
Smart Agricultural Technology 12 (2025) 101068

Available online 5 June 2025
2772-3755/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Smart Agricultural Technology

journal homepage: www.journals.elsevier.com/smart-agricultural-technology

FruitQuery: A lightweight query-based instance segmentation model

for in-field fruit ripeness determination

Ziang Zhao a, ,∗, Yulia Hicks a, , Xianfang Sun b, , Chaoxi Luo c

a School of Engineering, Cardiff University, Cardiff, CF243AA, Wales, United Kingdom
b School of Computer Science and Informatics, Cardiff University, Cardiff, CF244AG, Wales, United Kingdom
c College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China

A R T I C L E I N F O A B S T R A C T

Dataset link: ripeness_info

Keywords:

Query-based

Lightweight

Segmentation

Fruit

Ripeness

Accurate fruit instance segmentation at different ripeness stages is critical for developing autonomous harvesting
robots, particularly given the unstructured in-field conditions. In this paper, we combine two in-field fruit datasets
of peaches and strawberries for multiple ripeness stages determination, and propose a lightweight query-based
instance segmentation model named FruitQuery.

The combined dataset contains 3 peach ripeness stages and 4 strawberry ripeness stages, covering various
unstructured conditions of two popular fruits. The model FruitQuery consists of three parts: a backbone, a pixel
decoder and Transformer decoders. Efficient multi-head self-attention modules are introduced to the backbone to
reduce computational overhead, and a pyramid pooling module is added to the pixel decoder to enhance multi-

scale feature fusion. Transformer decoders are then applied to learn a fixed number of queries from features and
generate instance masks, avoiding postprocessing like non-maximum suppression. FruitQuery runs in an end-to-

end way and incorporates the convolution and Transformer to capture fine-grained features related to different
fruits at different ripeness stages.

Extensive experiments on the combined fruit dataset demonstrate that our FruitQuery achieves the highest
average precision of 67.02 with only 14.08M parameters, outperforming 13 state-of-the-art models with 33
variants. It is noted that FruitQuery surpasses three series of YOLO (v8, v9 and v10) by a large margin. Ablation
studies and visualizations also show its robust feature extraction with fewer parameter usage, indicating that
the query-based design is effective in localizing fruit. These results highlight FruitQuery’s compelling balance
between segmentation performance and model size, offering the potential for in-field application.

1. Introduction

1.1. Background

Rapid developments in artificial intelligence have made digitization,
precision, and smart farming key elements in driving the moderniza-

tion of agriculture. In the context of fruit automation production, the
efficient and precise location of the target fruit serves as the founda-

tional prerequisite to building a fruit-picking robot, which senses the
working surroundings and guides the robotic arm to detach the fruit. In
recent years, various harvesting robots have been developed for fruits
and crops, such as kiwifruit [35], apple [23], litchi [29,21], strawberry
[17], green citrus [31], radiata pine [33], sweet pepper [37] and as-

paragus spear [39].

* Corresponding author.

E-mail address: zhaoz60@cardiff.ac.uk (Z. Zhao).

Various computer vision tasks, such as classification, detection and
segmentation, have been applied in the agricultural sector. Segmenta-

tion is one of the most promising domains for practical implementation,
and it has been widely used in various applications because it provides
accurate pixel-level prediction for objects. Segmentation methods in-

clude semantic segmentation and instance segmentation. Specifically,
instance segmentation assigns different labels for individual instances
belonging to the same category, which is relatively more resource-

consuming and complicated than semantic segmentation [13]. Segmen-

tation has been applied to various agricultural applications like mango
yield estimation [24], leaf disease analysis [10], plant growth monitor-

ing [48] and automatic fruit picking [28].

In terms of fruit detection and segmentation, the models can be
mainly divided into Convolutional Neural Network (CNN) based models
and Transformer-based models.

https://doi.org/10.1016/j.atech.2025.101068

Received 17 February 2025; Received in revised form 18 May 2025; Accepted 1 June 2025

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/smart-agricultural-technology
http://orcid.org/0009-0004-6600-5581
http://orcid.org/0000-0002-7179-4587
http://orcid.org/0000-0002-6114-0766
https://drive.google.com/drive/folders/1eDWqo7D3aqbyrugLz6UV4ptm0DY27bFx?usp=drive_link
mailto:zhaoz60@cardiff.ac.uk
https://doi.org/10.1016/j.atech.2025.101068
https://doi.org/10.1016/j.atech.2025.101068
http://creativecommons.org/licenses/by/4.0/

Smart Agricultural Technology 12 (2025) 101068

2

Z. Zhao, Y. Hicks, X. Sun et al.

1.2. CNN-based models

CNN-based models have dominated vision architectures for a long
time, of which Mask R-CNN [14] is the pioneer of instance segmen-

tation. Santos et al. [42] showcased the effectiveness of Mask R-CNN
in detecting, segmenting, and tracking grape clusters, demonstrating
its robust performance across significant variations in shape, colour,
size, and compactness. A Mask R-CNN model was trained and tested
to detect and segment individual blueberries of four cultivars to two
stages of maturity [36]. Similarly, Mask R-CNN and its modified version
are adopted to build strawberry fruit detectors with better universality
and robustness than traditional machine vision algorithms [58,40]. Jia
et al. [19] improved Mask R-CNN by adopting ResNet and DenseNet as
the feature extraction backbone to construct a picking robot vision de-

tector, which significantly improves the recognition accuracy of apples
in the environment of overlaps, agglomerations and occlusions. Besides,
some other CNN-based instance segmentation also emerged. A fast seg-

mentation model for green fruits called FoveaMask was constructed by
introducing a position attention module to the embedding mask branch
to aggregate pixels containing valuable information and enhance robust-

ness capability [20]. Kang and Chen [23] proposed DaSNet-v2 which
combines an instance and a semantic segmentation branch into the
one-stage detection network, which can perform fruit instance segmen-

tation and branches semantic segmentation. Sheng et al. [44] designed
an edge-guided fruit segmentation model, which included modules spe-

cially designed to locate potential target areas and sharpen the edges.

It is noted that You Only Look Once (YOLO) series models have been
widely adopted in fruit detection, classification, and ripeness determi-

nation over the past few years. For instance, Yang et al. [55] introduced
LS-YOLOv8s by integrating YOLOv8s with an LW-Swin Transformer
module to detect and grade strawberry ripeness. Xiao et al. [53] ap-

plied YOLOv8 to classify apple ripeness into three stages. In addition,
He et al. [17] proposed a real-time improved YOLOv5s for robotic straw-

berry harvesting, Yu et al. [56] introduced Stolon-YOLO to detect straw-

berry stolons in greenhouse environments, and Chen et al. [4] combined
fusion clustering with YOLOv5 to tackle Camellia oleifera fruit detection
under multiple occlusions. Further extensions include Zhu et al. [62]’s
modified lightweight YOLO for C. oleifera fruit maturity assessment in
orchards, Ren et al. [41]’s YOLO-RCS for detecting the phenological pe-

riod of Yuluxiang pears, [43]’s multi-scale adaptive YOLO for grape
pedicel instance segmentation, and Ma et al. [32]’s STRAW-YOLO for
identifying strawberries and their key points. These studies reflect the
popularity of YOLO models across diverse fruit applications.

1.3. Transformer-based models

Recently, Vision Transformer (ViT, [9]) have received growing re-

search attention, which is based on sequence-to-sequence prediction.
Compared to the widely-used CNNs in visual perception, ViTs enjoy
great flexibility in modelling long-range dependencies in vision tasks
and introduce less inductive bias. Thus, it is expected that ViTs are likely
to replace or combine with CNNs and serve as the basic component in the
next-generation visual perception system. Based on the vanilla ViT, sev-

eral successive models like DETR [2], MaskFormer [6] and SegFormer
[54] etc have arisen.

Transformer models have been combined with CNN-based models to
conduct segmentation. Niu et al. [38] proposed a semantic segmentation
model called HSI-TransUNet for crop mapping, which could make full
use of the abundant spatial and spectral information of UAV HSI data
simultaneously. Wang et al. [49] proposed a parallel network structure
DualSeg, which leverages the advantages of CNN at local processing
and Transformer at global interaction for grape peduncle segmentation.
Guo et al. [12] presented a Convolutional version of Swin Transformer
to recognize the degree and kind of disease using a convolutional de-

sign. A novel Transformer-based CNN model MTYOLOX, is introduced

for robustly detecting full tree inflorescences in the uncontrolled and
challenging orchard environment [52].

Besides, the Transformer models also have demonstrated good per-

formance in relevant agricultural applications. Sun et al. [45] presented
a focal bottleneck Transformer network FBoT-Net to incorporate high-

level semantic information with strong representation ability and global
and local feature information through the focal bottleneck Transformer
module for small green apple detection. Thai et al. [47] introduced
a Transformer-based leaf disease detection model, namely FormerLeaf
along with the Least Important Attention Pruning algorithm to select
the most important attention heads of each layer in the Transformer
model. An improved Transformer-based strawberry disease identifica-

tion method was proposed to achieve precise and fast recognition of
multiple classes of strawberry diseases [26]. He et al. [16] proposed a
two-stream cross-attention ViT to extract texture appearance and spa-

tial structure for regressing pig weight based on both RGB and depth
images.

1.4. Contributions

Despite significant interest in Transformer-based models, most cur-

rent related research in agriculture focused on CNN-based models, of
which YOLO is the most frequently used model. There is a distinct lack
of exploration into Transformer-based models for fruit instance segmen-

tation and ripeness determination. This gap is critical given the practical
need for accurate and robust methods in complex orchard environments.
Meanwhile, ensuring lightweight and efficient segmentation remains a
major challenge, as many in-field robotic platforms have strict limita-

tions on computational resources and power.

Furthermore, publicly available fruit datasets that include both
instance-level masks and ripeness annotations are difficult to obtain. Al-

though some datasets provide segmentation labels, they rarely include
labels on ripeness stages, hindering progress in the multi-stage evalua-

tion of ripeness.

To address these issues, we release a combined fruit dataset and pro-

pose a lightweight Transformer-based instance segmentation model for
fruit ripeness determination. In the following, we highlight our main
contributions.

1. The strawberry dataset StrawDI_Db1 was annotated with 4 ripeness
stages; the ripeness labels are now publicly available.

2. The NinePeach and StrawDI_Db1 datasets were merged to support
multi-fruit segmentation in complex real-world scenarios.

3. FruitQuery is a lightweight query-based model combining CNN and
Transformer features for end-to-end ripeness segmentation.

4. FruitQuery achieves 67.02 AP with only 14.08M parameters, sur-

passing 13 other models, including three YOLOs (v8, v9, v10).

2. Datasets

2.1. Overview

In this paper, we combined two public fruit datasets, NinePeach
dataset [60] and StrawDI_Db1 dataset [40] to form a unified benchmark
for fruit instance segmentation. Sample images are shown in Fig. 1. Both
datasets provide pixel-wise individual annotation masks for every single
fruit shown in the image.

By merging a tree-fruit (peach) and a berry-fruit (strawberry), the
dataset spans diverse canopy structures, occlusion patterns, and back-

ground textures. This variety offers a more challenging and comprehen-

sive setting for segmentation models, as they must adapt to different
orchard conditions and fruit morphologies.

NinePeach dataset. This dataset is from our previous work [60],
which is the largest and most varied peach dataset among publicly avail-

able peach datasets. It comprises 4599 images (1024×768) of nine peach
cultivars, which were taken under natural illumination and in real-world

Smart Agricultural Technology 12 (2025) 101068

3

Z. Zhao, Y. Hicks, X. Sun et al.

Fig. 1. Images of NinePeach (left) and StraDI_Db1 (right).

Fig. 2. The process of strawberry mask classification.

production settings, including peaches with factors like different intensi-

ties of natural light, multi-fruit adhesion, and occlusion caused by stems
and leaves. The peaches demonstrated different physical scenarios such
as isolated peaches, peaches that are in close proximity to one another,
peaches that are partially obscured by leaves or stalks, and peaches that
are illuminated from the opposite side.

This dataset is divided into training (3240 images) and validation
(1359 images) subsets, and each peach is categorized into three ripeness
stages: unripe, semiripe, and ripe.

StrawDI_Db1 dataset. This dataset contains a total of 3100 images
(1008×756) that were randomly selected from a large number of straw-

berries images, taken from 20 plantations, where images were taken
under different conditions of brightness, at a distance of approximately
20 cm from the ridge during a full picking campaign. This dataset is di-

vided into training (2800 images), validation (100 images) and testing
(200 images) subsets. The training and testing sets are used in this paper.

Unfortunately, this dataset only offers class-agnostic annotations for
strawberries, with no information provided on ripeness. Therefore, we
present our solution to this problem in the following section.

2.2. StrawDI_Db1 ripeness annotation

Based on the previous work [1,46], four ripeness stages are selected
to distinguish the strawberries from StrawDI_Db1 dataset, with the cri-

terion described in Table 1. To achieve this classification, we adopt a
simple but effective method for dividing strawberries into four stages,
as illustrated in Fig. 2.

First, the strawberry instances are cropped from the original images
and background pixels are filtered, as the contextual information from
the background was assumed to introduce noise rather than contribute
to the classification accuracy. All strawberry instances are resized to
280 × 280 pixels.

Second, some machine learning methods like Histogram of Oriented
Gradients, and deep learning methods like pre-trained CNN models are
employed to extract features of the resized strawberry instances. Then,

Table 1
Four ripeness stages of strawberry.

Category Description
rs1 (Green) Dark green, the sizes are relatively small.
rs2 (White) Expanding, the colour is white.
rs3 (Turning) Below 90% red and not ready to be harvested.
rs4 (Red) Over 90% red, edible and ready to be harvested.

the cosine-similarity is adopted to calculate the distance between fea-

tures, resulting in similarity matrices.

Third, we applied K-means clustering to solve the similarity matrices,
partitioning them into four clusters. The clustering method with the best
performance was chosen to give the predictions.

Lastly, the clustering results were manually reviewed and corrected
to ensure alignment with the predefined ripeness criteria. This refine-

ment ensured that the final clustering outcomes adhered to the antici-

pated standards.

2.3. Dataset summary

In summary, our study leverages two large fruit datasets NinePeach
and StrawDI_Db1, and both of them have individual mask annotations
and ripeness stage labels. Peaches and strawberries are two popular
fruits that are widely grown and consumed across the world. By inte-

grating these two datasets, we can effectively cover different scenarios
involving both tree-fruit (peaches) and berry-fruit (strawberries).

The combined dataset contains 7 different classes, with 3 classes
corresponding to peaches and 4 classes to strawberries. This detailed
dataset structure ensures a comprehensive representation of fruit devel-

opment stages, facilitating more accurate and generalizable insights in
subsequent analyses. Examples of images and their associated annota-

tions are presented in Fig. 3, and the distribution of instance categories
is summarized in Table 2. It is noted that the quantity of fruit instances
decreases progressively over time as ripeness advances, revealing a real
pattern that aligns with the natural growth and ripening process of fruit.

Smart Agricultural Technology 12 (2025) 101068

4

Z. Zhao, Y. Hicks, X. Sun et al.

Fig. 3. Examples of fruit instance annotation in NinePeach (left) and StraDI_Db1 (right).

Table 2
The category distribution of the combined dataset.

NinePeach StrawDI_Db1
Category Train Val Category Train Val
unripe 3669 1717 rs1 6693 453
semiripe 3312 1307 rs2 4014 319
ripe 1698 737 rs3 3010 212
/ / / rs4 2517 148

Instance 8679 3761 Instances 16234 1132
Image 3240 1359 Images 2800 100

By training on a combined dataset, the model learns to handle these
complexities across different object types, which enhances its robust-

ness. Additionally, the inclusion of varied fruit types in a unified dataset
can improve the model’s ability to distinguish between different objects,
making it more adaptable to real-world applications where multiple fruit
categories are often present simultaneously.

3. Proposed model

3.1. Model structure

For fruit ripeness determination, we propose an instance segmenta-

tion model FruitQuery following the design of Mask2Former [5], which
consists of a backbone, a pixel decoder and Transformer decoders. The
architecture is illustrated in Fig. 4.

3.1.1. Backbone

It is well-known that the convolutional layer has inductive biases
of locality and spatial invariance, which is capable of extracting low-

level small local features. The self-attention layer has a global receptive
field and allows capturing global context information within an image.
Therefore, these two types of layers are considered to build the backbone
for multi-level feature extraction. The proposed backbone is illustrated
in Fig. 4a.

By combining convolutional layers with stronger generalization per-

formance and self-attention layers with higher model capacity and
stronger learning ability, we assume that the backbone can achieve
better generalization performance and learning ability. Given an input
image, the backbone can generate 4 levels of features, which provide
high-resolution coarse features and low-resolution fine-grained features
that usually boost the performance of fruit segmentation. It is noted that
ConvBlock is removed in the last block in order to reduce the model pa-

rameters.

Patch Embedding. The input image is divided into a grid of non-

overlapping patches, and each patch normally covers a square region
of the image and is transformed into a fixed-dimensional embedding
vector. According to different patch sizes and embedding dimensions,
4 different patch embedding blocks are attached in front of each block.

As patch embedding does not inherently preserve positional informa-

tion within each patch, it is required to add positional encoding to the
subsequent two blocks.

ConvBlock. The ConvBlock is made of several convolutional lay-

ers, with two residual connections. In the first residual connection, two
1 × 1 point-wise convolutional layers (PWConv) are respectively placed
before and after a 5 × 5 convolutional layer. The 5 × 5 convolutional
layer has a larger receptive field to consider larger local regions and
is expected to capture large-scale features like fruit edges, and textures
in images. In the second residual connection, two 1 × 1 point-wise con-

volutional layers are used to perform MLP-like behaviour: increase the
dimension to 4 times and then decrease it to the desired output dimen-

sion. This operation is designed to increase nonlinear representation
capacity and learn richer feature representations, thereby enhancing the
model performance and generalization ability. The 1×1 point-wise con-

volutional layers only involve a single pixel and have fewer parameters
to learn, therefore it is suitable for dimension expansion and compres-

sion.

Efficient Multi-head Self-Attention (EMSA). For each head of the
multi-head self-attention, the query 𝑄, key 𝐾 and value 𝑉 are ob-

tained by applying three linear projections to the input embedding,
including positional encoding. 𝑄, 𝐾 and 𝑉 have the same dimensions
𝑁 ×𝐶 , where 𝑁 =𝐻 ×𝑊 . Then, attention scores are calculated by the
scaled dot-product attention. The scores are normalized using the Soft-

max function to obtain attention weights, which is used to compute a
weighted sum of the 𝑉 vectors of all tokens, as shown in Equation (1),
where 𝑑𝑘 refers to the dimensionality of the key. Tokens with higher
scores contribute more to the output of the self-attention mechanism.

Attention = Softmax(𝑄𝐾𝑇√
𝑑𝑘

)𝑉 (1)

The main bottleneck of the self-attention layer lies in its computa-

tion cost of 𝑂(𝑁2), which scales quadratically with spatial dimension
based on the input embedding. To alleviate this problem, we introduce
an efficient multi-head self-attention (EMSA) based on the spatial re-

duction method proposed in PVT [50]. The main idea of it is to reduce
the length of the sequence with a reduction ratio 𝑅. For reducing com-

putations, an input sequence with shape (𝐶,𝐻 ⋅𝑊) is reshaped to the
�̂� with shape (𝐶 ⋅𝑅2,𝐻 ⋅𝑊 ∕𝑅2) based on Equation (2). Here we use
a convolutional layer with 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 𝑅 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑅 to perform
the reshape operation. Equation (3) refers to a linear layer taking �̂� as
input and generating a new 𝐾 ′ with shape (𝐶,𝐻 ⋅𝑊 ∕𝑅2) as output.

�̂� = Reshape(𝐾,𝑅) (2)

𝐾 ′ = Linear(𝐶 ⋅𝑅2,𝐶)(�̂�) (3)

As a result, the complexity of the efficient self-attention mechanism
is reduced from 𝑂(𝑁2) to 𝑂(𝑁2∕𝑅2). It is noted that a residual MLP
layer is appended at the end of EMSA to increase the model capacity
and avoid overfitting.

Smart Agricultural Technology 12 (2025) 101068

5

Z. Zhao, Y. Hicks, X. Sun et al.

Fig. 4. The proposed backbone and overall architecture of FruitQuery.

Table 3
Specification of our backbones.

Stage Size Layer xs s

𝑆1 𝐻

4 ×
𝑊

4

Patch Embed1 Patch Size = 4, 𝐶 = 𝐶1

EMSA

𝐶1 = 36 𝐶1 = 48
𝐵1 = 1 𝐵1 = 1
𝑅1 = 4 𝑅1 = 4

𝑆2 𝐻

8 ×
𝑊

8

Patch Embed2 Patch Size = 2, 𝐶 = 𝐶2

EMSA

𝐶2 = 72 𝐶2 = 96
𝐵2 = 1 𝐵2 = 1
𝑅2 = 2 𝑅2 = 2

𝑆3 𝐻

16
× 𝑊

16

Patch Embed3 Patch Size = 2, 𝐶 = 𝐶3

EMSA

𝐶3 = 144 𝐶3 = 240
𝐵3 = 3 𝐵3 = 3
𝑅3 = 2 𝑅3 = 2

𝑆4 𝐻

32
× 𝑊

32

Patch Embed4 Patch Size = 2, 𝐶 = 𝐶4

EMSA

𝐶4 = 288 𝐶4 = 384
𝐵4 = 1 𝐵4 = 2
𝑅4 = 1 𝑅4 = 1

To cater to diverse scenarios, we proposed two different settings for
the backbone (s and xs). The specifications are presented in Table 3,
where 𝐶 represents the number of embedded dimensions, and 𝐵 denotes
the number of blocks.

3.1.2. Pixel decoder

Multi-level contextual feature maps play a crucial role in image seg-

mentation, but employing a complex multi-scale feature pyramid net-

work escalates the computational workload. For instance, multi-scale
deformable attention used in Mask2Former demonstrates good perfor-

mance, but it also brings a large number of parameters. To build a
lightweight but effective model, the Feature Pyramid Network (FPN,
[30]) is selected as the pixel decoder, which occupies less than half the
size of the multi-scale deformable attention. FPN works by taking the
feature maps produced by the backbone at different levels (𝑆1, 𝑆2, 𝑆3

and 𝑆4), and building a feature pyramid from top to down (𝑃1, 𝑃2 and
𝑃3) through lateral connections (𝑆4 − 𝑃1, 𝑆3 − 𝑃2, 𝑆2 − 𝑃3).

A pyramid pooling module (PPM, [59]) is added to the top layer 𝑃1
to enlarge the receptive field and fuses the multi-scale features, of which
the detail is shown in Fig. 5. The input feature is divided into multiple
regions of different sizes, using four different adaptive average pooling
to capture information at different receptive field sizes. Then the pooled
features are resized to the same size as the input, and concatenated with
the input feature, resulting in a feature of shape (𝐶 + 4𝑁,𝐻,𝑊). Fi-

nally, a simple convolutional layer is used to transform the shape of
(𝐶 + 4𝑁,𝐻,𝑊) back to (𝐶,𝐻,𝑊) and fuse all information. Since the
pooling operation does not introduce any new parameters, the intro-

duction of PPM enhances the model’s performance without significantly
increasing its computational complexity.

The final output of the pixel decoder comprises features at three res-

olutions, incorporating both high-level features rich in semantics and
low-level features rich in spatial information.

The final output of the pixel decoder integrates multi-scale features
from three different resolutions, combining both high-level semantic in-

formation and low-level spatial details.

3.1.3. Transformer decoder

The Transformer decoder plays a crucial component in the model,
which takes the learned features from the pixel decoder and processes
them to produce the final output predictions. As shown in Fig. 4b, the
decoder follows the paradigm of the standard architecture of the orig-

inal Transformer, transforming 𝑁 embeddings of objects into output
embeddings. It is a stack of decoder layers, each of which consists of
a masked attention layer, a self-attention layer and a feed-forward net-

work (FFN). Each Transformer decoder layer generates predictions for
mask and class, but only the prediction of the last layer is used as the
final prediction, prior layer predictions can be used for auxiliary predic-

tions optionally. We set the number of the Transformer decoder layers
as 3 to achieve a better trade-off between accuracy and model size, and
the feature 𝑃3 from the pixel decoder is used as pixel features.

Smart Agricultural Technology 12 (2025) 101068

6

Z. Zhao, Y. Hicks, X. Sun et al.

Fig. 5. The pyramid pooling module.

Fig. 6. Non-maximum suppression and bipartite matching.

Query Features Initialization. The query features are important in
the Transformer model, as they guide the decoder to attend to the most
significant parts of the input embedding. Previous research indicates
that query features can be initialized from zero [2], or can be updated
by local features [5]. Although these two strategies are effective in gen-

erating query features, they require more decoders and longer training
iterations to refine. Inspired by Deformable DETR, which selects a set of
query bounding boxes from pyramidal features to perform object de-

tection, and SparseInst [7], which introduces a simple convolutional
module 𝐹𝑖𝑎𝑚 to highlight informative regions for each foreground ob-

ject.

Therefore, we combine these two advantages to our model. A 𝐹𝑖𝑎𝑚-

like convolutional module is added to efficiently initialize the query
features in our model, which directly picks the queries with high se-

mantics from underlying multi-scale feature maps. The simple module
only consists of two convolutional layers. The first convolutional layer
is a typical 3 × 3 convolution layer with the same input and output di-

mensions. The second convolutional layer is a 1×1 convolution layer to
reduce the number of dimensions to the number of classes +1, where the
extra one means “no object 𝜙”. Specifically, feature 𝑃2 from the pixel
decoder is selected to generate 𝑁 pixel embeddings with the highest
foreground probabilities as the query features.

Masked Attention. The cross-attention in the original Transformer
decoder is replaced with masked attention. The standard cross-attention
is computed by Equation (4). 𝑙 is the layer index, 𝑋𝑙 indicates the query
features with the shape 𝑁 × 𝐶 at the 𝑙-th layer. 𝑄𝑙 = 𝑓𝑞(𝑋𝑙−1) is cal-

culated by applying a linear transformation 𝑓𝑞 on the query features of
previous layer. 𝐾𝑙 and 𝑉𝑙 are the pixel features from pixel decoder after
linear transformations 𝑓𝑘 and 𝑓𝑣.

𝑋𝑙 = Softmax(𝑄𝑙𝐾
𝑡
𝑙
)𝑉𝑙 +𝑋𝑙−1 (4)

Based on cross-attention, masked attention adds an attention mask
𝑙−1, as calculated in Equation (5).

𝑋𝑙 = Softmax(𝑙−1 +𝑄𝑙𝐾
𝑡
𝑙
)𝑉𝑙 +𝑋𝑙−1 (5)

The attention mask 𝑙−1 at feature location (𝑥, 𝑦) is calculated in
Equation (6), where 𝑚𝑙−1(𝑥, 𝑦) is the binary output of the resized mask
prediction of the previous (𝑙-1) decoder layer. 𝑚0 is the binary mask
prediction obtained from 𝑋0.

𝑙−1 =

{
0 if 𝑚𝑙−1(𝑥, 𝑦) = 1
−∞ otherwise

(6)

3.2. Loss function

Different from anchor-based segmentation models that generate a
large number of anchor proposals, our model employs the Transformer
decoder to treat fruit detection as an end-to-end dictionary lookup task.
Specifically, the decoder generates a fixed number of 𝑁 predictions
by decoding the 𝑁 learnable query embeddings layer by layer. There-

fore, the necessity for manual processes like non-maximum suppression
(NMS) is eliminated. Instead, we adopt Hungarian matching, which is a
kind of bipartite matching method, to find the best matching between
predictions and ground truths for loss computation.

The difference between NMS and bipartite matching is illustrated in
Fig. 6. NMS generates a large number of proposals and applies heuris-

tic filtering based on overlap scores to remove redundant detections.
This introduces a non-differentiable post-processing step. In contrast, bi-

partite matching employs a pre-defined fixed number of proposals and
assigns each proposal to a specific ground truth or a “no object” class
based on a cost matrix. By integrating this matching process directly
into the optimization framework, our model enables a fully end-to-end
differentiable pipeline where predictions and assignments are jointly op-

timized.

First, all of the predictions including class predictions, mask predic-

tions and class targets, mask targets are used to calculate a cost matrix
for prediction selection, where 𝑋 indicates the number of instances in a
batch. The class cost and mask cost are calculated by cross entropy loss
and Dice loss respectively, as shown in Equation (7) and Equation (8),

𝐶𝐸 (𝑦, 𝑝) = −Σ𝑖𝑦𝑖 ⋅ log(𝑝𝑖) (7)

Smart Agricultural Technology 12 (2025) 101068

7

Z. Zhao, Y. Hicks, X. Sun et al.

where 𝑦𝑖 represents the ground truth probability and 𝑝𝑖 represents the
predicted probability.

Dice(𝑚, 𝑡) =
2 ⋅ Σ𝑥,𝑦𝑚𝑥𝑦 ⋅ 𝑡𝑥𝑦
Σ𝑥,𝑦𝑚

2
𝑥𝑦

+Σ𝑥,𝑦𝑡
2
𝑥𝑦

(8)

where 𝑚𝑥𝑦 and 𝑡𝑥𝑦 refer to the value of pixel located at (𝑥, 𝑦) in predicted
mask 𝑚 and ground truth 𝑡 respectively.

Second, the Hungarian algorithm is used to search for the best bipar-

tite matching by solving the cost matrix, resulting in a matching score
𝐶(𝑖, 𝑘) for 𝑖-th prediction and 𝑘-th ground truth object. Therefore, the
number of predictions is decreased from 𝑁 to match that of the targets.

The total training loss for our proposed model is defined in Equation
(9):

𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑙𝑐𝑙𝑎𝑠𝑠 + 𝜆𝑚𝑚𝑎𝑠𝑘 + 𝜆𝑐𝑜𝑐𝑜𝑛𝑣 + 𝜆𝑎𝑎𝑢𝑥 (9)

𝜆 indicates the different loss weights.

𝑐𝑙𝑎𝑠𝑠 is the cross entropy loss between the selected class predictions
and class targets.

𝑚𝑎𝑠𝑘 is the dice loss between the selected mask predictions and
mask targets.

𝑐𝑜𝑛𝑣 is the cross entropy loss between the output of 𝐹𝑖𝑎𝑚-like con-

volutional module and ground truth.

As each Transformer decoder layer generates class prediction and
mask prediction, we use the prior predictions to calculate auxiliary loss
𝑎𝑢𝑥, as shown in Equation (10),

𝑎𝑢𝑥 =
𝐷∑
𝑖=0

(≧
𝑐𝑙𝑎𝑠𝑠 +≧

𝑚𝑎𝑠𝑘) (10)

where 𝐷 indicates the number of Transformer decoders. ′
𝑐𝑙𝑎𝑠𝑠 and

′
𝑚𝑎𝑠𝑘 use the same loss functions as 𝑐𝑙𝑎𝑠𝑠 and 𝑚𝑎𝑠𝑘.

Based on PointRend [25], which demonstrated that a segmentation
model can be effectively trained by calculating its mask loss on a subset
of randomly 𝐾 sampled points instead of the entire mask, we incorpo-

rate this strategy into our model. Consequently, we compute the mask
loss using sampled points both in the matching process and the final loss
calculation.

3.3. Evaluation metrics

Average Precision (AP) Precision serves as a standard and widely-

used metric for evaluating the network’s ability to accurately identify
target objects, reflecting the comprehensive performance of the net-

work. The definition of precision is shown by Equation (11):

Precision = TP

TP + FP
(11)

Here, TP represents the count of correctly detected fruit targets, and
FP represents the count of cases where the target is wrongly detected as
a fruit when it is not. The average precision is selected as the primary
metric to assess model performance. It is computed by averaging the
precision scores at 10 Intersection over Union (IoU) thresholds, ranging
from 0.50 to 0.95, across all categories. A higher AP value indicates bet-

ter detection accuracy of the model. Specifically, the AP values for IoU
thresholds of 0.50 and 0.75 are reported, as well as for each individual
category.

Learnable Parameters (Params) The learnable parameters refer to
the weights and biases within the model’s layers, which are adjusted
during the training process to optimize performance and make accurate
predictions. The total number of learnable parameters in a model is often
considered an indicator of its capacity and complexity.

Floating-point Operations (FLOPs) Floating-point operations is a
measure of the computational complexity of a deep learning model. It
represents the number of arithmetic operations performed by the model
during the process of forward propagation, where input data passes
through the layers of the model to produce output predictions. FLOPs is

typically quantified in terms of the number of multiplications and addi-

tions performed by the model.

Frame per second (FPS) Frames per second (FPS) is a measure of
the inference speed of a deep learning model, indicating how many in-

put images the model can process per second. A higher FPS reflects faster
model execution, which is critical for real-time applications such as au-

tonomous driving or video analysis. FPS is influenced by factors such as
model size, hardware performance, and optimization techniques.

4. Experiments and results

4.1. Experiments

4.1.1. Configuration

In this paper, experiments are conducted based on Detectron2 [51]
and have been carried out using Python 3.9.13 and PyTorch 1.13 on a
computer with an Intel Xeon Gold 6152 @2.1 GHz CPU, 2 Nvidia Tesla
V100 GPUs and 32.0 GB memory.

4.1.2. Training details

No pre-trained weights are utilized in this work, and the parame-

ters of all convolution layers are initialized by a normal distribution.
The training process incorporates diverse data augmentation strategies
to improve the model’s robustness and generalization. These strategies
contain random horizontal flips, resizing the input images such that the
shortest side is one of 416, 448, 480, 512, 544, 576, 608 or 640 pix-

els while the longest is at most 768. This multi-scale resizing introduces
variability in the input sizes, encouraging the model to adapt to objects
of different scales.

The maximum prediction per image 𝑁 is set to 100, based on the
assumption that this value is sufficient to include all fruit present in a
single image. The number of mask sampling points 𝐾 is set to 12544,
corresponding to a grid resolution of 112 × 112. The loss weights are
set to {𝜆𝑐𝑙 :2.0, 𝜆𝑚:5.0, 𝜆𝑐𝑜:20.0, 𝜆𝑎:1.0}. The depth of decoder layers)
𝐷 is set to 3, indicating the number of decoding layers used for predic-

tion tasks, providing a balance between computational efficiency and
representational capacity.

We use the AdamW optimizer with a step learning rate schedule, of
which the initial rate is 0.0001, and the weight decay is 0.05. A learning
rate multiplier of 0.1 is applied to the backbone, and decay the learn-

ing rate by 10 at fractions 0.9 and 0.95 of the total number of training
iterations. We train our model for 54k iterations with a batch size of 8.

4.1.3. Inference details

The data augmentation strategy used in inference is only resizing the
input images such that the shortest side is 640 pixels while the longest is
at most 768 pixels. Auxiliary predictions are not used during inference.
The top 100 candidates with the highest confidence are selected as final
predictions.

During inference, the data augmentation strategy is simplified to re-

size the input images. Specifically, each image is resized such that the
shortest side is scaled to 640 pixels while ensuring the longest side does
not exceed 768 pixels, preserving the aspect ratio. Auxiliary predictions
like outputs from intermediate layers or heads used during training, are
not used during inference to streamline the process and focus solely on
the final model predictions. After the model generates predictions, the
top 100 candidate predictions with the highest confidence scores are
selected as the final predictions.

4.2. Results

We conducted a comprehensive segmentation comparison of dif-

ferent state-of-the-art backbones on the combined fruit dataset, using
FruitQuery’s architecture shown in Fig. 4b, and the results are summa-

rized in Table 4.

Smart Agricultural Technology 12 (2025) 101068

8

Z. Zhao, Y. Hicks, X. Sun et al.

Table 4
Instance segmentation results on the combined dataset with different backbones.

Backbone Type AP AP50 AP75 NinePeach StrawDI_Db1 Params
(M)

FLOPs
(G)

FPS

APunripe APsemiripe APripe APrs1 APrs2 APrs3 APrs4

C
N

N
-b

a
se

d

ResNet [15] 18 61.74 75.68 65.37 50.61 53.50 65.72 39.52 73.64 75.80 73.39 17.54 29.56 19.50
34 63.17 77.06 66.98 49.42 56.77 67.65 38.52 74.00 77.30 78.56 27.64 45.88 34.60
50 63.92 77.29 67.70 53.62 54.78 69.57 41.61 75.33 75.36 77.17 30.52 50.94 31.54

FasterNet [3] s 62.56 75.04 66.20 49.72 50.78 63.21 44.76 74.04 78.29 77.12 35.82 91.85 17.90
m 64.52 76.13 67.68 51.46 51.38 64.09 47.15 76.68 81.17 79.69 58.06 129.00 16.12
l 65.25 77.01 69.15 53.24 53.61 66.47 50.14 77.73 77.72 77.86 97.70 189.00 15.60

YOLOv8∗ [22] s 57.33 72.44 63.67 48.49 49.66 68.02 32.64 61.44 65.70 75.40 11.79 46.12 44.22
m 58.70 74.36 64.85 54.06 53.15 67.10 32.81 64.43 66.91 72.43 27.24 119.24 41.58
l 59.74 75.50 66.17 55.32 52.63 66.79 34.11 64.14 71.46 73.78 45.94 238.48 34.36

YOLOv9∗ [22] s 59.91 75.23 66.12 56.60 54.33 65.10 33.85 65.99 69.95 73.54 8.64 82.26 13.4
m 60.04 75.72 66.57 54.90 54.08 68.63 33.50 65.21 69.34 74.60 22.26 142.38 15.78
c 60.41 76.07 67.13 54.37 55.13 68.13 33.89 66.53 69.13 75.68 27.84 171.82 15.58

YOLOv10∗ [22] s 58.17 73.91 64.53 50.86 50.34 63.50 33.34 68.75 66.18 74.22 9.20 44.10 21.28
m 58.60 74.23 65.18 52.56 50.57 65.86 33.23 65.76 68.09 74.11 19.37 110.06 18.94
b 58.69 73.60 64.87 52.95 51.82 65.39 32.71 63.70 69.35 74.92 25.52 180.68 17.94

T
ra

n
sf

o
rm

e
r-

b
a
se

d

MobileViT [34] xxs 46.34 63.25 50.76 28.26 38.27 50.81 20.12 54.66 63.06 69.19 7.27 17.27 19.74
xs 50.29 67.14 54.81 34.17 41.35 54.80 23.85 62.78 62.95 72.13 8.28 21.14 19.56
s 52.90 68.62 56.82 38.08 44.19 56.41 27.65 62.97 70.42 70.58 11.36 26.99 19.44

LightViT [18] t 54.65 69.90 58.59 40.05 44.47 57.85 30.77 66.00 71.37 72.04 14.06 29.11 14.36
s 56.31 71.25 60.30 42.43 46.42 59.60 31.96 68.74 70.89 74.14 23.74 28.03 14.28
b 58.57 73.17 62.39 45.18 50.00 62.50 34.13 70.31 72.29 75.57 39.63 45.06 13.49

NextViT [27] s 62.36 74.88 66.02 48.79 49.99 62.38 48.11 73.57 77.61 76.07 37.96 105.00 15.06
b 62.47 75.03 65.81 47.71 51.79 61.08 45.80 77.66 75.75 77.52 51.02 128.00 13.10

GroupMixFormer [8] t 62.67 75.45 66.21 47.42 52.55 63.07 42.81 74.79 78.39 79.67 17.62 83.72 9.24
s 63.50 76.31 67.79 48.81 53.66 64.79 44.53 74.60 79.36 78.75 29.06 96.51 9.02

MetaFormer [57] id 59.65 73.16 63.43 43.19 48.77 62.98 40.86 71.14 75.95 74.69 18.40 66.92 18.94
SegFormer [54] b0 58.48 71.53 62.36 42.33 47.76 58.71 40.09 67.83 75.39 77.28 10.19 57.06 17.32

PoolFormer [57] s12 61.12 74.19 64.48 44.19 47.02 61.16 42.94 73.75 78.19 80.60 18.40 66.92 13.50
s24 62.61 75.17 66.28 45.27 49.63 64.78 44.69 73.76 79.89 80.24 27.88 80.94 12.34

TransXNet [54] t 59.26 72.48 62.66 42.31 46.70 63.03 39.81 71.59 73.96 77.44 19.33 70.65 10.88
s 60.43 73.64 63.87 45.07 49.16 62.24 40.31 71.02 74.53 80.66 33.34 98.84 8.22

CMT [11] ti 66.00 78.44 69.43 54.80 57.58 68.98 46.84 77.23 78.81 77.79 14.57 67.55 14.06
xs 66.46 78.60 70.10 55.79 57.45 68.96 47.72 76.35 78.37 80.61 20.21 78.27 13.08

EMSA (Ours) xs 66.46 78.49 70.27 51.77 56.11 69.03 47.12 77.16 82.12 81.92 10.94 61.56 16.50
s 67.02 79.17 70.83 52.05 58.68 68.55 47.91 76.47 82.16 83.74 14.08 69.33 16.00

∗ YOLO series are trained using their segment head.

Overall Performance Our proposed model with EMSA-s (Fruit-

Query-s) achieves the highest overall AP of 67.02, AP50 of 79.17, and
AP75 of 70.83, significantly outperforming 13 other models with a total
of 33 variants. Our model with EMSA-xs (FruitQuery-xs) also delivers
a competitive AP of 66.46. This illustrates the superior performance of
our model in fruit segmentation.

Among CNN-based models, the widely-used ResNet series shows
solid results, with ResNet-50 reaching an AP of 63.92. The recent
FasterNet-l also achieves a competitive AP of 65.25. Turning to the
YOLO series, YOLOv9-c attains the highest AP of 60.41 among its vari-

ants, indicating that the YOLO series has limited performance on fruit
segmentation. In comparison, all YOLO variants fall short of our pro-

posed model.

On the Transformer-based side, models demonstrate more differ-

ent designs and parameter counts. The variants of NextViT, GroupMix-

Former, and PoolFormer generate similar results of AP ranging from
62.37 to 63.50. Two CMT variants reach APs of 66.00 and 66.46, com-

ing closest to our performance. These Transformer-based models reflect
the trend toward attention-driven backbones, with noticeable perfor-

mance gains over many CNN counterparts.

However, they still fall short of our FruitQuery in AP, AP50 and
AP75, suggesting that our proposed query-based design leverages fea-

tures more effectively for precise fruit instance segmentation.

Individual Performance For NinePeach dataset, YOLOv9-s achieves
the highest APunripe of 56.60, while ResNet-50 delivers the highest APripe

of 69.57. However, our model attains the best performance on semiripe

peaches with an APsemiripe of 58.68, underscoring its ability to capture
the more subtle visual cues present in intermediate ripeness for peaches.

For StrawDI_Db1 dataset, CNN-based FasterNet obtains the highest
APrs1 of 50.14 and APrs2 of 77.73, while ours-s outperforms all counter-

parts in half of the strawberry ripeness stages, with the highest APrs3 of
82.16 and APrs4 of 83.74. These gains indicate that our model can ef-

fectively handle the appearance variations in later strawberry growth,
where colour, texture, and shape have significant changes compared to
earlier stages.

Overall, within seven ripeness stages of the combined dataset, our
model delivers the best AP for three of them, indicating that our model
with the query-based design is capable of capturing fine-grained features
within different fruit ripeness levels, and generating comparable results.

Model Complexity The broad range of model sizes is generally re-

lated to performance: larger models typically have more parameters,
which allows them to capture more complex patterns and relationships.

On the CNN-based models, FasterNet-l is the largest CNN-based
model with parameters of 97.70M and FLOPs of 189G, and it achieves a
competitive AP of 65.25. Notably, the YOLO series are well-known for
their lightweight design, with YOLOv9-s having 8.64M parameters and
82.26G FLOPs, and YOLOv10-s having 7.27M parameters and 44.10G
FLOPs, but their AP of 59.91 and 58.17 are lower than many other mod-

els.

On the Transformer-based models, MobileViT-xxs exhibits the small-

est parameter count of 7.27M and FLOPs of 17.27G, while it comes with
the lowest AP of 46.34. NextViT-b is the most complex Transformer-

Smart Agricultural Technology 12 (2025) 101068

9

Z. Zhao, Y. Hicks, X. Sun et al.

Table 5
Ablation on the pixel decoder.

Module AP AP50 AP75
FPN 64.97 78.41 68.88
PPM-FPN 66.57 78.98 70.22

based model with 51.02M parameters and 128G FLOPs, delivering an
AP of 62.47.

Our model shows a highly cost-efficient design. Specifically, the ours-

xs only utilizes 10.94M parameters and 61.56G FLOPs to achieve an
AP of 66.46, and ours-s attains the highest AP of 67.02 with 14.08M
parameters and 69.33G FLOPs.

In contrast, models with similar APs to ours-xs (66.46), such
as CMT-ti (66.00), CMT-xs (66.46) and FasterNet-l (65.25), require
larger parameters and FLOPs (14.57M/67.55G, 20.21M/78.27G and
97.70M/189.00G) than ours-xs (10.94M/61.56G). On the other hand,
models that match ours-xs in parameters and FLOPS (10.94M/61.56G),
such as YOLOv8-s(11.79M/46.12G), MobileViT-s (11.36M/26.99G) and
SegFormer-s24 (10.19M/57.06G), deliver poorer APs (57.33, 52.90 and
58.48).

Inference Speed CNN-based models exhibit higher inference speeds
compared to Transformer-based models, consistent with the established
efficiency advantages of convolutional architectures. Among all evalu-

ated models, YOLOv8-t achieves the highest FPS at 44.22, followed by
YOLOv8-m (41.58) and YOLOv8-l (34.36), highlighting the real-time
capabilities.

Our proposed FruitQuery achieves relatively high inference speeds
(16.5 and 16 FPS), demonstrating competitive inference performance.
They outperform all YOLOv9 variants, suggesting improved speed ef-

ficiency relative to this recent Transformer-based series. In addition,
our models surpass a number of widely used Transformer-based back-

bones such as LightViT-t (14.36), CMT-ti (14.06), and NextViT-s (15.06),
which are specifically designed for efficiency.

While slightly slower than MobileViT-xxs (19.74) and MobileViT-

xs (19.56), our models are notably faster than recent models like
TransXNet-s (8.22) and GroupMixFormer-s (9.02), positioning them
among the faster Transformer-based designs. These results indicate that
our models strike a favourable balance between inference speed and
model complexity.

In summary, the results demonstrate that our proposed model not
only exhibits comparable or even superior results to other segmentation
models but also maintains lightweight model size and higher efficiency.

4.3. Ablation experiments

4.3.1. Type of pixel decoder

Table 5 compares two different pixel decoders FPN and PPM-FPN
in terms of model performance. The baseline FPN achieves an AP of
64.97, AP50 of 78.41, and AP75 of 68.88. In contrast, the PPM-FPN
variant leads to a consistent performance boost across all metrics, im-

proving AP by 1.6 points from 64.97 to 66.57, AP50 by 0.57 points from
78.41 to 78.98, and AP75 by 1.34 points from 68.88 to 70.22. These re-

sults indicate that incorporating PPM into the FPN enhances the overall
segmentation performance.

4.3.2. Number of decoder attention head

Table 6a compares the effect of different numbers of attention heads
on model performance. With just 2 heads, the model attains an AP
of 62.36, AP50 of 75.30, and AP75 of 65.80, indicating limited rep-

resentational capacity. Increasing to 4 heads yields the highest AP of
64.46, AP50 to 77.09 and AP75 of 68.61. Although further increasing
the number of heads to 8 slightly boosts AP to 64.46 and AP75 to 67.88
compared to 2 heads, it still lags behind the 4-head configuration. These
results suggest that 4 attention heads provide an optimal balance, offer-

ing richer feature representations without incurring diminishing returns.

4.3.3. Number of query

Table 6b shows the effect of different numbers of queries on model
performance. When the number of query is set to 100, the model
achieves its highest overall AP of 66.52, AP50 of 78.84 and AP75 of
70.19. Decreasing the number of queries to 80 or 90 leads to a consistent
drop in performance across all metrics. On the other hand, increasing
the number of queries to 110 or 120 offers no further improvement.
These results suggest that using 100 queries strikes an effective balance
between capturing sufficient object-level information and maintaining
computational efficiency.

4.3.4. Number of decoder layers

Table 6c illustrates the effect of different numbers of decoder lay-

ers on model performance. With only 1 to 3 layers, AP stays between
62.85 and 63.98, indicating limited representational depth. As more lay-

ers are added, accuracy steadily improves, peaking at 6 layers with an
AP of 66.80, AP50 of 78.95, and AP75 of 70.85. Beyond 6 layers, model
performance begins to decline, suggesting that excessive stacking of de-

coder blocks may introduce redundancy or complicate training. These
findings highlight an optimal spot at 6 decoder layers.

4.4. Combined or separated training

We compare the performance difference of FruitQuery-xs trained on
combined (t/o combined) and separate (t/o separate) datasets, and the
results are shown in Table 7. For NinePeach, the combined training
strategy produces notable improvements across all ripeness levels, with
APunripe increases of 7.55 points from 43.72 to 51.27, 4.86 points for
APsemiripe from 49.07 to 53.93, and 4.89 points for APripe from 62.05 to
66.94.

In contrast, results on StrawDI_Db1 are mixed: APrs2 has a significant
gain of 4.18 points from 72.55 to 76.73, and APrs4 also increases 1.65
points from 77.99 to 79.64. However, the other two categories APrs1

drops from 45.57 to 42.29 and APrs3 drops from 79.87 to 78.40.

Overall, training on the combined dataset boosts the model’s overall
AP from 61.08 to 64.63, indicating that learning from a broader, inte-

grated fruit distribution can enhance generalization for the majority of
fruit ripeness stages despite limited category-specific trade-offs.

4.5. Model parameter distribution

We summarize the parameter distribution of YOLO and our Fruti-

Query in Table 8. Based on previous results in Table 4, YOLOv9 is the
best-performing version of three YOLO series, therefore it is selected to
compare with our model and also in later comparisons.

YOLOv9-s has the least number of parameters of 8.64M, with a head
of 2.92M, but produces the lowest AP of 59.91. When changing the
model from YOLOv9-s to YOLOv9-m, the total parameters increase to
22.26M, with a bigger backbone and head, but bring a tiny AP gain from
59.91 to 60.04. YOLOv9-c performs better than YOLOv9-m with the AP
of 60.41, but occupies a backbone of 19.95M and a head of 7.89M.

On the other hand, our model demonstrates its ability to outper-

form YOLOv9 with fewer parameter counts. Specifically, FruitQuery-xs
and FruitQuery-s have an identical head of 4.18M, which is smaller
than YOLOv9-m and YOLOv9-c. The main difference between the two
variants of FruitQuery lies in the backbone, FruitQuery-s has a more
complex backbone and delivers a better AP of 67.02.

These results not only demonstrate that our FruitQuery achieves a
significantly better balance between the segmentation performance and
model size compared to YOLO, but also highlight its lightweight design,
which enhances the potential for in-field applications.

4.6. Visualization

We visualize the segmentation performance of our FruitQuery
in Fig. 7. First, FruitQuery is capable of simultaneously segmenting

Smart Agricultural Technology 12 (2025) 101068

10

Z. Zhao, Y. Hicks, X. Sun et al.

Table 6
Results of ablation experiments based on FruitQuery-xs.

(a) Ablation on the number of attention head.
Head AP AP50 AP75
2 62.36 75.30 65.80
4 64.46 77.09 68.61
8 64.36 76.98 67.88

(b) Ablation on the number of query.
Query AP AP50 AP75
80 64.54 77.74 68.39
90 64.45 77.38 68.15
100 66.52 78.84 70.19
110 65.91 78.56 69.48
120 65.48 78.34 69.11

(c) Ablation on the number of decoder layers.
Layer AP AP50 AP75
1 62.85 75.78 66.59
2 63.98 76.93 67.72
3 63.91 76.69 67.86
4 66.41 78.98 70.20
5 66.68 79.31 70.40
6 66.80 78.95 70.85
7 65.94 78.49 69.36
8 65.78 78.07 69.26

Fig. 7. Segmentation visualization of our FruitQuery on NinePeach (left) and StrawDI_Db1 (right).

Table 7
Comparison of training on separate and combined
dataset.

Dataset Category t/o separate t/o combined

N
in

e
P
e
a
ch unripe 43.72 51.27

semiripe 49.07 53.93
ripe 62.05 66.94

S
tr

a
w

D
I_

D
b
1

rs1 45.57 42.29
rs2 72.55 76.73
rs3 79.87 78.40
rs4 77.99 79.64

Overall 61.08 64.63

Table 8
Parameters comparison of YOLO and our FruitQuery.

YOLOv9 FruitQuery
Type s m c xs s
Backbone 5.72 15.52 19.95 4.07 7.15
Neck / / / 2.70 2.76
Head 2.92 6.74 7.89 4.18 4.18

Total (M) 8.64 22.26 27.84 10.94 14.08

AP 59.91 60.04 60.41 66.46 67.02

peaches and strawberries without requiring separate training for each
fruit type. Second, FruitQuery demonstrates strong generalization abil-

ity on fruit size due to effective multi-scale feature fusion. Specifically,
the size of peaches is relatively large compared to that of strawber-

ries, and FruitQuery can accurately segment both large and small fruit.

Third, FruitQuery maintains high robustness in complex in-field condi-

tions, such as occlusions from tree trunks and leaves, delivering precise
fruit segmentation. These indicate that our FruitQuery can accurately
predict fruit locations for downstream applications.

We also compare the visualization of our FruitQuery and YOLO in
Fig. 8a. In case (1), although YOLOv9-c is not an anchor-based model, it
still gives an inaccurate anchor-like prediction on the strawberry, while
ours provides a more precise delineation of the strawberry’s shape. In
case (2), YOLO-v9c’s segmentation boundary tends to follow the rectan-

gular outline of the bounding box, while ours closely tracks the actual
peach boundary. Additionally, YOLO-v9c ignores the small peach be-

hind, while ours correctly detects it. In case (3), YOLO-v9c fails to detect
an evidently visible strawberry, while our model successfully identifies
and segments it. In case (4), YOLO-v9c is unable to recognize a peach
partially hidden in the background, whereas ours correctly distinguishes
the peach despite the limited visible part.

4.7. Class activation map analysis

Class Activation Maps (CAM, [61]) is a popular visualization tech-

nique that highlights the regions in an image most influential to a
model’s prediction. By projecting learned feature weights back onto the
original input, CAM reveals where the model allocates its attention and
provides an interpretable window into the decision-making process. We
illustrated the CAM comparison of YOLO and our FruitQuery in Fig. 8b.

In the CAM visualizations, YOLOv9-c exhibits relatively diffuse and
occasionally misaligned attention, focusing on broader or less discrimi-

native regions. For example, in cases (1) and (2), YOLOv9-c has uncer-

tain attention on the fruit and is affected by the surrounding leaves.
By contrast, our FruitQuery maintains a more localized and precise
concentration of high-intensity activation around the fruit. This differ-

ence is particularly evident in cases (3) and (4), YOLOv9-c looks at a

Smart Agricultural Technology 12 (2025) 101068

11

Z. Zhao, Y. Hicks, X. Sun et al.

Fig. 8. Comparison of YOLO and our FruitQuery.

Table 9
Inference time of FruitQuery on a single image across different devices.

Device Format FruitQuery-xs FruitQuery-s
FP32 FP16 FP32 FP16

NVIDIA
Tesla V100

.pth 0.0605 0.0544 0.0625 0.0595

.onnx 0.2661 0.2545 0.2674 0.2563

.trt 0.0253 0.0196 0.0254 0.0198

NVIDIA
Jetson Orin Nano

.pth 0.3307 0.2246 0.3427 0.2253

.onnx 0.3494 0.3150 0.3570 0.3242

.trt 0.1168 0.0792 0.1216 0.0856

Apple M1
.onnx 1.1554 1.4055 1.7193 1.6731
.mlmodel 2.5133 2.3406 2.7164 2.5292

large blur region around fruit and gives attention to the irrelevant back-

ground, while our FruitQuery accurately distinguishes between fruit and
background context, capturing finer textural cues on peaches and straw-

berries and generating tightly focused activation zones.

Consequently, the visualizations demonstrate the enhanced ability of
our FruitQuery to learn discriminative features of peaches and strawber-

ries, such as shape, colour transition, and edge boundaries, eventually
resulting in interpretable and improved segmentation performance.

4.8. Deployment

We compared inference performance of the proposed FruitQuery
on different hardware platforms, including a high-performance GPU
(NVIDIA Tesla V100), an edge computing device (NVIDIA Jetson Orin
Nano), and a general-purpose CPU (Apple M1).

Table 9 summarizes the inference time per image using four model
formats: PyTorch checkpoint (.pth), Open Neural Network Exchange
(.onnx), TensorRT engine (.trt) and Core ML (.mlmodel). Two numeri-

cal precision modes are compared: FP32 (single-precision floating point)
and FP16 (half-precision floating point).

Inference results demonstrate that TensorRT achieves the fastest in-

ference across all tested hardware for both precision modes. On the Tesla

V100, FruitQuery-xs runs in as little as 0.0196 seconds per image us-

ing FP16 and TensorRT, which is more than 2.5 times faster than the
PyTorch baseline under FP32. Jetson Orin Nano also benefits signifi-

cantly from TensorRT acceleration, achieving inference times below 0.1
seconds for FruitQuery-xs in FP16. This highlights the suitability of Ten-

sorRT for edge deployment when latency is critical.

Compared to the V100 and Jetson platforms, the Apple M1 incurs
higher inference latency. The ONNX-based deployment shows inference
times exceeding 1 second per image for both model variants. Moreover,
Core ML deployment with .mlmodel results in even longer running time,
with FruitQuery-s requiring approximately 2.5 seconds per image un-

der FP16. Despite this, the Core ML format enables compatibility with
Apple-native applications, which may be improved in future hardware
iterations.

Overall, the proposed FruitQuery models demonstrate efficient in-

ference across diverse deployment scenarios. The results demonstrate
the flexibility of the models and their compatibility with multiple de-

ployment backends and precision modes. Particularly, the combination
of lightweight architectures, TensorRT optimisation, and half-precision
inference enables fast inference on both cloud GPUs and edge platforms.

5. Discussion

5.1. Limitations

First, our FruitQuery depends on a relatively large and precisely an-

notated dataset, making it challenging to generalize seamlessly to new
fruit varieties or orchard conditions without further labelling efforts.

Second, while our FruitQuery is comparably efficient, the current ar-

chitecture still demands moderate computational resources, which may
limit real-time applications on highly constrained edge devices. The
inference speed of our FruitQuery also can be optimized. These limita-

tions provide clear directions for improvement, such as exploring further
model compression techniques.

Smart Agricultural Technology 12 (2025) 101068

12

Z. Zhao, Y. Hicks, X. Sun et al.

5.2. Future work

Building on current results, we plan to compress and deploy our
FruitQuery to the embedded devices for in-field fruit segmentation. By
reducing model size and optimizing computational methods such as
quantization, we aim to streamline orchard operations by providing im-

mediate feedback on fruit ripeness, thereby guiding in-field harvesting
robots to selectively pick the ripe fruit only.

Furthermore, we propose to expand the combined dataset by incor-

porating a broader range of fruit varieties, to enhance its applicability
across different fruit types. Building a large-scale fruit instance seg-

mentation dataset with ripeness labels will not only reduce redundant
annotation efforts, but also accelerate the development of autonomous
fruit-picking robots.

6. Conclusion

In this work, we combined two in-field fruit datasets of peaches and
strawberries, which contain 3 ripeness stages for peaches and 4 ripeness
stages for strawberries. Then we introduced FruitQuery, a lightweight
query-based instance segmentation model for fruit ripeness determina-

tion.

The combined dataset enables training the model to handle the
ripeness determination of two fruits at the same time, reducing the effort
to replicate the training. FruitQuery is composed of three main com-

ponents: a backbone, a pixel decoder, and Transformer decoders. We
integrated EMSA modules into the backbone to reduce computational
overhead, and introduced a PPM in the pixel decoder to improve multi-

scale feature fusion. Transformer decoders were employed to learn a
fixed number of queries for instance masks, eliminating the need for
postprocessing like NMS.

By combining the advantages of convolution and Transformer, Fruit-

Query runs in an end-to-end way and precisely attends to fruit regions,
capturing subtle distinctions in shape and ripeness. The design of Fruit-

Query leads to state-of-the-art performance, achieving the highest AP
of 67.02 with 14.08M parameters and surpassing 13 other CNN-based
and Transformed-based models. Notably, it outperforms three series of
YOLO, under challenging conditions such as occlusion and varying illu-

mination. However, FruitQuery’s dependence on labelled data makes it
challenging for immediate adaptation to new fruit varieties. Addition-

ally, latency issues may be a problem for our model when applied on
embedded platforms.

Moving forward, we will further optimize FruitQuery for in-field ap-

plications, exploring strategies like quantization for edge deployment.
The combined dataset is planned to be expanded with more fruit va-

rieties, ultimately building a large-scale fruit instance segmentation
dataset with ripeness labels. Through these enhancements, we aim to
increase FruitQuery’s utility in orchard automation, enabling more ac-

curate and efficient fruit ripeness determination and helping the devel-

opment of precise agriculture.

CRediT authorship contribution statement

Ziang Zhao: Writing – original draft, Visualization, Software,
Methodology, Data curation, Conceptualization. Yulia Hicks: Writing
– review & editing, Supervision, Methodology, Formal analysis, Con-

ceptualization. Xianfang Sun: Writing – review & editing, Supervision,
Methodology, Formal analysis, Conceptualization. Chaoxi Luo: Writing
– review & editing, Resources, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

We appreciate the computational resources provided by Advanced
Research Computing at Cardiff (ARCCA).

Data availability

The ripeness information for StrawDI_Db1 can be accessed by fol-

lowing this link ripeness_info.

References

[1] C.E. Basson, J.H. Groenewald, J. Kossmann, C. Cronjé, R. Bauer, Sugar
and acid-related quality attributes and enzyme activities in strawberry
fruits: invertase is the main sucrose hydrolysing enzyme, Food Chem. 121
(2010) 1156–1162, https://doi.org/10.1016/j.foodchem.2010.01.064, https://

www.sciencedirect.com/science/article/pii/S0308814610001445.

[2] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end
object detection with transformers, in: Computer Vision – ECCV 2020: 16th European
Conference, Proceedings, Part I, Glasgow, UK, August 23–28, 2020, Springer-Verlag,
Berlin, Heidelberg, 2020, pp. 213–229.

[3] J. Chen, S.h. Kao, H. He, W. Zhuo, S. Wen, C.H. Lee, S.H.G. Chan, Run, Don’t
Walk: Chasing Higher FLOPS for Faster Neural Networks, IEEE Computer Soci-

ety, 2023, pp. 12021–12031, https://www.computer.org/csdl/proceedings-article/

cvpr/2023/012900m2021/1POTrhb8Tzq.

[4] S. Chen, X. Zou, X. Zhou, Y. Xiang, M. Wu, Study on fusion clustering and im-

proved YOLOv5 algorithm based on multiple occlusion of Camellia oleifera fruit,
Comput. Electron. Agric. 206 (2023) 107706, https://doi.org/10.1016/j.compag.

2023.107706, https://linkinghub.elsevier.com/retrieve/pii/S0168169923000947.

[5] B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention mask
transformer for universal image segmentation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 1290–1299,
https://openaccess.thecvf.com/content/CVPR2022/html/Cheng_Masked-Attention_

Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.html.

[6] B. Cheng, A.G. Schwing, A. Kirillov, Per-pixel classification is not all you need for se-

mantic segmentation, http://arxiv.org/abs/2107.06278, https://doi.org/10.48550/

arXiv.2107.06278, arXiv:2107.06278 [cs], 2021.

[7] T. Cheng, X. Wang, S. Chen, W. Zhang, Q. Zhang, C. Huang, Z. Zhang, W. Liu, Sparse
instance activation for real-time instance segmentation, in: 2022 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), IEEE, New Orleans, LA,
USA, 2022, pp. 4423–4432, https://ieeexplore.ieee.org/document/9880463/.

[8] Y. Cui, C. Jiang, G. Wu, L. Wang, MixFormer: end-to-end tracking with iterative
mixed attention, http://arxiv.org/abs/2302.02814, 2023, arXiv:2302.02814 [cs].

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.
Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image
is worth 16x16 words: transformers for image recognition at scale, in: Interna-

tional Conference on Learning Representations (ICLR), 2020, https://openreview.

net/forum?id=YicbFdNTTy.

[10] J.P. Gonçalves, F.A.C. Pinto, D.M. Queiroz, F.M.M. Villar, J.G.A. Barbedo, E.M.
Del Ponte, Deep learning architectures for semantic segmentation and automatic
estimation of severity of foliar symptoms caused by diseases or pests, Biosyst.
Eng. 210 (2021) 129–142, https://doi.org/10.1016/j.biosystemseng.2021.08.011,
https://www.sciencedirect.com/science/article/pii/S1537511021001951.

[11] J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, C. Xu, CMT: convolutional
neural networks meet vision transformers, in: 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), IEEE, New Orleans, LA, USA, 2022,
pp. 12165–12175, https://ieeexplore.ieee.org/document/9879701/.

[12] Y. Guo, Y. Lan, X. Chen, CST: Convolutional Swin Transformer for detecting the
degree and types of plant diseases, Comput. Electron. Agric. 202 (2022) 107407,
https://doi.org/10.1016/j.compag.2022.107407, https://www.sciencedirect.com/

science/article/pii/S0168169922007153.

[13] A.M. Hafiz, G.M. Bhat, A survey on instance segmentation: state of the art, Int. J. Mul-

timed. Inf. Retr. 9 (2020) 171–189, https://doi.org/10.1007/s13735-020-00195-x.

[14] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2980–2988, ISSN: 2380-7504.

[15] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778, ISSN: 1063-6919.

[16] W. He, Y. Mi, X. Ding, G. Liu, T. Li, Two-stream cross-attention vision trans-

former based on RGB-D images for pig weight estimation, Comput. Elec-

tron. Agric. 212 (2023) 107986, https://doi.org/10.1016/j.compag.2023.107986,
https://www.sciencedirect.com/science/article/pii/S0168169923003745.

[17] Z. He, S.R. Khanal, X. Zhang, M. Karkee, Q. Zhang, Real-time strawberry detection
based on improved YOLOv5s architecture for robotic harvesting in open-field envi-

ronment, http://arxiv.org/abs/2308.03998, https://doi.org/10.48550/arXiv.2308.

03998, arXiv:2308.03998 [cs], 2023.

[18] T. Huang, L. Huang, S. You, F. Wang, C. Qian, C. Xu, LightViT: towards light-

weight convolution-free vision transformers, http://arxiv.org/abs/2207.05557,
2022, arXiv:2207.05557 [cs].

https://drive.google.com/drive/folders/1eDWqo7D3aqbyrugLz6UV4ptm0DY27bFx?usp=drive_link
https://doi.org/10.1016/j.foodchem.2010.01.064
https://www.sciencedirect.com/science/article/pii/S0308814610001445
https://www.sciencedirect.com/science/article/pii/S0308814610001445
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib309DF477CFF9473232720F8ACD0F175Es1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib309DF477CFF9473232720F8ACD0F175Es1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib309DF477CFF9473232720F8ACD0F175Es1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib309DF477CFF9473232720F8ACD0F175Es1
https://www.computer.org/csdl/proceedings-article/cvpr/2023/012900m2021/1POTrhb8Tzq
https://www.computer.org/csdl/proceedings-article/cvpr/2023/012900m2021/1POTrhb8Tzq
https://doi.org/10.1016/j.compag.2023.107706
https://doi.org/10.1016/j.compag.2023.107706
https://linkinghub.elsevier.com/retrieve/pii/S0168169923000947
https://openaccess.thecvf.com/content/CVPR2022/html/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.html
http://arxiv.org/abs/2107.06278
https://doi.org/10.48550/arXiv.2107.06278
https://doi.org/10.48550/arXiv.2107.06278
https://ieeexplore.ieee.org/document/9880463/
http://arxiv.org/abs/2302.02814
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1016/j.biosystemseng.2021.08.011
https://www.sciencedirect.com/science/article/pii/S1537511021001951
https://ieeexplore.ieee.org/document/9879701/
https://doi.org/10.1016/j.compag.2022.107407
https://www.sciencedirect.com/science/article/pii/S0168169922007153
https://www.sciencedirect.com/science/article/pii/S0168169922007153
https://doi.org/10.1007/s13735-020-00195-x
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib3C6596315BA1C3B6485A9AC73B9EACFAs1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib3C6596315BA1C3B6485A9AC73B9EACFAs1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib0F4388859B79F2B3F8925C2645577B5As1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib0F4388859B79F2B3F8925C2645577B5As1
http://refhub.elsevier.com/S2772-3755(25)00301-6/bib0F4388859B79F2B3F8925C2645577B5As1
https://doi.org/10.1016/j.compag.2023.107986
https://www.sciencedirect.com/science/article/pii/S0168169923003745
http://arxiv.org/abs/2308.03998
https://doi.org/10.48550/arXiv.2308.03998
https://doi.org/10.48550/arXiv.2308.03998
http://arxiv.org/abs/2207.05557

Smart Agricultural Technology 12 (2025) 101068

13

Z. Zhao, Y. Hicks, X. Sun et al.

[19] W. Jia, Y. Tian, R. Luo, Z. Zhang, J. Lian, Y. Zheng, Detection and segmentation
of overlapped fruits based on optimized mask R-CNN application in apple har-

vesting robot, Comput. Electron. Agric. 172 (2020) 105380, https://doi.org/10.

1016/j.compag.2020.105380, https://www.sciencedirect.com/science/article/pii/

S0168169919326274.

[20] W. Jia, Z. Zhang, W. Shao, S. Hou, Z. Ji, G. Liu, X. Yin, FoveaMask: a fast and
accurate deep learning model for green fruit instance segmentation, Comput. Elec-

tron. Agric. 191 (2021) 106488, https://doi.org/10.1016/j.compag.2021.106488,
https://www.sciencedirect.com/science/article/pii/S0168169921005056.

[21] Z. Jiao, K. Huang, G. Jia, H. Lei, Y. Cai, Z. Zhong, An effective litchi detection
method based on edge devices in a complex scene, Biosyst. Eng. 222 (2022) 15–28,
https://doi.org/10.1016/j.biosystemseng.2022.07.009, https://www.sciencedirect.

com/science/article/pii/S1537511022001714.

[22] Jocher Glenn, Jing Qiu, Ayush Chaurasia, Ultralytics YOLO, https://github.com/

ultralytics/ultralytics, 2023.

[23] H. Kang, C. Chen, Fruit detection, segmentation and 3D visualisation of environ-

ments in apple orchards, Comput. Electron. Agric. 171 (2020) 105302, https://

doi.org/10.1016/j.compag.2020.105302, https://www.sciencedirect.com/science/

article/pii/S0168169919323889.

[24] R. Kestur, A. Meduri, O. Narasipura, MangoNet: a deep semantic segmentation ar-

chitecture for a method to detect and count mangoes in an open orchard, Eng. Appl.
Artif. Intell. 77 (2019) 59–69, https://doi.org/10.1016/j.engappai.2018.09.011,
https://www.sciencedirect.com/science/article/pii/S0952197618301970.

[25] A. Kirillov, Y. Wu, K. He, R. Girshick, PointRend: image segmentation as ren-

dering, http://arxiv.org/abs/1912.08193, https://doi.org/10.48550/arXiv.1912.

08193, arXiv:1912.08193 [cs], 2020.

[26] G. Li, L. Jiao, P. Chen, K. Liu, R. Wang, S. Dong, C. Kang, Spatial convolutional
self-attention-based transformer module for strawberry disease identification un-

der complex background, Comput. Electron. Agric. 212 (2023) 108121, https://

doi.org/10.1016/j.compag.2023.108121, https://www.sciencedirect.com/science/

article/pii/S0168169923005094.

[27] J. Li, X. Xia, W. Li, H. Li, X. Wang, X. Xiao, R. Wang, M. Zheng, X. Pan, Next-ViT:
next generation vision transformer for efficient deployment in realistic industrial
scenarios, http://arxiv.org/abs/2207.05501, https://doi.org/10.48550/arXiv.2207.

05501, arXiv:2207.05501 [cs], 2022.

[28] Q. Li, W. Jia, M. Sun, S. Hou, Y. Zheng, A novel green apple segmentation algo-

rithm based on ensemble U-Net under complex orchard environment, Comput. Elec-

tron. Agric. 180 (2021) 105900, https://doi.org/10.1016/j.compag.2020.105900,
https://www.sciencedirect.com/science/article/pii/S0168169920331057.

[29] C. Liang, J. Xiong, Z. Zheng, Z. Zhong, Z. Li, S. Chen, Z. Yang, A visual
detection method for nighttime litchi fruits and fruiting stems, Comput. Elec-

tron. Agric. 169 (2020) 105192, https://doi.org/10.1016/j.compag.2019.105192,
https://www.sciencedirect.com/science/article/pii/S0168169919313274.

[30] T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyra-

mid networks for object detection, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 936–944, https://ieeexplore.ieee.org/

document/8099589, ISSN: 1063-6919.

[31] J. Lu, P. Chen, C. Yu, Y. Lan, L. Yu, R. Yang, H. Niu, H. Chang, J. Yuan, L.
Wang, Lightweight green citrus fruit detection method for practical environmen-

tal applications, Comput. Electron. Agric. 215 (2023) 108205, https://doi.org/10.

1016/j.compag.2023.108205, https://www.sciencedirect.com/science/article/pii/

S0168169923005938.

[32] Z. Ma, N. Dong, J. Gu, H. Cheng, Z. Meng, X. Du, STRAW-YOLO: a de-

tection method for strawberry fruits targets and key points, Comput. Elec-

tron. Agric. 230 (2025) 109853, https://doi.org/10.1016/j.compag.2024.109853,
https://linkinghub.elsevier.com/retrieve/pii/S0168169924012444.

[33] B.J. McGuinness, M.D. Duke, K.C. Au, H.S. Lim, Field factory for the au-

tomated harvesting of forestry tree stock, Biosyst. Eng. 227 (2023) 52–67,
https://doi.org/10.1016/j.biosystemseng.2023.01.003, https://www.sciencedirect.

com/science/article/pii/S1537511023000089.

[34] S. Mehta, M. Rastegari, MobileViT: light-weight, general-purpose, and mobile-

friendly vision transformer, http://arxiv.org/abs/2110.02178, 2022, https://doi.

org/10.48550/arXiv.2110.02178, arXiv:2110.02178 [cs].

[35] L. Mu, G. Cui, Y. Liu, Y. Cui, L. Fu, Y. Gejima, Design and simulation
of an integrated end-effector for picking kiwifruit by robot, Inf. Process.
Agric. 7 (2020) 58–71, https://doi.org/10.1016/j.inpa.2019.05.004, https://www.

sciencedirect.com/science/article/pii/S2214317318304372.

[36] X. Ni, C. Li, H. Jiang, F. Takeda, Deep learning image segmentation and extraction of
blueberry fruit traits associated with harvestability and yield, Hortic. Res. 7 (2020)
110, https://doi.org/10.1038/s41438-020-0323-3.

[37] Z. Ning, L. Luo, X. Ding, Z. Dong, B. Yang, J. Cai, W. Chen, Q. Lu, Recog-

nition of sweet peppers and planning the robotic picking sequence in high-

density orchards, Comput. Electron. Agric. 196 (2022) 106878, https://doi.org/10.

1016/j.compag.2022.106878, https://www.sciencedirect.com/science/article/pii/

S0168169922001958.

[38] B. Niu, Q. Feng, B. Chen, C. Ou, Y. Liu, J. Yang, HSI-TransUNet: a trans-

former based semantic segmentation model for crop mapping from UAV hyper-

spectral imagery, Comput. Electron. Agric. 201 (2022) 107297, https://doi.org/10.

1016/j.compag.2022.107297, https://www.sciencedirect.com/science/article/pii/

S0168169922006093.

[39] M. Peebles, S.H. Lim, M. Duke, B. McGuinness, Investigation of optimal network ar-

chitecture for asparagus spear detection in robotic harvesting, IFAC-PapersOnLine
52 (2019) 283–287, https://doi.org/10.1016/j.ifacol.2019.12.535, https://www.

sciencedirect.com/science/article/pii/S2405896319324541.

[40] I. Pérez-Borrero, D. Marín-Santos, M.E. Gegúndez-Arias, E. Cortés-Ancos, A fast and
accurate deep learning method for strawberry instance segmentation, Comput. Elec-

tron. Agric. 178 (2020) 105736, https://doi.org/10.1016/j.compag.2020.105736,
https://www.sciencedirect.com/science/article/pii/S0168169920300624.

[41] R. Ren, S. Zhang, H. Sun, N. Wang, S. Yang, H. Zhao, M. Xin, YOLO-RCS: a method
for detecting phenological period of ‘Yuluxiang’ pear in unstructured environment,
Comput. Electron. Agric. 229 (2025) 109819, https://doi.org/10.1016/j.compag.

2024.109819, https://linkinghub.elsevier.com/retrieve/pii/S0168169924012109.

[42] T.T. Santos, L.L. de Souza, A.A. dos Santos, S. Avila, Grape detection, segmentation,
and tracking using deep neural networks and three-dimensional association, Com-

put. Electron. Agric. 170 (2020) 105247, https://doi.org/10.1016/j.compag.2020.

105247, https://www.sciencedirect.com/science/article/pii/S0168169919315765.

[43] Q. Shen, X. Zhang, M. Shen, D. Xu, Multi-scale adaptive YOLO for instance segmen-

tation of grape pedicels, Comput. Electron. Agric. 229 (2025) 109712, https://doi.

org/10.1016/j.compag.2024.109712, https://linkinghub.elsevier.com/retrieve/pii/

S0168169924011037.

[44] X. Sheng, C. Kang, J. Zheng, C. Lyu, An edge-guided method to fruit segmentation
in complex environments, Comput. Electron. Agric. 208 (2023) 107788, https://

doi.org/10.1016/j.compag.2023.107788, https://www.sciencedirect.com/science/

article/pii/S016816992300176X.

[45] M. Sun, R. Zhao, X. Yin, L. Xu, C. Ruan, W. Jia, FBoT-Net: focal bot-

tleneck transformer network for small green apple detection, Comput. Elec-

tron. Agric. 205 (2023) 107609, https://doi.org/10.1016/j.compag.2022.107609,
https://www.sciencedirect.com/science/article/pii/S0168169922009176.

[46] J.F. Sánchez-Sevilla, J.G. Vallarino, S. Osorio, A. Bombarely, D. Posé, C. Merchante,
M.A. Botella, I. Amaya, V. Valpuesta, Gene expression atlas of fruit ripening and
transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria ×
ananassa), Sci. Rep. 7 (2017) 13737, https://doi.org/10.1038/s41598-017-14239-6,
https://www.nature.com/articles/s41598-017-14239-6, publisher: Nature Publish-

ing Group.

[47] H.T. Thai, K.H. Le, N.L.T. Nguyen, FormerLeaf: an efficient vision transformer
for Cassava Leaf Disease detection, Comput. Electron. Agric. 204 (2023) 107518,
https://doi.org/10.1016/j.compag.2022.107518, https://www.sciencedirect.com/

science/article/pii/S0168169922008262.

[48] M. Trivedi, A. Gupta, Automatic monitoring of the growth of plants using deep
learning-based leaf segmentation, Int. J. Appl. Sci. Eng. 18 (2021) 1–9, https://doi.

org/10.6703/IJASE.202106_18(2).003, https://gigvvy.com/journals/ijase/articles/

ijase-202106-18-2-003, publisher: Chaoyang University of Technology.

[49] J. Wang, Z. Zhang, L. Luo, H. Wei, W. Wang, M. Chen, S. Luo, DualSeg: fus-

ing transformer and CNN structure for image segmentation in complex vineyard
environment, Comput. Electron. Agric. 206 (2023) 107682, https://doi.org/10.

1016/j.compag.2023.107682, https://www.sciencedirect.com/science/article/pii/

S0168169923000704.

[50] W. Wang, E. Xie, X. Li, D.P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyra-

mid vision transformer: a versatile backbone for dense prediction without convolu-

tions, in: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE,
Montreal, QC, Canada, 2021, pp. 548–558, https://ieeexplore.ieee.org/document/

9711179/.

[51] Y. Wu, A. Kirillov, F. Massa, W.Y. Lo, Ross Girshick, Detectron2, https://github.com/

facebookresearch/detectron2, 2019.

[52] X. Xia, X. Chai, Z. Li, N. Zhang, T. Sun, MTYOLOX: multi-transformers-enabled YOLO
for tree-level apple inflorescences detection and density mapping, Comput. Elec-

tron. Agric. 209 (2023) 107803, https://doi.org/10.1016/j.compag.2023.107803,
https://www.sciencedirect.com/science/article/pii/S0168169923001916.

[53] B. Xiao, M. Nguyen, W.Q. Yan, Fruit ripeness identification using YOLOv8 model,
Multimed. Tools Appl. (2023), https://doi.org/10.1007/s11042-023-16570-9.

[54] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J.M. Alvarez, P. Luo, SegFormer: simple
and efficient design for semantic segmentation with transformers, http://arxiv.org/

abs/2105.15203, arXiv:2105.15203 [cs], 2021.

[55] S. Yang, W. Wang, S. Gao, Z. Deng, Strawberry ripeness detection based on
YOLOv8 algorithm fused with LW-Swin Transformer, Comput. Electron. Agric. 215
(2023) 108360, https://doi.org/10.1016/j.compag.2023.108360, https://www.

sciencedirect.com/science/article/pii/S0168169923007482.

[56] J. Yu, Y. Bai, S. Yang, J. Ning, Stolon-YOLO: a detecting method for stolon of straw-

berry seedling in glass greenhouse, Comput. Electron. Agric. 215 (2023) 108447,
https://doi.org/10.1016/j.compag.2023.108447, https://linkinghub.elsevier.com/

retrieve/pii/S0168169923008359.

[57] W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng, S. Yan, MetaFormer
is actually what you need for vision, in: 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2022, pp. 10809–10819, https://

ieeexplore.ieee.org/document/9879612, ISSN: 2575-7075.

[58] Y. Yu, K. Zhang, L. Yang, D. Zhang, Fruit detection for strawberry harvesting
robot in non-structural environment based on Mask-RCNN, Comput. Electron. Agric.
163 (2019) 104846, https://doi.org/10.1016/j.compag.2019.06.001, https://www.

sciencedirect.com/science/article/pii/S0168169919301103.

[59] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, http://arxiv.

org/abs/1612.01105, arXiv:1612.01105 [cs], 2017.

https://doi.org/10.1016/j.compag.2020.105380
https://doi.org/10.1016/j.compag.2020.105380
https://www.sciencedirect.com/science/article/pii/S0168169919326274
https://www.sciencedirect.com/science/article/pii/S0168169919326274
https://doi.org/10.1016/j.compag.2021.106488
https://www.sciencedirect.com/science/article/pii/S0168169921005056
https://doi.org/10.1016/j.biosystemseng.2022.07.009
https://www.sciencedirect.com/science/article/pii/S1537511022001714
https://www.sciencedirect.com/science/article/pii/S1537511022001714
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.1016/j.compag.2020.105302
https://doi.org/10.1016/j.compag.2020.105302
https://www.sciencedirect.com/science/article/pii/S0168169919323889
https://www.sciencedirect.com/science/article/pii/S0168169919323889
https://doi.org/10.1016/j.engappai.2018.09.011
https://www.sciencedirect.com/science/article/pii/S0952197618301970
http://arxiv.org/abs/1912.08193
https://doi.org/10.48550/arXiv.1912.08193
https://doi.org/10.48550/arXiv.1912.08193
https://doi.org/10.1016/j.compag.2023.108121
https://doi.org/10.1016/j.compag.2023.108121
https://www.sciencedirect.com/science/article/pii/S0168169923005094
https://www.sciencedirect.com/science/article/pii/S0168169923005094
http://arxiv.org/abs/2207.05501
https://doi.org/10.48550/arXiv.2207.05501
https://doi.org/10.48550/arXiv.2207.05501
https://doi.org/10.1016/j.compag.2020.105900
https://www.sciencedirect.com/science/article/pii/S0168169920331057
https://doi.org/10.1016/j.compag.2019.105192
https://www.sciencedirect.com/science/article/pii/S0168169919313274
https://ieeexplore.ieee.org/document/8099589
https://ieeexplore.ieee.org/document/8099589
https://doi.org/10.1016/j.compag.2023.108205
https://doi.org/10.1016/j.compag.2023.108205
https://www.sciencedirect.com/science/article/pii/S0168169923005938
https://www.sciencedirect.com/science/article/pii/S0168169923005938
https://doi.org/10.1016/j.compag.2024.109853
https://linkinghub.elsevier.com/retrieve/pii/S0168169924012444
https://doi.org/10.1016/j.biosystemseng.2023.01.003
https://www.sciencedirect.com/science/article/pii/S1537511023000089
https://www.sciencedirect.com/science/article/pii/S1537511023000089
http://arxiv.org/abs/2110.02178
https://doi.org/10.48550/arXiv.2110.02178
https://doi.org/10.48550/arXiv.2110.02178
https://doi.org/10.1016/j.inpa.2019.05.004
https://www.sciencedirect.com/science/article/pii/S2214317318304372
https://www.sciencedirect.com/science/article/pii/S2214317318304372
https://doi.org/10.1038/s41438-020-0323-3
https://doi.org/10.1016/j.compag.2022.106878
https://doi.org/10.1016/j.compag.2022.106878
https://www.sciencedirect.com/science/article/pii/S0168169922001958
https://www.sciencedirect.com/science/article/pii/S0168169922001958
https://doi.org/10.1016/j.compag.2022.107297
https://doi.org/10.1016/j.compag.2022.107297
https://www.sciencedirect.com/science/article/pii/S0168169922006093
https://www.sciencedirect.com/science/article/pii/S0168169922006093
https://doi.org/10.1016/j.ifacol.2019.12.535
https://www.sciencedirect.com/science/article/pii/S2405896319324541
https://www.sciencedirect.com/science/article/pii/S2405896319324541
https://doi.org/10.1016/j.compag.2020.105736
https://www.sciencedirect.com/science/article/pii/S0168169920300624
https://doi.org/10.1016/j.compag.2024.109819
https://doi.org/10.1016/j.compag.2024.109819
https://linkinghub.elsevier.com/retrieve/pii/S0168169924012109
https://doi.org/10.1016/j.compag.2020.105247
https://doi.org/10.1016/j.compag.2020.105247
https://www.sciencedirect.com/science/article/pii/S0168169919315765
https://doi.org/10.1016/j.compag.2024.109712
https://doi.org/10.1016/j.compag.2024.109712
https://linkinghub.elsevier.com/retrieve/pii/S0168169924011037
https://linkinghub.elsevier.com/retrieve/pii/S0168169924011037
https://doi.org/10.1016/j.compag.2023.107788
https://doi.org/10.1016/j.compag.2023.107788
https://www.sciencedirect.com/science/article/pii/S016816992300176X
https://www.sciencedirect.com/science/article/pii/S016816992300176X
https://doi.org/10.1016/j.compag.2022.107609
https://www.sciencedirect.com/science/article/pii/S0168169922009176
https://doi.org/10.1038/s41598-017-14239-6
https://www.nature.com/articles/s41598-017-14239-6
https://doi.org/10.1016/j.compag.2022.107518
https://www.sciencedirect.com/science/article/pii/S0168169922008262
https://www.sciencedirect.com/science/article/pii/S0168169922008262
https://doi.org/10.6703/IJASE.202106_18(2).003
https://doi.org/10.6703/IJASE.202106_18(2).003
https://gigvvy.com/journals/ijase/articles/ijase-202106-18-2-003
https://gigvvy.com/journals/ijase/articles/ijase-202106-18-2-003
https://doi.org/10.1016/j.compag.2023.107682
https://doi.org/10.1016/j.compag.2023.107682
https://www.sciencedirect.com/science/article/pii/S0168169923000704
https://www.sciencedirect.com/science/article/pii/S0168169923000704
https://ieeexplore.ieee.org/document/9711179/
https://ieeexplore.ieee.org/document/9711179/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1016/j.compag.2023.107803
https://www.sciencedirect.com/science/article/pii/S0168169923001916
https://doi.org/10.1007/s11042-023-16570-9
http://arxiv.org/abs/2105.15203
http://arxiv.org/abs/2105.15203
https://doi.org/10.1016/j.compag.2023.108360
https://www.sciencedirect.com/science/article/pii/S0168169923007482
https://www.sciencedirect.com/science/article/pii/S0168169923007482
https://doi.org/10.1016/j.compag.2023.108447
https://linkinghub.elsevier.com/retrieve/pii/S0168169923008359
https://linkinghub.elsevier.com/retrieve/pii/S0168169923008359
https://ieeexplore.ieee.org/document/9879612
https://ieeexplore.ieee.org/document/9879612
https://doi.org/10.1016/j.compag.2019.06.001
https://www.sciencedirect.com/science/article/pii/S0168169919301103
https://www.sciencedirect.com/science/article/pii/S0168169919301103
http://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1612.01105

Smart Agricultural Technology 12 (2025) 101068

14

Z. Zhao, Y. Hicks, X. Sun et al.

[60] Z. Zhao, Y. Hicks, X. Sun, C. Luo, Peach ripeness classification based on a new one-

stage instance segmentation model, Comput. Electron. Agric. 214 (2023) 108369,
https://doi.org/10.1016/j.compag.2023.108369, https://www.sciencedirect.com/

science/article/pii/S0168169923007573.

[61] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for
discriminative localization, in: 2016 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), IEEE, Las Vegas, NV, USA, 2016, pp. 2921–2929, http://

ieeexplore.ieee.org/document/7780688/.

[62] X. Zhu, F. Chen, Y. Zheng, C. Chen, X. Peng, Detection of Camellia oleifera
fruit maturity in orchards based on modified lightweight YOLO, Comput. Elec-

tron. Agric. 226 (2024) 109471, https://doi.org/10.1016/j.compag.2024.109471,
https://linkinghub.elsevier.com/retrieve/pii/S0168169924008627.

https://doi.org/10.1016/j.compag.2023.108369
https://www.sciencedirect.com/science/article/pii/S0168169923007573
https://www.sciencedirect.com/science/article/pii/S0168169923007573
http://ieeexplore.ieee.org/document/7780688/
http://ieeexplore.ieee.org/document/7780688/
https://doi.org/10.1016/j.compag.2024.109471
https://linkinghub.elsevier.com/retrieve/pii/S0168169924008627

	FruitQuery: A lightweight query-based instance segmentation model for in-field fruit ripeness determination
	1 Introduction
	1.1 Background
	1.2 CNN-based models
	1.3 Transformer-based models
	1.4 Contributions

	2 Datasets
	2.1 Overview
	2.2 StrawDI_Db1 ripeness annotation
	2.3 Dataset summary

	3 Proposed model
	3.1 Model structure
	3.1.1 Backbone
	3.1.2 Pixel decoder
	3.1.3 Transformer decoder

	3.2 Loss function
	3.3 Evaluation metrics

	4 Experiments and results
	4.1 Experiments
	4.1.1 Configuration
	4.1.2 Training details
	4.1.3 Inference details

	4.2 Results
	4.3 Ablation experiments
	4.3.1 Type of pixel decoder
	4.3.2 Number of decoder attention head
	4.3.3 Number of query
	4.3.4 Number of decoder layers

	4.4 Combined or separated training
	4.5 Model parameter distribution
	4.6 Visualization
	4.7 Class activation map analysis
	4.8 Deployment

	5 Discussion
	5.1 Limitations
	5.2 Future work

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References

