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Safe Learning for Multi-Robot Mapless Exploration
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Abstract—When using deep reinforcement learning (DRL) to
perform multi-robot exploration in unknown environments, the
training model may produce actions that lead to unpredictable
system behaviors due to the complexity and unpredictability of
the surroundings. Therefore, ensuring safe exploration with DRL
becomes critical. To tackle this issue, we propose a multi-agent
framework that utilizes the formation scheme based on interme-
diate estimator compensation (IEC) to address the uncertainties
introduced by DRL to ensure safe exploration. The convergence
of the proposed scheme is verified via the Lyapunov method in the
presence of tracking errors. An actor-critic-based DRL method
is proposed for each mobile robot to deal with collision avoidance
tasks. To enhance the efficiency of obtaining the DRL training
model, a consensus-based training policy is introduced. The
proposed safe learning framework successfully addresses uncer-
tainties introduced by DRL while ensuring mapless exploration in
both simulations and real-world experiments. The experimental
video is available at: https://youtu.be/ce99FxKFFtY, and the code
can be accessed at: https://github.com/ukaea/SLMRME.

Index Terms—Multi-robot exploration, Deep reinforcement
learning, Intermediate estimator compensation, Formation, Col-
lision avoidance, Lyapunov methods.

I. INTRODUCTION

Deep reinforcement learning (DRL) has attracted
widespread attention since it can be applied to various tasks
that are too complex for traditional methods to achieve [1], [2].
DRL allows agents to learn optimal behaviors autonomously
in environments where explicit programming or rules-based
approaches are impractical or infeasible [3]. One of the
key strengths of DRL is its ability to learn optimal policies
directly from raw sensory data, eliminating the need for
explicit system modeling [4], [5]. Additionally, DRL is
able to handle high-dimensional and continuous state-action
spaces, making it suitable for real-world applications that
require precise and adaptive decision-making [6]. Many works
[7], [8] on DRL have introduced adaptive and intelligent
decision-making for multi-agent systems. Unlike traditional
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rule-based or optimization-based approaches, DRL enables
agents to learn from experience and generalize to complex,
dynamic settings [9], [10]. However, DRL may introduce
uncertainties when applied in unknown environments,
as the training model may produce actions that lead to
unpredictable system behaviors. These uncertainties pose
significant challenges, particularly in the context of multi-
robot efficient and safe exploration, where collision avoidance
and cooperative behavior are paramount. To address these
challenges, we propose an IEC-based formation scheme to
tackle uncertainties introduced by DRL, enabling multiple
mobile robots to conduct safe exploration tasks autonomously
without relying on pre-existing maps.

In this paper, we aim to design a safe learning cooper-
ative framework for multi-robot exploration that addresses
uncertainties introduced by DRL while ensuring collision
avoidance, as illustrated in Fig. 1. The proposed framework
demonstrates a robust and scalable solution that enhances the
safety and effectiveness of multi-robot exploration, making
DRL approaches more feasible for practical deployment in
unknown environments. The main contributions of the paper
can be summarized as follows:

1) An actor-critic-based DRL method is presented for each
mobile robot to address collision avoidance tasks. To
enhance the training efficiency of the DRL method,
a multi-robot consensus-based training policy is devel-
oped. This policy reduces the number of required train-
ing steps while maintaining the same level of training
reward.

2) An IEC-based formation scheme is proposed to handle
uncertainties introduced by the DRL method to en-
sure safe exploration. The convergence of the proposed
scheme is verified via the Lyapunov method in the
presence of tracking errors.

3) The proposed framework has been successfully imple-
mented in both simulated and real-world multi-agent
mapless safe exploration scenarios with wheeled mobile
robots. Under the proposed framework, each robot effec-
tively preserves the formation shape for safe exploration,
despite the uncertainties introduced by DRL.

The structure of this paper is organized as follows: Section
II reviews the related work. Section III presents the prelimi-
naries. Section IV elucidates the convergence analysis of the
proposed cooperative framework. Simulations and real-world
experiments are provided in Section V to demonstrate the
feasibility of the proposed cooperative framework. Section VI
concludes this paper.
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Fig. 1. A safe learning cooperative framework for multi-robot exploration. For each mobile robot, an actor-critic-based DRL method is presented to deal with
collision avoidance tasks. An IEC-based formation scheme is proposed to tackle uncertainties introduced by the DRL method to ensure safe exploration.

II. RELATED WORK

In this section, we review the work related to the proposed
framework. The first part discusses safe learning in reinforce-
ment learning, while the second part focuses on collision
avoidance in multi-agent systems.

Safe Learning in Reinforcement Learning: Recently,
there has been an increased focus on safe learning when apply-
ing the reinforcement learning approach [11], [12]. The aim
is to develop policies that achieve high performance in terms
of task objectives while satisfying safety constraints, which
ensures that the agent operates reliably and avoids failures in
complex environments [13], [14]. A model-based reinforce-
ment learning algorithm that ensures safety through Gaussian
process models was proposed in [15] to enable provably stable
policy optimization without risking safety-critical failures. A
learning-based model predictive control approach with high-
probability safety guarantees was proposed in [16] to ensure
safe trajectory constraints during reinforcement learning. In
[17], a reinforcement learning architecture that enforces safety
constraints by correcting unsafe actions from a neural network
was introduced to enable safe policy execution in real-world
robotic tasks. A model-based reinforcement learning algorithm
that penalizes unsafe trajectories and provides guarantees for
avoiding unsafe states was proposed in [18] to obtain decent
rewards with fewer violations in safety. However, an essential
foundation in the aforementioned works is their model-based
nature, which assumes that the structure of the constraints or
the system dynamics is explicitly known. This could present
a limitation when addressing model-free problems.

Model-free safe reinforcement learning algorithms [19],
[20] have demonstrated significant success in systems with

continuous state spaces and action spaces. A reinforcement
learning algorithm that separates task optimization and safety
constraint satisfaction through distinct policies was proposed
in [21] to preemptively identify unsafe zones. A policy search
algorithm called constrained policy optimization was intro-
duced in [22] to enable safe and effective policy learning
in high-dimensional control tasks. In [23], a multi-timescale
method called reward constrained policy optimization was
developed to guide policies toward constraint satisfaction.
Nevertheless, the aforementioned works primarily focus on
addressing specific, task-dependent challenges. While these
methods are effective within their designated robotic tasks,
they often lack adaptability to diverse real-world scenarios.
In contrast, our framework emphasizes high-level tasks by
modeling each mobile robot as an autonomous agent, offering
greater generality and a broader scope of applications.

Collision Avoidance in Multi-agent Systems: Formation
control has been extensively applied in multi-agent systems
[24], [25], particularly to facilitate collision avoidance tasks
[26]–[28]. For instance, a formation control scheme was
proposed in [29] for stochastic second-order multi-agent sys-
tems to deal with obstacle avoidance problems under directed
topology. In [30], an adaptive formation tracking control pro-
tocol with an obstacle avoidance mechanism was introduced
to address the obstacle avoidance problem in multi-vehicle
systems. By using an artificial potential function, a distributed
control algorithm was developed in [31] for obstacle avoidance
and formation control of multiple rectangular agents. In [32],
an enhanced artificial potential field algorithm, combined with
a finite-time consistent formation control algorithm, was used
to improve rapid obstacle avoidance control for unmanned
aerial vehicle clusters operating in complex environments. A

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3581872

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

significant assumption in the aforementioned studies is the
requirement for prior knowledge of obstacle positions, which
may present a potential limitation in unknown or complex
environments.

Learning-based methods [33]–[35] have demonstrated sig-
nificant advantages in collision avoidance tasks. The applica-
tion of learning-based methods in these tasks aims to improve
decision-making intelligence, enabling the handling of random
and unpredictable scenarios [36]. In [37], a deep residual
reinforcement learning approach on the basis of the soft actor-
critic framework, incorporating the artificial potential field
method as a prior controller, was proposed to address the
issue of low data utilization arising from the extensive episode
experience data. A novel integrated approach was presented
in [38] to address motion planning and decision-making for
autonomous vehicle lane-change maneuvers. In [39], a local
attention-based safety DRL decision-making approach was
developed for an ego vehicle to attend to varying social
vehicle states in complex traffic environments and effectively
manage the influence of surrounding vehicles. However, the
aforementioned studies considered only a single robot, which
may be viewed as a limitation.

When addressing multi-agent collision avoidance problems,
learning-based methods [40]–[42] have been extensively stud-
ied, demonstrating promising results in dynamic and unknown
environments. A learning-based collision-avoidance policy
was introduced in [43] to enable multiple nonholonomic mo-
bile robots to navigate toward their target positions in complex
and rich environments. In [44], an improved DRL controller
was proposed to handle the problem of decentralized colli-
sion avoidance. A learning-based end-to-end framework was
developed in [45] to generate a reactive collision avoidance
policy aiming at accomplishing efficient distributed multi-
agent navigation. In [46], a hybrid algorithm of force-based
motion planning and DRL was illustrated to deal with the
distributed motion planning problem in dynamic and dense
environments. Nevertheless, learning-based methods optimize
expected rewards rather than enforcing hard safety constraints,
which may lead to uncertainties or unsafe actions. Our coop-
erative framework incorporates multiple robots and leverages
an IEC-based formation scheme with DRL to autonomously
perform safe exploration and inspection tasks without relying
on pre-existing maps. This approach enhances the safety and
effectiveness of mapless exploration.

III. PRELIMINARIES

A. Graph Theory

The interaction topology of a multi-agent system with
one leader and P followers can be described by an undi-
rected graph G = (V, E). V stands for a vertex set V =
{0, 1, 2, · · · , P} and an edge set E ⊂ V × V . The edge
(i, j) ∈ E means that the ith and jth agents can share
information with each other. If (i, j) ∈ E , aij > 0, where aij
stands for the strength of the connection. Let the Adjacency
matrix A = [aij ] ∈ R(P+1)×(P+1) of G be

[aij ] =

{
aij , i ̸= j, (i, j) ∈ E ,
0, i ̸= j, (i, j) /∈ E . (1)

As a result, the Laplacian matrix L of G can be defined as L =
D − A, where D = diag{d00, · · · , dPP } ∈ R(P+1)×(P+1)

and dii =
∑P

j=0,j ̸=i aij . The interaction topology among the
followers is considered to be undirected. The Laplacian matrix
L with one leader and P followers can be divided into the
following structure [47]:

L =

[
0 01×P

L2 L1

]
,

where L1 ∈ RP×P and L2 ∈ RP×1. It can be deduced that
L1 > 0 and L1P+1 = 0, where 1P+1 = [1, · · · , 1]T ∈ RP+1.

B. Problem Formulation

Consider the following nonlinear multi-robot system with P
follower robots and one leader robot labeled by 0, the system
with uncertainties can be modeled as follows:{

ẋi(t) = h(xi(t)) + ui(t) + fi(t), i = 1, 2 · · · , P
ẋ0(t) = h(x0(t)) + w0(t),

(2)

where xi(t) ∈ Rm is the position of each robot, and ui ∈ Rm

denotes control input. h(·) ∈ Rm stands for the nonlinear
function of the system. fi(t) ∈ Rm and w0(t) ∈ Rm represent
the uncertainties in the followers and leader. The uncertainties
can be interpreted as those introduced by DRL in the multi-
robot system. Denote the target distance between the leader
and ith follower as di ∈ Rm which is set initially, and
d = [dT1 , · · · , dTP ]T which represents the target formation
configuration.

To derive the main results of this paper, we make the
following assumptions:

Assumption 1: There exists at least one spanning tree in
graph G, whose root can be a leader.

Assumption 2: The nonlinear function h(·) satisfies the
Lipschitz condition with a Lipschitz constant η > 0, i.e.,

∥h(xi)− h(x0)∥ ≤ η∥xi − x0∥. (3)

Assumption 3: fi(t) is first-order derivable. Furthermore,
ḟi(t) is bounded and continuous, i.e., there exists a positive
constant θ such that

∥ḟi(t)∥ ≤ θ (4)

Assumption 4: The uncertainty in the leader is bounded and
continuous, i.e., there exists a positive constant w such that

∥w0(t)∥ ≤ w (5)

This paper addresses the safe learning problem for multi-
robot navigation and exploration. Initially, we proposed an
actor-critic DRL algorithm for each robot to avoid the ob-
stacles incorporated into the mission. Uncertainties will be
introduced in the system described in (2) if DRL is imple-
mented in robots. Additionally, the tracking error of each
robot should be guaranteed in a neighborhood around the
origin. Hence, an IEC-based formation protocol is designed to
address the uncertainties introduced by the DRL method. To
sum up, the main objectives of this work can be demonstrated
as follows: i) How to construct the DRL training strategy for
each robot to cope with collision avoidance. ii) How to design
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an IEC-based formation protocol for the robots to deal with
uncertainties introduced by DRL. iii) How to implement the
proposed framework in both simulated and real scenarios with
wheeled mobile robots.

IV. METHODOLOGY

In this section, we introduce a cooperative framework
that leverages the IEC-based formation scheme to address
uncertainties arising from the DRL process to ensure safe
learning. We begin by introducing the DRL approach tailored
for each mobile robot. To enhance training efficiency, we
employ a consensus-based training method. Following this,
we present the IEC-based formation scheme to ensure safe
learning. Section E outlines this innovative framework, which
enables mapless exploration while ensuring safe learning.

A. DRL Setup

1) Observation Space and Action Space: For every robot,
the observation space s is a 28-dimensional vector comprising
the angular velocity Va, linear velocity Vl, the distance be-
tween the robot and the goal, the angular difference between
the robot’s orientation and the goal and 24 laser readings. The
24 laser readings are normalized by the maximum detection
range. The action space a is a vector of dimension 2 com-
prising two distinct velocities: the angular velocity Va and the
linear velocity Vl.

2) Reward Design: The reward function should guide each
mobile robot to successfully attain its goal position while
guaranteeing collision avoidance during the target-reaching
process, as described in Fig. 2. Denote the reward function
for the robot k as

rk = rdk + rak + rek + rnk + rok (6)

where rk is the total reward of the kth robot, rdk and rak stand
for the distance and arrive rewards of the kth robot. Linear and
angular punishment rewards of the robot k are denoted by rek
and rnk . rok describes the collision reward of the kth robot.

Fig. 2. Training scenario for each robot.

We design the distance reward rdk as

rdk = Dp
k −Dc

k (7)

where Dp
k and Dc

k represent the distance between the kth robot
to the target with the previous and current action. If Dp

k < Dc
k,

the robot will receive a negative distance reward since it moves
further to the goal.

The arrive reward rak is given by

rak =

{
ra if Dc

k < ε

0 otherwise
(8)

where ε is the distance threshold and ra > 0 denotes a large
arrive reward.

The linear punishment reward rek is defined as follows:

rek =

{
re if Vl < Ṽl

0 otherwise
(9)

where re is a negative reward, Vl and Ṽl represent the linear
velocity and minimum linear velocity threshold of the robot.
The linear punishment reward encourages the robot to actively
explore the environment.

Similarly, we can define the angular punishment reward rnk
as

rnk =

{
rn if |Va| > V̄a

0 otherwise
(10)

where rn is a negative reward, Va and V̄a stand for the angular
velocity and maximum angular velocity threshold of the robot.
The angular punishment reward limits the excessive rotational
speed of the robot, thereby promoting effective exploration of
its surroundings.

Denote the distance between the robot k and the obstacles
as Do

k. The collision reward rok can be written as

rok =


ro if D̄ ≤ Do

k < 2D̄

2ro if Do
k < D̄

0 otherwise
(11)

where ro is a negative collision reward, D̄ is the laser threshold
limit. Consequently, ro incurs a penalty if Do

k exceeds the laser
threshold. By incorporating ro into the total reward, the robot
is stimulated to perform obstacle avoidance.

3) Network Structure: The actor network processes its input
through three dense layers with ReLU activation functions
[48], each comprising 500 nodes, as depicted in Fig. 1. This
input vector consists of 28 elements, including parameters such
as angular velocity, linear velocity, the distance between the
robot and its goal, the angular difference between the robot
and its goal and 24 laser readings. The actor network’s output
is a 2-element vector representing the angular velocity Va and
the linear velocity Vl. This output also serves as an input to the
critic network, as shown in Fig. 1. The critic network’s other
input matches the elements of the actor network’s input vector.
The critic network’s output, generated using a linear activation
function, provides a Q value that quantitatively evaluates the
actor network’s performance.

In each iteration, every robot explores the environment
by incorporating random noise into its actions, yielding a
total reward denoted as rk. During each training session,
the observation space, action space, total reward, and next
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observation space are stored and recorded in the replay buffer.
Once the buffer reaches full capacity, the training model is able
to randomly sample from its contents to facilitate learning.

B. Consensus-based Training

To enhance the training efficiency of DRL, a multi-agent
training method on the basis of the consensus protocol is
designed. Accordingly, this section presents the consensus
strategy that supports this training process.

Let zk be the row vector of the training parameter for each
robot. After a single consensus step, we denote the updated
training parameter as ẑk. The training protocol based on the
consensus technique can be described as

ẑk = zk + uck (12)

uck =
∑P

j=0
akj(zj − zk) (13)

Substituting (13) to (12), we can obtain the consensus
strategy as follows

ẑk = zk +
∑P

j=0
akj(zj − zk)

= zk −
∑P

j=0
lkjzj

= Ck
(
zj , lkj

) (14)

where Ck stands for the consensus scheme of the robot k,
and lkj is the entry of the Laplacian matrix L. Then, we can
summarize the training parameter update for all robots as a
compact form

ẑ = ((IP+1 − L)⊗ Im)z

= C (z,L)
(15)

where C represents the consensus scheme for all robots. The
entry of the matrix IP+1 − L stands for the weight of each
robot. As observed from (15), the weights influence how
information is shared among robots, thereby affecting the
efficiency of training convergence. By iteratively calculating
(15), the consensus approach facilitates the convergence of all
robots to their weighted average [49].

C. Consensus-based DRL

Building upon the consensus training approach presented in
the previous section, we now introduce the consensus-based
DRL method. This policy reduces the number of required
training steps while maintaining the same level of training
reward. Define the actor and critic training parameters as τk

and ζk for robot k. Let gζ(skt , a
k
t ) and πτ (sk) be the linearized

value function related to ζ and linearized policy function
related to τ . Their gradients are denoted by ∇ζg(s

k
t , a

k
t ) and

∇τπ(s
k
t ). From [50], their training process can be expressed

as

ϱkt = rkt+1 + µgζ(s
k
t+1, a

k
t+1)− gζ(s

k
t , a

k
t ) (16)

ζkt+1 = ζ̂kt + ψϱkt∇ζg(s
k
t , a

k
t ) (17)

τkt+1 = τ̂kt + ω∇τπ(s
k
t )∇agζ(s

k
t , a

k)|ak=πτ (sk) (18)

where ω and ψ are the actor and critic learning rates. ϱkt is
the temporary difference error and µ represents the discounted
factor.

By implementing the consensus protocol (14), the update
of the critic training parameter based on consensus for robot
k can be described as

ζ̂kt = ζkt +
∑P

j=0
akj(ζ

j
t − ζkt ) (19)

ζkt+1 = ζ̂kt + ψϱkt∇ζg(s
k
t , a

k
t ) (20)

Combining (19) and (20), it can be obtained that

ζkt+1 = ζkt +
∑P

j=0
akj(ζ

j
t − ζkt ) + ψϱkt∇ζg(s

k
t , a

k
t ) (21)

Let qkt = ∇τπ(s
k
t )∇agζ(s

k
t , a

k)|ak=πτ (sk). In the same
way, we can get the update of the actor training parameter
based on consensus for robot k as follows

τkt+1 = τkt +
∑P

j=0
akj(τ

j
t − τkt ) + ωqkt (22)

Considering all robots at iteration t, the critic and actor
training parameters update with consensus are demonstrated
as the following compact forms

ζt+1 = ((IP+1 − L)⊗ Im)ζt + ψΞt

= C (ζt,L) + ψΞt

(23)

τt+1 = ((IP+1 − L)⊗ Im)τt + ωQt

= C (τt,L) + ωQt

(24)

where Ξt = [(ϱ0t∇ζg(s
0
t , a

0
t ))

T , · · · , (ϱPt ∇ζg(s
P
t , a

P
t ))

T ]T

and Qt = [(q0t )
T , · · · , (qPt )T ]T . The proposed DRL for

obstacle avoidance with the consensus approach is illustrated
in Algorithm 1.

Compared with reinforcement learning methods that uti-
lize shared experience pools, the advantage of the proposed
consensus-based distributed reinforcement learning method
is that it protects the privacy of each agent. In real-world
applications, directly utilizing shared experience pools to train
a reinforcement learning model may not be feasible due to
privacy concerns. To address this, our proposed consensus
approach involves sharing training weights between agents
rather than utilizing shared experience pools, as weights are
simply numerical representations and do not contain sensitive
information. This method of sharing weights is far more secure
and trustworthy compared to directly using shared experience
pools, as it ensures the protection of individual privacy while
still enabling collaborative learning.

D. Leader-follower IEC-based Formation Scheme

In this section, an IEC-based formation protocol is illus-
trated to tackle uncertainties introduced by DRL. First, an
intermediate observer is introduced to estimate the position
and uncertainty of each follower robot. The intermediate
variable for the ith follower robot is defined as

γi(t) = fi(t)− ιxi(t) (25)

where ι is a positive scalar gain.
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Algorithm 1 DRL for Obstacle Avoidance with Consensus
Approach

1: Initialize fixed behavior policy χ, initial observation sk0 ,
maximum time step T̃ , actor and critic training parameters
τk0 and ζk0 , exploration noise Ot, discounted factor µ, actor
and critic learning rates ω and ψ of each agent.

2: Acquire initial observation sk1 of each agent.
3: Reset the environment.
4: while t = 1, T̃ do
5: Select action akt = χ(skt ) + Ot on the basis of the

exploration noise Ot and the fixed behavior policy χ.
6: Execute action akt , compute reward rkt+1 and obtain

new observation skt+1.
7: Store transition (skt , a

k
t , r

k
t , s

k
t+1) in the replay buffer.

8: Sample a mini batch (sk̄t , a
k̄
t , r

k̄
t , s

k̄
t+1) from transitions

in the replay buffer.
9: Compute the temporal difference error:

10: ϱkt = rkt+1 + µgζ(s
k
t+1, a

k
t+1)− gζ(s

k
t , a

k
t ).

11: Update the critic training parameter:
12: ζkt+1 = ζ̂kt + ψϱkt∇ζg(s

k
t , a

k
t ).

13: Update the actor training parameter:
14: τkt+1 = τ̂kt + ω∇τπ(s

k
t )∇agζ(s

k
t , a

k)|ak=πτ (sk).
15: Execute the consensus-based training approach on the

actor and critic training parameters:
16: τ̂kt+1 = Ck

(
τ jt+1, lkj

)
.

17: ζ̂kt+1 = Ck
(
ζjt+1, lkj

)
.

18: end while

It can be observed from (2) that

γ̇i(t) = ḟi(t)− ιẋi(t)

= ḟi(t)− ι(h(xi(t)) + ui(t) + γi(t) + ιxi(t)).
(26)

Let x̂i(t), γ̂i(t), and f̂i(t) be the estimation of xi(t), γi(t),
and fi(t), respectively. The intermediate estimator of the
uncertainties can be designed as

˙̂xi(t) = h(x̂i(t)) + ui(t) + f̂i(t) + Γ(xi(t)− x̂i(t))

˙̂γi(t) = −ιγ̂i(t)− ι(h(x̂i(t)) + ui(t) + ιx̂i(t))

f̂i(t) = γ̂i(t) + ιx̂i(t),

(27)

where Γ > 0 denotes the scalar estimation gain. Hence, the
distributed IEC-based formation protocol for each follower
under the intermediate estimator (27) is proposed as

ui(t) = −Kδi − w̄φ(δi)− f̂i, i = 1, 2 · · · , P, (28)

where

φ(δi) =


δi
∥δi∥

, when ∥δi∥ ≠ 0

0, when ∥δi∥ = 0.

(29)

w̄ = w +
√
2η∥d∥. K is the scalar positive control gain, and

δi represents the formation error defined as

δi =

P∑
j=1

aij((xi−di)− (xj −dj))+ai0(xi−di−x0). (30)

Denote the tracking error ξi of the system as ξi = xi −
x0 − di. The estimation errors of xi and γi are defined as
ξxi = xi − x̂i and ξγi = γi − γ̂i. From (2), (26), and (27), it
can be obtained that

ξ̇i = h(xi)− h(x0)−Kδi − w̄φ(δi)− w0 + ιξxi + ξγi

ξ̇xi = h(xi)− h(x̂i) + ξγi + (ι− Γ)ξxi

ξ̇γi = −ι(ξγi + h(xi)− h(x̂i) + ιξxi ) + ḟi.
(31)

Let x = [xT1 , · · · , xTP ]T , x̂ = [x̂T1 , · · · , x̂TP ]T , γ =
[γT1 , · · · , γTP ]T , γ̂ = [γ̂T1 , · · · , γ̂TP ]T , ξ = [ξT1 , · · · , ξTP ]T ,
ξx = [(ξx1 )

T , · · · , (ξxP )T ]T , ξγ = [(ξγ1 )
T , · · · , (ξγP )T ]T , and

δ = [δT1 , · · · , δTP ]T . From the definition of the Laplacian
matrix, we can infer that

δ = (L1 ⊗ Im)ξ, (32)

where Im ∈ Rm×m is the identity matrix. The compact form
of (31) can be rewritten as
ξ̇ = H(x)−H(x0)−Kδ − w̄Φ(δ)− 1P ⊗ w0 + ιξx + ξγ

ξ̇x = H(x)−H(x̂) + ξγ + (ι− Γ)ξx

ξ̇γ = −ι(ξγ +H(x)−H(x̂) + ιξx) + ḟ .
(33)

where 1P = [1, · · · , 1]T , H(x0) = 1P ⊗ h(x0), H(x) =
[h(x1)

T , · · · , h(xP )T ]T , H(x̂) = [h(x̂1)
T , · · · , h(x̂P )T ]T ,

and Φ(δ) = [φ(δ1)
T , · · · , φ(δP )T ]T .

Theorem 1: Under Assumptions 1-4 and IEC-based forma-
tion protocol (28), the error system (33) is uniformly ultimate
bounded if the gains K, Γ, and ι are designed to satisfy the
following conditions:

K >

√
2η∥L1 ⊗ Im∥
λmin(L2

1)
+

1

ι
+
ι

2
, (34)

Γ > η + ι2 +
3

2
ι+

1

ι
+ 1, (35)

and

0 < ι <
1

η2 + 1
, (36)

where λmin(L2
1) > 0 denotes the minimum eigenvalue of the

matrix L2
1.

Proof: Consider the Lyapunov function:

V = V1 + V2 + V3 (37)

where V1 = 1
2ξ

T (L1 ⊗ Im)ξ, V2 = 1
2 (ξ

x)T ξx, and V3 =
1
2 (ξ

γ)T ξγ .
Taking the derivation of V1, from (32) and (33), we can get

V̇1 = ξT (L1 ⊗ Im)ξ̇ = δT ξ̇

= δT (H(x)−H(x0)−Kδ − w̄Φ(δ)

− 1P ⊗ w0 + ιξx + ξγ)

= −KδT δ + δT (H(x)−H(x0))

− δT (w̄Φ(δ) + 1P ⊗ w0) + δT (ιξx + ξγ).

(38)
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Since the nonlinear function h(·) satisfies Assumption 2, it
can be concluded that

∥H(x)−H(x0)∥ = (

P∑
i=1

∥h(xi)− h(x0 + di)

+ h(x0 + di)− h(x0)∥2)
1
2

≤ (

P∑
i=1

2(∥h(xi)− h(x0 + di)∥2

+ ∥h(x0 + di)− h(x0)∥2))
1
2

≤
√
2η(

P∑
i=1

(∥ξi∥2 + ∥di∥2))
1
2

≤
√
2η(∥ξ∥+ ∥d∥).

(39)

Combining with (32), we can imply that

δT (H(x)−H(x0)) ≤ ∥δT ∥∥(H(x)−H(x0))∥
≤

√
2η∥δT ∥(∥ξ∥+ ∥d∥)

≤
√
2η∥L1 ⊗ Im∥ξT ξ +

√
2η∥δ∥∥d∥.

(40)
Based on average inequality, we have

ιδT ξx ≤ ι

2
(δT δ + (ξx)T ξx), (41)

and

δT ξγ ≤ 1

ι
δT δ +

ι

4
(ξγ)T ξγ . (42)

Furthermore, from (5) and the definition of φ, it can be
obtained that

−δT (w̄Φ(δ) + 1P ⊗ w0) = −w̄
P∑
i=1

∥δi∥ −
P∑
i=1

δTi w0

≤ −w̄
P∑
i=1

∥δi∥+
P∑
i=1

∥w0∥∥δi∥

= (∥w0∥ − w̄)

P∑
i=1

∥δi∥

≤ −
√
2η∥δ∥∥d∥.

(43)
Substituting (40), (41), (42), and (43) to (38), it follows that

V̇1 ≤ −KδT δ +
√
2η∥L1 ⊗ Im∥ξT ξ + ι

2
(δT δ + (ξx)T ξx)

+
1

ι
δT δ +

ι

4
(ξγ)T ξγ

= (−K +
1

ι
+
ι

2
)δT δ +

√
2η∥L1 ⊗ Im∥ξT ξ + ι

2
(ξx)T ξx

+
ι

4
(ξγ)T ξγ

≤ −((K − 1

ι
− ι

2
)λmin(L2

1)−
√
2η∥L1 ⊗ Im∥)ξT ξ

+
ι

2
(ξx)T ξx +

ι

4
(ξγ)T ξγ ,

(44)

Next, we compute the derivation of V2. From (33), it follows
that

V̇2 = (ξx)T ξ̇x

= (ξx)T ((H(x)−H(x̂)) + ξγ + (ι− Γ)ξx)

= (ξx)T (H(x)−H(x̂)) + (ξx)T ξγ + (ι− Γ)(ξx)T ξx.
(45)

Similarly to (39), we can get

∥H(x)−H(x̂)∥ ≤ η∥ξx∥ (46)

Hence, we have

(ξx)T (H(x)−H(x̂)) ≤ ∥(ξx)T ∥∥(H(x)−H(x̂))∥
≤ η(ξx)T ξx.

(47)

According to the average inequality, we have

(ξx)T ξγ ≤ 1

ι
(ξx)T ξx +

ι

4
(ξγ)T ξγ . (48)

Putting (47) and (48) into (45), it can be implied that

V̇2 ≤ (ι− Γ)(ξx)T ξx + η(ξx)T ξx +
1

ι
(ξx)T ξx +

ι

4
(ξγ)T ξγ

= −(Γ− η − ι− 1

ι
)(ξx)T ξx +

ι

4
(ξγ)T ξγ .

(49)
Then, we turn to the derivation of V3. It can be obtained

from (33) that

V̇3 = (ξγ)T ξ̇γ

= (ξγ)T (−ι(ξγ +H(x)−H(x̂) + ιξx) + ḟ)

= −ι(ξγ)T ξγ − ι(ξγ)T (H(x)−H(x̂))− ι2(ξγ)T ξx

+ (ξγ)T ḟ .
(50)

In light of (47) and (48), we have

−ι(ξγ)T (H(x)−H(x̂)) ≤ ι∥(ξγ)T ∥∥(H(x)−H(x̂))∥
≤ ιη∥ξγ∥∥ξx∥

≤ ι2η2

4
(ξγ)T ξγ + (ξx)T ξx.

(51)
From average inequality, we can get

−ι2(ξγ)T ξx ≤ ι2

4
(ξγ)T ξγ + ι2(ξx)T ξx, (52)

and

(ξγ)T ḟ ≤ ι

4
(ξγ)T ξγ +

1

ι
∥ḟ∥2 (53)

Adding (51), (52), and (53), it can be seen from (4) that

V̇3 ≤ −ι(ξγ)T ξγ +
ι2η2

4
(ξγ)T ξγ + (ξx)T ξx +

ι2

4
(ξγ)T ξγ

+ ι2(ξx)T ξx +
ι

4
(ξγ)T ξγ +

1

ι
∥ḟ∥2

≤ −(
3

4
ι− ι2η2 + ι2

4
)(ξγ)T ξγ + (ι2 + 1)(ξx)T ξx +

Pθ2

ι
.

(54)
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Hence, it follows from (44), (49), and (54) that

V̇ = V̇1 + V̇2 + V̇3

≤ −((K − 1

ι
− ι

2
)λmin(L2

1)−
√
2η∥L1 ⊗ Im∥)ξT ξ

− (Γ− η − ι2 − 3

2
ι− 1

ι
− 1)(ξx)T ξx − (

1

4
ι− ι2η2 + ι2

4
)

(ξγ)T ξγ +
Pθ2

ι

≤ −
2((K − 1

ι −
ι
2 )λmin(L2

1)−
√
2η∥L1 ⊗ Im∥)

∥L1 ⊗ Im∥
V1

− 2(Γ− η − ι2 − 3

2
ι− 1

ι
− 1)V2 − (

1

2
ι− ι2η2 + ι2

2
)V3

+
Pθ2

ι

≤ −ãV +
Pθ2

ι
.

(55)
where

ã = min{
2((K − 1

ι −
ι
2 )λmin(L2

1)−
√
2η∥L1 ⊗ Im∥)

∥L1 ⊗ Im∥
,

2(Γ− η − ι2 − 3

2
ι− 1

ι
− 1), (

1

2
ι− ι2η2 + ι2

2
)}
(56)

Denote the bounded set Ω as

Ω = {(ξ, ξx, ξγ) | ξT (L1 ⊗ Im)ξ + ∥ξx∥2 + ∥ξγ∥2 < 2Pθ2

ãι
}

(57)
if (ξ, ξx, ξγ) ∈ Ω̄, where Ω̄ is the supplementary set of Ω, we
can get from (55) that

V̇ < 0. (58)

That is to say, when t→ ∞,

V ≤ Pθ2

ãι
. (59)

Hence, the error system (33) is uniformly ultimately bounded.
This completes the proof.

Moreover, the following corollary can be obtained on the
basis of the conclusion of Theorem 1.

Corollary 1: Under Assumptions 1-4 and IEC-based forma-
tion protocol (28), if the gains K, Γ, and ι are designed to
satisfy conditions (34), (35), and (36), the error system (33)
converges to zero exponentially if fi(t) is constant.

Proof: Choosing the Lyapunov candidate

V =
1

2
ξT (L1 ⊗ Im)ξ +

1

2
(ξx)T ξx +

1

2
(ξγ)T ξγ . (60)

Since fi(t) is constant, we have ḟ = 0. Similarly to the
analysis in Theorem 1, based on (55), it can be obtained that

V̇ ≤ −ãV, (61)

where ã is defined in (56). That is to say, the error system
(33) converges to zero exponentially for constant fi(t) with
the exponential convergence rate ã. This completes the proof.

E. Safe Multi-robot DRL Exploration with IEC-based Forma-
tion Scheme

This section introduces the proposed framework, which
enables multi-robot safe DRL exploration under an IEC-
based formation protocol, effectively addressing uncertainties
introduced by DRL. In this work, safe learning is accom-
plished through a combination of DRL and the IEC-based
formation protocol. The DRL algorithm ensures safety by
integrating obstacle avoidance directly into the reward func-
tion. The reward penalizes collisions while encouraging safe
navigation. Since DRL introduces uncertainties due to its
obstacle avoidance process, we introduce an IEC-based for-
mation protocol to provide an additional layer of control. This
protocol functions as a corrective mechanism, compensating
for errors and uncertainties in DRL-based decision-making
while maintaining formation constraints. By leveraging this
approach, the system maintains stability and safety despite the
inherent unpredictability of DRL policies. The convergence of
the Lyapunov function proves that the proposed framework
effectively mitigates unsafe behaviors and ensures robust nav-
igation.

After being trained with consensus-based DRL, the training
model for each agent will be saved and loaded for both the
leader and followers for the proposed framework to handle
obstacle avoidance tasks. In every iteration, the distance to the
obstacles Do

k for each robot is obtained. If Do
k is above the

laser threshold limit 2D̄, each robot will perform formation-
based exploration. Otherwise, the loaded training model will
be triggered to deal with obstacle avoidance tasks. In this pro-
cess, an action is chosen on the basis of the pre-trained model
obtained from Algorithm 1. Then, this action is executed and
a reward will be computed to get a new observation. Once the
DRL obstacle avoidance algorithm is triggered, uncertainties
will be introduced in the multi-robot system, which can be
handled by the proposed IEC-based formation protocol (28).
Algorithm 2 details the proposed safe multi-robot DRL explo-
ration with the IEC-based formation scheme, which enables
collision-free mapless exploration while maintaining a focus
on safe learning.

V. EXPERIMENTS AND RESULTS

This section validates the feasibility and effectiveness of
the proposed cooperative framework. The experiments were
conducted with TurtleBot3 Waffle Pi robots in both simulated
and real-world environments.

A. Training Details

1) Simulation: The proposed framework was trained in
Robot Operating System (ROS) [51] and Gazebo [52]. For
each robot, the maximum laser range is 3.5 m. The actor
learning rate ω and the critic learning rate ψ are both fixed
at 0.0001. The discounted factor µ has a fixed value of 0.9.
Action exploration follows the ϵ-greedy exploration strategy
[53], with ϵ initialized at 0.9 and a decay rate of 0.99995.

Considering a multi-robot exploration task which includes
one leader and three followers with dimension m = 2.
The position of each robot can be denoted as xi(t) =
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Algorithm 2 Safe Multi-robot DRL Exploration with IEC-
based Formation Scheme

1: Choose one leader robot labeled with 0 and P follower
robots labeled with {1, · · · , P}.

2: Initialize the target distance d between the leader and each
follower, and the initial position of each robot.

3: Initialize the connections between each robot.
4: Initialize the laser threshold limit D̄ and maximum real

time step T̄ .
5: Load the consensus-based DRL pre-trained model ob-

tained from Algorithm 1.
6: Reset the environment and get observation state sk1 .
7: Set the control gains K, Γ, and ι
8: if Assumptions 1-4 are satisfied then
9: if (34), (35), and (36) are satisfied then

10: while t = 1, T̄ do
11: Get the position of each robot.
12: Get the distance to the obstacles Do

k.
13: if Do

k > 2D̄ then
14: Calculate formation error δk for robot k.
15: if ∥δk∥ ≠ 0 then.
16: φk(δk) =

δk
∥δk∥ .

17: else
18: φk(δk) = 0.
19: end if
20: Design the fault estimator (27).
21: Establish the formation controller (28).
22: else
23: Select action akt = χ(skt ) based on the pre-

trained model in Algorithm 1.
24: Execute action akt , compute reward rkt+1

and get new observation skt+1.
25: skt = skt+1.
26: end if
27: end while
28: else
29: Back to step 5.
30: end if
31: else
32: Back to step 1.
33: end if

[xix(t), xiy(t)]
T , i ∈ V , where V = {0, 1, 2, 3}. We select

the target formation shape as a 10 m square. The interaction
topology is introduced in Fig. 1.

In the dynamic of each robot, we set the nonlinear function
h as

h(xi(t)) = 0.02[sin(
xix(t)

2
) + 2, cos(

xiy(t)

2
) + 2]T , i ∈ V

(62)
The initial position of each robot is set by

x0(0) = [−3,−18]T , x1(0) = [−8,−18]T ,

x2(0) = [−13,−18]T , x3(0) = [−18,−18]T .

All the initial values in the position and fault estimators are set
to zero. The gains are chosen as K = 6, Γ = 9, and ι = 0.3,
which satisfy the conditions in Theorem 1.

2) Real Environment: To confirm the validity of the pro-
posed cooperative framework, four TurtleBot3 Waffle Pi robots
were used in the real-world scenario, as shown in Fig. 3.

Fig. 3. Real world scenario with four TurtleBot3 Waffle Pi robots.

We set the target formation shape as a 1.25 m square
according to the actual space limitations. Then we set the
nonlinear function h as

h(xi(t)) = 0.02[sin(
xix(t)

2
) + 2, 0.01]T , i ∈ V (63)

The initial position of each robot is set by

x0(0) = [0, 0]T , x1(0) = [−0.5, 0]T ,

x2(0) = [−1, 0]T , x3(0) = [−1.5, 0]T .

All the initial values in the position and fault estimators are set
to zero. The gains are chosen as K = 5, Γ = 6, and ι = 0.4,
which satisfy the conditions in Theorem 1.

B. Simulation Results

1) Evaluation of Consensus-based DRL: This section eval-
uates the performance of DRL for obstacle avoidance tasks
with the consensus approach. The consensus-based training
environment is shown in Fig. 4. As a baseline for comparison,
we removed the consensus approach and applied the same
DRL approach to train a single robot. The benchmark is
established by the average reward obtained, calculated as the
mean reward collected over a predefined batch size. Notably,
the consensus-based DRL algorithm demonstrates a faster
training process relative to the baseline. As can be seen from
Fig. 5, with the consensus algorithm, each robot achieves a
training reward of 25 within approximately 33, 000 training
steps, while the baseline approach needs roughly 74, 000 steps
to reach an equivalent reward. Thus, compared to single-robot
DRL, the consensus approach decreases the training steps
needed to attain the same reward, which enhances the training
efficiency of the DRL method.

Fig. 6 illustrates the training time per step of the consensus-
based DRL with four robots compared to the single-agent
baseline approach. The average training time per step of four
robots with the consensus method is around 0.43 s, which is
slightly higher than the 0.27 s observed in the single-agent
baseline. However, without the consensus strategy, training
four robots independently would require 0.27 s per step per
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robot, leading to a total time of 1.08 s per step. This is
significantly higher than the 0.43 s per step required with
the consensus-based approach. Thus, the consensus method
not only accelerates convergence but also reduces the overall
training time, making it a more efficient solution for multi-
robot learning.

Fig. 4. Consensus-based DRL in Gazebo. The cubes are obstacles and the
green squares represent target positions.

Fig. 5. Average reward graph of the consensus-based DRL with four robots
compared to the single-agent baseline approach (Red line).

2) Evaluation of Randomly Placed Obstacles: Fig. 7 con-
firms the feasibility of the proposed cooperative framework
with randomly placed obstacles. Under the IEC-based for-
mation scheme, the proposed multi-robot framework success-
fully avoids randomly placed obstacles while maintaining the
formation shape for safe exploration. For baseline trajectory
comparison, pure formation control is applied to four mobile
robots in the same environment without obstacles. As can
be seen from Fig. 8, the proposed framework successfully
addresses uncertainties while ensuring collision-free mapless
exploration. In comparison to the pure formation strategy
baseline, the uncertainties introduced by randomly placed
obstacles are effectively handled by the proposed multi-robot
framework under the IEC-based formation scheme, thereby
validating our theoretical analysis.

Fig. 6. Training time per step of the consensus-based DRL with four robots
compared to the single-agent baseline approach (Red line).

Fig. 7. The proposed framework with randomly placed obstacles.

Fig. 8. Formation trajectories of the proposed framework with randomly
placed obstacles compared with the pure formation strategy baseline (Black
dotted line).

The tracking error ∥ξi∥ of each follower robot in the
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presence of randomly placed obstacles is illustrated in Fig. 9.
Although the tracking error for each follower robot increases
when encountering obstacles, these tracking errors converge to
a bounded set regardless of the uncertainties introduced by the
randomly placed obstacles, which demonstrates the feasibility
of safe exploration.

Fig. 9. Tracking errors of the followers with randomly placed obstacles. The
dashed lines represent the theoretical bounds.

To evaluate the effectiveness of the proposed IEC-based
formation protocol, we conduct a comparative experiment by
removing the IEC component and employing only the tradi-
tional formation protocol under identical conditions. Fig. 10
depicts the tracking error ∥ξi∥ of each follower robot when
using a traditional formation protocol in the presence of
randomly placed obstacles. The results indicate that, with-
out the IEC-based formation protocol, the tracking errors of
the followers fail to converge to a bounded set due to the
uncertainties introduced by the obstacles. This observation
highlights the efficacy of the proposed framework in handling
such uncertainties.

Fig. 10. Tracking errors of the followers with randomly placed obstacles
using a traditional formation protocol.

3) Evaluation of Unexpected Obstacles: To demonstrate
that the proposed multi-robot framework operates indepen-
dently of maps for exploration, we introduce unexpected
obstacles within the ongoing exploration process, as shown
in Fig. 11. Although the global map suddenly changes, robots

are able to successfully detect and avoid unexpected obstacles
while maintaining the formation shape for safe exploration.

Fig. 11. The proposed framework with unexpected obstacles.

The tracking error ∥ξi∥ of each follower robot in the
presence of unexpected obstacles is demonstrated in Fig. 12.
Compared with Fig. 9, the tracking error for each follower
robot rises sharply upon encountering unexpected obstacles.
Nonetheless, these tracking errors ultimately converge to
a bounded set despite the uncertainties introduced by the
unexpected obstacles, which confirms the validity of safe
exploration.

Fig. 12. Tracking errors of the followers with unexpected obstacles. The
dashed lines represent the theoretical bounds.

C. Real-world Experiments

1) Evaluation of Randomly Placed Obstacles: The pro-
posed framework has been implemented on four TurtleBot3
Waffle Pis for real-world evaluation. The objective is to deploy
multi-robot safe exploration despite the uncertainties posed
by randomly placed obstacles. As shown in Fig. 13, four
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TurtleBots successfully detect the randomly placed obstacle, as
indicated by the presence of laser scans surrounding it. When
any robot encounters the randomly placed obstacle during
environment exploration, it triggers the DRL algorithm, en-
abling the robot to initiate obstacle avoidance and introducing
uncertainties into the multi-robot system. Fig. 14 illustrates
the formation trajectories of each robot with randomly placed
obstacles in the real environment. The proposed cooperative
framework successfully enables multi-robot safe exploration
and effectively handles the uncertainties introduced by the
randomly placed obstacle, which validates the effectiveness
of Algorithm 2.

Fig. 13. The proposed framework with randomly placed obstacles in the
real environment. L stands for Leader. F1, F2 and F3 represent Follower 1,
Follower 2 and Follower 3, respectively.

Fig. 14. Formation trajectories of the proposed framework with randomly
placed obstacles in the real environment.

The real-world tracking error ∥ξi∥ of each follower robot
in the presence of randomly placed obstacles is presented

in Fig. 15. In comparison with Fig. 9, the initial tracking
error gradient for each follower is higher due to real-world
uncertainties such as communication delay or friction. While
the tracking error for each follower robot increases upon
encountering obstacles, these errors ultimately converge to a
bounded set regardless of the uncertainties introduced by the
randomly placed obstacle, demonstrating the applicability of
safe exploration.

Fig. 15. Tracking errors of the followers with randomly placed obstacles in
the real environment. The dashed lines represent the theoretical bounds.

To assess the performance of the proposed IEC-based
formation protocol in the real world, a comparative analysis
is conducted by eliminating the IEC component and relying
solely on the conventional formation protocol under the same
experimental conditions. Fig. 16 illustrates the real-world
tracking error ∥ξi∥ of each follower robot when using a
traditional formation protocol in the presence of randomly
placed obstacles. In the absence of the IEC-based formation
protocol, the real-world tracking errors of the follower robots
do not converge within a bounded region, primarily due to real-
world uncertainties. This result underscores the effectiveness
of the proposed framework in mitigating such challenges.

Fig. 16. Tracking errors of the followers with randomly placed obstacles in
the real world using a traditional formation protocol.

2) Evaluation of Unexpected Obstacles: The performance
of the cooperative framework with the unexpected obstacle
in the real-world environment is validated in Fig. 17. In
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contrast to Fig. 13, four TurtleBots initially can not detect
the unexpected obstacle until it is randomly placed in their
path by the operator. Once the obstacle appears within the
proximity defined by the laser threshold, the DRL algorithm is
activated by the robot, which introduces uncertainties into the
multi-robot system. Fig. 18 shows the formation trajectories of
each robot with unexpected obstacles in the real environment.
Each mobile robot successfully maintains the formation shape
for safe exploration under the proposed framework, effectively
managing uncertainties caused by unexpected obstacles.

Fig. 17. The proposed framework with unexpected obstacles in the real
environment. L stands for Leader. F1, F2 and F3 represent Follower 1,
Follower 2 and Follower 3, respectively.

Fig. 18. Formation trajectories of the proposed framework with unexpected
obstacles in the real environment.

The real-world tracking error ∥ξi∥ of each follower robot in
the presence of unexpected obstacles is presented in Fig. 19.

Compared to Fig. 15, the tracking error for each follower robot
exhibits an additional peak within the first 200 steps due to
external uncertainties introduced by the unexpected obstacles,
which impact the tracking error of each follower robot. Despite
uncertainties introduced by the unexpected obstacle in the real
world, the tracking errors still converge to a bounded set,
affirming the robustness of the proposed framework.

Fig. 19. Tracking errors of the followers with unexpected obstacles in the
real environment. The dashed lines represent the theoretical bounds.

VI. CONCLUSION

In this work, a safe learning framework for multi-robot
mapless exploration with the IEC-based formation scheme is
presented. An actor-critic-based DRL method is implemented
for each mobile robot to manage collision avoidance tasks.
To enhance the efficiency of the DRL training process in
the multi-robot system, a consensus-based training policy is
proposed, reducing the required training steps without compro-
mising training rewards. Additionally, an IEC-based formation
scheme is developed to manage robots with uncertainties.
A compensation function and an intermediate estimator are
introduced in the controller to ensure that the tracking error of
each follower robot converges to a bounded set with the aim
of safe exploration. Simulations and real-world experiments
are provided to validate the feasibility and effectiveness of
the proposed framework. Future research will aim to refine
this approach to tackle increasingly complex scenarios. In
particular, investigating adaptive weight adjustments or DRL-
based weight tuning could further improve the consensus
process in dynamic environments.

ACKNOWLEDGMENT

The authors would like to thank Dr. Salvador Pacheco-
Gutierrez and Dr. Kirsty Hewitson for the computational
resource support from Robotics and Artificial Intelligence
Collaboration (RAICo). We are grateful to Jeff Slater for his
assistance with the deployment of the real-world experiments.
We also thank Marc Torrance and John Jukes for their valuable
support with both hardware and software.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3581872

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

REFERENCES

[1] X. Dong and G. Hu, “Time-varying formation tracking for linear multi-
agent systems with multiple leaders,” IEEE Transactions on Automatic
Control, vol. 62, no. 7, pp. 3658–3664, 2017.

[2] K. Wu, J. Hu, Z. Ding, and F. Arvin, “Distributed bearing-only for-
mation control for heterogeneous nonlinear multi-robot systems,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 3447–3452, 2023.

[3] W. Liu, H. Niu, W. Pan, G. Herrmann, and J. Carrasco, “Sim-and-real
reinforcement learning for manipulation: A consensus-based approach,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 3911–3917.

[4] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau
et al., “An introduction to deep reinforcement learning,” Foundations
and Trends® in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[5] Z. Zhu and H. Zhao, “A survey of deep rl and il for autonomous driv-
ing policy learning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 9, pp. 14 043–14 065, 2021.

[6] Y. Zhang, W. Zhao, J. Wang, and Y. Yuan, “Recent progress, challenges
and future prospects of applied deep reinforcement learning: A practical
perspective in path planning,” Neurocomputing, vol. 608, p. 128423,
2024.

[7] X. Bi, M. He, and Y. Sun, “Mix q-learning for lane changing: A
collaborative decision-making method in multi-agent deep reinforcement
learning,” IEEE Transactions on Vehicular Technology, 2025.

[8] L. Li, R. Zhu, S. Wu, W. Ding, M. Xu, and J. Lu, “Adaptive multi-
agent deep mixed reinforcement learning for traffic light control,” IEEE
Transactions on Vehicular Technology, vol. 73, no. 2, pp. 1803–1816,
2023.

[9] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and
Z. Wang, “Exploration in deep reinforcement learning: From single-
agent to multiagent domain,” IEEE Transactions on Neural Networks
and Learning Systems, 2023.

[10] C. Wang, J. Wang, Y. Shen, and X. Zhang, “Autonomous navigation
of uavs in large-scale complex environments: A deep reinforcement
learning approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 3, pp. 2124–2136, 2019.

[11] E. Marchesini, D. Corsi, and A. Farinelli, “Exploring safer behaviors for
deep reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7701–7709.

[12] H. Li, Z. Wan, and H. He, “Constrained ev charging scheduling based
on safe deep reinforcement learning,” IEEE Transactions on Smart Grid,
vol. 11, no. 3, pp. 2427–2439, 2019.

[13] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, and A. Knoll, “A re-
view of safe reinforcement learning: Methods, theory and applications,”
arXiv preprint arXiv:2205.10330, 2022.

[14] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 5, no. 1, pp. 411–444, 2022.

[15] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” Advances in
neural information processing systems, vol. 30, 2017.

[16] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based
model predictive control for safe exploration,” in 2018 IEEE conference
on decision and control (CDC). IEEE, 2018, pp. 6059–6066.

[17] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer-practical con-
strained optimization for deep reinforcement learning in the real world,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 6236–6243.

[18] G. Thomas, Y. Luo, and T. Ma, “Safe reinforcement learning by
imagining the near future,” Advances in Neural Information Processing
Systems, vol. 34, pp. 13 859–13 869, 2021.

[19] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li, “Model-free safe
reinforcement learning through neural barrier certificate,” IEEE Robotics
and Automation Letters, vol. 8, no. 3, pp. 1295–1302, 2023.

[20] L. Zhang, Q. Zhang, L. Shen, B. Yuan, X. Wang, and D. Tao, “Evalu-
ating model-free reinforcement learning toward safety-critical tasks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37,
no. 12, 2023, pp. 15 313–15 321.

[21] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan,
M. Hwang, J. E. Gonzalez, J. Ibarz, C. Finn, and K. Goldberg, “Recovery
rl: Safe reinforcement learning with learned recovery zones,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4915–4922, 2021.

[22] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in International conference on machine learning. PMLR,
2017, pp. 22–31.

[23] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy
optimization,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=SkfrvsA9FX

[24] C. Wei, Z. Ji, and B. Cai, “Particle swarm optimization for cooperative
multi-robot task allocation: a multi-objective approach,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2530–2537, 2020.

[25] C. Wei, K. V. Hindriks, and C. M. Jonker, “Dynamic task allocation for
multi-robot search and retrieval tasks,” Applied Intelligence, vol. 45, pp.
383–401, 2016.

[26] Y. Wu, J. Gou, X. Hu, and Y. Huang, “A new consensus theory-based
method for formation control and obstacle avoidance of uavs,” Aerospace
Science and Technology, vol. 107, p. 106332, 2020.

[27] B. Wang, S. G. Nersesov, and H. Ashrafiuon, “Robust formation control
and obstacle avoidance for heterogeneous underactuated surface vessel
networks,” IEEE Transactions on Control of Network Systems, vol. 9,
no. 1, pp. 125–137, 2022.

[28] K. Wu, J. Hu, Z. Li, Z. Ding, and F. Arvin, “Distributed collision-
free bearing coordination of multi-uav systems with actuator faults and
time delays,” IEEE Transactions on Intelligent Transportation Systems,
vol. 25, no. 9, pp. 11 768–11 781, 2024.

[29] G. Wen, C. P. Chen, and Y.-J. Liu, “Formation control with obstacle
avoidance for a class of stochastic multiagent systems,” IEEE Transac-
tions on Industrial Electronics, vol. 65, no. 7, pp. 5847–5855, 2017.

[30] X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “A scalable adaptive
approach to multi-vehicle formation control with obstacle avoidance,”
IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 6, pp. 990–1004,
2021.

[31] T. Nguyen, H. M. La, T. D. Le, and M. Jafari, “Formation control
and obstacle avoidance of multiple rectangular agents with limited
communication ranges,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 4, pp. 680–691, 2016.

[32] Y. Liu, C. Chen, Y. Wang, T. Zhang, and Y. Gong, “A fast formation
obstacle avoidance algorithm for clustered uavs based on artificial
potential field,” Aerospace Science and Technology, p. 108974, 2024.

[33] Y. Han, I. H. Zhan, W. Zhao, J. Pan, Z. Zhang, Y. Wang, and Y.-J.
Liu, “Deep reinforcement learning for robot collision avoidance with
self-state-attention and sensor fusion,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 6886–6893, 2022.

[34] D. Wang, T. Fan, T. Han, and J. Pan, “A two-stage reinforcement learning
approach for multi-uav collision avoidance under imperfect sensing,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3098–3105,
2020.

[35] A. Singla, S. Padakandla, and S. Bhatnagar, “Memory-based deep
reinforcement learning for obstacle avoidance in uav with limited en-
vironment knowledge,” IEEE transactions on intelligent transportation
systems, vol. 22, no. 1, pp. 107–118, 2019.

[36] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[37] S. Wen, Y. Shu, A. Rad, Z. Wen, Z. Guo, and S. Gong, “A deep
residual reinforcement learning algorithm based on soft actor-critic for
autonomous navigation,” Expert Systems with Applications, vol. 259, p.
125238, 2025.

[38] P. Hang, C. Lv, C. Huang, J. Cai, Z. Hu, and Y. Xing, “An integrated
framework of decision making and motion planning for autonomous
vehicles considering social behaviors,” IEEE transactions on vehicular
technology, vol. 69, no. 12, pp. 14 458–14 469, 2020.

[39] S. Li, K. Peng, F. Hui, Z. Li, C. Wei, and W. Wang, “A decision-making
approach for complex unsignalized intersection by deep reinforcement
learning,” IEEE Transactions on Vehicular Technology, 2024.

[40] K. Zhu, B. Li, W. Zhe, and T. Zhang, “Collision avoidance among dense
heterogeneous agents using deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 8, no. 1, pp. 57–64, 2022.

[41] Z. Sui, Z. Pu, J. Yi, and S. Wu, “Formation control with collision
avoidance through deep reinforcement learning using model-guided
demonstration,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 6, pp. 2358–2372, 2020.

[42] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in IEEE international conference on robotics and automation
(ICRA), 2017, pp. 285–292.

[43] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 6252–6259.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3581872

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://openreview.net/forum?id=SkfrvsA9FX


15

[44] N. Thumiger and M. Deghat, “A multi-agent deep reinforcement learning
approach for practical decentralized uav collision avoidance,” IEEE
Control Systems Letters, vol. 6, pp. 2174–2179, 2021.

[45] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy
for distributed multiagent navigation,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 656–663, 2017.

[46] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How, “Multi-
agent motion planning for dense and dynamic environments via deep
reinforcement learning,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3221–3226, 2020.

[47] C. Godsil and G. F. Royle, Algebraic graph theory. Springer Science
& Business Media, 2013, vol. 207.

[48] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010.

[49] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.

[50] W. Liu, H. Niu, I. Jang, G. Herrmann, and J. Carrasco, “Distributed
neural networks training for robotic manipulation with consensus al-
gorithm,” IEEE transactions on neural networks and learning systems,
vol. 35, no. 2, pp. 2732–2746, 2022.

[51] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[52] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

Wenxing Liu (Member, IEEE) received her B.Eng.
degree (First Class Honours) in Mechatronic Engi-
neering from the University of Manchester, Manch-
ester, UK, in 2019. She was awarded her Ph.D. in
Electrical and Electronic Engineering by the Uni-
versity of Manchester in 2023. She is currently a
Robotics Research Engineer under the robot learning
theme at Remote Applications in Challenging En-
vironments (RACE), UK Atomic Energy Authority,
Culham, UK.
Her research interests include deep reinforcement

learning, distributed control, and their applications in robotic manipulators
and mobile robots.

Hanlin Niu (Member, IEEE) received the Ph.D
degree in Aeronautical Engineering from Cranfield
University in 2018. From July 2017 to January 2020,
he worked as a Research Associate in Robotics at
Cardiff University. From January 2020 to December
2022, he worked as a Research Associate in Robotics
at the University of Manchester, being involved in
the Robotics and AI in Nuclear project, one of
the four big robotics and AI projects funded by
the Engineering and Physical Sciences Research
Council. From December 2022 to now, Hanlin works

at UK Atomic Energy Authority and leads the autonomous robot inspection
theme and robot learning theme of the Magnetic Fusion Research Programme.
From October 2024 to now, Hanlin works on the locomotion algorithm of the
legged robot as a senior robotics researcher in the Oxford Robotics Institute,
University of Oxford. His research interests include deep reinforcement
learning, imitation learning, locomotion, manipulation, guidance, navigation
and control algorithms.

[53] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

Kefan Wu received B.Sc degree in Applied Math-
ematics from Lanzhou University in 2016, M.Sc
degree in Applied Mathematics from Wuhan Univer-
sity in 2019, and Ph.D degree in Electrical and Elec-
tronic Engineering from the University of Manch-
ester in 2023. He is currently a senior researcher at
Lakeside Labs GmbH, Klagenfurt, Austria.
His research interests include networked control
systems and swarm intelligence.

Wei Pan (Member, IEEE) received the Ph.D. degree
in control engineering from Imperial College Lon-
don, London, U.K., in 2017. He is currently an As-
sociate Professor with the Department of Computer
Science, The University of Manchester, Manchester,
U.K. He was an Assistant Professor with TU Delft,
Netherlands and Project Leader with DJI, China.
His research interests lie in machine learning for
robotics. Dr. Pan is currently an Associate Editor for
IEEE Transactions on Robotics and IEEE Robotics
and Automation Letters.

Ze Ji (Member, IEEE) received the Ph.D. degree
from Cardiff University, Cardiff, U.K., in 2007.
He is a Reader with the School of Engineering,
Cardiff University, UK. Prior to his current posi-
tion, he was working in industry (Dyson, Lenovo,
etc) on autonomous robotics. His research interests
are broad, including autonomous robot navigation,
robot manipulation, robot learning, computer vision,
simultaneous localization and mapping (SLAM),
acoustic localization, and tactile sensing. He is on
the editorial boards of several journals, including

IEEE/ASME Transactions on Mechatronics.

Robert Skilton (Member, IEEE) is a robotics and
AI expert specializing in robotics for extreme and
safety-critical environments. He is the UKAEA
Robotics Fellow and Head of Robotics Research and
Technology at the UK Atomic Energy Authority,
where he leads national and international programs
in fusion energy and nuclear robotics. Dr. Skilton
holds a Ph.D. in generative AI for visual inspection,
an M.Sc. in Cybernetics, and a B.Sc. in Computer
Science. He has led major research and development
(R&D) collaborations, including the UK-Japan Lon-

gOps programme, and contributed to the development of robotics strategies
for future clean energy systems. He is a Chartered Engineer, Fellow of the
Institution of Engineering and Technology (IET), and active in IEEE technical
committees.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3581872

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Related Work
	Preliminaries
	Graph Theory
	Problem Formulation

	Methodology
	DRL Setup
	Observation Space and Action Space
	Reward Design
	Network Structure

	Consensus-based Training
	Consensus-based DRL
	Leader-follower IEC-based Formation Scheme
	Safe Multi-robot DRL Exploration with IEC-based Formation Scheme

	Experiments and results
	Training Details
	Simulation
	Real Environment

	Simulation Results
	Evaluation of Consensus-based DRL
	Evaluation of Randomly Placed Obstacles
	Evaluation of Unexpected Obstacles

	Real-world Experiments
	Evaluation of Randomly Placed Obstacles
	Evaluation of Unexpected Obstacles


	Conclusion
	References
	Biographies
	Wenxing Liu
	Hanlin Niu
	Kefan Wu
	Wei Pan
	Ze Ji
	Robert Skilton


