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 Abstract—With the high penetration of distributed generators 

(DGs), state estimation is essential for fast and accurate opera-

tional status tracking of active distribution networks (ADNs). 

However, there are generally unobservable areas in ADNs in 

ADNs due to the paucity of measurements. Traditional state es-

timation methods may encounter difficulty coping with limited 

measurements. Thus, aiming at the accurate and fast state per-

ception of unobservable ADNs, this paper proposes a randomly 

switched subsystem-based state estimation method. First, the 

unobservable ADN is modeled as the randomly switched ADN 

(RSADN). Stochastic observability is defined to distinguish the 

unobservable conditions, which ensures the feasibility of state 

estimation. Further, considering different operational conditions, 

the observability enhancement mechanism is designed under 

limited measurement conditions to make the network observable 

and reduce the impact of topology switching on the system. Then, 

the improved unscented Kalman filter algorithm is utilized to 

solve the state estimation problem based on state transformation. 

The results of case studies confirm that the proposed method can 

achieve more accurate estimation results compared to other 

methods under unobservable conditions and exhibit satisfactory 

computational speed in large-scale systems. 

 

Index Terms—unobservable active distribution networks, state 

estimation, randomly switched active distribution networks, sto-

chastic observability. 

NOMENCLATURE 

Sets 

𝒩 Set of all nodes 

ℒ Set of all lines 

Θ Set of all switching process 

𝑇hist Set of historical operational data 

𝒰𝑖 Set of nodal measurements 

𝒰𝑖𝑗 Set of line measurements 

Indices 

𝑖, 𝑗 Index of nodes 

𝑡 Index of time periods 

𝑙 Index of switching process 
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Variables 

𝒙𝑡 State variables of the RSADN at time 𝑡 
𝒚𝑡 Multi-source measurements at time 𝑡 
𝒙𝑘
+, 𝒙𝑘

− Prior and posterior estimates for state 

variables of 𝑘-th subsystem 

𝒈𝑡 System operational status change vector at 

time 𝑡 
𝑨 System state transition matrix 

𝑯 Measurement state matrix 

𝜅 Randomly switching process 

𝝎𝑡, 𝝂𝑡 Gaussian white noises 

𝑾𝑘 Observability matrix of 𝑘-th subsystem 

𝑾Θ Combined matrix for the set Θ 

𝑉𝑖 , 𝜃𝑖 Measurement of nodal voltage amplitude 

and phase angle 

𝑃𝑖 , 𝑄𝑖 Measurement of nodal active and reactive 

power injection 

𝑃𝑖𝑗 , 𝑄𝑖𝑗  Measurement of line active and reactive 

power 

𝐼𝑖𝑗 , 𝜃𝑖𝑗 Measurement of line current amplitude 

and phase angle 

𝑴𝑘 Measurement matrix of 𝑘-th subsystem 

𝓐𝑘 Correlation matrix of 𝑘-th subsystem 

𝜍 Measurement dispersion 

𝑻𝑘 State transformation matrix of 𝑘-th sub-

system 

𝒛𝑘 State variables after transformation 

𝑷𝑘 Error covariance matrix of 𝑘-th subsystem 

𝑸𝑘  Predicted covariance matrix of 𝑘-th sub-

system 

Parameters 

𝑁 Number of all nodes 

𝑁DG Number of all DGs 

𝑙 Number of switching process 

𝓈 Number of state variables 

𝓈𝑘 
Number of 𝑘 -th subsystem observable 

state variables 

𝛼𝑘, 𝛽𝑘 Smoothing parameters 

𝑊m
(𝑖)

, 𝑊c
(𝑖)

  
Weights for mean and variance of Sigma 

point set 

𝑒 Proportional correction factor 

𝛿  Secondary sampling factor 
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I. INTRODUCTION 

ith the high penetration of distributed generators (DGs), 

the operational status of active distribution networks 

(ADNs) requires enhanced precision and fast tracking [1]. The 

state estimation of ADNs can obtain the operational status of 

the entire network based on measurement data under particular 

parameters [2]. It is the “eye” and the basic tool for real-time 

monitoring, dispatching, and regulation of the ADN. Therefore, 

the reliability and effectiveness of state estimation are crucial 

for the operation of ADNs [3]. 

Most existing state estimation methods are based on the as-

sumption of a sufficient measurement configuration and con-

struct a least-squares model solved using the Gauss-Newton 

method. The authors in [4] proposed a fourth-order Leven-

berg-Marquardt approach-based Schweppe-type Huber gener-

alized maximum-likelihood estimator to achieve statistical and 

numerical robustness, which demonstrated good convergence 

under highly stressed operating conditions. A study [5] pro-

posed a semidefinite programming fast state estimation method 

based on accelerated gradient descent, which improved com-

putational efficiency. Another study [6] proposed a sec-

ond-order cone-programming-based robust state estimation 

method to enhance convergence and bad data identification. 

The authors of [7] proposed a robust state estimation method 

based on an exponential absolute value function to address 

non-Gaussian measurement noise and outliers. Although these 

studies have achieved significant improvements in convergence, 

computational speed, and robustness, the distribution network 

is large in scale and the measurement is difficult to fully cover, 

resulting in a substantial number of “blind zones” [8]. Actual 

distribution networks are usually unobservable network [9]. 

A major challenge in the state estimation of distribution 

networks is the unobservable condition. Insufficient measure-

ment configuration is the main reason for the unobservable 

network. An unobservable ADN refers to the inability to 

uniquely determine the system state with countless states cor-

responding to the same measurement value [10]. Mathemati-

cally, when the number of measurements is less than the 

number of state variables, the state estimation equation is un-

derdetermined and cannot be solved [11]. Therefore, perform-

ing state estimation under unobservable conditions is of great 

significance for improving the perception ability of ADNs. 

Some studies utilize pseudo-measurements to achieve 

measurement completion [12], [13]. The authors in [14] pro-

posed a novel maximum-likelihood state estimation method, 

which modeled pseudo-measurement uncertainty with any 

continuous distribution and greatly enhanced the flexibility of 

state estimation. However, pseudo-measurements generally 

have large measurement errors, which can affect the accuracy 

of state estimation [15]. Existing research on unobservable 

distribution network state estimation methods can be roughly 

divided into two categories: machine-learning and numerical 

methods. For the machine learning method, the authors in [16] 

fused supervisory control and data acquisition (SCADA)/ ad-

vanced metering infrastructure (AMI) data with pseu-

do-measurements based on a deep multi-fidelity Bayesian 

approach, which facilitated high accuracy. Another study [17] 

proposed a neural-network-based state estimation method to 

achieve high time efficiency with extended observability. 

However, machine-learning methods require a large amount of 

historical data, which may be difficult to obtain in practice. In 

addition, offline training may be time-consuming and lack 

adaptability to environmental changes. 

A numerical method proposed in [18] relies on the use of 

allocation factors, which could deal with the underdetermined 

system caused by the low number of measurements. Another 

numerical method, matrix completion, involves supplementing 

missing elements of a matrix to satisfy certain constraints. 

Compared to machine learning methods, it only requires data 

from a single time instant. The authors of [19] proposed a novel 

matrix completion-based state estimation method with 

noise-resilient power flow constraints, which could effectively 

reduce the noise impact. Another study [20] further proposed a 

dynamic matrix completion-based state estimation approach 

that exhibited high estimation accuracy. However, owing to the 

utilization of optimization, the computational burden increases 

as the system size increases. 

Recently, the randomly switched subsystem (RSS) concept 

proposed in [21] has been well applied in the control field. The 

RSS method is a very promising way to cope with unobservable 

conditions, which exhibits high accuracy and a relatively low 

computational burden. The authors of [22] applied the RSS 

method to continuous and discrete systems to support founda-

tion for robust control. The RSS represents a central organizer 

that utilizes sequentially streamed data from subsystems, one 

subsystem at a time within each time interval. Motived from the 

concept of RSS, the topology structure can be changed by the 

sectionalizing and tie switches of ADNs. Thus, the ADN with 

different topology can be modeled as RSS. Then the state es-

timation with unobservable conditions can be achieved. How-

ever, the RSS method needs to be improved to adapt to the state 

estimation of the ADN. For one thing, irregular topology 

changes may deteriorate the operation of ADN. It is essential to 

elucidate the switching condition and path among different 

subsystems to reduce the impact on the ADN. Additionally, 

efficient solving algorithms need further research to adapt to 

RSS. The unscented Kalman filter (UKF) algorithm approxi-

mates the statistical properties of the state variables after non-

linear transformation through an unscented transform (UT) [23], 

[24], with an accuracy of at least second-order compared to the 

extended Kalman filter. However, UKF requires precise mas-

tery of process and measurement noise statistical parameters, 

which are time-varying and difficult to accurately obtain in 

distribution networks. Thus, UKF needs to be improved to 

ensure that state estimation of RSS can be efficiently solved. 

Therefore, further research is required on state estimation for 

unobservable ADNs in the following aspects. a) Multi-source 

measurements exist in the distribution network although 

measurements are limited. Fully utilizing multi-source meas-

urements to improve accuracy of state estimation still needs to 

be addressed. b) Considering safe operation, the ADN gener-

ally does not allow frequent system switching in the short term. 

Thus, achieving state estimation by as few switches as possible 

is significant for reducing the impact on the actual ADN. c) The 
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state equation of distribution networks is usually established by 

time series prediction methods. The process and measurement 

noise statistical parameters are difficult to obtain due to fluc-

tuations of DGs and loads. The efficient solving algorithm 

needs further research. 

To address these issues, this paper proposes a state estima-

tion method for unobservable distribution networks, as shown 

in Fig. 1. The unobservable ADN (gray area) is modeled as a 

randomly switched active distribution network (RSADN) by 

multiple subsystems. However, irregular topology changes may 

deteriorate the operation of ADN. The switching path is re-

vealed to reduce frequent switching and ensure the feasibility of 

state estimation. Furthermore, the high-dimensional state var-

iables are mapped to low-dimensional transformed variables to 

reduce the computational burden, which also exhibits satis-

factory computational speed in large-scale systems. The con-

tributions of this study are summarized as follows:  

1) A state estimation method for unobservable RSADN is 

proposed based on topology switching. The RSADN model is 

constructed to adapt to the distribution network with limited 

measurements. The concept of traditional observability is 

transformed into stochastic observability based on the com-

bined matrix. The state estimation problem can be solved effi-

ciently and exhibits satisfactory accuracy. 

2) An observability-improving mechanism is proposed for 

distribution networks under limited measurements. The 

switching guiding criterion is designed to reveal the switching 

path to make the network observable and reduce the impact of 

topology switching on the system. 

3) A measurement supplementary strategy is proposed in 

scenarios where the switching guidance criteria fail. The 

measurement configuration that satisfies network observability 

is supplemented based on the combined matrix, which can 

further guide the measurement configuration of unobservable 

networks. 
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Fig. 1. Framework of proposed state estimation method. 

The remainder of this paper is organized as follows. Section 

II introduces the modeling of randomly switched unobservable 

distribution networks. Section III presents the proposed method 

of state estimation of unobservable distribution networks based 

on the state-transformation method. Case studies and analyses 

are discussed in Section IV. Finally, the conclusions are pre-

sented in Section V. 

II. MODELING OF RANDOMLY SWITCHED UNOBSERVABLE 

DISTRIBUTION NETWORKS 

The RSADN model was established to perform state esti-

mation on unobservable distribution networks. Stochastic ob-

servability is defined to evaluate the feasibility of the state 

estimation. On this basis, a switching-guiding mechanism for 

the RSADN under unobservable conditions is designed to re-

duce the number of switches. 

A. Modelling of Unobservable RSADN  

Consider a distribution network with nodes denoted by the 

set 𝒩 ≔ {1,2, … , 𝑁} , and lines denoted by the set ℒ ≔
{𝑖𝑗|𝑖, 𝑗 ∈ 𝒩}. In general, the voltage amplitude and phase angle 

of all the nodes are selected as the state variables. The unob-

servable RSADN model for state estimation comprises the state 

transition process and the measurement equation, which are 

expressed as follows: 

{
𝒙𝑡+1 = 𝑨(𝜅(𝑡))𝒙𝑡 + 𝒈𝑡 +𝝎𝑡

𝒚𝑡 = 𝑯(𝜅(𝑡))𝒙𝑡 + 𝝂𝑡
 (1) 

where 𝒚𝑡  represents multi-source measurements, including 

nodal voltage, line current, nodal power injection, and line 

power measurements, etc. Further, 𝜅(𝑡)  represents the ran-

domly switching process of the distribution network and 𝝎𝑡 

and 𝝂𝑡  are Gaussian white noises and are independently dis-

tributed.  

The system matrices 𝑨(𝜅(𝑡)) and 𝑯(𝜅(𝑡)) depend on the 

randomly switching process 𝜅(𝑡) that takes 𝑚 possible values 

in a discrete state space Θ = {1,2, … ,𝑚}. For each 𝑚 ∈ Θ, the 

corresponding matrix 𝑨(𝜅(𝑖))  and 𝑯(𝜅(𝑖))  form the 𝑚 -th 

subsystem of the unobservable RSADN. The discrete switching 

process 𝜅(𝑡) is a piecewise constant that takes values in a finite 

set and satisfies the following assumptions. 

Assumption 1: For a given period, 1) the discrete switching 

process 𝜅(𝑡) can only occur at the measurement time 𝑘𝛿, 𝑘 =
1,2, …, which means 𝜅(𝑡) = 𝜅(𝑘𝛿); 2) 𝜅(𝑘𝛿) is independent 

and identically distributed (i.i.d), satisfying (2): 

𝑃(𝜅(𝑘𝛿) = 𝑖) = 𝑝𝑖 > 0, 𝑖 ∈ Θ, and ∑  𝑚
𝑖=1 𝑝𝑖 = 1  (2) 

Assumption 1 ensures the independence and uniqueness of 

switching with only one operational mode at each time interval, 

which means only one subsystem at each time interval. 

For a sequence 𝜅(𝑘𝛿), 𝑘 = 1,2, … , 𝑙 , define the stochastic 

matrix sequences 𝑨𝑘 = 𝑨(𝜅(𝑘𝛿)) , 𝑯𝑘 = 𝑯(𝜅(𝑘𝛿)) . Under 

Assumption 1, the following equations hold. 

𝑨𝑘 = ∑  𝑚
𝑖=1 𝑨(𝜅(𝑖))𝟏,𝑯𝑘 = ∑  𝑚

𝑖=1 𝑯(𝜅(𝑖))𝟏  (3) 

where 𝟏 is the identity matrix. These matrices are random. 
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The state estimation model (1) is a linear model. Although 

distribution networks are complex, and their topologies and 

power loads may change frequently, linearization can still 

ensure high accuracy in specific scenarios. Holt’s 

two-parameter exponential smoothing method is a widely used 

method for obtaining enough accurate models [25]. It uses 

recursive algorithms to calculate the state transition matrix at 

each instant. Therefore, the models become closer to the actual 

nonlinear models as the algorithm progresses. 

Thus, it is adopted to model the state transition process of the 

unobservable RSADN, which is described as follows: 

𝑨𝑘 = 𝛼𝑘(1 + 𝛽𝑘)𝐈, 0 ≤ 𝛼𝑘, 𝛽𝑘 ≤ 1  (4a) 

𝒈𝑘 = (1 + 𝛽𝑘)(1 − 𝛼𝑘)𝒙𝑘 − 𝛽𝑘𝝀𝑘 + (1 − 𝛽𝑘)𝝃𝑘   (4b) 

𝝀𝑘 = 𝛼𝑘𝒙𝑘
+ + (1 − 𝛼𝑘)𝒙𝑘

−  (4c) 

𝝃𝑘 = 𝛽𝑘(𝝀𝑘 − 𝝀𝑘−1) + (1 − 𝛽𝑘)𝝃𝑘−1  (4d) 

where 𝒈𝑘  is the system operational status change vector. 𝛼𝑘 

and 𝛽𝑘 are the Holt’s two parameters. 𝝀𝑘 and 𝝃𝑘 are the auxil-

iary variables. 

For measurement state matrix 𝑯, Taylor expansion is uti-

lized to realize linearization. And 𝑯 is topologically related, 

which needs recalculation when topology changes. 

B. Stochastic Observability on Finite-time Interval  

Observability is a prerequisite for state estimation. For an 

unobservable RSADN, stochastic observability is defined in-

stead of traditional observability state estimation, which is an 

extension of the classical binary observability. For the 𝑘-th 

subsystem of sequence {1,2, … , 𝑙}, the observability matrix is 

defined as follows: 

𝑾𝑘 = [

𝐻𝑘
𝐻𝑘𝐴𝑘
⋮

𝐻𝑘(𝐴𝑘)
𝓈−1

] , 𝑘 = 1,… , 𝑙 (5) 

where 𝓈 is the number of state variables. 

The combined matrix for the set Θ is: 

𝑾Θ = [

𝑊1

𝑊2

⋮
𝑊𝑘

] (6) 

Both 𝑾𝑘 and 𝑾Θ are constant matrices. No randomness is 

involved. The randomness originates from the switching se-

quence 𝜅(𝑘𝛿) during system operation, such as line switching 

and supply restoration. 

Assumption 2: For any subsystem 𝑘 ∈ Θ, 1) the subsystem is 

unobservable, namely, rank(𝑾𝑘) = 𝓈𝑘 < 𝓈 ; 2) 𝑾Θ  is full 

column rank. 

Remark: Condition 1) in Assumption 2 indicates that all 

subsystems are unobservable, including the extreme cases 𝓈𝑘 =
0 , which represent the total loss of the sensing capability. 

Condition 2) in Assumption 2 ensures that collective observa-

ble subspaces cover all spaces. In other words, if 𝑾Θ is not full 

column rank, all subsystems cannot be observed. Thus, define 

stochastic observability as follows: 

Stochastic observability: if the combined matrix 𝑾Θ is full 

column rank, stochastic observability is achieved in a fi-

nite-time interval with a positive probability for the unob-

servable RSADN. Stochastic observability is an extension of 

the classical binary “observability” to probabilistic “stochastic 

observability.” Similarly, for the observer design, feed-

back-based linear observer structures are utilized for the sub-

systems in the next section. 

C. Subsystem Switching Guidance  

For an unknown RSADN, satisfaction with stochastic ob-

servability is crucial for state estimation. In this section, a 

subsystem switching guidance mechanism is designed to reveal 

the switching path of the unobservable RSADN. Specifically, 

the following two situations (observable and unobservable 

conditions) are discussed: 

1) Historical data satisfies stochastic observability 

Owing to maintenance or switching operations on distribu-

tion lines, the historical operational data includes the topology 

structure of the subsystem and corresponding measurements, 

represented by 𝑇hist = {𝑇1, 𝑇2, … 𝑇𝜒}. If these data satisfy the 

stochastic observability requirements after calculation accord-

ing to (5) and (6), the system need not actively switch topolo-

gies and can directly perform state estimation. 

Note that this condition means that the measurements ob-

tained at each previous time interval did not satisfy observa-

bility, but all data of 𝑇hist satisfies stochastic observability. 

2) Historical data does not satisfy stochastic observability 

If the historical data still cannot satisfy the requirements of 

stochastic observability, the system must perform a finite 

number of topology switches. Therefore, the concept of meas-

urement dispersion, which essentially determines the degree of 

measurement, is defined. The more scattered the measure-

ments, the more abundant and available information will be 

provided. The expected topological changes should increase the 

measurement dispersion, thereby guiding the changes in the 

topological structure. Specifically, measurement dispersion is 

calculated as follows: 

(a) Reorganize the measurements. For the nodal measure-

ments, the measurement group comprised the following: 

𝒰𝑖 = [𝑉𝑖 , 𝜃𝑖 , 𝑃𝑖 , 𝑄𝑖] (7) 

For line measurement, the measurement group involves: 

𝒰𝑖𝑗 = [𝑃𝑖𝑗 , 𝑄𝑖𝑗 , 𝐼𝑖𝑗 , 𝜃𝑖𝑗] (8) 

(b) Define the measurement matrix 𝑴 = {𝑴1, 𝑴2, … ,𝑴𝑘}. 
For 𝑴𝑘, each row and column represent a node label, and the 

corresponding element represents the number of measure-

ments. The primary diagonal elements represent the number of 

nodal measurements, whereas the remaining positions repre-

sent the number of line measurements. For example, 

𝑴𝑘(2,2) = 3 indicates that three nodal measurements exist for 

node 2. 𝑴𝑘(2,3) = 2  indicates that there are two measure-

ments in line 23. Therefore, the total number of measurements 

of subsystem 𝑘  is the sum of the elements of measurement 

matrix 𝑴𝑘. 

(c) Calculate the correlation matrix 𝓐𝑘 of the subsystem 𝑘 

based on the definition of the correlation matrix in an undi-

rected graph. 
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(d) Calculate the measurement dispersion of subsystem 𝑘 

based on the measurement matrix 𝑴𝑘  and correlation matrix 

𝓐𝑘, as follows: 

𝜌𝜇 =
∑ 𝑴𝑘(𝜇,𝜂)
𝑁
𝜂=1

∑ 𝓐𝑘(𝜇,𝜂)+1
𝑁
𝜂=1

, 𝜇 = 1,2, …𝑁  (9a) 

𝜍 = var[𝜌1, … , 𝜌𝜇 , , … , 𝜌𝑁], 𝜇 = 1,2, …𝑁  (9b) 

where 𝜌𝜇 represents the proportion of measurements related to 

node 𝜇 in the current subsystem 𝑘; 𝜍 represents the measure-

ment dispersion; var[∗] represents the variance. 

In summary, the evolution rule of the switching path is as 

follows: After switching, the measurement dispersion 𝜍 should 

not be less than before, and the maximum number of switching 

is 𝜚 = 𝓈 − rank(𝑾Θ). 
3) Measurement supplementary strategy 

In some cases, due to limited measurement configurations, 

stochastic observability may still not be satisfied after the 

maximum number of switching 𝜚 . More measurements are 

required to be configured. The measurement supplementary 

strategy is given as follows: 

(a) Establish observability matrices {𝑾𝑠, … ,𝑾𝑠+𝜚} for the 𝜚 

topologies according to the switching guidance criteria. 

(b) Construct the combined matrix 𝑾Θ using {𝑾1, … ,𝑾𝑘} 
and {𝑾𝑠, … ,𝑾𝑠+𝜚}. 

(c) Calculate the maximum linearly independent group of 

𝑾Θ. Supplement power or voltage measurements at relevant 

nodes until the rank of the maximum linearly independent 

group is equal to 𝓈. 

Remark: The stochastic observability can be achieved by the 

switching guiding mechanism with as few switches as possible. 

Although the proposed method also provides an observabil-

ity-improving mechanism under limited measurement condi-

tions, the supplementary measurements may not meet the op-

timal economic requirements. The aim is to enhance the ob-

servability of the distribution network by minimizing network 

switching and adding as few new measurements as possible. 

The following example is given to clearly illustrate the 

measurement dispersion. 

Example: Consider the topology structure shown in Fig. 2 

(topology 1); the measurement configuration is presented in 

Table 1. 

1 2 3

4
2

1 2 3

4
3

1 2 3

4

4

1

1 2 3

4

 
Fig. 2. Diagram of topology switching. 

TABLE I 

MEASUREMENT CONFIGURATION OF TOPOLOGY 1 

Measurement type Number of 

measurements 

Number of 
state varia-

bles Nodal measurement Line measurement 

[

𝑉1
𝑃2, 𝑄2
0
0

] [

0
𝑃23, 𝑄23, 𝐼24

0
0

] 6 7 

Under Topology 1, the measurement matrix 𝑴1 and corre-

lation matrix 𝓐1 can be organized as follows: 

𝑴1 = [

1 0 0 0
0 2 2 1
0 2 0 0
0 1 0 0

] ,𝓐1 = [

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

]  (10) 

The rank of the observability matrix is rank(𝑾1) = 6 < 7. 

Thus, the current system is unobservable with a maximum 

number of switching 7 − 6 = 1. According to (9), the meas-

urement dispersion 𝜍1 is 0.1406. Then, the topology with the 

highest measurement dispersion is selected from all candidate 

topology sets for switching. Assume that there are three can-

didate topologies, as shown in Fig. 2 (topologies 2, 3, and 4): 

The measurement matrix and correlation matrix can be or-

ganized separately as follows: 

𝑴2 = [

1 0 0 0
0 2 2 0
0 2 0 0
0 0 0 0

] ,𝓐2 = [

0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

]  (11a) 

𝑴3 = [

1 0 0 0
0 2 2 1
0 2 0 0
0 1 0 0

] ,𝓐3 = [

0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

]  (11b) 

𝑴4 = [

1 0 0 0
0 2 0 1
0 0 0 0
0 1 0 0

] ,𝓐4 = [

0 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

]  (11c) 

The measurement dispersion can be calculated, where 𝜍2 =
0.3704, 𝜍3 = 0.3148, 𝜍4 = 0.5. Therefore, topology 4 is se-

lected as the switching path. After switching, the rank of the 

combined matrix is 7, satisfying the stochastic observability 

condition. The calculation process of the combined matrix can 

be found in the Appendix.D. 

III. STATE ESTIMATION OF UNOBSERVABLE RSADN BASED 

ON STATE TRANSFORMATION 

In this section, the state estimation algorithm is designed for 

the subsystem observers. The state of each subsystem will be 

organized into an observer for the entire state. An improved 

UKF approach is applied to solver the state estimation problem. 

The design step is simple and constructive to ensure the accu-

racy and computational speed. 

A. Transformation of State Variables  

Let 𝑾𝑘  be the observability matrix of the 𝑘-th subsystem 

defined in (5). Because each subsystem is unobservable, 

rank(𝑾𝑘) = 𝓈𝑖 < 𝓈. The base vector 𝒀𝑘 matrix is defined as 

follows: 

𝒀𝑘 = Base(ker(𝑾𝑘)) ∈ ℝ
𝓈×(𝓈−𝓈𝑘) (12) 
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where ker (∗)  is the kernel or null space, ker(𝑾𝑘) = {𝜀 ∈
ℝ𝓈−𝓈𝑘|𝑾𝑘𝜀 = 0}; Base(∗)  is to take the base vector in the 

space ∗. 
Select any matrix 𝒁𝑘 ∈ ℝ

𝓈×𝓈𝑘  to form the state transfor-

mation matrix 𝑻𝑘, and make 𝑻𝑘 invertible: 

𝑻𝑘 = [𝒀𝑘 , 𝒁𝑘] (13) 

The inverse of 𝑻𝑘 is decomposed into: 

𝑻𝑘
−1 = [

𝑮𝑘
𝑭𝑘
] , 𝑮𝑘 ∈ ℝ

(𝓈−𝓈𝑘)×𝓈, 𝑭𝑘 ∈ ℝ
𝓈𝑘×𝓈 (14a) 

𝑭 = [

𝑭1
𝑭2
⋮
𝑭𝑘

] ∈ ℝ𝓈Θ×𝓈,𝓈Θ = ∑ 𝓈𝑖𝑘
𝑖=1   (14b) 

Lemma 1: 1) ker(𝑭𝑘) = ker (𝑊𝑘); 2) ker(𝑭) = ker (𝑾Θ). 
The detailed proof is provided in Appendix A.  

The state transformation �̃�𝑘 = 𝑻𝑘
−1𝒙  can be decomposed 

into: 

�̃�𝑘 = 𝑻𝑘
−1𝒙 = [

𝑮𝑘𝒙
𝑭𝑘𝒙

] = [
𝒗𝑘
𝒛𝑘
] (15) 

After this transformation, the system state transition matrix 

𝑨𝑘 and measurement matrix 𝑯𝑘 can be converted to 

�̃�𝑘 = 𝑻𝑘
−1𝑨𝑘𝑻𝑘, �̃�𝑘 = 𝑯𝑘𝑻𝑙 (16) 

and �̃�𝑘 and �̃�𝑘 have the following structures: 

�̃�𝑘 = [
�̃�𝑘
11 �̃�𝑘

11

0 �̃�𝑘
22
] , �̃�𝑘

22 ∈ ℝ𝓈𝑘×𝓈𝑘 

�̃�𝑘 = [0, �̃�𝑘
2], �̃�𝑘

2 ∈ ℝ1×𝓈𝑘  

(17) 

Thus, only the transformed state variable 𝒛𝑘  needs to be 

focused on, and the system model (1) can be transformed into 

(18). 

{
𝒛𝑘+1 = �̃�𝑘

22𝒛𝑘

𝒚𝑘 = �̃�𝑘
2𝒛𝑘

 (18) 

and �̃�𝑘
22, �̃�𝑘

2  is observable. The observer for the 𝑘-th subsystem 

will estimate 𝒛𝑘 only.  

Define the true value, estimated value, and estimated error as 

follows: 

𝒛 = [

𝒛1
𝒛2
⋮
𝒛𝑘

] ∈ ℝ𝓈Θ , �̂� = [

�̂�1
�̂�2
⋮
�̂�𝑘

] ∈ ℝ𝓈Θ  (19a) 

𝒆𝑘 = 𝒛𝑘 − �̂�𝑘 , 𝒆 = 𝒛 − �̂� (19b) 

𝝁𝑘 = ||𝒆𝑘||, 𝝁 = ||𝒆|| (19c) 

B. State Estimation Method Based on Improved UKF 

1) State estimation based on UKF 

The improved UKF is utilized to solve (18). First, the sigma 

point set is constructed using the UT. Owing to the high di-

mensionality of the state variables in the unobservable RSADN, 

this paper chooses the symmetric proportional correction sam-

pling method to ensure the accuracy and numerical stability of 

the algorithm. 

For subsystem 𝑘, select 2𝓈𝑘 + 1 sets of sigma points with 

the same mean and variance as the state vector. The sigma point 

set and its weights are shown as follows: 

𝝌𝑖
− = {

�̅�𝑘 𝑖 = 0

�̅�𝑘 + (√(𝓈𝑘 + 𝜑)𝑷𝑘)𝑖 𝑖 = 1,… ,𝓈𝑘

�̅�𝑘 − (√(𝓈𝑘 + 𝜑)𝑷𝑘)𝑖 𝑖 = 𝓈𝑘 + 1,… ,2𝓈𝑘

  (20a) 

𝑊m
(𝑖)
= {

𝜑

𝓈𝑘+𝜑
𝑖 = 0

1

2(𝓈𝑘+𝜑)
𝑖 = 1,… ,2𝓈𝑘

  (20b) 

𝑊c
(𝑖)
= {

𝜑

𝓈𝑘+𝜑
+ 1 − 𝑒2 + 𝜉 𝑖 = 0

1

2(𝓈𝑘+𝜑)
𝑖 = 1,… ,2𝓈𝑘

  (20c) 

where 𝝌𝑖
− is the 𝑖-th sigma point constructed; the tuning pa-

rameter 𝜑 = 𝑒2(𝓈𝑘 + 𝛿) − 𝓈𝑘  is used to control the distance 

from the point to the mean. Further, 𝑒 is the proportional cor-

rection factor, with the commonly used values being 10−4 ≤
𝑒 ≤ 1 for Gaussian distributions; 𝛿 is the secondary sampling 

factor, usually set as 0 or 3 − 𝓈𝑘; and 𝜉 is the candidate pa-

rameter, and adjusting 𝜉 can improve the accuracy of variance 

approximation. In addition, (√(𝓈𝑘 + 𝜑)𝑷𝑘)𝑖  represents the 

𝑖-th column; 𝑊m
(𝑖)

 and 𝑊c
(𝑖)

 are weights for mean and variance 

respectively. 

Substitute each set of sigma points into (18) for propagation. 

The mean and covariance of the propagated sigma point set are 

calculated as follows: 

�̃�𝑘+1 = �̃�𝑘
22𝝌𝑖

−  (21a) 

�̅�𝑘+1 = ∑𝑊m(𝑖)�̃�𝑘+1  (21b) 

�̃�𝑘 = ∑𝑊c(𝑖)(�̃�𝑘+1 − �̅�𝑘+1)(�̃�𝑘+1 − �̅�𝑘+1)
T + 𝑸𝑘  (21c) 

Based on the predicted values, the UT is performed again 

according to (20) to obtain a new sigma point set. Substitute the 

new sigma point into (18) to obtain the measurement prediction 

values. Calculate the measurement prediction mean and co-

variance matrix, which are shown as follows: 

𝝌𝑖
+ =

{
 
 

 
 
�̅�𝑘+1 𝑖 = 0

�̅�𝑘+1 + (√(𝓈𝑘 + 𝜑)�̃�𝒌)
𝑖
𝑖 = 1,… , 𝓈𝑘

�̅�𝑘+1 − (√(𝓈𝑘 + 𝜑)�̃�𝒌)
𝑖
𝑖 = 𝓈𝑘 + 1,… ,2𝓈𝑘

  (22a) 

�̃�𝑘+1 = �̃�𝑘
2𝝌𝑖

+  (22b) 

�̅�𝑘+1 = ∑𝑊m
(𝑖)
�̃�𝑘+1  (22c) 

�̃�𝑦𝑦,𝑘 = ∑𝑊c
(𝑖)(�̃�𝑘+1 − �̅�𝑘+1)(�̃�𝑘+1 − �̅�𝑘+1)

T + 𝑹𝑘  (22d) 

�̃�𝑧𝑦,𝑘 = ∑𝑊c
(𝑖)(�̃�𝑘+1 − �̅�𝑘+1)(�̃�𝑘+1 − �̅�𝑘+1)

T  (22e) 

where �̃�𝑦𝑦,𝑘 , �̃�𝑧𝑦,𝑘  are the covariance and cross-covariance 

matrices of the predicted measurements, respectively. 

Then calculate the Kalman gain, and the state vector and 

covariance matrix are updated to obtain the state estimation 

result, which is illustrated as follows: 

𝑲𝑘+1 = �̃�𝑧𝑦,𝑘(�̃�𝑦𝑦,𝑘)
−1

  (23a) 

�̂�𝑘+1 = �̃�𝑘+1 + 𝑲𝑘+1(𝒚𝑘+1 − �̃�𝑘+1)  (23b) 
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�̂�𝑘+1 = �̂�𝑘 −𝑲𝑘+1�̃�𝑦𝑦,𝑘𝑲𝑘+1
T   (23c) 

Finally, invert the transformed state variable �̂�𝑘+1 to 𝒙𝑘+1: 

�̂�𝑘+1 = 𝑭𝑘𝒙𝑘 = 𝑭𝑘𝑨𝑘𝒙𝑘 = 𝑭𝑘𝑨𝑘𝚽�̂�𝑘+1  (24a) 

𝚽 = (𝑭′𝑭)−1𝑭  (24b) 

𝒙𝑘+1 = 𝚽�̂�𝑘+1  (24c) 

2) Improved fault-tolerant noise statistical estimator 

To reduce the impact of the process noise on the accuracy, a 

new noise statistic estimator is introduced to ensure robustness 

while retaining most of the covariance correction terms. The 

improved fault-tolerant noise statistical estimator comprised an 

unbiased noise statistical estimator and biased noise statistical 

estimator, which is described as follows: 

𝑸𝑘+1 = (1 − 𝑑𝑘)𝑸𝑘 + 

𝑑𝑘[diag(�̂�𝑘 − �̅�𝑘)
2 − (�̂�𝑘 − �̃�𝒌 +𝑸𝑘)]  

(25a) 

𝑑𝑘 =
1 − 𝑏

1 − 𝑏𝑘+1
 (25b) 

where 𝑑𝑘 is the comprehensive forgetting factor, 𝑏 is a constant 

which is set to be 0.96. 

The subtraction in (25) may still cause the estimated noise 

covariance matrix to lose semi-positive definiteness. Therefore, 

(25) is further transformed into (26), which is a biased estimate. 

𝑸𝑘+1 = (1 − 𝑑𝑘)𝑸𝑘 + 

𝑑𝑘[diag(�̂�𝑘 − �̅�𝑘)
2 + 𝑲𝑘�̃�𝑦𝑦,𝑘𝑲𝑘

T]  
(26) 

In summary, an improved fault-tolerant statistical noise es-

timator is obtained by combining a biased noise statistical 

estimator with an unbiased noise statistical estimator. 

C. Implementation of State Estimation 

The flowchart of the proposed state-estimation method is 

shown in Fig. 3.Firstly, check whether the historical operational 

data meet the requirements of stochastic observability. By 

calculating the measurement dispersion, select the switching 

path of the unobservable RSADN to reduce frequent topolog-

ical switching. Subsequently, the transformation matrix is 

constructed, and state estimation is performed based on the 

improved UKF.  

Remark: For scenarios with sufficient measurements, if 

measurement interruption leads to unobservability, the pro-

posed method can still demonstrate effective adaptability. 

However, if there are inadequate measurements, the stochastic 

observability may remain unsatisfactory, even after several 

switches. Therefore, the proposed method is not applicable. 

Additional measurements must be configured for the RSADN. 

In summary, the proposed method based on RSSs can ef-

fectively solve the operational state of the unobservable 

RSADN. It can conduct accurate state estimation under unob-

servable conditions and ensure computational speed. 

 

Start

Check historical operational data

No

Yes

Calculate the current topology measurement 

dispersion according to (12)

Construct the candidate topology set and calculate 

the rank of the measurement matrix, adjacency 

matrix, measurement dispersion, and observability 

matrix, respectively

Choose a switching path based on the principle 

of increasing measurement dispersion

Construct the transformation matrix and 

transform the state variables

Perform state estimation based on 

improved UKF

Obtain measurement data from 

switched subsystems

Inverse transformation of state variables

End

Satisfy stochastic observability?

Modeling of Randomly Switched 

Unobservable Distribution Networks

State Estimation Based on 

State Transformation

 
Fig. 3. Flowchart of state estimation method. 

IV. CASE STUDIES AND ANALYSIS 

In this section, the effectiveness of the proposed state esti-

mation method is verified using modified IEEE 33-node and 

IEEE 123-node networks. The proposed method is imple-

mented with MATLAB R2020a. All numerical experiments are 

carried out on an Intel Core i7 @ 3.20GHz computer with 

16GB RAM. 

A. Analysis of Measurement Configuration 

The topology of the modified IEEE 33-node distribution 

network is shown in Fig. 4. The system consists of 32 lines with 

a rated voltage level of 12.66 kV. The total active and reactive 

power demands are 3715.0 kW and 2300.0 kVAr, respectively. 

To consider the impact of the high penetration of DGs, six 

photovoltaics (PVs) and seven wind turbines (WTs) are inte-

grated into the system, whose active power reaches approxi-

mately 100% of the peak demand. The DG capacity parameters 

are listed in Table II. The daily DGs and loads operation curves 

are shown in Appendix Fig. B. 
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9
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26 27 28 29 30 31 32 3323 24 25

19 20 21 22

15

ang

angang PV WT WT PV PVWT

PV WT WT WT

PV

PV WT

Nodal power injection measurement

Residential area Commercial Area Industrial area

Line power measurement

Line current measurement

Nodal voltage amplitude measurement

Nodal voltage phase angle measurement

 
Fig. 4. Structure of modified IEEE 33-node distribution network. 

TABLE II 

PARAMETER OF DG INVERTER 

Location Type 
Capacity 

(kVA) 
Location Type 

Capacity 

(kVA) 

5 PV 100 10 WT 100 

9 PV 100 11 WT 200 

16 PV 300 21 WT 200 

18 PV 300 29 WT 200 

20 PV 300 17 WT 500 

24 PV 300 31 WT 500 

   33 WT 500 

To verify the effectiveness of the proposed method, the 

following four schemes are considered. 

Scheme I: The true value of operational state is obtained 

from OpenDSS. 

Scheme II: The traditional Gauss-Newton method is uti-

lized to solve the state estimation. 

Scheme III: The proposed method is utilized to solve the 

state estimation. 

Scheme IV: The matrix completion method in [19] is uti-

lized to solve the state estimation (seen in Appendix B). 

Scheme V: The pseudo-measurement-based method in [14] 

is utilized to solve the state estimation. 

The true value is simulated using OpenDSS [26], and the 

measurement value is generated by adding random meas-

urement noise of the Gaussian distribution to the real value. 

For simplification, the measurement noise standard deviations 

of AMI, SCADA, and distribution phasor measurement unit 

(D-PMU) are 5%, 1%, and 0.1%, respectively. 

The solutions for the estimation accuracy in Schemes II, III, 

and IV are compared. The mean absolute percentage error 

(MAPE) is selected to estimation accuracy analysis. 

Mean Absolute Percentage Error (MAPE) 

=
1

𝑁
∑ |

𝑉𝑖,se−𝑉𝑖,true

𝑉𝑖,true
|𝑁

𝑖=1 +
1

𝑁−1
∑ |

𝜃𝑖,se−𝜃𝑖,true

𝜃𝑖,true
|𝑁

𝑖=2   
(27) 

The relationship between the measurement redundancy and 

MAPE is shown in Fig. 5. When the measurement redundancy 

exceeds 1 (observable condition), the estimation accuracies of 

Schemes II, III, and V are at the same level, and both are su-

perior to those of Scheme IV. When the measurement redun-

dancy is less than 1, Scheme II is no longer applicable, and 

Scheme III is optimal. Thus, the proposed method can ensure a 

high accuracy of state estimation, even with unobservable 

networks, which can effectively improve the perception ability 

of the distribution network. 

 
Fig. 5. Relationship between measurement redundancy and MAPE. 

B. Analysis of Unobservable Conditions 

Table III lists the number of measurements and state varia-

bles. Currently, the rank of the combined matrix is 57, which is 

less than 65. Thus, the current measurement configuration is 

not observable.  

According to Assumption 3, the network must perform a fi-

nite number of active switches to satisfy the stochastic ob-

servability. The measurement dispersion can be calculated to be 

0.3429 based on (9). The proposed switching-guiding mecha-

nism is utilized to select the switching path, as listed in Table 

IV. The direction with the highest measurement dispersion is 

selected for each switch. After three network switches, the 

combined matrix reaches full column rank, satisfying the re-

quirement for stochastic observability. 

To verify the effectiveness of the proposed method under 

unobservable conditions, two other indices are selected for the 

estimation accuracy analysis. 

Magnitude Error (ME) =
|𝑉se−𝑉true|

𝑉true
  (28a) 

Phase Angle Error (PAE) = |𝜃se − 𝜃true|  (28b) 

TABLE III 

MEASUREMENT CONFIGURATION OF UNOBSERVABLE CONDITION 

Measurement State 

Type 
Number of 

measurements 

Total number 

of measure-
ments 

Number 

of state 
variable 

Measurement 

redundancy 

AMI 28 

62 65 0.93 SCADA 18 

PMU 15 

TABLE IV 

SWITCHING PATH OF THE IEEE 33-NODE DISTRIBUTION NETWORK 

Or

der 
Closed switch Open switch 

Measurement 

dispersion 

Rank of com-

bined matrix 

1 
25-29, 8-21, 

12-22 
23-24, 6-7, 

9-10 
0.4193 60 

2 
6-7, 9-10, 

23-24 

8-21, 2-19, 

3-23 
0.4140 64 

3 
18-33, 9-15, 

2-19, 3-23 

25-29, 12-22, 

10-11, 6-26 
0.3543 65 

Table V lists the state estimation results under the unob-

servable condition. Owing to insufficient measurement con-

figuration, the traditional Gauss–Newton method is no longer 

applicable. In contrast, Schemes III, IV, and V can still be 

implemented. In particular, the accuracy of the proposed 
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method is comparable to that of Scheme IV in terms of the 

voltage amplitude and is significantly better than that of 

Scheme IV in terms of the voltage phase angle. Compared with 

Scheme IV, Scheme III improves the estimation accuracy by 

35.6% in MAPE . In Scheme V, the proportion of pseudo 

measurements is 60%. The pseudo-measurement-based method 

(Scheme V) exhibits superior accuracy in phase angle com-

pared to the proposed method (Scheme III), but demonstrates 

slightly lower accuracy in amplitude. Further inference can be 

made that pseudo measurements have a greater impact on 

voltage amplitude estimation. 

TABLE V 

COMPARISON OF ESTIMATION ERRORS UNDER UNOBSERVABLE CONDITION 

 ME (%) PAE (rad) 
MAPE 

 Average Maximum Average Maximum 

Scheme II / / / / / 

Scheme III 0.4662 0.9894 0.0029 0.0082 1.4649 

Scheme IV 0.4213 0.8262 0.0126 0.0266 2.2749 

Scheme V 0.4702 0.9902 0.0025 0.0053 1.5539 

The estimation error of the proposed method mainly results 

from the modeling error in (4). The next main task is to reduce 

the model error in Holt’s two-parameter exponential smoothing 

method. For the matrix completion method, the inability to 

integrate multi-source measurements into a single matrix af-

fects the estimation accuracy. Specifically, a relatively small 

number of D-PMU measurements result in significant errors in 

the voltage phase angle. 

For most distribution systems, especially for the unobserva-

ble ones, D-PMU measurements are unavailable. Thus, the 

proposed method is tested under pure AMI and SCADA 

measurements. The measurement configuration is based on Fig. 

4, with D-PMU measurements removed. The results of state 

estimation are shown in Table VI. 

TABLE VI 

COMPARISON OF ESTIMATION ERRORS WITH AMI AND SCADA 

MEASUREMENTS 

 ME (%) PAE (rad) 
MAPE 

 Average Maximum Average Maximum 

Scheme II / / / / / 

Scheme III 1.2963 1.9633 0.0042 0.0091 4.2505 

Scheme IV 0.9129 1.6951 0.0198 0.0345 5.7531 

Scheme V 1.4287 2.1056 0.0035 0.0068 5.0165 

It can be seen that the estimation error has increased com-

pared to Table V. Due to the higher measurement accuracy of 

D-PMU compared to AMI and SCADA, the estimation error 

increases in pure AMI and SCADA measurement scenarios, 

which demonstrates the improvement of D-PMU measurement 

on estimation accuracy. Besides, the proposed method (Scheme 

III) still has lower estimation errors compared to the matrix 

completion method (Scheme IV) and the pseudo measurement 

method (Scheme V) in MAPE, further verifying the advantages 

of the proposed method. Especially, the lack of D-PMU 

measurement leads to larger errors in voltage phase angle. 

C. Analysis of Observable Conditions 

To verify the effectiveness of the proposed method under 

observable conditions, all load nodes are monitored with AMI 

measurements, and some nodes and lines are monitored with 

SCADA and D-PMU measurements. The measurement con-

figurations are listed in Table VII. In this case, the measure-

ment configuration already satisfies the stochastic observa-

bility condition according to (6); therefore, the state estima-

tion can be solved directly. 

TABLE VII 

MEASUREMENT CONFIGURATION OF OBSERVABLE CONDITION 

Measurement State 

Type 
Number of 

measurements 

Total number 

of measure-
ments 

Number 

of state 
variable 

Measurement 

redundancy 

AMI 66 

101 65 1.53 SCADA 18 

PMU 17 

Table VIII and Fig. 6 present the state estimation results. 

Taking subsystem 6 as an example, when the measurement 

configuration is observable, the proposed method (Scheme III) 

exhibits an estimation accuracy comparable to that of the tra-

ditional Gauss-Newton method (Scheme II) and the pseu-

do-measurement-based method (Scheme V). The main source 

of error is the linearized measurement function during the 

solving process. However, in the proposed method, in addition 

to the assumption of linearized measurement function, there are 

also modeling errors in the state transition process (4) and the 

UKF solving process (20)-(22). Due to the calculation starting 

from the zero initial state and the small number of topology 

switches, the model does not closely approach the actual non-

linear model. Besides, the predicted covariance matrix 𝑸𝑘 has a 

significant impact on the performance of the UKF algorithm. 

Although the improved fault-tolerant noise statistical estimator 

(26) is proposed in this paper, the process error cannot be 

completely eliminated. 

TABLE VIII 

COMPARISON OF ESTIMATION ERRORS UNDER OBSERVABLE CONDITION 

 ME (%) PAE (rad) 
MAPE 

 Average Maximum Average Maximum 

Scheme II 0.3221 1.1682 0.0013 0.0027 0.8531 

Scheme III 0.4614 1.2465 0.0015 0.0032 0.9635 

Scheme IV 1.3220 2.3873 0.0237 3.4116 4.8564 

Scheme V 0.5654 1.3020 0.0012 0.0021 0.9783 

Scheme II is based on an accurate nonlinear power flow 

model but is not applicable to Scheme III. The estimation ac-

curacy of the matrix completion method (Scheme IV) is worse 

than that of Scheme III, especially in the voltage phase angle. 

Compared to Scheme IV, Scheme III improves estimation 

accuracy by over 40% in terms of MAPE. The average estima-

tion error of the nodal voltage magnitude in Scheme III is less 
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than 1%, which satisfies the accuracy requirements of practical 

applications. 

 
(a) Nodal voltage magnitude of subsystem 6. 

 
(b) Nodal voltage phase angle of subsystem 6. 

Fig. 6. Comparison of state estimation results. 

D. Computational Efficiency Analysis 

Table IX lists the computational times of state estimation 

with different schemes under different conditions. Note that the 

computational time in Table IX only includes the calculation 

time and does not include the time for topology switching. 

The matrix completion method in Scheme IV is the most 

time-consuming because it solves the optimization problem. 

The computational time increases further in large-scale distri-

bution networks. The proposed method requires only matrix 

calculations, which significantly reduced the computational 

burden. Scheme III is more efficient than Scheme IV, doubling 

the computation speed under unobservable conditions, which 

effectively ensures real-time performance of state estimation. 

However, the computational time of Scheme III is more than 

Scheme V due to the algorithm design. Improving computa-

tional efficiency is the focus of our future work. 

TABLE IX 

COMPUTATIONAL TIME OF THE IEEE 33-NODE DISTRIBUTION NETWORK 

 Computational time (s) 

 observable unobservable  

Scheme II 0.0251 / 

Scheme III 1.5588 0.8194 

Scheme IV 2.7947 1.6750 

Scheme V 1.0951 1.1396 

E. Scalability Analysis 

1) Modified IEEE 123-node distribution network 

The modified IEEE 123-node distribution network is 

adopted to verify the scalability of the proposed method. Fig. 7 

shows the topology of the test system. Six PVs with capacities 

of 1000 kWp and three WTs with capacities of 1000 kVA are 

integrated into the distribution network. The measurement 

redundancy is 0.89. 
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Fig. 7. Structure of modified IEEE 123-node distribution network. 

TABLE X 

SWITCHING PATH OF THE IEEE 123-NODE DISTRIBUTION NETWORK 

Or
der 

Closed switch Open switch 
Measurement 

dispersion 

Rank of 

combined 

matrix 

1 123-109, 57-73 98-122, 55-95 0.5986 219 

2 
52-117, 55-95,  
98-122, 26-45 

123-109, 57-73, 
14-19, 41-43 

0.4880 231 

3 
14-19, 41-43,  
16-96, 40-67, 

19-120 

52-117, 98-122, 
26-45, 119-53, 

19-120 

0.4532 245 

Due to the unobservable measurement configuration, the 

switching path is listed in Table X. The state estimation error 

and computational time are listed in Tables XI. The proposed 

method has advantages in terms of both the estimation accuracy 

and computational speed. The computational speed is improved 

by nearly 20 times, which ensures the real-time performance of 

the state estimation. 

TABLE XI 

COMPARISON OF ESTIMATION RESULTS OF THE IEEE 123-NODE DISTRIBUTION 

NETWORK 

 ME (%) PAE (rad) 

MAPE 
Computa-

tional 

time (s)  
Aver-

age 

Maxi-

mum 

Aver-

age 

Max-

imum 

Scheme 
II 

/ / / / / / 

Scheme 
III 

0.3313 0.9494 0.0388 0.1029 1.1649 52.6863 

Scheme 

IV 
0.3660 1.0262 0.0766 0.1453 1.8749 

1284.534

9 
Scheme 

V 
0.3522 0.9956 0.0325 0.0780 1.3024 32.8169 

2) Practical pilot in Guangzhou, China 

A case from a practical pilot in Guangzhou, China is adopted 

to verify the feasibility of the proposed method. The topology 

and measurement configuration are shown in Fig. 8. The sys-

tem consists of 52 lines, with a rated voltage level of 10 kV, and 

the total active power and reactive power demands are 8790 
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kW and 1786 kVAr, respectively. It is worth noting that the 

network structure and parameters are derived from the real 

practical pilot, and the operational states of sources and loads 

are derived from simulations. The measurement values gener-

ated by simulation and scheme settings are similar to those in 

Section IV.A. 
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Fig. 8. Structure of the practical pilot in Guangzhou. 

TABLE XII 

COMPARISON OF ESTIMATION RESULTS OF THE PRACTICAL PILOT IN 

GUANGZHOU 

 ME (%) PAE (rad) 

MAPE 
Computa-

tional 

time (s)  
Aver-
age 

Maxi-
mum 

Aver-
age 

Maxi-
mum 

Scheme 

II 
/ / / / / / 

Scheme 
III 

0.5419 1.2932 0.0173 0.0340 1.1645 4.9125 

Scheme 

IV 
1.3324 1.5328 0.0176 0.0221 2.2512 7.8951 

Scheme 

V 
0.7365 1.6874 0.0126 0.0260 1.3688 3.0091 

Table XII shows the state estimation results of the practical 

pilot in Guangzhou. The proposed method still has advantages 

in terms of both the estimation accuracy and computational 

speed, which is consistent with previous analysis. Due to the 

limited D-PMU measurements, the estimation error of the 

proposed method is slightly lower than the results of the sim-

ulation cases, but still meets practical needs. 

In summary, the proposed state estimation method for un-

observable distribution networks can conduct accurate state 

estimation under unobservable conditions and has satisfactory 

computational speed in large-scale systems. Thus, the proposed 

method is a promising solution for state perception. 

V. CONCLUSIONS 

To realize the accurate and fast state perception of unob-

servable distribution networks, this paper proposes a state es-

timation method for unobservable distribution networks based 

on random state switching. First, the RSADN is modeled, and 

stochastic observability is defined to cope with unobservable 

conditions. The switching-guiding mechanism is designed to 

reduce the frequent switching of the RSADN. Subsequently, 

the improved UKF algorithm is utilized to solve the state es-

timation problem based on state transformation. The results 

show that the proposed method can conduct accurate state 

estimation under unobservable conditions and has a satisfactory 

computational speed in large-scale systems. 

Future research can be conducted from the following per-

spectives. First, simplifying the algorithm process and im-

proving code efficiency to further improve efficiency is worth 

studying. Second, reducing the error of linear model further 

improves estimation accuracy. Finally, robustness to bad data 

should be thoroughly investigated in unobservable distribution 

networks. 
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APPENDIX 

A. Proof of Lemma 1 

1) From 𝑻𝑘 , 𝑭𝑘𝒀𝑘 = 0  holds. If 𝝀 ∈ ker (𝑾𝑘) , then 𝝀 =
𝒀𝑘𝝕 for some 𝝕 ∈ ℝ𝓈−𝓈𝑘. This implies that 𝑭𝑘𝝀 = 𝑭𝑘𝒀𝑘𝝕 =
0. Hence, 𝝀 ∈ ker (𝑭𝑘). 

Conversely, if 𝝀 ∈ ker (𝑭𝑘), then 𝑭𝑘𝝀 = 0 and the follow-

ing equation holds: 

𝝀 = 𝑻𝑘𝑻𝑘
−1𝝀 = [𝒀𝑘, 𝒁𝑘] [

𝑮𝑘
𝑭𝑘
] 𝝀 

= [𝒀𝑘, 𝒁𝑘] [
𝑮𝑘𝝀
0
] = 𝒀𝑘𝑮𝑘𝝀 

(A.1) 

which implies that 𝝀 ∈ Range(𝒀𝑘) = ker (𝑾𝑘). 
2) By defining 𝑭 and 𝑾Θ, the following equation holds: 

ker(𝑾Θ) = ⋂ ker(𝑾𝑖)
𝑘
𝑖=1   (A.2) 

ker(𝑭) = ⋂ ker(𝑭𝑖)
𝑘
𝑖=1   (A.3) 

As ker(𝑾𝑖) = ker(𝑭𝑖), the conclusion holds. 

B. Operation curves of DGs and loads. 

 

(a) Operation curves of loads. 

 

(b) Operation curves of DGs. 

Fig. B. Operation curves of DGs and loads. 

C. Matrix Completion State Estimation Method 

The matrix completion state estimation method can be ex-

pressed as the following semi-definite positive optimization 

problem: 

min
𝑿,𝑫1,𝑫2

trace(𝑫1) + trace(𝑫2) + ∑ 𝑤𝜖||𝝐||𝝐∈𝑬   (A.4) 

s. t. ||𝑿Ψ −𝑴Ψ||𝐹 ≤ 𝛿   (A.5) 

[
−𝜏𝑟
−𝜏𝑐

] ≤

[
 
 
 ℜ(𝒗−1 − (𝑨 [

ℜ(𝒔−1)

ℑ(𝒔−1)
] + 𝒘))

ℑ(𝒗−1 − (𝑨 [
ℜ(𝒔−1)

ℑ(𝒔−1)
] + 𝒘))

]
 
 
 

≤ [
𝜏𝑟
𝜏𝑐
],  (A.6) 

−𝜸 ≤ |𝒗−1| − (𝑪 [
ℜ(𝒔−1)

ℑ(𝒔−1)
] + |𝒘|) ≤ 𝜸  (A.7) 

[
−𝛼𝑟
−𝛼𝑐

] ≤ [
ℜ(𝒔1 − (𝒗1(𝒀11

∗ 𝒗1
∗ + 𝒀1𝐿

∗ 𝒗−1
∗ )))

ℑ(𝒔1 − (𝒗1(𝒀11
∗ 𝒗1

∗ + 𝒀1𝐿
∗ 𝒗−1

∗ )))
] ≤ [

𝛼𝑟
𝛼𝑐
]  (A.8) 

𝝐 ≥ 𝟎, ∀𝝐 ∈ 𝑬  (A.9) 

[
𝑫1 𝑿

𝑿T 𝑫𝟐
] ≽ 0  (A.10) 

In this paper, 𝛿 = 0.01. This problem can be solved directly 

using a semi-definite positive optimizer (e.g., SeDuMi). 

D. Calculation process of the combined matrix 

The observability matrix 𝑾1 of topology 1 is shown as fol-

lows.  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 2 3 4 5 6 7

-1379 1971 -258 -334 -703 1004 -131

-703 1004 -131 -170 1379 -1971 257

0 1380 -1379 0 0 702 -702

0 703 -703 0 0 -1387 1387

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1971 -258 -333 -703 1044 -131

-703 1004 -131 -170 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

1 2 3 4 5 6 7

W1=

rank(W1) = 6
 

The topology 4 is selected as the switching path, so the 

combined matrix 𝑾Θ is shown as follows. 
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 2 3 4 5 6 7

-1379 1971 -258 -334 -703 1004 -131

-703 1004 -131 -170 1379 -1971 257

0 1380 -1379 0 0 702 -702

0 703 -703 0 0 -1387 1387

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1971 -258 -333 -703 1044 -131

-703 1004 -131 -170 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

41

42

43

44

45

46

47

48

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

1 2 3 4 5 6 7

WΘ =

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1970 -258 -333 -703 1004 -131

-703 1004 -131 -169 1379 -1970 257

0 1379 -1379 0 0 702 -702

0 703 -703 0 0 -1378 1378

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

rank(WΘ) = 7

-1379 1713 0 -333 -703 873 0

-703 873 0 -170 1379 -1713 0

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1713 0 -333 -703 873 0

-703 873 0 -170 1379 -1713 0

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1713 0 -333 -703 873 0

-703 873 0 -170 1379 -1713 0

0 1538 0 -1538 0 -180 0

1 0 0 0 0 0 0

-1379 1713 0 -333 -703 873 0

-703 873 0 -170 1379 -1713 0
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