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 A B S T R A C T

Proactive robot assistance plays a critical role in human–robot collaborative assembly (HRCA), enhancing 
operational efficiency, product quality and workers’ ergonomics. The shift toward mass personalisation in 
industries brings significant challenges to the collaborative robot that must quickly adapt to product changes 
for proactive assistance. State-of-the-art knowledge-based task planners in HRCA struggle to quickly update 
their knowledge to adapt to the change of new products. Different from conventional methods, this work 
studies learning proactive assistance by leveraging reinforcement learning (RL) to train a policy, ready to 
be used for robot proactive assistance planning in HRCA. To address the limitations therein, we propose an 
offline RL framework where a policy for proactive assistance is trained using the dataset visually extracted 
from human demonstrations. In particular, an RL algorithm with a conservative Q-value is utilised to train 
a planning policy in an actor–critic framework with carefully designed state space and reward function. The 
experimental results show that with only a few demonstrations performed by workers as input, the algorithm 
can train a policy for proactive assistance in HRCA. The assistance task provided by the robot can fully meet 
the task requirement and improve human assembly preference satisfaction by 47.06% compared to a static 
strategy.
1. Introduction

Human–robot collaboration (HRC) has been widely adopted in man-
ufacturing for tasks such as collaborative assembly. Proactive assistance 
from collaborative robots is essential in these tasks, as it not only 
enhances safety and efficiency but also enables smoother workflows by 
anticipating human needs and reducing cognitive load, hence fostering 
a more seamless integration between human workers and robotic sys-
tems. Research by Liu, Chen, Abuduweili, and Liu (2023) demonstrates 
that timely proactive assistance can reduce workers’ idle time and 
improve workflow in assembly tasks. Besides, mass personalisation 
(MP) is an advanced technique that allows customers to personalise 
their products, powered by techniques in industry 4.0 (Wang, Ma, Yang, 
& Wang, 2017). The transformation to MP needs a quick response 
to customer needs and to keep the operation efficient in manufactur-
ing (Zhang & Ming, 2023). However, numerous personalised products 
present challenges to collaborative robot operation in production (Oth-
man & Yang, 2023), where robots need to rapidly acquire skills in new 
product assembly operations to cope with product changes.

To realise proactive assistance in HRCA, many task-level plan-
ning systems for HRCA were proposed for generating collaborative 
robot actions. However, these systems typically require some form of 
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prior knowledge about the tasks as prerequisites, formulated using 
techniques such as task graph (Darvish, Simetti, Mastrogiovanni, & 
Casalino, 2020; Lee, Behdad, Liang, & Zheng, 2022), planning domain 
definition language (PDDL) (Izquierdo-Badiola, Canal, Rizzo, & Alenyà, 
2022) and ontology (Chang, Cho, & Choi, 2020; Umbrico, Orlandini, & 
Cesta, 2020). In most existing works, such task knowledge is usually 
pre-programmed by domain experts (Stramandinoli, Roncone, Mangin, 
Nori, & Scassellati, 2019). Manually specifying the task knowledge by 
domain experts is time-consuming and not user-friendly. Therefore, 
the above methods are impractical for quickly updating the assembly 
knowledge for new product assembly tasks.

RL-based methods allow robots to acquire skills through the explo-
ration of the environment, which does not need to build an explicit 
knowledge model beforehand. RL aims to learn the optimal policy by 
maximising accumulated rewards through interaction with the environ-
ment. This process is usually formulated as a Markov Decision Process 
(MDP). RL techniques have achieved significant success in various 
robot applications, including autonomous navigation (Zhu & Zhang, 
2021) and manipulation (Jangir, Alenya, & Torras, 2020). This work 
considers proactive assistance in an assembly line, where the robot 
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provides assistance by handing over the right parts to human operators 
according to the users’ requirements. For the assembly process, due 
to its stochastic decision-making nature, it can be modelled as an 
MDP (Biemer & Cooper, 2023). Since RL can learn through trial and 
error and improve through exploration, we believe RL has the potential 
to offer an alternative solution that enables robots to learn proactive 
assistance faster and more effectively compared to existing methods. 
Therefore, the core problem this work aims to address is: How can we 
design an RL-based method for robots to acquire assembly knowledge and 
provide proactive handover to human workers?

It is non-trivial to design an RL-based method for proactive assis-
tance, because of the following limitations:

1. Online interaction: In general, typically, RL needs to interact 
online with the environment for exploration. However, due to 
the unpredictable nature of random exploration in RL methods, 
collecting training data and interacting with the environment in 
the presence of humans is risky and expensive. Thus, deploying 
standard RL solutions in the context of HRCA is impractical.

2. Uncertainty in workers’ operation: Workers’ preference on as-
sembly operation varies based on human natural tendencies 
and ergonomic needs, and meeting the preference of workers is 
necessary for user satisfaction improvement (Aheleroff, Huang, 
Xu, & Zhong, 2022). However, the uncertainty of workers’ oper-
ation brings challenges to the RL for stable performance on the 
proactive assistance.

3. Task requirement. The assembly sequence of the product must 
adhere to its task requirements. Ensuring that handed-over parts 
meet these requirements is crucial, as it guarantees that parts 
are handed over in the correct order. This prevents disruptions 
and rework, ultimately enhancing productivity (Othman & Yang, 
2023).

To address the above limitations, this work proposes an offline 
RL-based framework designed to quickly train a policy for task-level 
proactive assistance in HRCA by learning from human assembly demon-
strations. The demonstration of the human assembly process is full 
of implicit task knowledge as well as human operation preference, 
which is an ideal resource for collaborative robot learning. By collecting 
human demonstrations and employing the visual extraction method, 
a static dataset is created for offline RL policy training. The obser-
vation space, action space, and rewards function for the offline RL 
are also designed correspondingly for stable performance. The pro-
posed framework allows the robot to learn to provide assistance that 
meets both task requirements and human preferences with only a few 
demonstrations by humans.

The contributions of this paper are summarised as follows:

1. A novel offline RL-based framework is proposed for learning 
robot assistance in HRCA tasks. This approach eliminates the 
need for risky and expensive interactive data collection for 
policy training in HRCA.

2. An offline RL-based HRCA system is developed for robot assis-
tance learning that requires only a few demonstrations and a 
relatively short training period.

3. The system is validated through a real-world HRC experiment 
involving multiple participants. The results demonstrates that 
the learned robot assistance can fully meet assembly task re-
quirements and accommodate 47.06% more user operation pref-
erences compared with the static strategy.

2. Related work

2.1. Task planning model for collaborative robots in assembly tasks

HRC integrates the strengths of robots and human operators, emerg-
ing as a pivotal model in manufacturing. It demonstrates significant 
2 
potential for applications across various domains, such as welding (Liu 
& Bao, 2024; Liu, Zheng, & Bao, 2023). Many task-planning systems 
for collaborative robots were proposed to generate collaborative robot 
motions (Simões, Pinto, Santos, Pinheiro, & Romero, 2022). Most 
of the task planning methods for collaborative robots belong to the 
knowledge-based model in the literature, such as the and/or graph, 
ontology, and Planning Domain Definition Language (PDDL). Darvish 
et al. (2020) proposed a FlexHRC+ architecture for robots to support 
human operators for manufacturing tasks. It integrates a specified 
and/or graph to model action knowledge using first-order logic. Chang 
et al. (2020) proposed an ontology-based model to model general 
knowledge about agents’ actions, domain knowledge, and environment 
for collaborative robots. Izquierdo-Badiola et al. (2022) built an HRC 
planning system using PDDL for replanning in failure anticipation when 
the state of the human operator changes. Such task knowledge models 
are usually pre-programmed by domain experts (Stramandinoli et al., 
2019). Manually specifying task knowledge by domain experts is time-
consuming and unintuitive, impeding the development of HRC in the 
industry. In the context of MP, rapidly updating robotic task planning 
systems to meet the assembly needs arising from product changes is 
very challenging.

2.2. Reinforcement learning for collaborative robot

RL-based methods enable robots to acquire skills by interacting with 
environments, which can avoid manually designing the task planning 
model. In HRCA, researchers have applied RL to address various chal-
lenges. For example, Yu, Huang, and Chang (2020) used RL to optimise 
working sequences, thereby improving the efficiency of human–robot 
teams. Li, Zheng, Yin, Pang, and Huo (2023) used deep RL for motion 
planning to prevent collisions between robotic arms and human op-
erators, ensuring safety. These studies conducted the learning process 
in simulated environments, without direct interaction with human 
operators. However, online RL methods are impractical for collabo-
rative robot task planning due to the high risks and costs associated 
with collecting training data through direct human interaction (Li, 
Hu, Zhou, & Pham, 2023). Consequently, online RL methods are not 
suitable for quickly enabling a collaborative robot for a new product in 
manufacturing processes.

We aim to explore offline RL for the task planning of collaborative 
robots to avoid direct interaction with human users in the training 
process. Human expert demonstrations of the assembly process are 
ideal for a collaborative robot to learn how to act as a human-like 
assistant because it can provide the data for offline RL training. Ob-
serving the human assembly process, our method can quickly model 
the knowledge required for the assembly task and provide appropriate 
assistance actions accordingly.

2.3. Handover methods for collaborative robots

Handover is a crucial skill for robots in the context of HRC, and 
many researchers have studied this issue from different perspectives. 
For example, a visual and haptic perception combined with a control 
method has been proposed to adapt robot behaviour and grip force 
to human actions, ensuring safe and smooth handovers (Costanzo, De 
Maria, & Natale, 2021). Cini, Banfi, Ciuti, Craighero, and Controzzi 
(2021) investigated the impact of the timing of a robot’s handover 
intention signals on the tasks being performed by human operators. 
Their findings indicate that the timing of these signals significantly 
affects the performance of human–robot teams. Peternel, Kim, Babič, 
and Ajoudani (2017) proposed a control method based on a dynamic 
human model to calculate the optimal handover position, achieving 
handovers that meet ergonomic conditions.

The studies above focus mainly on the action level. However, for 
multi-step assembly tasks, handover at the symbolic level presents 
additional challenges. Meeting the task requirements of handed-over 
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Fig. 1. The framework of learning from human demonstration for proactive assistance.
parts is essential, as it ensures that parts are provided in the correct 
sequence. If the parts handed over by the robot do not meet the 
current task requirements, it can disrupt the assembly process and 
reduce efficiency (Othman & Yang, 2023). Additionally, considering 
human sequence preferences is equally important. Product assembly 
may follow various sequences. Skilled workers often have a preferred 
order based on their natural tendencies. For instance, some workers 
prefer to complete tasks requiring the same tool consecutively to avoid 
switching tools mid-process. If the parts handed over by the robot align 
with the worker’s preferences, it can significantly enhance worker satis-
faction and efficiency (Aheleroff et al., 2022). Therefore, our proposed 
method aims to ensure both the task requirements and human sequence 
preferences in the assistance provided by assistive robots.

3. Problem formulation

In a robot–human assembly unit, we assume the presence of a robot 
𝑟 and an assembly worker ℎ. The robot assists the worker in completing 
the assembly of product 𝑃 , which consists of 𝑁 parts. The assembly 
sequence of the product follows the product’s task requirements, 
which refer to the logical relationships between assembly actions as 
dictated by the geometric information of the product. The robot assists 
the worker by handing over parts, reducing the time the worker spends 
retrieving parts and improving assembly efficiency. The robot should 
proactively hand over parts to the worker based on the current assem-
bly status, ensuring that the action aligns with the worker’s assembly 
preferences and the product’s task requirements. To enable the robot’s 
proactive assistance in new assembly tasks, the primary goal is to 
develop a policy that predicts the worker’s next assembly part at each 
step, based on the current product assembly status. This policy should 
satisfy both the product’s task requirements and the worker’s assembly 
preferences. Therefore, the objective of the policy is to maximise the 
assistance score 𝐽 (𝜋). 

max
𝜋

𝐽 (𝜋) = max
𝜋

𝑁
∑

𝑛=1
𝑠𝑡 + 𝑠𝑝 (1)

where 𝑠𝑡 represents the score for meeting the product’s task require-
ments at step 𝑛, and 𝑠𝑝 represents the score for meeting the worker’s 
assembly preferences at step 𝑛.

4. Method

This paper aims to propose an offline RL-based framework where 
robots can quickly learn to provide proactive assistance to assembly 
workers by observing human assembly processes. In the rest of the 
section, we first introduce the overall framework, followed by the 
details of the offline RL algorithm in the framework used to address 
the proactive assistance learning problem.
3 
4.1. Framework

The general framework we propose for quick learning from demon-
stration for proactive assistance in assembly tasks is depicted in Fig.  1. 
This framework is divided into two phases: the offline phase and the 
online phase. It enables the robot to learn from human demonstrations 
offline and use the acquired policy to assist workers in assembly tasks 
online.

Offline Phase: When faced with a new assembly task or a product 
for which the robot lacks relevant knowledge, a worker demonstrates 
the assembly process to the robot, and the demonstration should meet 
assembly requirements and the worker’s preferences. The worker’s 
actions and product states during the assembly process are captured 
using visual recognition methods. The action sequences and states of 
product are then stored in a dataset. An offline RL algorithm is trained 
using samples from this dataset. Through this process, the task structure 
information and human sequence preferences are implicitly learned. 
The offline reinforcement learning algorithm is deployed to maximise 
the cumulative reward, resulting in an optimal policy that can be used 
to plan the robot’s assistance actions during collaborative assembly. It 
is important to note that the action recognition algorithm is not the 
focus of this paper.

Online Phase: The robot uses the learned policy to assist the worker 
in assembling the product. During execution, the product assembly 
state is identified using visual methods. The trained policy is then 
deployed on the robot, enabling it to proactively control the robot 
and provide assistance to the assembly worker based on the recognised 
assembly state.

4.2. Proactive assistance modelling as a Markov decision process

To model the human assembly operation process of a product, we 
formulate it using an MDP, defined by a tuple 𝑀 = (𝑆,𝐴𝐻 , 𝑃𝑎, 𝛾, 𝑅𝑎). 
𝑆 is the state space of the product assembly status. 𝐴ℎ ∈ 𝐴 is a set 
of discrete operational actions performed by the human operator on 
the product. 𝐴𝑟 ∈ 𝐴 denotes the assistance action performed by the 
robot. 𝑃𝑎(𝑠′|𝑠, 𝑎) is the transition probability from the state 𝑠 ∈ 𝑆 to 
state 𝑠′ ∈ 𝑆 under action 𝑎 ∈ 𝐴. 𝛾 ∈ [0, 1) is the discount factor. 𝑅𝑎
is the reward after the robot assists humans with the corresponding 
assembly tasks.

The human demonstrations of assembly are denoted by: 𝐷 =
{𝜂1, 𝜂2,… , 𝜂𝐼}. where 𝜂𝑖, 𝑖 ∈ 𝐼 is one assembly process of human 
demonstration. 𝜂𝑖 consists of the assembly states and the human actions 
as 𝜂𝑖 = {(𝑠𝑖,1, 𝑎𝑖,1), (𝑠𝑖,2, 𝑎𝑖,2),… , (𝑠𝑖,𝑘, 𝑎𝑖,𝑘)}. Based on that, a policy 𝜋
for proactive assistance in HRCA will be developed. We assume that 
robot assistance is handing over the parts according to the human user’s 
preference and production requirement. The robot deploys policy 𝜋 to 
predict the next human operator action 𝐴ℎ ∼ 𝜋(⋅, 𝑆) according to the 
observed assembly state. Based on the prediction, the robot can execute 
an action to hand over the corresponding part to the human operator 
proactively.
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4.2.1. Observation space
The observation space for the robot is defined by the state of 

the parts, represented as 𝑂. The dimension of the observation space 
depends on the number of parts 𝑁 that make up the product: 
𝑂 = [𝑜1,… , 𝑜𝑛,… , 𝑜𝑁 ] (2)

where 𝑜𝑛 represents the status of part 𝑝𝑛. The value of 𝑜𝑛 can take one 
of three possible states:

0: to be assembled,
1: being assembled,
2: be assembled.

The observation state of desktop case assembly (used in the val-
idation experiment) is defined by a 1 × 8 vector, where element 𝑖
corresponds to the state of component 𝑖. [0, 0, 0, 0, 0, 0, 0, 0] indicates that 
all components are in the ‘‘to be assembled’’ state.

4.2.2. Action space
The action space consists of the robot’s assistance actions in the as-

sembly process, denoted as 𝐴𝑟. The action space is defined as a discrete 
set of possible actions from which the agent selects one at each decision 
point. Each 𝑎𝑛 does not represent a binary value independently; rather, 
the entire vector represents a mutually exclusive choice of a single 
action: 
𝐴𝑟 = [𝑎1,… , 𝑎𝑛,… , 𝑎𝑁 , 𝑎ℎ, 𝑎𝑖𝑑𝑙𝑒] (3)

where 𝑎𝑛 is the action that picks up the corresponding parts or tools 𝑝𝑛, 
𝑎ℎ is the action that hands over the object in hand to the worker, and 
𝑎𝑖𝑑𝑙𝑒 means the agent is idle.

The action space of desktop case assembly (used in the validation 
experiment) is defined as 𝐴𝑟 = [𝑎1,… , 𝑎8, 𝑎ℎ, 𝑎𝑖𝑑𝑙𝑒], where 𝑎1 to 𝑎8
represent actions such as picking up the motherboard, CPU, cooler, 
GPU, memory card, hard disk, power supply, and cover.

4.2.3. Reward function
The performance of RL heavily depends on the design of the reward 

function. In this work, the reward function is constructed to guide the 
selection of actions that complete the assembly task while satisfying 
the product’s task requirements. The first component of the reward 
function focuses on achieving the shared goal of the agents, complet-
ing the assembly, where a positive reward is given upon completion. 
Additionally, to ensure that the parts are passed adhere to the task 
requirements, a negative reward is assigned if these requirements are 
not met. The reward function does not incentivise actions that align 
with worker preferences, as the training data is derived from human 
demonstrations. In this case, actions that meet the worker’s preferences 
already have a higher probability in 𝑃𝑎(𝑠′|𝑠, 𝑎).

The reward function 𝑟(𝑠, 𝑎) is designed as follows:

𝑟(𝑠, 𝑎) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑟𝑐 if an assembly task is done.
𝑟𝑤 if an assembly step does not meet the assembly

task requirement.
𝑟𝑠 if a component is assembled successfully and meets

the assembly task requirement.

(4)

where 𝑟𝑐 is a completion reward if an assembly task is done, 𝑟𝑤 is a 
negative reward if the agent executes an action that does not meet the 
assembly task requirement, 𝑟𝑠 denotes the intermediate reward granted 
when a component is successfully assembled and the corresponding 
assembly task requirement is satisfied.

In the case of the PC desktop, 𝑟𝑐 = 50, highlighting the signifi-
cant importance of completing the entire assembly task. A penalty of 
𝑟𝑤 = −2 is applied to discourage invalid actions. Additionally, 𝑟𝑠 = 5
serves as an intermediate reward, encouraging incremental progress 
and reducing the likelihood of premature termination.
4 
4.3. Offline RL approach for proactive assistance

To learn proactive assistance from human assembly demonstration 
data, we adopt an offline RL framework, which relies on static datasets 
rather than direct online interaction with the environment for policy 
training. This approach avoids the risky and expensive human-in-the-
loop interactions with online environments.

We introduce an offline actor–critic training framework to address 
the MDP problem described above. In this setup, the actor generates a 
possible action distribution based on the current state, while the critic 
estimates the value function to evaluate the action taken by the actor 
under the given policy. The actor and critic are both parameterised by 
the deep neural networks.

4.3.1. Data collection and prepossessing
Initially, a static dataset 𝐷 for policy training needs to be con-

structed, and the worker’s assembly demonstration is recorded using 
cameras. Inspired by advances in machine vision, we apply action/ob-
ject recognition techniques to preprocess the video stream, extracting 
the worker’s action 𝑎, the assembly state 𝑠 at step 𝑡, and the assembly 
state 𝑠′ when the action is done. Finally, the reward 𝑟 is calculated 
using (4), and the tuple (𝑠, 𝑎, 𝑠′, 𝑟) is stored in dataset 𝐷. This process is 
repeated until the product is assembled completely. During policy train-
ing, mini-batches are randomly sampled from dataset 𝐷 to efficiently 
utilise the data for training the policy and Q-value network. The details 
of the algorithm are shown in the algorithm 1.

4.3.2. Solving overestimation of Q-value in critic
Overestimation of Q-values is a common issue when estimating Q-

values by the critic, especially in offline RL (Meng, Gorbet, & Kulić, 
2021). This occurs because the model may tend to overestimate the 
Q-values of actions that are infrequently represented in the dataset. 
Inaccurate Q-value estimation can negatively impact the performance 
of the proactive assistance policy. Recent work (Kumar, Zhou, Tucker, 
& Levine, 2020) has adopted a conservative Q-value estimation method 
to avoid overestimation. Therefore, in this study, we use the loss 
function for the critic by incorporating a conservative regularisation 
term in addition to the standard Bellman loss, which prevents overesti-
mation of out-of-distribution actions and stops the actor from exploiting 
such actions. Additionally, the critic employs a dual Q-network setup, 
where two Q-networks are used for Q-value estimation. By taking the 
minimum of the two estimated Q-values, the method helps reduce the 
positive bias in Q-value estimates, improving the accuracy and stability 
of the learning process. The critic updates its Q-function by minimising 
the critic.

Critic =
1
2
E(𝑠,𝑎,𝑟,𝑠′)∼

[

(

𝑄(𝑠, 𝑎) −
(

𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)
))2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Bellman loss

+ 𝛼
(

E𝑠∼,𝑎∼𝜋𝜃 [𝑄(𝑠, 𝑎)] − E𝑠∼,𝑎∼𝜇[𝑄(𝑠, 𝑎)]
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Conservative regularisation term

(5)

where 𝑄(𝑠, 𝑎) is the Q-function being learned, 𝑟 is the observed reward, 
and 𝛾 is the discount factor, 𝜇 is the behaviour policy that generated 
the dataset 𝐷. E𝑠∼,𝑎∼𝜋𝜃 [𝑄(𝑠, 𝑎)] denotes the expected Q value of the 
learned policy 𝜋𝜃 ; E𝑠∼,𝑎∼𝜇[𝑄(𝑠, 𝑎)] denotes the expected Q-value under 
the behaviour policy 𝜇; 𝛼 is a regularisation coefficient.

4.3.3. Actor update
The actor 𝜋𝜙 can be updated using gradient descent by maximising 

the expected Q-value predicted by the critic 𝜋𝜃 , while also promoting 
exploration by maximising the policy’s entropy, as done in the soft 
actor–critic framework (Haarnoja et al., 2018). This combination helps 
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balance the exploitation of high-value actions with the exploration of 
new actions, improving overall policy performance. 

Actor = E𝑠∼

[

E𝑎∼𝜋𝜙(𝑎|𝑠)
[

𝛼 log𝜋𝜙(𝑎|𝑠) −𝑄𝜃(𝑠, 𝑎)
]

]

(6)

where 𝛼 is the temperature parameter that controls exploration and 
exploitation, 𝜋𝜙(𝑎|𝑠) is the policy learned by the actor, and 𝑄𝜃(𝑠, 𝑎) is 
the Q-value learned by the critic, which includes conservative regular-
isation.

Algorithm 1 Offline RL method for quick learning from demonstration 
for proactive assistance in an assembly task
Input: Offline dataset , learning rates 𝜂𝜃 , 𝜂𝜙, discount factor 𝛾, 
temperature parameter 𝛼, soft update factor 𝜏
Output: Optimised policy 𝜋𝜙(𝑎|𝑠) and Q-networks 𝑄(1)

𝜃 (𝑠, 𝑎), 
𝑄(2)

𝜃 (𝑠, 𝑎)

1: Initialise Dual Q-networks (Critic) 𝑄(1)
𝜃 (𝑠, 𝑎) and 𝑄(2)

𝜃 (𝑠, 𝑎) with 
random parameters 𝜃(1), 𝜃(2)

2: Initialise Dual target Q-networks 𝑄(1)
𝜃target

(𝑠, 𝑎), 𝑄(2)
𝜃target

(𝑠, 𝑎) with 
𝜃(𝑖)target ← 𝜃(𝑖)

3: Initialise policy network (Actor) 𝜋𝜙(𝑎|𝑠) with parameters 𝜙
4: for each step 𝑡 do do 
5: Sample a mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from dataset 
6: Critic Update: 
7: Compute target Q-value: 𝑦(𝑟, 𝑠′) = 𝑟+𝛾(1−𝑑)min𝑖=1,2 𝑄

(𝑖)
𝜃target

(𝑠′, 𝑎′)
8: for each 𝑖 ∈ {1, 2} do 
9: compute critic losses using equation (5)
10: Update critic parameters: 𝜃(𝑖) ← 𝜃(𝑖) − 𝜂𝜃∇𝜃

(𝑖)
Critic(𝜃)

11: end for
12: Actor Update: 
13: Sample actions 𝑎 ∼ 𝜋𝜙(𝑎|𝑠) from current policy 
14: Minimise actor loss using equation (6)
15: Update actor parameters: 𝜙 ← 𝜙 − 𝜂𝜙∇𝜙Actor(𝜙)
16: Target Networks Update: 
17: Update target networks: 𝜃(𝑖)target ← 𝜏𝜃(𝑖) + (1 − 𝜏)𝜃(𝑖)target
18: end for

5. Case study and evaluation

In this section, a prototype system for the HRCA of desktop cases 
is developed based on the proposed framework. Then, a performance 
evaluation with multiple participants is conducted for the system in 
terms of task requirements and human preference. Lastly, we perform 
a qualitative analysis by comparing our method with the state-of-the-
art assistive robot task-planning techniques in robots, highlighting their 
advantages and disadvantages.

5.1. The HRCA prototype system of desktop cases

This section provides an overview of the system pipeline and the 
technical details of the developed HRCA system for the desktop case 
assembly.

5.1.1. The system structure
The proposed Robot Operating System (ROS)-based system com-

prises two main components, which are shown in Fig.  2: the offline 
phase for data collection and policy training, and the online phase for 
desktop case HRCA execution.

Offline Phase: In the offline phase, several demonstrations of the 
assembly process from workers are first collected using an RGB-D cam-
era. In these demonstrations, to simplify the task of vision-based state 
observation, ArUco markers (Kam, Yu, & Wong, 2018) are attached 
to the parts for object tracking. The worker’s actions and assembly 
states are identified using an action recognition module and an object 
tracking module (You, Ji, Yang, & Liu, 2022), forming a dataset. This 
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dataset, containing user actions and assembly states, is used to train the 
offline RL algorithm.

On the other hand, instead of deploying the trained policy in the 
real-world environment directly, we employ a simulation-based ap-
proach first for effective policy evaluation. The simulation environment 
is developed with a simple graphical user interface, based on the GYM 
API for policy training and evaluation, as shown in Fig.  3. The trained 
policy with the best reward is saved for real-world deployment.

Online Phase: During the assembly execution, real-time action 
recognition and object tracking methods are employed, using RGB-D 
data of the assembly scene as input, to identify the assembly state and 
track the human operator. The identified assembly state is then input 
into the trained policy to compute recommended actions. By tracking 
the human operator, the system calculates the distance between the op-
erator and the part to be handed over. If the part’s position exceeds the 
user’s pick threshold, the robot inquires whether assistance is needed. 
Upon receiving a positive response, the robot executes the assistance 
action. To ensure safety in the human–robot assembly cell, an OctoMap-
based module is used for collision avoidance and motion planning. 
After each action, the system continuously monitors the assembly state 
and provides proactive assistance to the human operator until the 
assembly is completed. The hardware used in the system includes a 
KUKA iiwa LBR robot, a Realsense D435 camera, and an RTX 3080 
GPU for algorithm training.

5.1.2. Experimental subject
In the system, we use a desktop PC case as the assembly subject, a 

typical product requiring manual assembly in manufacturing, as shown 
in Fig.  5(a). The task requirements for the desktop case are repre-
sented in an and-or graph, which defines constraints on the assembly 
sequence, as illustrated in Fig.  5(b).

5.1.3. Collision avoidance
OctoMap is a 3D occupancy grid to model arbitrary environments 

in real time. We use point cloud data of the product area to build 
a collision avoidance system based on OctoMap (Hornung, Wurm, 
Bennewitz, Stachniss, & Burgard, 2013), which creates an obstacle map 
for the motion planning area. Motion planning algorithms, specifically 
the RRT* algorithm (Noreen, Khan, & Habib, 2016), are employed 
to compute the execution path, which is then carried out by the 
robot controller. The experiment environment and the corresponding 
OctoMap is shown in Fig.  4.

5.2. System evaluation

To validate the effectiveness of the system, we conducted a proof-
of-concept assembly experiment involving multiple participants, and 
then evaluated our proposed method regarding the alignment of human 
sequence preference and task requirements.

5.2.1. Experiment description
To validate our proposed framework, we propose the following 

three hypotheses:

1. Does robot assistance reduce the energy or effort, referred to as 
physical exertion, required by the human operator to complete 
the assembly task?

2. Does the robot’s assistance action meet the current assembly task 
requirements?

3. Does the robot’s assistance action align with the user’s preferred 
assembly sequence?

To address the three hypotheses, we established three research 
groups to perform a human–robot collaborative desktop assembly task. 
The group utilising our method serves as the experimental group, 
with two control groups included for comparison. In the experimental 
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Fig. 2. The system pipeline of the prototype desktop case HCRA system.
Fig. 3. To efficiently evaluate the trained policy without directly testing it in the real environment, a desktop assembly simulation environment is developed. This environment 
simulates the desktop assembly task at a symbolic level. It includes an assembly area and a part area, where agents are a worker and a robot. The robot is controlled with the 
trained policy. The action space comprises actions such as picking up a part, assembling a part, and handing over a part. The reward is defined in Eq. (4). In the figure, an 
example of this process is shown in which the robot picks up the cooler and hands it over to the worker, who then assembles it.
Fig. 4. Octomap-based obstacle avoidance module for the HRC system safety is illustrated in the figure. (a) The experimental human–robot assembly cell consists of a work desk, 
a KUKA robot, and an RGB-D camera mounted on the frame to capture the environment’s point cloud. (b) The virtual assembly environment, features static obstacles (green), 
OctoMap-based dynamic obstacles, and a robot capable of performing safe motion planning within the environment.
group, the collaborative robot is controlled using our proposed method. 
Initially, we recorded 3 demonstrations of each participant’s assembly 
processes. Participants were allowed to assemble the product according 
to their preferences,resulting in an average of 51.5 collected transitions 
per participant, subsequently used for offline RL policy training. An 
example is shown in Fig.  6. The algorithm is trained over 200k steps 
using the collected data. The policy that achieved the best results in the 
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simulation environment will be saved and then used to determine the 
robot’s assistance actions in the real experiment.

The two control groups are as follows:
Control Group 1: The robot’s actions are hard-coded, assisting par-

ticipants by following a fixed assembly sequence, which is a common 
method for robot task planning models in industrial settings.
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Fig. 5. The figures illustrate the desktop used in the experiment. (a) The desktop case, with each part labelled using ArUco markers. The desktop consists of nine parts: the case, 
motherboard, CPU, cooler, GPU, memory card, hard disk, power supply, and cover. (b) The and-or graph of the desktop case defines the task requirements. The ‘‘→’’ indicates a 
sequential relationship, while ‘‘||’’ defines a parallel relationship between tasks.
Fig. 6. The top-down view illustrates the demonstration of the desktop assembly 
process by a human operator. A visual method is used for tracking both the hands 
and the parts. Action and state recognition are performed using the method in You 
et al. (2022).

Control Group 2: The subjects assemble the desktop case without 
robotic assistance, simulating a manual assembly scenario.

5.2.2. Experiment metrics
Questionnaire is a subjective way to evaluate the performance of 

the policy in the real-world experiment. We invited 8 subjects to 
participate in our experiment to collect experimental data. Each subject 
participated in all three groups of experiments. They were blind to 
the type of group they were assigned to. Participants were asked to 
complete three questionnaire for each group when all experiments were 
completed. Each question in the questionnaire is designed to address 
one of the proposed hypotheses. We conducted a statistical analysis of 
the collected results to validate the three hypotheses proposed. In the 
questionnaire,

• Question 1 assesses the physical exertion required to complete the 
tasks in the three groups, using the Modified Borg Scale (Wilson 
& Jones, 1989), with scores ranging from 0 to 10.

• Question 2 evaluates the number of robot assistance actions that 
align with the human operators’ sequence preferences in the 
experimental group and Control Group 1.

• Question 3 measures the number of actions that meet the task 
requirements in the experimental group and Control Group 1.

We also use the best reward as a key metric for evaluating the 
policy’s performance. Specifically, the highest attainable best reward is 
90, achieved under conditions where 𝑟𝑐 = 50, indicating the successful 
assembly of 8 components (𝑟𝑠 = 8 × 5), with no invalid actions (𝑟𝑤 =
0). This sum yields a total reward of 90. Given this known optimal 
performance, the convergence progress and efficiency of the policy can 
be effectively observed and assessed.

5.2.3. Experiment result
For each participant, we trained the policy using their demonstra-

tion data over 200k steps. The trained policy was tested at every 1000 
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Table 1
The best reward achieved by the offline RL algorithm 
is evaluated for different values of 𝛼. The ‘‘best 
reward’’ refers to the highest reward the algorithm 
attains during the 200 training epochs. The ‘‘epoch’’ 
refers to the point at which the algorithm first attains 
its highest reward during training.
 The value of 𝛼 Best reward Epoch 
 0.01 5 26  
 0.04 5 11  
 0.08 5 11  
 0.1 90 20  
 0.3 90 9  
 0.5 90 35  
 0.7 90 18  
 0.8 25 14  
 1 25 14  
 5 10 4  
 10 10 2  

steps in the simulation environment based on the best reward. The 
regularisation coefficient 𝛼 is a crucial hyperparameter in the proposed 
offline RL algorithm, balancing Q-learning and conservatism, directly 
impacting the algorithm’s performance. To determine the optimal value 
of 𝛼, we conducted an experiment to identify which value leads to the 
best performance in the proactive assistance task. The values of 𝛼 tested 
were [0.01, 0.04, 0.08, 0.1, 0.3, 0.5, 0.7, 0.8, 1, 10].

Tested in the simulation environment, the variation in the best 
reward of the trained offline RL policy for different values of 𝛼 is illus-
trated in Fig.  8 and Table  1. As shown, the values 𝛼 = [0.1, 0.3, 0.5, 0.7]
achieved the highest reward of 90, with 𝛼 = 0.3 converging the 
quickest at step 9k. When 𝛼 is greater than 0.7, the algorithm be-
comes overly conservative, favouring only the most frequently observed 
actions from the dataset while ignoring potentially valuable but un-
derexplored actions. Conversely, when 𝛼 is less than 0.1, the model 
tends to overestimate Q-values for actions that are not well-represented 
in the dataset, particularly for out-of-distribution actions. Based on 
these results, both overestimated and underestimated Q-values can 
negatively affect performance in the proactive assistance task.

The well-trained policy was also tested in the real environment, 
and the process is shown in Fig.  7. The experimental results from the 
questionnaire are discussed as follows:

1. Physical Exertion: The physical exertion of the eight partici-
pants across the three groups is depicted in the box plot in Fig. 
9(a). The control group 2 required the most physical exertion, 
with an average value of approximately 7.6. The physical ex-
ertion required in the experimental group and control group 1 
were lower than that in control group 2, indicating that robotic 
assistance reduces the physical exertion needed to complete the 
assembly tasks. This supports Hypothesis 1.
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Fig. 7. This figure demonstrates the process of the robot assisting the worker in assembling the desktop case. It includes both the observations and the agent’s actions. The initial 
state observed by the camera is [0,0,0,0,0,0,0,0], indicating that all eight parts are yet to be assembled. The robot first picks up the motherboard and hands it to the operator. 
Subsequently, the robot sequentially hands over the memory card, GPU, CPU, cooler, power supply, and hard disk to the operator. Finally, since the cover is close to the operator, 
he picks it up and completes the assembly.
2. Task Requirement: In the experimental group, the robot pro-
vided a total of 56 assistance actions for the eight subjects, all of 
which met the task requirements for the current assembly state. 
The 100% accuracy in meeting task requirements demonstrates 
that the proposed method reliably provides assistance actions 
that fulfil the task needs, confirming Hypothesis 2.

3. Users’ Sequence Preference: The number of assistance actions 
that meet the users’ sequence preferences in the experimental 
group and control group 1 is shown in the box plot in Fig. 
9(b). The average number of actions meeting the users’ sequence 
preferences is 6.25 in the experimental group and 4.25 in control 
group 1. The users’ sequence preference in the experimental 
group is 47.06% higher than that in control group 1, indicating 
that the proposed method significantly aligns with the users’ 
preferred assembly sequence, confirming Hypothesis 3.

5.2.4. System efficiency
We measured the average training time over 200k steps for the 

model of eight subjects, which was 28.07 min. This indicates that the 
robot can quickly learn the assistance actions in a relatively short time. 
Additionally, we measured the model’s computation time during the 
execution phase, with an average time of 0.00425 s. This demonstrates 
the model’s capability for real-time decision-making.

5.3. Comparison study of offline reinforcement learning algorithms

This section aims to evaluate the performance of various reinforce-
ment learning algorithms in proactive assistance learning by comparing 
them with our proposed method. For this comparison, we selected 
state-of-the-art algorithms that are well-suited for discrete offline rein-
forcement learning. The baseline algorithms include Critic Regularised 
Regression (CRR) (Wang et al., 2020), Batch-Constrained Deep Q-
Learning (BCQ) (Fujimoto, Conti, Ghavamzadeh, & Pineau, 2019), 
Behavioural Cloning (BC) (Hussein, Gaber, Elyan, & Jayne, 2017) and 
Decision Transformer (DT) (Chen et al., 2021).

The best reward serves as a critical metric for assessing the effec-
tiveness of the algorithms in proactive assistance learning, while the 
epoch to reach the highest reward measures the convergence rate of 
each algorithm. These two metrics were chosen as key indicators to 
evaluate the algorithms’ performance.

The results presented in Table  2 show that our algorithms, BCQ 
and DT, outperform the other methods in terms of overall performance, 
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Fig. 8. The variation in the best reward of the trained offline RL policy for different 
values of 𝛼.

Table 2
The outcomes of the comparative analysis of offline 
reinforcement learning algorithms.
 Algorithms Best reward Epoch 
 Ours 90 9  
 CRR 89.6 168  
 BCQ 90 14  
 BC 10 24  
 DT 90 4  

each achieving the maximum reward of 90. Among them, DT demon-
strates the fastest convergence, reaching the optimal reward within 
just 4 epochs. In contrast, CRR achieves a near-optimal reward of 
89.6, but requires 168 epochs, indicating lower learning efficiency. BC 
performs significantly worse, with a reward of only 10, underscoring 
its limitations in handling complex tasks.

5.4. The qualitative analysis of the proposed and state-of-the-art methods

A qualitative analysis of the proposed and state-of-the-art methods 
for task planning in HRCA is conducted concerning modelling methods, 
expertise, efficiency, and alignment with task requirements and human 
user preferences. The analysis results are shown in Table  3.
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Fig. 9. (a) The results of participants’ physical exertion across three experiments, as reported in the questionnaires. (b) The number of actions that align with user sequence 
preferences, comparing the experimental group and the control group, as gathered from the questionnaires.
Table 3
The qualitative analysis results by comparing the proposed and the state-of-the-art methods.
 Methods Description Efficiency Expertise Task 

requirement
User preference 

 Ours A method for modelling 
robot assistance actions 
based on offline RL by 
observing worker 
assembly operations.

Several minutes to several 
hours (for both the 
demonstration and 
algorithm training time)

N Y Y  

 Audio-guided method 
(Wang, Li, Chen, 
Diekel, & Jia, 2019)

A method for providing 
assistance actions using 
inverse reinforcement 
learning based on voice 
commands.

Several minutes to several 
hours (for both the audio 
demonstration and 
algorithm training time)

N Y Y  

 CAD-based method 
(Schirmer, Kranz, Rose, 
Schmitt, & Kaupp, 
2023)

A method for 
generating assembly 
sequence information 
using CAD models.

Several hours to several 
days (primarily for CAD 
modelling)

Y Y N  

 PDDL-based method 
(Jiang, Zhang, 
Khandelwal, & Stone, 
2019)

A task planning method 
modelled using PDDL.

Several hours to several 
days (primarily for PDDL 
modelling)

Y Y N  
The most similar work to ours in the literature is by Wang et al. 
(2019), who proposed an audio-guided method for assistance action 
task planning model based on inverse reinforcement learning. Like our 
method, this approach requires a short modelling time. However, it 
necessitates voice prompts to inform the robot of the current assembly 
state and actions, which is not the most natural workflow and adds 
an extra burden on the assembly worker. The CAD-based modelling 
method generates assembly sequences based on the CAD model of the 
product. This method is effective only when a CAD model is avail-
able. However, creating CAD models is time-consuming, potentially 
taking several hours or even days, depending on the complexity of 
the product. The PDDL-based modelling method is a task-planning 
approach. Its drawback is the significant amount of time required to 
construct PDDL models. Both CAD-based and PDDL-based methods 
require specialised domain knowledge, which is not typically possessed 
by assembly workers. All modelling methods consider the ability to 
meet task requirements. However, when it comes to aligning with user 
sequence preferences, only our method and the one proposed by Wang 
et al. (2019) fulfil this criterion.

5.5. Discussion and future work

The real-world experiment validated the proposed method’s effec-
tiveness in alleviating fatigue, meeting task requirements, and en-
hancing workers’ operational preferences, confirming three hypotheses. 
These findings demonstrate the proposed method’s ability to improve 
user experience in HRC. Additionally, the analysis of system efficiency 
confirmed the method’s performance in training efficiency and real-
time decision-making, showcasing its capability in implementation de-
cisions. A comparative study of offline RL algorithms highlighted the 
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performance of different approaches in proactive assistance and con-
vergence speed. Finally, we conducted a qualitative analysis of the 
mechanism, efficiency, and performance of similar methods.

Nevertheless, the proposed method has certain limitations: Vali-
dation during the training process of offline reinforcement learning 
remains a challenge. Due to the inability to interact with real-world 
environments, validation becomes difficult. This study adopted a com-
promise by constructing a simulation environment to validate the 
model. In future work, we will explore alternative evaluation ap-
proaches for offline RL methods to improve the practicality of the 
proposed method. Furthermore, we intend to expand the sample size 
and incorporate a broader range of participant characteristics to gain 
deeper insights into factors that enhance user experience in HRC.

Another limitation is that our model is customised for each worker, 
with training data derived exclusively from the demonstration of that 
worker. This constraint limits the model’s generalisation ability across 
different individuals. In future work, we will explore solutions to 
address this limitation.

6. Conclusion

We proposed a novel offline RL-based framework for enabling robot 
assistance in HRCA by learning from human demonstrations, eliminat-
ing the need for risky and expensive real-time interactions for policy 
training. Based on this framework, we developed a ROS-based HRCA 
system that can quickly learn robot assistance actions while ensuring 
safety. To validate our proposed framework, we designed an experi-
ment demonstrating the advantages of learning robot assistance actions 
based on human demonstrations. The results demonstrate the benefits 
of our method, where only a few human demonstrations are required, 
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featuring a quick training process. Also, the learned actions fully meet 
both assembly task requirements and user sequence preferences. The 
benefits show that our proposed method provides a feasible path for 
learning assistive robots in HRCA.

In future work, we plan to integrate alternative object tracking 
and action recognition methods into our framework to enhance its 
flexibility. Additionally, we will explore combining the advantages of 
CAD-based and voice-based methods with our proposed approach to 
develop a robust method for assistive robot task planning models.
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