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Accurate fruit instance segmentation at different ripeness stages is critical for developing autonomous harvesting 
robots, particularly given the unstructured infield conditions. In this paper, we combine two infield fruit datasets 
of peaches and strawberries for multiple ripeness stages determination, and propose a lightweight query-based 
instance segmentation model named FruitQuery.

The combined dataset contains 3 peach ripeness stages and 4 strawberry ripeness stages, covering various 
unstructured conditions of two popular fruits. The model FruitQuery consists of three parts: a backbone, a pixel 
decoder and Transformer decoders. Efficient multi-head self-attention modules are introduced to the backbone to 
reduce computational overhead, and a pyramid pooling module is added to the pixel decoder to enhance multi

scale feature fusion. Transformer decoders are then applied to learn a fixed number of queries from features and 
generate instance masks, avoiding postprocessing like non-maximum suppression. FruitQuery runs in an end-to

end way and incorporates the convolution and Transformer to capture fine-grained features related to different 
fruits at different ripeness stages.

Extensive experiments on the combined fruit dataset demonstrate that our FruitQuery achieves the highest 
average precision of 67.02 with only 14.08M parameters, outperforming 13 state-of-the-art models with 33 
variants. It is noted that FruitQuery surpasses three series of YOLO (v8, v9 and v10) by a large margin. Ablation 
studies and visualizations also show its robust feature extraction with fewer parameter usage, indicating that 
the query-based design is effective in localizing fruit. These results highlight FruitQuery’s compelling balance 
between segmentation performance and model size, offering the potential for infield application.

1. Introduction

1.1. Background

Rapid developments in artificial intelligence have made digitization, 
precision, and smart farming key elements in driving the moderniza

tion of agriculture. In the context of fruit automation production, the 
efficient and precise location of the target fruit serves as the founda

tional prerequisite to building a fruit-picking robot, which senses the 
working surroundings and guides the robotic arm to detach the fruit. In 
recent years, various harvesting robots have been developed for fruits 
and crops, such as kiwifruit [35], apple [23], litchi [29,21], strawberry 
[17], green citrus [31], radiata pine [33], sweet pepper [37] and as

paragus spear [39].
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Various computer vision tasks, such as classification, detection and 
segmentation, have been applied in the agricultural sector. Segmenta

tion is one of the most promising domains for practical implementation, 
and it has been widely used in various applications because it provides 
accurate pixel-level prediction for objects. Segmentation methods in

clude semantic segmentation and instance segmentation. Specifically, 
instance segmentation assigns different labels for individual instances 
belonging to the same category, which is relatively more resource

consuming and complicated than semantic segmentation [13]. Segmen

tation has been applied to various agricultural applications like mango 
yield estimation [24], leaf disease analysis [10], plant growth monitor

ing [48] and automatic fruit picking [28].

In terms of fruit detection and segmentation, the models can be 
mainly divided into Convolutional Neural Network (CNN) based models 
and Transformer-based models.
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1.2. CNN-based models

CNN-based models have dominated vision architectures for a long 
time, of which Mask R-CNN [14] is the pioneer of instance segmen

tation. Santos et al. [42] showcased the effectiveness of Mask R-CNN 
in detecting, segmenting, and tracking grape clusters, demonstrating 
its robust performance across significant variations in shape, colour, 
size, and compactness. A Mask R-CNN model was trained and tested 
to detect and segment individual blueberries of four cultivars to two 
stages of maturity [36]. Similarly, Mask R-CNN and its modified version 
are adopted to build strawberry fruit detectors with better universality 
and robustness than traditional machine vision algorithms [58,40]. Jia 
et al. [19] improved Mask R-CNN by adopting ResNet and DenseNet as 
the feature extraction backbone to construct a picking robot vision de

tector, which significantly improves the recognition accuracy of apples 
in the environment of overlaps, agglomerations and occlusions. Besides, 
some other CNN-based instance segmentation also emerged. A fast seg

mentation model for green fruits called FoveaMask was constructed by 
introducing a position attention module to the embedding mask branch 
to aggregate pixels containing valuable information and enhance robust

ness capability [20]. Kang and Chen [23] proposed DaSNet-v2 which 
combines an instance and a semantic segmentation branch into the 
one-stage detection network, which can perform fruit instance segmen

tation and branches semantic segmentation. Sheng et al. [44] designed 
an edge-guided fruit segmentation model, which included modules spe

cially designed to locate potential target areas and sharpen the edges.

It is noted that You Only Look Once (YOLO) series models have been 
widely adopted in fruit detection, classification, and ripeness determi

nation over the past few years. For instance, Yang et al. [55] introduced 
LS-YOLOv8s by integrating YOLOv8s with an LW-Swin Transformer 
module to detect and grade strawberry ripeness. Xiao et al. [53] ap

plied YOLOv8 to classify apple ripeness into three stages. In addition, 
He et al. [17] proposed a real-time improved YOLOv5s for robotic straw

berry harvesting, Yu et al. [56] introduced Stolon-YOLO to detect straw

berry stolons in greenhouse environments, and Chen et al. [4] combined 
fusion clustering with YOLOv5 to tackle Camellia oleifera fruit detection 
under multiple occlusions. Further extensions include Zhu et al. [62]’s 
modified lightweight YOLO for C. oleifera fruit maturity assessment in 
orchards, Ren et al. [41]’s YOLO-RCS for detecting the phenological pe

riod of Yuluxiang pears, [43]’s multi-scale adaptive YOLO for grape 
pedicel instance segmentation, and Ma et al. [32]’s STRAW-YOLO for 
identifying strawberries and their key points. These studies reflect the 
popularity of YOLO models across diverse fruit applications.

1.3. Transformer-based models

Recently, Vision Transformer (ViT, [9]) have received growing re

search attention, which is based on sequence-to-sequence prediction. 
Compared to the widely-used CNNs in visual perception, ViTs enjoy 
great flexibility in modelling long-range dependencies in vision tasks 
and introduce less inductive bias. Thus, it is expected that ViTs are likely 
to replace or combine with CNNs and serve as the basic component in the 
next-generation visual perception system. Based on the vanilla ViT, sev

eral successive models like DETR [2], MaskFormer [6] and SegFormer 
[54] etc have arisen.

Transformer models have been combined with CNN-based models to 
conduct segmentation. Niu et al. [38] proposed a semantic segmentation 
model called HSI-TransUNet for crop mapping, which could make full 
use of the abundant spatial and spectral information of UAV HSI data 
simultaneously. Wang et al. [49] proposed a parallel network structure 
DualSeg, which leverages the advantages of CNN at local processing 
and Transformer at global interaction for grape peduncle segmentation. 
Guo et al. [12] presented a Convolutional version of Swin Transformer 
to recognize the degree and kind of disease using a convolutional de

sign. A novel Transformer-based CNN model MTYOLOX, is introduced 

for robustly detecting full tree inflorescences in the uncontrolled and 
challenging orchard environment [52].

Besides, the Transformer models also have demonstrated good per

formance in relevant agricultural applications. Sun et al. [45] presented 
a focal bottleneck Transformer network FBoT-Net to incorporate high

level semantic information with strong representation ability and global 
and local feature information through the focal bottleneck Transformer 
module for small green apple detection. Thai et al. [47] introduced 
a Transformer-based leaf disease detection model, namely FormerLeaf 
along with the Least Important Attention Pruning algorithm to select 
the most important attention heads of each layer in the Transformer 
model. An improved Transformer-based strawberry disease identifica

tion method was proposed to achieve precise and fast recognition of 
multiple classes of strawberry diseases [26]. He et al. [16] proposed a 
two-stream cross-attention ViT to extract texture appearance and spa

tial structure for regressing pig weight based on both RGB and depth 
images.

1.4. Contributions

Despite significant interest in Transformer-based models, most cur

rent related research in agriculture focused on CNN-based models, of 
which YOLO is the most frequently used model. There is a distinct lack 
of exploration into Transformer-based models for fruit instance segmen

tation and ripeness determination. This gap is critical given the practical 
need for accurate and robust methods in complex orchard environments. 
Meanwhile, ensuring lightweight and efficient segmentation remains a 
major challenge, as many infield robotic platforms have strict limita

tions on computational resources and power.

Furthermore, publicly available fruit datasets that include both 
instance-level masks and ripeness annotations are difficult to obtain. Al

though some datasets provide segmentation labels, they rarely include 
labels on ripeness stages, hindering progress in the multi-stage evalua

tion of ripeness.

To address these issues, we release a combined fruit dataset and pro

pose a lightweight Transformer-based instance segmentation model for 
fruit ripeness determination. In the following, we highlight our main 
contributions.

1. The strawberry dataset StrawDI_Db1 was annotated with 4 ripeness 
stages; the ripeness labels are now publicly available.

2. The NinePeach and StrawDI_Db1 datasets were merged to support 
multi-fruit segmentation in complex real-world scenarios.

3. FruitQuery is a lightweight query-based model combining CNN and 
Transformer features for end-to-end ripeness segmentation.

4. FruitQuery achieves 67.02 AP with only 14.08M parameters, sur

passing 13 other models, including three YOLOs (v8, v9, v10).

2. Datasets

2.1. Overview

In this paper, we combined two public fruit datasets, NinePeach 
dataset [60] and StrawDI_Db1 dataset [40] to form a unified benchmark 
for fruit instance segmentation. Sample images are shown in Fig. 1. Both 
datasets provide pixel-wise individual annotation masks for every single 
fruit shown in the image.

By merging a tree-fruit (peach) and a berry-fruit (strawberry), the 
dataset spans diverse canopy structures, occlusion patterns, and back

ground textures. This variety offers a more challenging and comprehen

sive setting for segmentation models, as they must adapt to different 
orchard conditions and fruit morphologies.

NinePeach dataset. This dataset is from our previous work [60], 
which is the largest and most varied peach dataset among publicly avail

able peach datasets. It comprises 4599 images (1024×768) of nine peach 
cultivars, which were taken under natural illumination and in real-world 
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Fig. 1. Images of NinePeach (left) and StraDI_Db1 (right). 

Fig. 2. The process of strawberry mask classification. 

production settings, including peaches with factors like different intensi

ties of natural light, multi-fruit adhesion, and occlusion caused by stems 
and leaves. The peaches demonstrated different physical scenarios such 
as isolated peaches, peaches that are in close proximity to one another, 
peaches that are partially obscured by leaves or stalks, and peaches that 
are illuminated from the opposite side.

This dataset is divided into training (3240 images) and validation 
(1359 images) subsets, and each peach is categorized into three ripeness 
stages: unripe, semiripe, and ripe.

StrawDI_Db1 dataset. This dataset contains a total of 3100 images 
(1008×756) that were randomly selected from a large number of straw

berries images, taken from 20 plantations, where images were taken 
under different conditions of brightness, at a distance of approximately 
20 cm from the ridge during a full picking campaign. This dataset is di

vided into training (2800 images), validation (100 images) and testing 
(200 images) subsets. The training and testing sets are used in this paper.

Unfortunately, this dataset only offers class-agnostic annotations for 
strawberries, with no information provided on ripeness. Therefore, we 
present our solution to this problem in the following section.

2.2. StrawDI_Db1 ripeness annotation

Based on the previous work [1,46], four ripeness stages are selected 
to distinguish the strawberries from StrawDI_Db1 dataset, with the cri

terion described in Table 1. To achieve this classification, we adopt a 
simple but effective method for dividing strawberries into four stages, 
as illustrated in Fig. 2.

First, the strawberry instances are cropped from the original images 
and background pixels are filtered, as the contextual information from 
the background was assumed to introduce noise rather than contribute 
to the classification accuracy. All strawberry instances are resized to 
280 × 280 pixels.

Second, some machine learning methods like Histogram of Oriented 
Gradients, and deep learning methods like pre-trained CNN models are 
employed to extract features of the resized strawberry instances. Then, 

Table 1
Four ripeness stages of strawberry.

Category Description 
rs1 (Green) Dark green, the sizes are relatively small. 
rs2 (White) Expanding, the colour is white. 
rs3 (Turning) Below 90% red and not ready to be harvested. 
rs4 (Red) Over 90% red, edible and ready to be harvested. 

the cosine-similarity is adopted to calculate the distance between fea

tures, resulting in similarity matrices.

Third, we applied K-means clustering to solve the similarity matrices, 
partitioning them into four clusters. The clustering method with the best 
performance was chosen to give the predictions.

Lastly, the clustering results were manually reviewed and corrected 
to ensure alignment with the predefined ripeness criteria. This refine

ment ensured that the final clustering outcomes adhered to the antici

pated standards.

2.3. Dataset summary

In summary, our study leverages two large fruit datasets NinePeach 
and StrawDI_Db1, and both of them have individual mask annotations 
and ripeness stage labels. Peaches and strawberries are two popular 
fruits that are widely grown and consumed across the world. By inte

grating these two datasets, we can effectively cover different scenarios 
involving both tree-fruit (peaches) and berry-fruit (strawberries).

The combined dataset contains 7 different classes, with 3 classes 
corresponding to peaches and 4 classes to strawberries. This detailed 
dataset structure ensures a comprehensive representation of fruit devel

opment stages, facilitating more accurate and generalizable insights in 
subsequent analyses. Examples of images and their associated annota

tions are presented in Fig. 3, and the distribution of instance categories 
is summarized in Table 2. It is noted that the quantity of fruit instances 
decreases progressively over time as ripeness advances, revealing a real 
pattern that aligns with the natural growth and ripening process of fruit.
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Fig. 3. Examples of fruit instance annotation in NinePeach (left) and StraDI_Db1 (right). 

Table 2
The category distribution of the combined dataset.

NinePeach StrawDI_Db1 
Category Train Val Category Train Val 
unripe 3669 1717 rs1 6693 453 
semiripe 3312 1307 rs2 4014 319 
ripe 1698 737 rs3 3010 212 
/ / / rs4 2517 148

Instance 8679 3761 Instances 16234 1132 
Image 3240 1359 Images 2800 100 

By training on a combined dataset, the model learns to handle these 
complexities across different object types, which enhances its robust

ness. Additionally, the inclusion of varied fruit types in a unified dataset 
can improve the model’s ability to distinguish between different objects, 
making it more adaptable to real-world applications where multiple fruit 
categories are often present simultaneously.

3. Proposed model

3.1. Model structure

For fruit ripeness determination, we propose an instance segmenta

tion model FruitQuery following the design of Mask2Former [5], which 
consists of a backbone, a pixel decoder and Transformer decoders. The 
architecture is illustrated in Fig. 4.

3.1.1. Backbone

It is well-known that the convolutional layer has inductive biases 
of locality and spatial invariance, which is capable of extracting low

level small local features. The self-attention layer has a global receptive 
field and allows capturing global context information within an image. 
Therefore, these two types of layers are considered to build the backbone 
for multi-level feature extraction. The proposed backbone is illustrated 
in Fig. 4a.

By combining convolutional layers with stronger generalization per

formance and self-attention layers with higher model capacity and 
stronger learning ability, we assume that the backbone can achieve 
better generalization performance and learning ability. Given an input 
image, the backbone can generate 4 levels of features, which provide 
high-resolution coarse features and low-resolution fine-grained features 
that usually boost the performance of fruit segmentation. It is noted that 
ConvBlock is removed in the last block in order to reduce the model pa

rameters.

Patch Embedding. The input image is divided into a grid of non

overlapping patches, and each patch normally covers a square region 
of the image and is transformed into a fixed-dimensional embedding 
vector. According to different patch sizes and embedding dimensions, 
4 different patch embedding blocks are attached in front of each block. 

As patch embedding does not inherently preserve positional informa

tion within each patch, it is required to add positional encoding to the 
subsequent two blocks.

ConvBlock. The ConvBlock is made of several convolutional lay

ers, with two residual connections. In the first residual connection, two 
1 × 1 point-wise convolutional layers (PWConv) are respectively placed 
before and after a 5 × 5 convolutional layer. The 5 × 5 convolutional 
layer has a larger receptive field to consider larger local regions and 
is expected to capture large-scale features like fruit edges, and textures 
in images. In the second residual connection, two 1 × 1 point-wise con

volutional layers are used to perform MLP-like behaviour: increase the 
dimension to 4 times and then decrease it to the desired output dimen

sion. This operation is designed to increase nonlinear representation 
capacity and learn richer feature representations, thereby enhancing the 
model performance and generalization ability. The 1×1 point-wise con

volutional layers only involve a single pixel and have fewer parameters 
to learn, therefore it is suitable for dimension expansion and compres

sion.

Efficient Multi-head Self-Attention (EMSA). For each head of the 
multi-head self-attention, the query 𝑄, key 𝐾 and value 𝑉 are ob

tained by applying three linear projections to the input embedding, 
including positional encoding. 𝑄, 𝐾 and 𝑉 have the same dimensions 
𝑁 ×𝐶 , where 𝑁 =𝐻 ×𝑊 . Then, attention scores are calculated by the 
scaled dot-product attention. The scores are normalized using the Soft

max function to obtain attention weights, which is used to compute a 
weighted sum of the 𝑉 vectors of all tokens, as shown in Equation (1), 
where 𝑑𝑘 refers to the dimensionality of the key. Tokens with higher 
scores contribute more to the output of the self-attention mechanism.

Attention = Softmax(𝑄𝐾𝑇√
𝑑𝑘

)𝑉 (1)

The main bottleneck of the self-attention layer lies in its computa

tion cost of 𝑂(𝑁2), which scales quadratically with spatial dimension 
based on the input embedding. To alleviate this problem, we introduce 
an efficient multi-head self-attention (EMSA) based on the spatial re

duction method proposed in PVT [50]. The main idea of it is to reduce 
the length of the sequence with a reduction ratio 𝑅. For reducing com

putations, an input sequence with shape (𝐶,𝐻 ⋅𝑊 ) is reshaped to the 
𝐾̂ with shape (𝐶 ⋅𝑅2,𝐻 ⋅𝑊 ∕𝑅2) based on Equation (2). Here we use 
a convolutional layer with 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 𝑅 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑅 to perform 
the reshape operation. Equation (3) refers to a linear layer taking 𝐾̂ as 
input and generating a new 𝐾 ′ with shape (𝐶,𝐻 ⋅𝑊 ∕𝑅2) as output.

𝐾̂ = Reshape(𝐾,𝑅) (2)

𝐾 ′ = Linear(𝐶 ⋅𝑅2,𝐶)(𝐾̂) (3)

As a result, the complexity of the efficient self-attention mechanism 
is reduced from 𝑂(𝑁2) to 𝑂(𝑁2∕𝑅2). It is noted that a residual MLP 
layer is appended at the end of EMSA to increase the model capacity 
and avoid overfitting.
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Fig. 4. The proposed backbone and overall architecture of FruitQuery. 

Table 3
Specification of our backbones.

Stage Size Layer xs s 

𝑆1 𝐻

4 ×
𝑊

4 

Patch Embed1 Patch Size = 4, 𝐶 = 𝐶1

EMSA

𝐶1 = 36 𝐶1 = 48
𝐵1 = 1 𝐵1 = 1
𝑅1 = 4 𝑅1 = 4

𝑆2 𝐻

8 ×
𝑊

8 

Patch Embed2 Patch Size = 2, 𝐶 = 𝐶2

EMSA

𝐶2 = 72 𝐶2 = 96
𝐵2 = 1 𝐵2 = 1
𝑅2 = 2 𝑅2 = 2

𝑆3 𝐻

16
× 𝑊

16 

Patch Embed3 Patch Size = 2, 𝐶 = 𝐶3

EMSA

𝐶3 = 144 𝐶3 = 240
𝐵3 = 3 𝐵3 = 3
𝑅3 = 2 𝑅3 = 2

𝑆4 𝐻

32
× 𝑊

32 

Patch Embed4 Patch Size = 2, 𝐶 = 𝐶4

EMSA

𝐶4 = 288 𝐶4 = 384
𝐵4 = 1 𝐵4 = 2
𝑅4 = 1 𝑅4 = 1

To cater to diverse scenarios, we proposed two different settings for 
the backbone (s and xs). The specifications are presented in Table 3, 
where 𝐶 represents the number of embedded dimensions, and 𝐵 denotes 
the number of blocks.

3.1.2. Pixel decoder

Multi-level contextual feature maps play a crucial role in image seg

mentation, but employing a complex multi-scale feature pyramid net

work escalates the computational workload. For instance, multi-scale 
deformable attention used in Mask2Former demonstrates good perfor

mance, but it also brings a large number of parameters. To build a 
lightweight but effective model, the Feature Pyramid Network (FPN, 
[30]) is selected as the pixel decoder, which occupies less than half the 
size of the multi-scale deformable attention. FPN works by taking the 
feature maps produced by the backbone at different levels (𝑆1, 𝑆2, 𝑆3

and 𝑆4), and building a feature pyramid from top to down (𝑃1, 𝑃2 and 
𝑃3) through lateral connections (𝑆4 − 𝑃1, 𝑆3 − 𝑃2, 𝑆2 − 𝑃3).

A pyramid pooling module (PPM, [59]) is added to the top layer 𝑃1
to enlarge the receptive field and fuses the multi-scale features, of which 
the detail is shown in Fig. 5. The input feature is divided into multiple 
regions of different sizes, using four different adaptive average pooling 
to capture information at different receptive field sizes. Then the pooled 
features are resized to the same size as the input, and concatenated with 
the input feature, resulting in a feature of shape (𝐶 + 4𝑁,𝐻,𝑊 ). Fi

nally, a simple convolutional layer is used to transform the shape of 
(𝐶 + 4𝑁,𝐻,𝑊 ) back to (𝐶,𝐻,𝑊 ) and fuse all information. Since the 
pooling operation does not introduce any new parameters, the intro

duction of PPM enhances the model’s performance without significantly 
increasing its computational complexity.

The final output of the pixel decoder comprises features at three res

olutions, incorporating both high-level features rich in semantics and 
low-level features rich in spatial information.

The final output of the pixel decoder integrates multi-scale features 
from three different resolutions, combining both high-level semantic in

formation and low-level spatial details.

3.1.3. Transformer decoder

The Transformer decoder plays a crucial component in the model, 
which takes the learned features from the pixel decoder and processes 
them to produce the final output predictions. As shown in Fig. 4b, the 
decoder follows the paradigm of the standard architecture of the orig

inal Transformer, transforming 𝑁 embeddings of objects into output 
embeddings. It is a stack of decoder layers, each of which consists of 
a masked attention layer, a self-attention layer and a feed-forward net

work (FFN). Each Transformer decoder layer generates predictions for 
mask and class, but only the prediction of the last layer is used as the 
final prediction, prior layer predictions can be used for auxiliary predic

tions optionally. We set the number of the Transformer decoder layers 
as 3 to achieve a better trade-off between accuracy and model size, and 
the feature 𝑃3 from the pixel decoder is used as pixel features.
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Fig. 5. The pyramid pooling module. 

Fig. 6. Non-maximum suppression and bipartite matching. 

Query Features Initialization. The query features are important in 
the Transformer model, as they guide the decoder to attend to the most 
significant parts of the input embedding. Previous research indicates 
that query features can be initialized from zero [2], or can be updated 
by local features [5]. Although these two strategies are effective in gen

erating query features, they require more decoders and longer training 
iterations to refine. Inspired by Deformable DETR, which selects a set of 
query bounding boxes from pyramidal features to perform object de

tection, and SparseInst [7], which introduces a simple convolutional 
module 𝐹𝑖𝑎𝑚 to highlight informative regions for each foreground ob

ject.

Therefore, we combine these two advantages to our model. A 𝐹𝑖𝑎𝑚

like convolutional module is added to efficiently initialize the query 
features in our model, which directly picks the queries with high se

mantics from underlying multi-scale feature maps. The simple module 
only consists of two convolutional layers. The first convolutional layer 
is a typical 3 × 3 convolution layer with the same input and output di

mensions. The second convolutional layer is a 1×1 convolution layer to 
reduce the number of dimensions to the number of classes +1, where the 
extra one means ``no object 𝜙''. Specifically, feature 𝑃2 from the pixel 
decoder is selected to generate 𝑁 pixel embeddings with the highest 
foreground probabilities as the query features.

Masked Attention. The cross-attention in the original Transformer 
decoder is replaced with masked attention. The standard cross-attention 
is computed by Equation (4). 𝑙 is the layer index, 𝑋𝑙 indicates the query 
features with the shape 𝑁 × 𝐶 at the 𝑙-th layer. 𝑄𝑙 = 𝑓𝑞(𝑋𝑙−1) is cal

culated by applying a linear transformation 𝑓𝑞 on the query features of 
previous layer. 𝐾𝑙 and 𝑉𝑙 are the pixel features from pixel decoder after 
linear transformations 𝑓𝑘 and 𝑓𝑣.

𝑋𝑙 = Softmax(𝑄𝑙𝐾
𝑡
𝑙
)𝑉𝑙 +𝑋𝑙−1 (4)

Based on cross-attention, masked attention adds an attention mask 
𝑙−1, as calculated in Equation (5).

𝑋𝑙 = Softmax(𝑙−1 +𝑄𝑙𝐾
𝑡
𝑙
)𝑉𝑙 +𝑋𝑙−1 (5)

The attention mask 𝑙−1 at feature location (𝑥, 𝑦) is calculated in 
Equation (6), where 𝑚𝑙−1(𝑥, 𝑦) is the binary output of the resized mask 
prediction of the previous (𝑙-1) decoder layer. 𝑚0 is the binary mask 
prediction obtained from 𝑋0.

𝑙−1 =

{
0 if 𝑚𝑙−1(𝑥, 𝑦) = 1
−∞ otherwise

(6)

3.2. Loss function

Different from anchor-based segmentation models that generate a 
large number of anchor proposals, our model employs the Transformer 
decoder to treat fruit detection as an end-to-end dictionary lookup task. 
Specifically, the decoder generates a fixed number of 𝑁 predictions 
by decoding the 𝑁 learnable query embeddings layer by layer. There

fore, the necessity for manual processes like non-maximum suppression 
(NMS) is eliminated. Instead, we adopt Hungarian matching, which is a 
kind of bipartite matching method, to find the best matching between 
predictions and ground truths for loss computation.

The difference between NMS and bipartite matching is illustrated in 
Fig. 6. NMS generates a large number of proposals and applies heuris

tic filtering based on overlap scores to remove redundant detections. 
This introduces a non-differentiable post-processing step. In contrast, bi

partite matching employs a pre-defined fixed number of proposals and 
assigns each proposal to a specific ground truth or a ``no object'' class 
based on a cost matrix. By integrating this matching process directly 
into the optimization framework, our model enables a fully end-to-end 
differentiable pipeline where predictions and assignments are jointly op

timized.

First, all of the predictions including class predictions, mask predic

tions and class targets, mask targets are used to calculate a cost matrix 
for prediction selection, where 𝑋 indicates the number of instances in a 
batch. The class cost and mask cost are calculated by cross entropy loss 
and Dice loss respectively, as shown in Equation (7) and Equation (8),

𝐶𝐸 (𝑦, 𝑝) = −Σ𝑖𝑦𝑖 ⋅ log(𝑝𝑖) (7)
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where 𝑦𝑖 represents the ground truth probability and 𝑝𝑖 represents the 
predicted probability.

Dice(𝑚, 𝑡) =
2 ⋅ Σ𝑥,𝑦𝑚𝑥𝑦 ⋅ 𝑡𝑥𝑦
Σ𝑥,𝑦𝑚

2
𝑥𝑦

+Σ𝑥,𝑦𝑡
2
𝑥𝑦

(8)

where 𝑚𝑥𝑦 and 𝑡𝑥𝑦 refer to the value of pixel located at (𝑥, 𝑦) in predicted 
mask 𝑚 and ground truth 𝑡 respectively.

Second, the Hungarian algorithm is used to search for the best bipar

tite matching by solving the cost matrix, resulting in a matching score 
𝐶(𝑖, 𝑘) for 𝑖-th prediction and 𝑘-th ground truth object. Therefore, the 
number of predictions is decreased from 𝑁 to match that of the targets.

The total training loss for our proposed model is defined in Equation 
(9):

𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑙𝑐𝑙𝑎𝑠𝑠 + 𝜆𝑚𝑚𝑎𝑠𝑘 + 𝜆𝑐𝑜𝑐𝑜𝑛𝑣 + 𝜆𝑎𝑎𝑢𝑥 (9)

𝜆 indicates the different loss weights.

𝑐𝑙𝑎𝑠𝑠 is the cross entropy loss between the selected class predictions 
and class targets.

𝑚𝑎𝑠𝑘 is the dice loss between the selected mask predictions and 
mask targets.

𝑐𝑜𝑛𝑣 is the cross entropy loss between the output of 𝐹𝑖𝑎𝑚-like con

volutional module and ground truth.

As each Transformer decoder layer generates class prediction and 
mask prediction, we use the prior predictions to calculate auxiliary loss 
𝑎𝑢𝑥, as shown in Equation (10),

𝑎𝑢𝑥 =
𝐷∑
𝑖=0 

(≧
𝑐𝑙𝑎𝑠𝑠 +≧

𝑚𝑎𝑠𝑘) (10)

where 𝐷 indicates the number of Transformer decoders. ′
𝑐𝑙𝑎𝑠𝑠 and 

′
𝑚𝑎𝑠𝑘 use the same loss functions as 𝑐𝑙𝑎𝑠𝑠 and 𝑚𝑎𝑠𝑘.

Based on PointRend [25], which demonstrated that a segmentation 
model can be effectively trained by calculating its mask loss on a subset 
of randomly 𝐾 sampled points instead of the entire mask, we incorpo

rate this strategy into our model. Consequently, we compute the mask 
loss using sampled points both in the matching process and the final loss 
calculation.

3.3. Evaluation metrics

Average Precision (AP) Precision serves as a standard and widely

used metric for evaluating the network’s ability to accurately identify 
target objects, reflecting the comprehensive performance of the net

work. The definition of precision is shown by Equation (11):

Precision = TP

TP + FP
(11)

Here, TP represents the count of correctly detected fruit targets, and 
FP represents the count of cases where the target is wrongly detected as 
a fruit when it is not. The average precision is selected as the primary 
metric to assess model performance. It is computed by averaging the 
precision scores at 10 Intersection over Union (IoU) thresholds, ranging 
from 0.50 to 0.95, across all categories. A higher AP value indicates bet

ter detection accuracy of the model. Specifically, the AP values for IoU 
thresholds of 0.50 and 0.75 are reported, as well as for each individual 
category.

Learnable Parameters (Params) The learnable parameters refer to 
the weights and biases within the model’s layers, which are adjusted 
during the training process to optimize performance and make accurate 
predictions. The total number of learnable parameters in a model is often 
considered an indicator of its capacity and complexity.

Floating-point Operations (FLOPs) Floating-point operations is a 
measure of the computational complexity of a deep learning model. It 
represents the number of arithmetic operations performed by the model 
during the process of forward propagation, where input data passes 
through the layers of the model to produce output predictions. FLOPs is 

typically quantified in terms of the number of multiplications and addi

tions performed by the model.

Frame per second (FPS) Frames per second (FPS) is a measure of 
the inference speed of a deep learning model, indicating how many in

put images the model can process per second. A higher FPS reflects faster 
model execution, which is critical for real-time applications such as au

tonomous driving or video analysis. FPS is influenced by factors such as 
model size, hardware performance, and optimization techniques.

4. Experiments and results

4.1. Experiments

4.1.1. Configuration

In this paper, experiments are conducted based on Detectron2 [51] 
and have been carried out using Python 3.9.13 and PyTorch 1.13 on a 
computer with an Intel Xeon Gold 6152 @2.1 GHz CPU, 2 Nvidia Tesla 
V100 GPUs and 32.0 GB memory.

4.1.2. Training details

No pre-trained weights are utilized in this work, and the parame

ters of all convolution layers are initialized by a normal distribution. 
The training process incorporates diverse data augmentation strategies 
to improve the model’s robustness and generalization. These strategies 
contain random horizontal flips, resizing the input images such that the 
shortest side is one of 416, 448, 480, 512, 544, 576, 608 or 640 pix

els while the longest is at most 768. This multi-scale resizing introduces 
variability in the input sizes, encouraging the model to adapt to objects 
of different scales.

The maximum prediction per image 𝑁 is set to 100, based on the 
assumption that this value is sufficient to include all fruit present in a 
single image. The number of mask sampling points 𝐾 is set to 12544, 
corresponding to a grid resolution of 112 × 112. The loss weights are 
set to {𝜆𝑐𝑙 :2.0, 𝜆𝑚:5.0, 𝜆𝑐𝑜:20.0, 𝜆𝑎:1.0}. The depth of decoder layers) 
𝐷 is set to 3, indicating the number of decoding layers used for predic

tion tasks, providing a balance between computational efficiency and 
representational capacity.

We use the AdamW optimizer with a step learning rate schedule, of 
which the initial rate is 0.0001, and the weight decay is 0.05. A learning 
rate multiplier of 0.1 is applied to the backbone, and decay the learn

ing rate by 10 at fractions 0.9 and 0.95 of the total number of training 
iterations. We train our model for 54k iterations with a batch size of 8.

4.1.3. Inference details

The data augmentation strategy used in inference is only resizing the 
input images such that the shortest side is 640 pixels while the longest is 
at most 768 pixels. Auxiliary predictions are not used during inference. 
The top 100 candidates with the highest confidence are selected as final 
predictions.

During inference, the data augmentation strategy is simplified to re

size the input images. Specifically, each image is resized such that the 
shortest side is scaled to 640 pixels while ensuring the longest side does 
not exceed 768 pixels, preserving the aspect ratio. Auxiliary predictions 
like outputs from intermediate layers or heads used during training, are 
not used during inference to streamline the process and focus solely on 
the final model predictions. After the model generates predictions, the 
top 100 candidate predictions with the highest confidence scores are 
selected as the final predictions.

4.2. Results

We conducted a comprehensive segmentation comparison of dif

ferent state-of-the-art backbones on the combined fruit dataset, using 
FruitQuery’s architecture shown in Fig. 4b, and the results are summa

rized in Table 4.
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Table 4
Instance segmentation results on the combined dataset with different backbones.

Backbone Type AP AP50 AP75 NinePeach StrawDI_Db1 Params 
(M)

FLOPs 
(G)

FPS

APunripe APsemiripe APripe APrs1 APrs2 APrs3 APrs4

C
N

N
-b

a
se

d

ResNet [15] 18 61.74 75.68 65.37 50.61 53.50 65.72 39.52 73.64 75.80 73.39 17.54 29.56 19.50 
34 63.17 77.06 66.98 49.42 56.77 67.65 38.52 74.00 77.30 78.56 27.64 45.88 34.60 
50 63.92 77.29 67.70 53.62 54.78 69.57 41.61 75.33 75.36 77.17 30.52 50.94 31.54

FasterNet [3] s 62.56 75.04 66.20 49.72 50.78 63.21 44.76 74.04 78.29 77.12 35.82 91.85 17.90 
m 64.52 76.13 67.68 51.46 51.38 64.09 47.15 76.68 81.17 79.69 58.06 129.00 16.12 
l 65.25 77.01 69.15 53.24 53.61 66.47 50.14 77.73 77.72 77.86 97.70 189.00 15.60

YOLOv8∗ [22] s 57.33 72.44 63.67 48.49 49.66 68.02 32.64 61.44 65.70 75.40 11.79 46.12 44.22 
m 58.70 74.36 64.85 54.06 53.15 67.10 32.81 64.43 66.91 72.43 27.24 119.24 41.58 
l 59.74 75.50 66.17 55.32 52.63 66.79 34.11 64.14 71.46 73.78 45.94 238.48 34.36

YOLOv9∗ [22] s 59.91 75.23 66.12 56.60 54.33 65.10 33.85 65.99 69.95 73.54 8.64 82.26 13.4 
m 60.04 75.72 66.57 54.90 54.08 68.63 33.50 65.21 69.34 74.60 22.26 142.38 15.78 
c 60.41 76.07 67.13 54.37 55.13 68.13 33.89 66.53 69.13 75.68 27.84 171.82 15.58

YOLOv10∗ [22] s 58.17 73.91 64.53 50.86 50.34 63.50 33.34 68.75 66.18 74.22 9.20 44.10 21.28 
m 58.60 74.23 65.18 52.56 50.57 65.86 33.23 65.76 68.09 74.11 19.37 110.06 18.94 
b 58.69 73.60 64.87 52.95 51.82 65.39 32.71 63.70 69.35 74.92 25.52 180.68 17.94 

T
ra

n
sf

o
rm

e
r-

b
a
se

d

MobileViT [34] xxs 46.34 63.25 50.76 28.26 38.27 50.81 20.12 54.66 63.06 69.19 7.27 17.27 19.74 
xs 50.29 67.14 54.81 34.17 41.35 54.80 23.85 62.78 62.95 72.13 8.28 21.14 19.56 
s 52.90 68.62 56.82 38.08 44.19 56.41 27.65 62.97 70.42 70.58 11.36 26.99 19.44

LightViT [18] t 54.65 69.90 58.59 40.05 44.47 57.85 30.77 66.00 71.37 72.04 14.06 29.11 14.36 
s 56.31 71.25 60.30 42.43 46.42 59.60 31.96 68.74 70.89 74.14 23.74 28.03 14.28 
b 58.57 73.17 62.39 45.18 50.00 62.50 34.13 70.31 72.29 75.57 39.63 45.06 13.49

NextViT [27] s 62.36 74.88 66.02 48.79 49.99 62.38 48.11 73.57 77.61 76.07 37.96 105.00 15.06 
b 62.47 75.03 65.81 47.71 51.79 61.08 45.80 77.66 75.75 77.52 51.02 128.00 13.10

GroupMixFormer [8] t 62.67 75.45 66.21 47.42 52.55 63.07 42.81 74.79 78.39 79.67 17.62 83.72 9.24 
s 63.50 76.31 67.79 48.81 53.66 64.79 44.53 74.60 79.36 78.75 29.06 96.51 9.02

MetaFormer [57] id 59.65 73.16 63.43 43.19 48.77 62.98 40.86 71.14 75.95 74.69 18.40 66.92 18.94 
SegFormer [54] b0 58.48 71.53 62.36 42.33 47.76 58.71 40.09 67.83 75.39 77.28 10.19 57.06 17.32

PoolFormer [57] s12 61.12 74.19 64.48 44.19 47.02 61.16 42.94 73.75 78.19 80.60 18.40 66.92 13.50 
s24 62.61 75.17 66.28 45.27 49.63 64.78 44.69 73.76 79.89 80.24 27.88 80.94 12.34

TransXNet [54] t 59.26 72.48 62.66 42.31 46.70 63.03 39.81 71.59 73.96 77.44 19.33 70.65 10.88 
s 60.43 73.64 63.87 45.07 49.16 62.24 40.31 71.02 74.53 80.66 33.34 98.84 8.22

CMT [11] ti 66.00 78.44 69.43 54.80 57.58 68.98 46.84 77.23 78.81 77.79 14.57 67.55 14.06 
xs 66.46 78.60 70.10 55.79 57.45 68.96 47.72 76.35 78.37 80.61 20.21 78.27 13.08

EMSA (Ours) xs 66.46 78.49 70.27 51.77 56.11 69.03 47.12 77.16 82.12 81.92 10.94 61.56 16.50 
s 67.02 79.17 70.83 52.05 58.68 68.55 47.91 76.47 82.16 83.74 14.08 69.33 16.00 

∗ YOLO series are trained using their segment head.

Overall Performance Our proposed model with EMSA-s (Fruit

Query-s) achieves the highest overall AP of 67.02, AP50 of 79.17, and 
AP75 of 70.83, significantly outperforming 13 other models with a total 
of 33 variants. Our model with EMSA-xs (FruitQuery-xs) also delivers 
a competitive AP of 66.46. This illustrates the superior performance of 
our model in fruit segmentation.

Among CNN-based models, the widely-used ResNet series shows 
solid results, with ResNet-50 reaching an AP of 63.92. The recent 
FasterNet-l also achieves a competitive AP of 65.25. Turning to the 
YOLO series, YOLOv9-c attains the highest AP of 60.41 among its vari

ants, indicating that the YOLO series has limited performance on fruit 
segmentation. In comparison, all YOLO variants fall short of our pro

posed model.

On the Transformer-based side, models demonstrate more differ

ent designs and parameter counts. The variants of NextViT, GroupMix

Former, and PoolFormer generate similar results of AP ranging from 
62.37 to 63.50. Two CMT variants reach APs of 66.00 and 66.46, com

ing closest to our performance. These Transformer-based models reflect 
the trend toward attention-driven backbones, with noticeable perfor

mance gains over many CNN counterparts.

However, they still fall short of our FruitQuery in AP, AP50 and 
AP75, suggesting that our proposed query-based design leverages fea

tures more effectively for precise fruit instance segmentation.

Individual Performance For NinePeach dataset, YOLOv9-s achieves 
the highest APunripe of 56.60, while ResNet-50 delivers the highest APripe

of 69.57. However, our model attains the best performance on semiripe 

peaches with an APsemiripe of 58.68, underscoring its ability to capture 
the more subtle visual cues present in intermediate ripeness for peaches.

For StrawDI_Db1 dataset, CNN-based FasterNet obtains the highest 
APrs1 of 50.14 and APrs2 of 77.73, while ours-s outperforms all counter

parts in half of the strawberry ripeness stages, with the highest APrs3 of 
82.16 and APrs4 of 83.74. These gains indicate that our model can ef

fectively handle the appearance variations in later strawberry growth, 
where colour, texture, and shape have significant changes compared to 
earlier stages.

Overall, within seven ripeness stages of the combined dataset, our 
model delivers the best AP for three of them, indicating that our model 
with the query-based design is capable of capturing fine-grained features 
within different fruit ripeness levels, and generating comparable results.

Model Complexity The broad range of model sizes is generally re

lated to performance: larger models typically have more parameters, 
which allows them to capture more complex patterns and relationships.

On the CNN-based models, FasterNet-l is the largest CNN-based 
model with parameters of 97.70M and FLOPs of 189G, and it achieves a 
competitive AP of 65.25. Notably, the YOLO series are well-known for 
their lightweight design, with YOLOv9-s having 8.64M parameters and 
82.26G FLOPs, and YOLOv10-s having 7.27M parameters and 44.10G 
FLOPs, but their AP of 59.91 and 58.17 are lower than many other mod

els.

On the Transformer-based models, MobileViT-xxs exhibits the small

est parameter count of 7.27M and FLOPs of 17.27G, while it comes with 
the lowest AP of 46.34. NextViT-b is the most complex Transformer
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Table 5
Ablation on the pixel decoder.

Module AP AP50 AP75 
FPN 64.97 78.41 68.88 
PPM-FPN 66.57 78.98 70.22 

based model with 51.02M parameters and 128G FLOPs, delivering an 
AP of 62.47.

Our model shows a highly cost-e˙icient design. Specifically, the ours

xs only utilizes 10.94M parameters and 61.56G FLOPs to achieve an 
AP of 66.46, and ours-s attains the highest AP of 67.02 with 14.08M 
parameters and 69.33G FLOPs.

In contrast, models with similar APs to ours-xs (66.46), such 
as CMT-ti (66.00), CMT-xs (66.46) and FasterNet-l (65.25), require 
larger parameters and FLOPs (14.57M/67.55G, 20.21M/78.27G and 
97.70M/189.00G) than ours-xs (10.94M/61.56G). On the other hand, 
models that match ours-xs in parameters and FLOPS (10.94M/61.56G), 
such as YOLOv8-s(11.79M/46.12G), MobileViT-s (11.36M/26.99G) and 
SegFormer-s24 (10.19M/57.06G), deliver poorer APs (57.33, 52.90 and 
58.48).

Inference Speed CNN-based models exhibit higher inference speeds 
compared to Transformer-based models, consistent with the established 
efficiency advantages of convolutional architectures. Among all evalu

ated models, YOLOv8-t achieves the highest FPS at 44.22, followed by 
YOLOv8-m (41.58) and YOLOv8-l (34.36), highlighting the real-time 
capabilities.

Our proposed FruitQuery achieves relatively high inference speeds 
(16.5 and 16 FPS), demonstrating competitive inference performance. 
They outperform all YOLOv9 variants, suggesting improved speed ef

ficiency relative to this recent Transformer-based series. In addition, 
our models surpass a number of widely used Transformer-based back

bones such as LightViT-t (14.36), CMT-ti (14.06), and NextViT-s (15.06), 
which are specifically designed for efficiency.

While slightly slower than MobileViT-xxs (19.74) and MobileViT

xs (19.56), our models are notably faster than recent models like 
TransXNet-s (8.22) and GroupMixFormer-s (9.02), positioning them 
among the faster Transformer-based designs. These results indicate that 
our models strike a favourable balance between inference speed and 
model complexity.

In summary, the results demonstrate that our proposed model not 
only exhibits comparable or even superior results to other segmentation 
models but also maintains lightweight model size and higher efficiency.

4.3. Ablation experiments

4.3.1. Type of pixel decoder

Table 5 compares two different pixel decoders FPN and PPM-FPN 
in terms of model performance. The baseline FPN achieves an AP of 
64.97, AP50 of 78.41, and AP75 of 68.88. In contrast, the PPM-FPN 
variant leads to a consistent performance boost across all metrics, im

proving AP by 1.6 points from 64.97 to 66.57, AP50 by 0.57 points from 
78.41 to 78.98, and AP75 by 1.34 points from 68.88 to 70.22. These re

sults indicate that incorporating PPM into the FPN enhances the overall 
segmentation performance.

4.3.2. Number of decoder attention head

Table 6a compares the effect of different numbers of attention heads 
on model performance. With just 2 heads, the model attains an AP 
of 62.36, AP50 of 75.30, and AP75 of 65.80, indicating limited rep

resentational capacity. Increasing to 4 heads yields the highest AP of 
64.46, AP50 to 77.09 and AP75 of 68.61. Although further increasing 
the number of heads to 8 slightly boosts AP to 64.46 and AP75 to 67.88 
compared to 2 heads, it still lags behind the 4-head configuration. These 
results suggest that 4 attention heads provide an optimal balance, offer

ing richer feature representations without incurring diminishing returns.

4.3.3. Number of query

Table 6b shows the effect of different numbers of queries on model 
performance. When the number of query is set to 100, the model 
achieves its highest overall AP of 66.52, AP50 of 78.84 and AP75 of 
70.19. Decreasing the number of queries to 80 or 90 leads to a consistent 
drop in performance across all metrics. On the other hand, increasing 
the number of queries to 110 or 120 offers no further improvement. 
These results suggest that using 100 queries strikes an effective balance 
between capturing sufficient object-level information and maintaining 
computational efficiency.

4.3.4. Number of decoder layers

Table 6c illustrates the effect of different numbers of decoder lay

ers on model performance. With only 1 to 3 layers, AP stays between 
62.85 and 63.98, indicating limited representational depth. As more lay

ers are added, accuracy steadily improves, peaking at 6 layers with an 
AP of 66.80, AP50 of 78.95, and AP75 of 70.85. Beyond 6 layers, model 
performance begins to decline, suggesting that excessive stacking of de

coder blocks may introduce redundancy or complicate training. These 
findings highlight an optimal spot at 6 decoder layers.

4.4. Combined or separated training

We compare the performance difference of FruitQuery-xs trained on 
combined (t/o combined) and separate (t/o separate) datasets, and the 
results are shown in Table 7. For NinePeach, the combined training 
strategy produces notable improvements across all ripeness levels, with 
APunripe increases of 7.55 points from 43.72 to 51.27, 4.86 points for 
APsemiripe from 49.07 to 53.93, and 4.89 points for APripe from 62.05 to 
66.94.

In contrast, results on StrawDI_Db1 are mixed: APrs2 has a significant 
gain of 4.18 points from 72.55 to 76.73, and APrs4 also increases 1.65 
points from 77.99 to 79.64. However, the other two categories APrs1

drops from 45.57 to 42.29 and APrs3 drops from 79.87 to 78.40.

Overall, training on the combined dataset boosts the model’s overall 
AP from 61.08 to 64.63, indicating that learning from a broader, inte

grated fruit distribution can enhance generalization for the majority of 
fruit ripeness stages despite limited category-specific trade-offs.

4.5. Model parameter distribution

We summarize the parameter distribution of YOLO and our Fruti

Query in Table 8. Based on previous results in Table 4, YOLOv9 is the 
best-performing version of three YOLO series, therefore it is selected to 
compare with our model and also in later comparisons.

YOLOv9-s has the least number of parameters of 8.64M, with a head 
of 2.92M, but produces the lowest AP of 59.91. When changing the 
model from YOLOv9-s to YOLOv9-m, the total parameters increase to 
22.26M, with a bigger backbone and head, but bring a tiny AP gain from 
59.91 to 60.04. YOLOv9-c performs better than YOLOv9-m with the AP 
of 60.41, but occupies a backbone of 19.95M and a head of 7.89M.

On the other hand, our model demonstrates its ability to outper

form YOLOv9 with fewer parameter counts. Specifically, FruitQuery-xs 
and FruitQuery-s have an identical head of 4.18M, which is smaller 
than YOLOv9-m and YOLOv9-c. The main difference between the two 
variants of FruitQuery lies in the backbone, FruitQuery-s has a more 
complex backbone and delivers a better AP of 67.02.

These results not only demonstrate that our FruitQuery achieves a 
significantly better balance between the segmentation performance and 
model size compared to YOLO, but also highlight its lightweight design, 
which enhances the potential for infield applications.

4.6. Visualization

We visualize the segmentation performance of our FruitQuery 
in Fig. 7. First, FruitQuery is capable of simultaneously segmenting 
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Table 6
Results of ablation experiments based on FruitQuery-xs.

(a) Ablation on the number of attention head. 
Head AP AP50 AP75 
2 62.36 75.30 65.80 
4 64.46 77.09 68.61 
8 64.36 76.98 67.88 

(b) Ablation on the number of query. 
Query AP AP50 AP75 
80 64.54 77.74 68.39 
90 64.45 77.38 68.15 
100 66.52 78.84 70.19 
110 65.91 78.56 69.48 
120 65.48 78.34 69.11 

(c) Ablation on the number of decoder layers. 
Layer AP AP50 AP75 
1 62.85 75.78 66.59 
2 63.98 76.93 67.72 
3 63.91 76.69 67.86 
4 66.41 78.98 70.20 
5 66.68 79.31 70.40 
6 66.80 78.95 70.85 
7 65.94 78.49 69.36 
8 65.78 78.07 69.26 

Fig. 7. Segmentation visualization of our FruitQuery on NinePeach (left) and StrawDI_Db1 (right). 

Table 7
Comparison of training on separate and combined 
dataset.

Dataset Category t/o separate t/o combined 

N
in

e
P
e
a
ch unripe 43.72 51.27 

semiripe 49.07 53.93 
ripe 62.05 66.94 

S
tr

a
w

D
I_

D
b
1

rs1 45.57 42.29 
rs2 72.55 76.73 
rs3 79.87 78.40 
rs4 77.99 79.64 

Overall 61.08 64.63 

Table 8
Parameters comparison of YOLO and our FruitQuery.

YOLOv9 FruitQuery 
Type s m c xs s 
Backbone 5.72 15.52 19.95 4.07 7.15 
Neck / / / 2.70 2.76 
Head 2.92 6.74 7.89 4.18 4.18

Total (M) 8.64 22.26 27.84 10.94 14.08

AP 59.91 60.04 60.41 66.46 67.02 

peaches and strawberries without requiring separate training for each 
fruit type. Second, FruitQuery demonstrates strong generalization abil

ity on fruit size due to effective multi-scale feature fusion. Specifically, 
the size of peaches is relatively large compared to that of strawber

ries, and FruitQuery can accurately segment both large and small fruit. 

Third, FruitQuery maintains high robustness in complex infield condi

tions, such as occlusions from tree trunks and leaves, delivering precise 
fruit segmentation. These indicate that our FruitQuery can accurately 
predict fruit locations for downstream applications.

We also compare the visualization of our FruitQuery and YOLO in 
Fig. 8a. In case (1), although YOLOv9-c is not an anchor-based model, it 
still gives an inaccurate anchor-like prediction on the strawberry, while 
ours provides a more precise delineation of the strawberry’s shape. In 
case (2), YOLO-v9c’s segmentation boundary tends to follow the rectan

gular outline of the bounding box, while ours closely tracks the actual 
peach boundary. Additionally, YOLO-v9c ignores the small peach be

hind, while ours correctly detects it. In case (3), YOLO-v9c fails to detect 
an evidently visible strawberry, while our model successfully identifies 
and segments it. In case (4), YOLO-v9c is unable to recognize a peach 
partially hidden in the background, whereas ours correctly distinguishes 
the peach despite the limited visible part.

4.7. Class activation map analysis

Class Activation Maps (CAM, [61]) is a popular visualization tech

nique that highlights the regions in an image most influential to a 
model’s prediction. By projecting learned feature weights back onto the 
original input, CAM reveals where the model allocates its attention and 
provides an interpretable window into the decision-making process. We 
illustrated the CAM comparison of YOLO and our FruitQuery in Fig. 8b.

In the CAM visualizations, YOLOv9-c exhibits relatively diffuse and 
occasionally misaligned attention, focusing on broader or less discrimi

native regions. For example, in cases (1) and (2), YOLOv9-c has uncer

tain attention on the fruit and is affected by the surrounding leaves. 
By contrast, our FruitQuery maintains a more localized and precise 
concentration of high-intensity activation around the fruit. This differ

ence is particularly evident in cases (3) and (4), YOLOv9-c looks at a 
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Fig. 8. Comparison of YOLO and our FruitQuery. 

Table 9
Inference time of FruitQuery on a single image across different devices.

Device Format FruitQuery-xs FruitQuery-s 
FP32 FP16 FP32 FP16 

NVIDIA 
Tesla V100

.pth 0.0605 0.0544 0.0625 0.0595 

.onnx 0.2661 0.2545 0.2674 0.2563 

.trt 0.0253 0.0196 0.0254 0.0198

NVIDIA 
Jetson Orin Nano

.pth 0.3307 0.2246 0.3427 0.2253 

.onnx 0.3494 0.3150 0.3570 0.3242 

.trt 0.1168 0.0792 0.1216 0.0856

Apple M1
.onnx 1.1554 1.4055 1.7193 1.6731 
.mlmodel 2.5133 2.3406 2.7164 2.5292 

large blur region around fruit and gives attention to the irrelevant back

ground, while our FruitQuery accurately distinguishes between fruit and 
background context, capturing finer textural cues on peaches and straw

berries and generating tightly focused activation zones.

Consequently, the visualizations demonstrate the enhanced ability of 
our FruitQuery to learn discriminative features of peaches and strawber

ries, such as shape, colour transition, and edge boundaries, eventually 
resulting in interpretable and improved segmentation performance.

4.8. Deployment

We compared inference performance of the proposed FruitQuery 
on different hardware platforms, including a high-performance GPU 
(NVIDIA Tesla V100), an edge computing device (NVIDIA Jetson Orin 
Nano), and a general-purpose CPU (Apple M1).

Table 9 summarizes the inference time per image using four model 
formats: PyTorch checkpoint (.pth), Open Neural Network Exchange 
(.onnx), TensorRT engine (.trt) and Core ML (.mlmodel). Two numeri

cal precision modes are compared: FP32 (single-precision floating point) 
and FP16 (half-precision floating point).

Inference results demonstrate that TensorRT achieves the fastest in

ference across all tested hardware for both precision modes. On the Tesla 

V100, FruitQuery-xs runs in as little as 0.0196 seconds per image us

ing FP16 and TensorRT, which is more than 2.5 times faster than the 
PyTorch baseline under FP32. Jetson Orin Nano also benefits signifi

cantly from TensorRT acceleration, achieving inference times below 0.1 
seconds for FruitQuery-xs in FP16. This highlights the suitability of Ten

sorRT for edge deployment when latency is critical.

Compared to the V100 and Jetson platforms, the Apple M1 incurs 
higher inference latency. The ONNX-based deployment shows inference 
times exceeding 1 second per image for both model variants. Moreover, 
Core ML deployment with .mlmodel results in even longer running time, 
with FruitQuery-s requiring approximately 2.5 seconds per image un

der FP16. Despite this, the Core ML format enables compatibility with 
Apple-native applications, which may be improved in future hardware 
iterations.

Overall, the proposed FruitQuery models demonstrate efficient in

ference across diverse deployment scenarios. The results demonstrate 
the flexibility of the models and their compatibility with multiple de

ployment backends and precision modes. Particularly, the combination 
of lightweight architectures, TensorRT optimisation, and half-precision 
inference enables fast inference on both cloud GPUs and edge platforms.

5. Discussion

5.1. Limitations

First, our FruitQuery depends on a relatively large and precisely an

notated dataset, making it challenging to generalize seamlessly to new 
fruit varieties or orchard conditions without further labelling efforts.

Second, while our FruitQuery is comparably efficient, the current ar

chitecture still demands moderate computational resources, which may 
limit real-time applications on highly constrained edge devices. The 
inference speed of our FruitQuery also can be optimized. These limita

tions provide clear directions for improvement, such as exploring further 
model compression techniques.
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5.2. Future work

Building on current results, we plan to compress and deploy our 
FruitQuery to the embedded devices for infield fruit segmentation. By 
reducing model size and optimizing computational methods such as 
quantization, we aim to streamline orchard operations by providing im

mediate feedback on fruit ripeness, thereby guiding infield harvesting 
robots to selectively pick the ripe fruit only.

Furthermore, we propose to expand the combined dataset by incor

porating a broader range of fruit varieties, to enhance its applicability 
across different fruit types. Building a large-scale fruit instance seg

mentation dataset with ripeness labels will not only reduce redundant 
annotation efforts, but also accelerate the development of autonomous 
fruit-picking robots.

6. Conclusion

In this work, we combined two infield fruit datasets of peaches and 
strawberries, which contain 3 ripeness stages for peaches and 4 ripeness 
stages for strawberries. Then we introduced FruitQuery, a lightweight 
query-based instance segmentation model for fruit ripeness determina

tion.

The combined dataset enables training the model to handle the 
ripeness determination of two fruits at the same time, reducing the effort 
to replicate the training. FruitQuery is composed of three main com

ponents: a backbone, a pixel decoder, and Transformer decoders. We 
integrated EMSA modules into the backbone to reduce computational 
overhead, and introduced a PPM in the pixel decoder to improve multi

scale feature fusion. Transformer decoders were employed to learn a 
fixed number of queries for instance masks, eliminating the need for 
postprocessing like NMS.

By combining the advantages of convolution and Transformer, Fruit

Query runs in an end-to-end way and precisely attends to fruit regions, 
capturing subtle distinctions in shape and ripeness. The design of Fruit

Query leads to state-of-the-art performance, achieving the highest AP 
of 67.02 with 14.08M parameters and surpassing 13 other CNN-based 
and Transformed-based models. Notably, it outperforms three series of 
YOLO, under challenging conditions such as occlusion and varying illu

mination. However, FruitQuery’s dependence on labelled data makes it 
challenging for immediate adaptation to new fruit varieties. Addition

ally, latency issues may be a problem for our model when applied on 
embedded platforms.

Moving forward, we will further optimize FruitQuery for infield ap

plications, exploring strategies like quantization for edge deployment. 
The combined dataset is planned to be expanded with more fruit va

rieties, ultimately building a large-scale fruit instance segmentation 
dataset with ripeness labels. Through these enhancements, we aim to 
increase FruitQuery’s utility in orchard automation, enabling more ac

curate and efficient fruit ripeness determination and helping the devel

opment of precise agriculture.
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