a single BH of mass
ratio q3. It is for this reason that equation (B.2) must be weighed
by p2(q2) and p3(q3), given in Section 4.2. Therefore

d2Ri j

dq2dq3
= Rr(q2)

Σi j

Σr
(q2, q3)p2(q2)p3(q3). (B.4)

The ratio Σi j/Σr(q2, q3) is obtained from our binary-single
scattering events, which are described in Section 2.2. In our sim-
ulations we use values of q2 and q3 in the range [0.1, 1] and
spaced in steps of 0.05. We perform the following steps:
1. Determine the primary mass (and mass scale) m1, equal

to 25 M⊙ for metal-rich clusters, and 50 M⊙ for metal-poor
clusters (see Section 4.2),

2. Select one of the 19 values of q2 that were used in the
simulations and determine the secondary mass m2 = m1q2,
and select one of the 19 values of q3 that were used in
the simulations and determine the mass of the field BH
m3 = m1q3,

3. For all encounters with this combination of q2 and q3,
compute Σr from equation (A.1).

4. Sample the SMA of the binary from pa(a), with a ∈ [am, ahs]
(see Section 4.3),

5. For all encounters with this combination of q2, q3 and a,
compute Σi j, including both GW captures and inspirals.
A GW capture between BHs i and j happens if the min-
imum distance between them that is reached during the
whole encounter is below rGW (see Section 5.1). An inspiral
between BHs i and j happens if the final BBH is com-
posed by these two BHs, and has an eccentricity after the
interaction that is above eGW (see Section 5.2).

Steps 4 and 5 are repeated for 10 randomly sampled SMAs,
obtaining the ratio Σi j/Σr averaged over a, and steps 2 to 5 are
repeated for all values of q2 and q3, thus obtaining Σi j/Σr(q2, q3).
We can now use equation (B.4) to determine dR/dq. Let us first
consider mergers among BHs 1 and 2. For these mergers, q = q2.
In order to obtain dR12/dq, we have to integrate over all possible
q3’s

dR12

dq
=

∫ 1

qmin

d2R12

dqdq3
dq3. (B.5)

Similarly, for mergers between BHs 1 and 3, we have q =
q3, and for mergers between BHs 2 and 3, we have q =
min(q2, q3)/max(q2, q3). To obtain their respective differential
rates, we integrate along lines of constant q, as in the previous
equation. The differential rate that includes all types of mergers
is
dR
dq
=

dR12

dq
+

dR13

dq
+

dR23

dq
. (B.6)

The results of this exercise are shown in Fig. 6.
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Appendix C: Derivation of Σins
d

Here, we compute the ratio between the cross-section of a direct
inspiral Σins

d and that of a resonant inspiral Σins
r . First, we estimate

Σins
r with

Σins
r = ΣrPins, (C.1)

where Pins = 1 − e2
GW, and Σr is the cross-section of resonant

interactions

Σr = Aπa2ṽ−2, (C.2)

where A is set to a value of 19.55 by integrating equation (24)
from Heggie & Hut (1993). For a binary of initial eccentricity e,
the cross-section for a direct encounter to change the eccentricity
by a value δe > δe0 is given by Heggie & Rasio (1996)

Σ (δe > δe0) ≃ 4.29
 m2

3

m12m123

1/3
m3m12a2

m1m2ṽ2 e2/3
(
1 − e2

)1/3
δe−2/3

0 .

(C.3)

This expression assumes rp ≫ a. Although in Fig. 7 it can be
seen that a big proportion of inspirals happen at rp ≃ a, our aim
is not to obtain an exact value of Σins

d , but rather to understand
how it behaves relative to Σins

r . It is for this reason that, even
though the assumption rp ≫ a is not always met, we still use
equation (C.3).

To know the cross-section for δe to be high enough to trig-
ger an inspiral, we set δe0 = eGW − e. Now, we set Σins

d to
be the expected value of Σ (δe > δe0) over all possible initial
eccentricities:

Σins
d =

∫ eGW

0
pe (e)Σ (δe > eGW − e) de, (C.4)

where we have assumed pe(e) to be a thermal distribution with
e in the range e ∈ [0, eGW]. For equal masses, the ratio of cross-
sections reduces to

Σins
d

Σins
r
≃ 0.15

I(eGW)
1 − e2

GW

, (C.5)

where eGW = eGW(a), and we define the integral

I(eGW) ≡
∫ 1

0
x5/3

(
1 − e2

GWx2
)1/3

(1 − x)−2/3 dx. (C.6)

If most inspirals happen at a ≃ aGW, then

Σins
d

Σins
r
≃ 0.86. (C.7)

This result is reasonably close to the ratio observed in our sim-
ulations, which is 2/3: indeed, both cross-sections are of the
same order of magnitude. From equation (C.5) and equation
(25) it can be seen that the ratio of cross-sections scales with
Σins

d /Σins
r ∝ a10/7, where we neglect the weak dependence that

I(eGW) has on eGW. This suggests that the relative importance of
direct encounters increases for softer binaries.

Appendix D: The effect of 1pN precession on direct
inspirals

Here, we estimate whether ignoring 1st order post-Newtonian
terms is a good approximation for the specific case of direct
inspirals. For that, we compare the timescale at which the BBH
precesses, τω, to the timescale at which the dimensionless angu-
lar momentum of the binary l changes due to the field BH, τl. If
τl < τω, then it is safe to ignore relativistic precession. We can
express both timescales as τω ∼ π/|ω̇| and τl ∼ l/|l̇|, with

|ω̇| ≃
|∆ω|

T
=

24π3a2

T 3c2l2
, (D.1)

where T is the orbital period of the BBH, ω̇ the rate at which the
perihelion shifts, and ∆ω the perihelion shift during one orbital
period. From this it follows that

τω ≃
T 3c2l2

24π2a2 . (D.2)

We proceed now with tl. We can express |l̇| as

|l̇| =
eė
l
=

e|δe|
lδt

, (D.3)

with δe the change of eccentricity over a time δt. After Heggie
& Rasio (1996), δe after a direct encounter is

|δe| =
15π

16
√

3
el

(a
r

)3/2
sin(2Ω) sin2(i), (D.4)

where Ω is the longitude of the ascending node, and we assume
equal masses. For the specific case of direct inspirals, the condi-
tions are such that δe is maximised, implying sin(2Ω) ∼ sin(i) ∼
1. Using l =

√
1 − e2 we are left with

|l̇| ≃
17
10

(a
r

)−3/2 1 − l2

δt
. (D.5)

We can now perform the ratio τl/τω, given by

τl

τω
≃

120
17

Gm
c2l(1 − l2)

( r
a

)3 1
a
, (D.6)

where we use the fact that δt scales with r as δt ∼ T (r/a)3/2, and
we use Kepler’s third law to write T in units a. Note that pre-
cession becomes increasingly important as a shrinks. We place
ourselves in the worst case scenario by adopting its minimum
value a = aGW, given in Section 4.3. For that, we use a cluster
with Mcl = 2 × 105 M⊙, and rh = 3 pc. In the particular case of
direct inspirals, we assume l to be close to the threshold lGW,
given in Section 5.2. Therefore

τl

τω
≃ 1.6 × 10−5

( r
a

)3
. (D.7)

By imposing τl < τω we obtain

r < 18a. (D.8)

Consequently, even for the smallest possible SMA, precession is
unimportant for all flybys with distance r < 18a. In our scattering
experiments, we find that all direct inspirals happen for r < 12a
(see Fig. 7); therefore, it is safe to ignore the effect of precession.
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