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 9 

Abstract: With underground engineering projects becoming deeper and more complex, the 10 

associated safety problems, especially rockburst, have increasingly escalated. Despite decades of 11 

research, effectively managing rockburst continues to be a formidable challenge in underground 12 

excavations. This study presents a scientometric visualization analysis of 2449 papers and 13 

conducts a comprehensive review of 336 key studies to explore the state-of-the-art developments 14 

in rockburst research. With a primary focus on the prediction and prevention of rockburst, this 15 

review identifies existing research gaps and proposes a novel framework aimed at addressing 16 

these challenges in underground excavations. The results underscore a critical disconnect 17 

between advanced prediction methods and engineering practices, which limits the ability of 18 

engineers to make reliable assessment of rockburst potential. This disconnection obstructs the 19 

prompt development of targeted prevention strategies, further aggravated by inadequate data 20 

sharing across large-scale projects. The review also exposes the limitations of relying solely on 21 

data-driven methodologies to address the complex challenges in the lifecycle management of 22 

underground excavations. To overcome these challenges, this paper proposes an innovative 23 

framework based on an ontological knowledge base. This framework is designed to integrate 24 

multisource data and diverse analysis techniques, exploring the way for better decision-making in 25 

future digital underground projects.  26 

Keywords: Underground engineering; Rockburst; Scientometric analysis; Ontology; Decision 27 

support system. 28 



 

 

1 Introduction 29 

Rockburst is a hazardous phenomenon encountered during underground excavations, 30 

especially in projects involving brittle and hard rocks (Blake and Hedley, 2003). The earliest 31 

report of a rockburst dates back to 1738 in a tin mine in England, while it wasn't officially 32 

recorded until 1938, in a coal mine in Stafford, England (Askaripour et al., 2022). Globally, 33 

similar incidents with varying intensities and consequences have been reported in mines, tunnels 34 

and hydropower caverns across China, the USA, Africa, Australia, and Canada etc (Kaiser et al., 35 

1996; Keneti and Sainsbury, 2018; Leger, 1991; Li et al., 2012; Mark, 2016; Rehbock-Sander and 36 

Jesel, 2018; Simser, 2019). Nowadays, the challenge of ensuring the safety and stability of 37 

increasingly deep and complex underground engineering has intensified, resulting in substantial 38 

casualties and property damage. Addressing this pressing issue remains a formidable challenge as 39 

the demand for underground space and resources grows. 40 

The term ‘Rockburst’ was originally introduced by Terzaghi (1946) to defined the spalling 41 

or failure of hard rock from tunnel walls under the influence of high stress. This phenomenon is 42 

primarily characterized by the sudden release of strain energy due to high geo-stress disturbances 43 

during underground excavation, leading to severe and violent damage (Singh, 1987; Zhang et al., 44 

2021). Due to complex affecting factors, such as the geomechanical conditions, rock mass 45 

characteristics and excavation strategy, it has been difficult for scholars even today to arrive at a 46 

universally accepted definition or to fully comprehend its causation and progression mechanisms 47 

(Brown, 1988; Zhou et al., 2018). As a result, how to develop the comprehensive strategies for 48 

the rockburst management during underground construction is still an open question. 49 

In response to this challenge, past several decades have witnessed substantial progress in the 50 

development of rockburst control methodologies. These prediction methods range from rockburst 51 

classification to criteria, including empirical (Kwasniewski et al., 1994; Russenes, 1974; 52 

Turchaninov et al., 1972), numerical simulation (Huang and Wang, 1999; Qian and Zhou, 2011; 53 

Zubelewicz and Mroz, 1983) and mathematical approaches (Ghasemi et al., 2020; Li et al., 2017a; 54 

Liu et al., 2023a; Wu et al., 2019a). They can effectively forecast the rockburst in various aspects, 55 



 

 

giving significant advancements in rockburst prediction. However, the complexity and variability 56 

of conditions in underground engineering conditions have hindered the establishment of an 57 

applicable and practical criterion for rockburst prediction. The variation and inconsistency in the 58 

threshold values among different criteria further complicate the timely identification and 59 

assessment of rockburst potential (Afraei et al., 2019; Kaiser and Cai, 2012). Improving 60 

prediction accuracy becomes a key focus in the digital-driven era, but designing and 61 

implementing effective prevention systems targeting rockburst is even more important for 62 

engineering. Unlike support systems at shallower depths, which mainly aim to manage the self-63 

weight of rock to prevent falls, support designs for deep excavations must consider the capacity 64 

to bear and mitigate the effects of dynamic loads to prevent the disintegration of fractured rock 65 

(Bacha et al., 2020; Cai, 2013; Kaiser and Cai, 2013). The selection of appropriate support 66 

measures requires a reliable assessment of rockburst risks tackling instability problems in high 67 

geo-stress conditions. Nevertheless, the unpredictable nature of rockburst and the uncertainties of 68 

underground conditions make the design of effective support systems a complex task, often 69 

delaying the implementation of timely preventive measures. 70 

As mentioned above, reducing the risk of rockburst still remains a significant challenge for 71 

engineers and researchers worldwide. The lack of effective rockburst management technologies 72 

may significantly increase the risk of severe disasters in deep underground engineering under 73 

high geo-stress. There have been several reviews summarizing the state-of-the-art advancements 74 

in the rockburst research, e.g., He et al. (2023) provided a comprehensive analysis of rockburst 75 

from its experiments, theories, and simulations. Askaripour et al. (2022) reviewed the 76 

classification and mechanism of rockburst and summarized the current empirical methods of 77 

rockburst prediction. Pu et al. (2019a) and Basnet et al. (2023) surveyed the current applications 78 

of machine learning in rockburst prediction, and discussed their features and performances, 79 

respectively. Zhou et al. (2018, 2023a) discussed rockburst classification and characteristics, and 80 

review the research related to rockburst prediction and prevention. Ghorbani et al. (2020) 81 

provided a critical review of the advancement of rock support systems in high geostress 82 



 

 

conditions and discussed the uniqueness of support systems in this area. While providing a 83 

comprehensive review of rockburst mechanisms, prediction, and prevention, these articles have 84 

not further explored a holistic and feasible framework for underground engineering in age of 85 

artificial intelligence (AI). Therefore, to bridge these gaps, this paper firstly reviews the rockburst 86 

research based on the publications in the Web of Science Core (WoS) Collection database. With 87 

the aid of CiteSpace software, a scientometric analysis on rockburst research during 2000-2023 is 88 

presented, covering literature quantity, journal co-citation, document co-citation and keywords 89 

analysis (Section 3). Subsequently, by conducting a comprehensive review of rockburst 90 

prediction methods (Section 4) and prevention strategies (Section 5), key tasks and challenges in 91 

underground engineering are identified and discussed. Based on the above review and analysis, a 92 

novel ontology-based framework throughout the underground engineering lifecycle is proposed 93 

(Section 6). 94 

2 Review and analysis methodology 95 

This paper reviews the literature on rockburst in underground engineering using the WoS 96 

database, which is an influential database especially in science and engineering fields. The WoS 97 

offers advanced retrieval capabilities for comprehensive literature searches, including logical 98 

operators such as ‘AND’ and ‘OR’ to refine searches (Vanderstraeten and Vandermoere, 2021). 99 

As illustrated in Fig.1, the literature retrieval process comprised three steps. In Step 1, a basic 100 

search was executed with the search code: TS = (Rockburst* OR Rock burst*), where ‘TS’ 101 

signifies the article's topic and ‘*’ is for fuzzy searches. Meanwhile, only articles and review 102 

articles published between 1 January 2000 and 31 December 2023, in English and Chinese, were 103 

selected. After preliminarily filtering out unrelated papers, a total of 2449 papers focused mainly 104 

on rockburst prediction and prevention were collected. Following, Step 2 refined the rockburst 105 

search in the aspects of prediction and prevention, using keywords that are commonly used in the 106 

rockburst publications: ‘prediction’, ‘evaluation’, ‘assessment’, ‘estimation’, ‘prevention’, 107 

‘protection’, ‘control’, and ‘support’. To ensure no potential papers were omitted, the snowballing 108 



 

 

technique was also to be employed in the subsequent comprehensive review analyses. Ultimately, 109 

Step 3 utilizes CiteSpace for scientometric analysis of the 2449 articles to identify research 110 

hotspots and trends in rockburst, and critically analyzes 336 articles to summarize the latest 111 

developments in rockburst prediction and prevention. 112 

 113 

Fig. 1. Steps to search for papers in the WoS core collection database. 114 

3 Literature scientometric analysis  115 

CiteSpace (Chen and Song, 2019) is a specialized tool for scientometric analysis, and 116 

provides insights into the development, hot topics, and future trends of a research field. The 117 

scientometric analysis is conducted in four parts: literature quantity analysis, journal co-citation 118 

analysis, reference co-citation analysis, and keywords analysis. These analyses aid in 119 

comprehensively visualizing the state-of-the-art development of the rockburst field and provide 120 

possible directions for future research. 121 



 

 

3.1 Literature quantity analysis 122 

The trend in publication volumes within the rockburst field can be a key indicator for 123 

examining the field’s development and forecasting future directions, as shown in Fig. 2(a). Since 124 

the 21st century, rockburst research has roughly progressed through three phases. In the initial 125 

sprouting phase before 2010, 142 papers were published, constituting only 5.8% of the total 126 

literature and marking the early exploration of rockburst studies. During this period, the limited 127 

scholarly research resulted in a slow rise in publications. From 2010 to 2017, rockburst research 128 

entered a stable growth phase, with a consistent rise in publication numbers, indicating 129 

rockburst's growing importance in underground engineering research. Since 2018, there has been 130 

an exponential surge in rockburst publications, with 1875 papers making up 76.6% of the total 131 

output, signaling a period of rapid development and the heightened academic interest in rockburst. 132 

 133 

Fig. 2. (a) Numbers of annual publications and total publications, (b) research countries and 134 

institutions, and (c) Major journals in the field of rockburst. 135 

Fig. 2(b) gives the leading countries and their key research institutions in rockburst research. 136 

The top six countries in publication volume are China (1539), Australia (175), Canada (149), the 137 



 

 

United States (122), Poland (97), and Russia (79). Notably, China, the largest contributor to 138 

rockburst research in underground engineering over past two decades, represents 67.3% of all 139 

publications. The China University of Mining and Technology leads as the primary issuing 140 

institution in China, contributing 21.5% total publications, significantly ahead of the second-141 

ranked Shandong University of Science and Technology, which contributes 6.23%. These figures 142 

suggest China's dominance in rockburst research and indicate that rockburst issues are nowadays 143 

formidable challenges and hotspots in mining and underground engineering. 144 

3.2 Journal co-citation analysis 145 

The journal co-citation network for rockburst research in underground engineering, as 146 

shown in Fig. 3, reveals the citation relationships and influence among academic journals. Each 147 

node in this map signifies a journal, with the node's size indicating the journal's co-citation 148 

frequency, reflecting its impact in rockburst field. The International Journal of Rock Mechanics 149 

and Mining Sciences, Rock Mechanics and Rock Engineering, and Tunneling and Underground 150 

Space Technology have the top three co-citations, with over 1300 co-citations each and more than 151 

100 rockburst publications (Fig. 2(c)).  152 

 153 
Fig. 3. Journal co-citation network. 154 



 

 

Additionally, the centrality of journals can also suggest the journals' central roles within the 155 

network, as shown in Table 1. For instance, with a centrality value of 0.40, the International 156 

Journal of Rock Mechanics and Mining Sciences occupies a central position in the knowledge 157 

map, showing its significant influence in rockburst research. These analyses provide guidance on 158 

identifying key journals and literature in the rockburst field. 159 

Table 1. Cited journals sorted by count. 160 

Cited Journals  Count Centrality 
International Journal of Rock 

Mechanics and Mining Sciences 
1922 0.40 

Rock Mechanics and Rock 
Engineering 

1596 0.15 

Tunnelling and Underground Space 
Technology 

1327 0.07 

Chinese Journal of Rock Mechanics 
and Engineering 

1055 0.12 

Engineering Geology 1020 0.13 
International Journal of Mining 

Science and Technology 
866 0.02 

Journal of Rock Mechanics and 
Geotechnical Engineering 

866 0.03 

Bulletin of Engineering Geology 
and the Environment 

724 0.01 

3.3 Document co-citation analysis  161 

In scientometric analysis, co-citation analysis of references is also a common way to identify 162 

key research and influential scholars in a field. Fig. 4 shows the reference co-citation network, 163 

where each node represents an article. The size of a node indicates the citation frequency of this 164 

document, labeled with the first author's name and publication year. Table 2 lists the top 10 165 

documents by citation count. Notably, the articles by Keneti and Sainsbury (2018), and Zhou et al. 166 

(2018) both have over 130 citations, highlighting the high level of interest their research have 167 

attracted from academia. Gong's three publications (Gong et al., 2018, 2019a, 2019b), with a total 168 

of 281 citations, also show his influence in rockburst field. 169 



 

 

 170 

Fig. 4. Document co-citation network. 171 

Table 2. Cited documents sorted by count. 172 

Cited References 
CiteSpace Metrics WoS Citation 

Metrics 
Count Centrality Publication 

Review of published rockburst events and their contributing 
factors (Keneti and Sainsbury, 2018)  135 0.16 176 

Evaluation method of rockburst: State-of-the-art literature review 
(Zhou et al., 2018)  133 0.12 272 

Experimental simulation investigation on rockburst induced by 
spalling failure in deep circular tunnels (Gong et al., 2018)  113 0.08 184 

Experimental Investigation of Strain Rockburst in Circular 
Caverns Under Deep Three-Dimensional High-Stress Conditions 

(Gong et al., 2019a)  
86 0.03 123 

Numerical modeling of rockburst near fault zones in deep tunnels 
(Manouchehrian and Cai, 2018)  86 0.04 119 

A fuzzy comprehensive evaluation methodology for rock burst 
forecasting using microseismic monitoring (Cai et al., 2018)  84 0.10 144 

A peak-strength strain energy storage index for rock burst 
proneness of rock materials (Gong et al., 2019b)  82 0.07 166 

Rockburst mechanism research and its control (He et al., 2018)  77 0.01 115 
Rock burst assessment and prediction by dynamic and static stress 

analysis based on micro-seismic monitoring (He et al., 2017)  76 0.04 146 

Case Studies of Rock Bursts Under Complicated Geological 
Conditions During Multi-seam Mining at a Depth of 800 m (Zhao 

et al., 2018)  
73 0.01 145 

Further analysis of centrality, as shown in Table 3, identifies key publications that function 173 

as connectors in the reference co-citation network. The articles worked by He et al. (2015, 2018), 174 



 

 

Ma et al. (2018b), Zhao and Cai (2015), and Chen et al. (2015), with centrality values of 0.1 or 175 

higher, are also shown to be key and foundational literature. Therefore, all the papers listed above 176 

can be deemed critical reference materials for rockburst research, providing meaningful guidance 177 

for future direction. 178 

Table 3. Cited documents sorted by centrality. 179 

Cited References 
CiteSpace Metrics WoS Citation 

Metrics 
count centrality Publication 

Review of published rockburst events and their contributing 
factors (Keneti and Sainsbury, 2018)  135 0.16 176 

Evaluation method of rockburst: State-of-the-art literature 
review (Zhou et al., 2018)  133 0.12 272 

Rockburst laboratory tests database - Application of data 
mining techniques (He et al., 2015)  37 0.11 119 

Rockburst mechanism and prediction based on microseismic 
monitoring (Ma et al., 2018b)  72 0.11 112 

A fuzzy comprehensive evaluation methodology for rock 
burst forecasting using microseismic monitoring (Cai et al., 

2018)  
84 0.10 144 

Influence of specimen height-to-width ratio on the strainburst 
characteristics of Tianhu granite under true-triaxial unloading 

conditions (Zhao and Cai, 2015)  
30 0.10 64 

Rock burst intensity classification based on the radiated 
energy with damage intensity at Jinping II Hydropower 

Station, China (Chen et al., 2015)  
51 0.10 131 

3.4 Keywords clustering and burst analysis  180 

Keywords succinctly capture the essence of academic papers, providing a concise overview 181 

of the research focus. Using the Log Likelihood Ratio (LLR) clustering algorithm from 182 

CiteSpace (Chen, 2017), an analysis of keywords and trends in the rockburst field was conducted. 183 

The keyword clustering analysis not only can reveal relationships between keywords (shown in 184 

Fig. 5) but provide insights into their time evolution (illustrated in Fig. 6). Cluster #0 "Rockburst 185 

Prediction," the largest cluster, includes keywords related to prediction models, classification 186 

methods, and rockburst proneness. Clusters #1 ‘Splitting,’ #2 ‘Fracture,’ and #3 ‘Microseismic 187 

Monitoring’ represent main directions in exploring rockburst mechanisms and on-site rockburst 188 

monitoring technologies. Meanwhile, recent advances in computer technology have made 189 

machine learning and AI growing trends in rockburst prediction. Cluster #4 ‘Rockburst 190 



 

 

Prevention’ focuses on another aspect of rockburst research, namely, reducing rockburst risks 191 

through engineering design optimization, construction method adjustments, and new technologies 192 

etc. 193 

 194 

Fig. 5. Main clusters in the field of rockburst (#0: rockburst prediction, #1: spalling, #2: fracture, 195 

#3: microseismic monitoring, #4: rockburst prevention, #5: behavior). 196 

Interestingly, Fig.5 shows a noticeable overlap between #0 cluster ‘Rockburst Prediction’ 197 

and #4 cluster ‘Rockburst Prevention’, indicating their close interrelation. This relationship 198 

underscores rockburst research's main dual aims: predicting rockburst occurrences and adopting 199 

effective rockburst control strategies. These two research areas complement each other, accurate 200 



 

 

predictions lead to better control measures, which in turn improve prediction model accuracy. 201 

Therefore, the subsequent sections will critically review rockburst research from prediction and 202 

prevention, aiming to explore gaps and guide towards a comprehensive rockburst risk 203 

management framework. 204 

 205 

Fig. 6. Timeline chart for rockburst keywords. 206 

4 Rockburst prediction 207 

Ever since the rockburst issues caught attention, developing reliable and accurate prediction 208 

models has been a primary goal for researchers in this field. Significant efforts have been made, 209 

from case analyses to experimental studies to computational models, laying a preliminary basis 210 

for addressing the rockburst problems. This review does not aim to exhaustively summarize 211 

every model but to explore and analyze the key challenges and issues current research encounters. 212 

For more detailed research on rockburst prediction, the following references are recommended 213 

(Adoko et al., 2013; Afraei et al., 2018; Cai et al., 2016; Farhadian, 2021; Gong et al., 2023; He 214 

et al., 2021; Li et al., 2017b; Liang et al., 2019b; Liu et al., 2013; Miao et al., 2016; Wang et al., 215 

2015; Wang et al., 2019; Wu et al., 2023; Zhou et al., 2012). Thus, this section will examine the 216 

three principal methodologies in rockburst prediction: empirical, simulation, and AI-based 217 

techniques. By reviewing their advantages and limitations, it aims to identify research gaps and 218 

analyze future directions in rockburst prediction research. The classification of rockburst used in 219 

this study is shown in Table 5. 220 



 

 

4.1 Empirical methods  221 

Empirical methods are the most used approach in rockburst prediction, utilizing a series of 222 

parameters or indicators to assess the intensity and risk of rockburst. Their wide application stems 223 

from operational simplicity and proven effectiveness in many case studies (Dai et al., 2022; Feng 224 

et al., 2012a; Liu et al., 2023b; Ma et al., 2018a). Generally, the empirical methods can be divided 225 

into two categories: single-indicator and multi-indicator prediction methods. 226 

The single-indicator empirical criterion method, one of the earliest and simplest, is provided 227 

by the summary from historical rockburst cases and theoretical analysis. For example, the 228 

brittleness ratio (BR, ratio of the uniaxial compressive (σC) to the tensile strength (σt) of rock) 229 

(Qiao and Tian, 1998), the stress ratio (SR, ratio of the maximum tangential stress (σθ) to the 230 

uniaxial compressive strength of rock) (Russenes, 1974), the mean stress (ratio of the uniaxial 231 

compressive strength of rock to the maximum principal stress) (Hou and Wang, 1989). These 232 

indicators mainly focus on the rock’s mechanical properties and its in-situ stress conditions, 233 

which can also be called the stress index-based criteria. Another main single-indicator criterion 234 

emphasizes the analysis of energy for explaining rockburst types and intensities, such as the 235 

elastic strain energy index (Wet) (Wang and Park, 2001), rock mass integrity coefficient (KV) 236 

(Zhou et al., 2012), linear elastic energy and burst potential index (BPI) (Singh, 1988). These 237 

energy-based criteria are considered to reflect the rockburst tendencies and origins more directly, 238 

since the close relationship between rockburst and energy dynamics of rock mass. 239 

In fact, the empirical criteria with single indicator may have some limitations as the complex 240 

contributing factors of rockburst. To address this problem, some researchers have tried to develop 241 

multi-indicator integration methods for comprehensive risk assessments (Qiu et al., 2011; Shang 242 

et al., 2013; Zhang et al., 2016; Zhang, 2008). Although this approach takes various factors into 243 

account, it may complicate rockburst classification as the mechanical meanings of its integrated 244 

parameter could be unclear. Additionally, different empirical criteria may provide different 245 

rockburst predictions or even contradictions. For instance, as shown in Table 4, the predicted 246 

rockburst risks from the two systems with the same rock brittleness coefficient might be opposite. 247 



 

 

Such potential confusions could bring complex challenges to underground engineering 248 

construction. 249 

Table 4. Empirical criteria based on the brittleness coefficient. 250 

Prediction method Equation No rockburst Weak Moderate Strong 
(Wang and Park, 2001)  𝜎ୡ

𝜎୲
 

>40 26.7-40.0 14.5-26.7 <14.5 
(Zhang et al., 2003)  <10 10-18  >18 

 251 

Table 5. The common classification of rockburst  252 

Rockburst 
intensity Failure characteristics 

None No rockburst activities have been observed. 

Weak The surrounding rock experiences deformation accompanied by cracks or rib spalling with 
weak sound without any ejection phenomena. 

Moderate 
The surrounding rock is deformed and fractured. There is a considerable number of rock 
chip ejection, loose and sudden destruction, accompanied by crisp crackling noises, 
frequently occurring in the local cavern of surrounding rock. 

Strong 
The surrounding rock is bursted severely, with rock suddenly being expelled or ejected 
into the tunnel, accompanied by a strong burst and a roaring sound that quickly spreads to 
the deeper surrounding rock. 

4.2 Simulation methods  253 

In this paper, the simulation methods in rockburst prediction refer to the approaches for 254 

reproducing the rockburst through experimental or numerical simulations. Currently, the common 255 

experiment tests for rockburst research include the triaxial unloading test, true triaxial rock burst 256 

tests and load relaxation test after the peak value. These tests are designed to mimic the complex 257 

stress states that rocks experience during excavation, making them valuable approaches for 258 

analyzing the failure processes of rockburst. In addition to experiment tests, laboratory 259 

simulations serve as a powerful tool for further investigating rockburst mechanisms, offering 260 

detailed insights that may be difficult to obtain through physical experiments alone (Faradonbeh 261 

et al., 2020; Gong et al., 2015; Su et al., 2017). Although these tests provide direct data on 262 

rockburst, limitations due to certain experimental conditions and the influence of size effects 263 

make them suitable for exploring rockburst failure mechanisms and evolution, rather than for 264 

direct rockburst prediction.  265 

Hence, numerical simulations form the bulk of simulation research on rockburst prediction 266 

(Cai, 2008; Sepehri et al., 2020; Xue et al., 2021), divided into continuum, discontinuum, and 267 



 

 

hybrid methods. Continuum methods, like the Finite Element Method (FEM) and Finite 268 

Difference Method (FDM), are widely used for their mature software and lower computational 269 

costs. For example, Blake (1971) used the FEM to study pillar bursts and considered the high-270 

stress concentration as indicators of rockburst locations. Zubelewicz and Mroz (1983) performed 271 

quantitative analyses of rockburst by superposing dynamic disturbances on initial static 272 

calculations. Tang et al. (1998) introduced the realistic failure process analysis (RFPA), a novel 273 

linear continuum mechanics approach, to reveal the evolution process of microcracks during rock 274 

failure. Wang et al. (2012) used FEM to simulate evolution of rockburst zone and strain energy 275 

release, elucidating the rock’s irreversible damage mechanism. 276 

However, continuum methods sometimes may struggle to simulate rock fracturing process 277 

and the dynamic characteristics of rockburst, a challenge can be addressed by discontinuum and 278 

hybrid methods. Ryder (1987) proposed the discrete element method (DEM) and excess shear 279 

stress (ESS) index to assess rockburst potential and fault impacts. Procházka (2004) investigated 280 

rockburst mechanics with discrete hexagonal elements and particle flow code (PFC). Sun et al. 281 

(2007) combined RFPA and DDA to study failure modes and rockburst prevention in high 282 

geostress tunnels. Although effective in simulating microcracks evolution, the high computational 283 

costs and complicated demands for micro-parameter calibration limit their widespread 284 

engineering application. 285 

Currently, existing numerical simulations provide a scientific basis for rock failure analysis, 286 

rockburst potential assessment, and prevention strategy development, yet most studies are based 287 

on static analysis. Although the static numerical methods could reveal rock failure's progressive 288 

evolution and provide a qualitative rockburst assessment, it may struggle to accurately reflect real 289 

dynamic processes of rockburst (Wang et al., 2021). Additionally, the results of simulation 290 

methods heavily rely on the chosen constitutive model and input mechanical parameters, still 291 

requiring further validation via engineering cases. Hence, solely based on simulation methods for 292 

an effective and comprehensive rockburst prediction system remains challenging. 293 



 

 

4.3  AI-based methods  294 

Artificial Intelligence, a key technology of the Fourth Industrial Revolution, has shown its 295 

significant potential and advantages in geotechnical engineering, particularly in underground 296 

engineering (Jong et al., 2021; Phoon and Zhang, 2022; Zhang et al., 2022; Zhang and Phoon, 297 

2022; Zhang et al., 2020). Compared to traditional methods, AI provides a more efficient way to 298 

handling complex, nonlinear, and multi-dimensional problems. This data-driven method applies 299 

prediction just by learning from the input and output data, avoiding oversimplification problems 300 

or excessive assumptions, as shown in Fig. 7. 301 

In the field of rockburst prediction, AI technologies, especially machine learning (ML) 302 

models, have been proven to be powerful tools for building reliable prediction models (Liang et 303 

al., 2019a; Mahesh, 2020; Pu et al., 2019b; Qiu and Zhou, 2023; Xu et al., 2018). These models 304 

generally use physical and mechanical parameters of rock (e.g., σθ, σC, σt, BR, SR, Wet, etc.) as 305 

inputs to predict rockburst intensity. The ML models for rockburst prediction can be divided into 306 

supervised and unsupervised learning. Supervised learning uses labeled data to identify patterns 307 

and relationships between inputs and outputs. Pioneers like Feng and Wang (1994) employed 308 

neural networks for rockburst prediction, assessing risk with a trained database of labeled cases. 309 

Zhao (2005) used Support Vector Machines for risk classification, and Ghasemi et al. (2020) 310 

applied C5.0 decision trees to predict rockburst occurrence and intensity. Zhou et al. (2016a) 311 

compared ten supervised learning algorithms for rockburst prediction, highlighting the superior 312 

performance of gradient-boosting machine and random forest algorithms, based on 246 cases, as 313 

shown in Fig. 8. 314 

 315 
Fig. 7. The general process of ML methods (Modified from (Basnet et al., 2023)). 316 



 

 

Sometimes, it is difficult to determine the rockburst intensity in engineering cases, or there 317 

are inconsistencies in rockburst classification, which poses a challenge in rockburst prediction. To 318 

consider this situation, some scholars suggest using unsupervised learning methods to manage the 319 

uncertainty and vagueness of rockburst (Pu et al., 2018a; Zhou and Gu, 2004; Zhou et al., 2016b). 320 

The main feature of unsupervised learning is its ability to reveal hidden patterns by finding 321 

commonalities in unlabeled data sets. This implies that after grouping or classifying data sets the 322 

different rockburst risk can be identified without predefined rockburst intensities. For example, 323 

Gao (2015) used a biomimetic clustering method, the ant colony algorithm, to assess rockburst 324 

risk. Chen et al. (2015) proposed a new quantitative grading method for rockburst using 325 

hierarchical clustering analysis based on radiated energy data from the Jinping II Hydropower 326 

Station. Shirani Faradonbeh et al. (2020) conducted clustering analysis of rockburst using self-327 

organizing map and fuzzy c-mean techniques, exploring the potential relationships between 328 

rockburst-related parameters. 329 

 330 

Fig. 8. Comparison of ten supervised learning methods (Zhou et al., 2016a). 331 

5 Rockburst prevention 332 

As mentioned by Hoek and Marinos (2009), the complete elimination of rockburst 333 

occurrences remains an elusive goal especially under overstressing conditions. However, there 334 

are several support methods that can be adopted to at least mitigate their impacts, as shown in Fig. 335 



 

 

9. The generally accepted strategies for rockburst prevention are: (i) the optimization of 336 

construction designs to reduce the incidence of rockburst; (ii) pre-conditioning technology of the 337 

rock mass to alleviate stress concentration during excavation; and (iii) the strategic rockburst 338 

support system in rockburst-prone excavation. It is worth noting that the executed sequence of 339 

these strategies is critical as well. The final rockburst support should be considered and deployed 340 

only after preliminary efforts. This section is intended to provide a succinct overview of these 341 

strategies for rockburst prevention, while recognizing the existing gaps. For more comprehensive 342 

and detailed information about the support measures and technologies, further reading is 343 

recommended. 344 

 345 

Fig. 9. Methods to reduce damaging effects of excessive stress in underground mining (Mitri, 346 

2000). 347 

5.1 Optimization of project layout scheme 348 

The supreme objective in rockburst research is to avoid conditions conducive to rockburst, 349 

thereby minimizing or potentially eliminating the necessity for rockburst support in excavation 350 

(Kaiser and Cai, 2013). This suggests that the priority of rockburst prevention is not the 351 

immediate consideration of support system against rockburst, but rather an assessment into the 352 

feasibility of inherently preventing rockburst occurrences. Thus, an effective and optimized 353 

engineering construction design becomes crucial, as it presents possibilities for control rockburst 354 

with less support. The ‘three-step strategy’ for rockburst prevention, as proposed by Feng et al. 355 



 

 

(2012b), begins with ‘reducing energy accumulation’. Their first step also explains the 356 

significance of optimizing the project scheme from the perspective of rockburst mechanisms. 357 

Minimizing the build-up of internal energy due to excavation activities, while ensuring the 358 

project's function, is the principal consideration in rockburst engineering design. 359 

Several optimization techniques for construction plans include: (i) Sectional size and shape 360 

optimization: It is familiar that larger excavation is predisposed to stability challenge, thus 361 

achieving a more suitable section is critical for rockburst-prone excavation. For example, the 362 

excavation sections with circular geometries tend to alleviate stress concentration, effective for 363 

rockburst prevention. (ii) Appropriate excavation methodology: Tunnel boring machines (TBM) 364 

is often employed for its rapid and highly mechanized excavation. However, in rockburst-prone 365 

locales, traditional drilling and blasting techniques may be optimal options sometimes, as they 366 

can effectively mitigate rockburst risk by stress relief. (iii) Excavation strategy optimization: 367 

Numerous research suggests a direct correlation between the unloading rate (i.e. excavation 368 

velocity) and the extent of resultant rock failure (Karakuş and Fowell, 2004; Tonon, 2010). Thus, 369 

adopting a deliberate excavation pace and zoning, e.g., the new Austrian tunneling method 370 

(NATM), is another critical factor for rockburst prevention. 371 

5.2 Rock mass pre-conditioning 372 

The pre-conditioning of surrounding rock serves as a proactive approach in rockburst 373 

prevention, before or at the initial stages of excavation. This method focuses on changing the 374 

rock mass’s properties, from external conditions to internal factors, to facilitate the pre-release or 375 

redistribution of the rock's stored energy. Borehole stress relief is a standard pre-conditioning 376 

technique in low to moderate rockburst areas. For high-risk rockburst, advance stress relief 377 

blasting is commonly employed, using targeted blasting to relieve stress concentration in 378 

particular zones (Drover et al., 2018; Roux et al., 1957). Targeting the internal factors of 379 

rockburst, techniques like high-pressure water jetting or borehole water injection are usually 380 

applied to mitigate the rockburst risk at the workface. As shown in numerous research (Cai et al., 381 

2021; Luo, 2020; Zhou et al., 2016c), water deteriorates the strength of hard rock. Despite the 382 



 

 

effectiveness of such water-based methods, they are usually considered supplementary in 383 

rockburst prevention due to their limited range of effect. As localized solutions, it is essential to 384 

combine them with additional control strategies to achieve an effective rockburst prevention 385 

system. 386 

5.3 Support in rockburst-prone excavation 387 

Although early proactive prevention strategies play an important role in avoiding the 388 

rockburst, it is often impractical to eliminate all potential risks of rockburst. The development of 389 

a support system that is both timely and effective during the excavation is essential for improving 390 

rock stability and maintain project safety (Wang et al., 2020; Wu et al., 2019b). Based on the 391 

practical experience, as shown in Fig. 10, Cai and Champaigne (2009) have introduced seven 392 

guiding principles for designing rockburst support. These principles are intended to offer 393 

rockburst engineers a fundamental framework for tackling the multifarious challenges presented 394 

by rockburst. 395 

Firstly, the principle of avoiding rockburst: The most effective strategy for avoiding 396 

rockburst involves proactive risk reduction through careful early-stage planning and design 397 

optimization, as discussed in Section 5.1 and Section 5.2. By minimizing the potential for 398 

rockburst, these early prevention strategies lower the requirement for extra support measures to 399 

fortify the surrounding rock against loads and stresses. Subsequently, the utilization of 400 

deformable support components: Given that brittle rock failure often accompanies significant 401 

expansion deformation, the design of rockburst support should be considered the volumetric 402 

changes of the surrounding rock mass. By reinforcing the rock and absorbing the dynamic energy 403 

produced during a rockburst, these deformable support components contribute to the overall 404 

stability of the rock structure. The third principle focuses on addressing the weakest link within 405 

the support system. The design of the support system must prioritize the reinforcement of the 406 

structural junctions among its components, as the overall capability of the system is highly 407 

dependent on its most vulnerable part (Ansell, 2005; Ortlepp, 2000). Through targeted 408 

optimization of these critical connections, the system's overall performance can be markedly 409 



 

 

improved with relatively modest efforts. Accordingly, the fourth principle advocates the creation 410 

of an effective and integrated support system. An ideal rockburst support system is not solely 411 

assessed by a single component's energy absorption capabilities, but by the effective integration 412 

of diverse elements to develop a feasible, deformable, and comprehensive support system. The 413 

following two principles advocate for the simplicity (the fifth) and efficiency (the sixth) in the 414 

design of support systems for rockburst. It is imperative to understand that while initial costs for 415 

these rockburst support measurements may exceed those of conventional supports, such 416 

expenditures are justified when contrasted when considering the significant maintenance costs 417 

incurred by potential incidents. Data from numerous cases indicate that maintenance cost can be 418 

10 to 20 times more than the initial investment, highlighting the economic efficacy of rockburst 419 

support. Thus, the adoption of efficient and easy-to-use support systems not only mitigates the 420 

risk of rockburst, but also provides notable economic benefits especially in rockburst engineering. 421 

The last principle is about risk management in rockburst-prone projects to ‘anticipate and adapt’. 422 

The difficulty in precisely predicting rockburst events, combined with the complexity of the 423 

underground rock masses and the unpredictability of excavation activities, the initial design of 424 

support strategies frequently fails to fulfill later support requirements. Therefore, it is essential to 425 

timely assess potential rockburst risks and to adjust the support system in accordance with the 426 

real-time engineering conditions. Cai (2019) also defined four primary support functions, namely 427 

reinforce, retain, hold, and connect, as shown in Fig.10. These foundational design principles for 428 

rockburst support, together with the required functions of such support, provide a comprehensive 429 

framework for managing rockburst risks during underground excavation. 430 

 431 



 

 

 432 

Fig. 10. Seven rockburst support principles and the support functions (Cai, 2019). 433 

6 Data-driven ontology-supported decision-making framework for 434 

underground excavations 435 

6.1 Semantic web technology 436 

The Semantic Web, as proposed by Berners-Lee and Hendler (2001), extends the capabilities 437 

of the World Wide Web (WWW) by addressing its inherent limitations in data interoperability 438 

and automated processing. By providing explicit, machine-readable semantics into data, the 439 

Semantic Web enables efficient information exchange and intelligent processing, especially for 440 

the automated reasoning based on knowledge models (Rožanec et al., 2022). According to the 441 

World Wide Web Consortium (W3C), the Semantic Web's primary goal is to provide data with 442 

explicit meanings closely linked to real-world entities. Through the use of structured graph 443 
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representations, the Semantic Web facilitates data unification and reusability, offering substantial 444 

advantages in managing large-scale, heterogeneous datasets (Schmachtenberg et al., 2014). This 445 

innovative technology has found extensive applications in architecture, engineering, and 446 

construction (AEC), where it supports the integration of diverse engineering data across multiple 447 

stakeholders (Niknam and Karshenas, 2017; Venugopal et al., 2015; Yang and Zhang, 2006). The 448 

Semantic Web’s contributions to the AEC industry are typically classified into three key 449 

perspectives: interoperability, linking across domains, and logical inference and proofs (Pauwels 450 

et al., 2017), as shown in Fig. 11. 451 

1. Interoperability: The Semantic Web enhances seamless collaboration across various 452 

systems and programs by standardizing data formats and employing ontologies for better 453 

understanding and processing (Zhou et al., 2023a). Unlike traditional Web environments, where 454 

data often resides in siloed applications and formats, creating integration challenges, the 455 

Semantic Web addresses these issues through its standards, including the Resource Description 456 

Framework (RDF) and the Web Ontology Language (OWL). These standards establish a unified 457 

framework for data exchange, improving information reusability and interoperability. Fig. 11(a) 458 

shows a simple RDF graph, which is used to represent the graph structure of the RDF triples 459 

{subject, predicate, object}. Each entity or relationship is explicitly defined and uniquely 460 

identified using Uniform Resource Identifiers (URIs), thereby enabling more efficient data 461 

sharing and reuse. Additionally, this standardized data representation allows systems to flexibly 462 

incorporate new data resources without necessitating extensive custom integration efforts. 463 



 

 

 464 

Fig. 11 Three benefits of Semantic web technologies in AEC industry (Le and Jeong, 2016; 465 

Pauwels et al., 2017; Zangeneh and McCabe, 2020). 466 

2. Linking across domains: In AEC industry, multidisciplinary collaboration is crucial during 467 

the design, construction, and operational phases. Effective integration of diverse elements, 468 

including geological exploration, structural design, construction methodologies, and engineering 469 

management, is critical for the smooth execution of projects. Semantic Web technology offers 470 

significant promise in this context by enabling the integration of heterogeneous data from 471 

domains such as Building Information Modeling (BIM), Geographic Information Systems (GIS), 472 

real-time monitoring systems, and simulation data into a unified data network. This integrated 473 

network supports informed decision-making throughout the project lifecycle. As illustrated in 474 

Fig.11(b), Le and Jeong (2016) proposed a lifecycle data exchange mechanism tailored for multi-475 

domain decision-making in project management. This mechanism transforms disparate data 476 

sources across the project lifecycle into meaningful and actionable insights for users. It operates 477 

through three primary stages: domain and merged ontologies, data wrappers and a data query and 478 

reasoning system.  479 



 

 

3. Logical inference and proofs: Semantic Web technology allows computers to perform 480 

inferring tasks for extra knowledge based on the information in RDF and OWL. OWL plays a 481 

pivotal role in this process, as it supports the definition of complex relationships between 482 

concepts through its advanced semantic capabilities. By extending the vocabulary of RDF 483 

Schema (RDFS) and incorporating more expressive elements, OWL enhances the system's ability 484 

to process and infer information with higher precision (Pauwels et al., 2017). For more complex 485 

logical reasoning, Semantic Web technologies utilize specialized rule languages such as the 486 

Semantic Web Rule Language (SWRL) and the Rule Interchange Format (RIF). These languages 487 

allow the creation of customized logical rules, significantly improving the accuracy and 488 

robustness of inference processes. When integrated with comprehensive knowledge models, these 489 

rules enhance the system's capability to derive actionable insights and provide robust decision 490 

support. As illustrated in Fig. 11(c), this integration not only improves the intelligence of the 491 

system but also extends their applicability to complex data analysis and decision-making 492 

challenges in large-scale projects. 493 

6.2 Ontology applications 494 

Ontology, originally a philosophical concept about the nature of existence, has evolved 495 

significantly with the development of computer science. Today, ontology is a pivotal concept in 496 

information technology, particularly in the realms of Semantic Web development and artificial 497 

intelligence, where it plays a critical role (Ashraf et al., 2015; Farghaly et al., 2023; Zhou and El-498 

Gohary, 2017). In computer science, ontology is most commonly defined as a formal and explicit 499 

specification of a shared conceptualization within a specific domain (Studer et al., 1998; Zhang et 500 

al., 2023). This definition makes its utility in facilitating a formalized, structured representation 501 

and exchange of knowledge through clear ontological definitions, enabling a common 502 

understanding and consensus among diverse systems and users. Additionally, ontology allows for 503 

the flexible extension of frameworks, making it easier to integrate and apply across virous 504 

domains (García-Castro and Gómez-Pérez, 2010). This adaptability is especially beneficial in 505 

complex projects such as underground excavation, which are often characterized by numerous 506 



 

 

data and information, including geological conditions, structural parameters, and construction 507 

monitoring etc. (Gao et al., 2022; Khadir et al., 2021; Kuster et al., 2020; Meng et al., 2021; 508 

Wang, 2021; Yu et al., 2023). For these benefits, there has been a significant surge in research 509 

over the past two decades focusing on ontology-based model for project management in the AEC 510 

industry. Farghaly et al. (2023) summarized the ten primary applications of ontology in the AEC 511 

industry, which include smart cities, monitoring & control, operation & maintenance, health & 512 

safety, process, cost, sustainability, heritage building information modelling, compliance, and 513 

miscellaneous. These ontological application areas span the entire engineering lifecycle, 514 

demonstrating that ontology has become a potent framework to improve project management by 515 

integrating disparate pieces of information from various aspects (Chen et al., 2024; Costin and 516 

Eastman, 2019; Leite et al., 2016). This integration, driven by ontology, not only helps in 517 

reducing project costs but also significantly improves the quality of decision-making and 518 

engineering safety. Fig.12 illustrates a commonly used methodology for ontology development. 519 

 520 

Fig. 12 Seven steps to ontology development. 521 

Specifically, domain ontologies are widely studied and applied across various engineering 522 

fields proving a sophisticated and intelligent strategy for diverse purposes. Hou et al. (2015) 523 

developed  an ontology model for concrete structure design, focusing on a sustainability index for 524 

bridge maintenance decisions. Zhang et al. (2018) proposed an intelligent ontology framework 525 

for the preliminary phase of structural design, with three key aspects: safety, environmental 526 

impact, and cost efficiency. Jiang et al. (2023) introduced an approach combining ontologies with 527 

machine learning to evaluate bridge corrosion, thereby enhancing structural safety. Zhou et al. 528 



 

 

(2023b) presented a novel dam safety monitoring model that integrates BIM technology with 529 

domain ontology, effectively improving data analysis and dam safety. Du et al. (2016) employed 530 

a hybrid methodology combining hierarchical clustering techniques with ontologies to predict 531 

tunnel settlements, facilitating the identification of causative factors and the selection of 532 

appropriate preventive or support measures. Cui et al. (2023) designed an ontology-based model 533 

for seismic risk assessment of subway stations, using Monte Carlo simulations to provide a 534 

scientific foundation for managing seismic risks and improving emergency strategies. Hai et al. 535 

(2021) introduced a comprehensive ontology-driven corridor risk assessment model, 536 

incorporating Bayesian networks to offer a systematic tool for project management and decision-537 

making. Collectively, these applications highlight not only the theoretical sophistication of 538 

ontology-based methodologies but also their significant practical potential in addressing 539 

engineering challenges. The integration of ontology-based models into engineering lifecycle 540 

provides innovative solutions for managing complex, multi-domain, and multi-objective 541 

problems, empowering researchers and practitioners to enhance decision-making processes and 542 

improve project outcomes. 543 

6.3 Intelligent underground engineering management ontological framework 544 

While the idea of a Semantic Web that seamlessly connects all human knowledge may seem 545 

overly ambitious, focusing on expanding the range of information accessible to computers 546 

represents a more pragmatic and attainable goal. From this perspective, Semantic Web 547 

development transcends the Web itself, influencing a wide range of domains. Its core 548 

capabilities—such as data integration, annotation, information retrieval, and natural language 549 

processing—demonstrate remarkable potential across diverse research and industrial fields 550 

(Abanda et al., 2013; Jung, 2009; Tah and Abanda, 2011). Building on these capabilities, this 551 

section explores how Semantic Web technology can support decision-making in the context of 552 

underground excavation.  553 

Table 6 outlines the challenges faced in rockburst risk management in the era of artificial 554 

intelligence (Aydan, 2019; Masoudi and Sharifzadeh, 2018; Pu et al., 2018b). While data-driven 555 



 

 

approaches provide a more efficient way to address problems compared to conventional 556 

approaches, there remains a significant gap between advanced prediction techniques and 557 

engineering practice. This disconnect notably limits engineers' ability to accurately predict 558 

rockburst, which in turn impede effective rockburst prevention measures. One of the key issues is 559 

the complexity and uncertainty of geological conditions, which vary significantly during project 560 

construction. The variability in construction environments further complicates underground 561 

projects, particularly those that are long-term and large-scale. Such projects often require 562 

collaboration between multiple stakeholders, making it difficult to maintain real-time updates and 563 

ensure accurate risk assessments. For instance, dynamic optimization of rockburst control relies 564 

heavily on real-time data to adjust support measures as conditions change. However, in practice, 565 

the sharing of critical information at project sites may be delayed or prone to inaccuracies. This 566 

lag in data transfer can impede the timely deployment of support systems, which not only 567 

increases the risks associated with rockburst events but also drives up the overall cost of 568 

underground construction projects. 569 

The integration of AI and real-time monitoring is crucial, but it must be combined with more 570 

advanced management frameworks to address these challenges effectively. A holistic and 571 

intelligent approach is required, one that can integrate real-time data, AI-based predictions, and 572 

decision-making processes into a cohesive system. In this context, ontologies—a framework for 573 

representing knowledge in a structured manner—have emerged as a potential solution. With their 574 

ability to bridge the gap between complex data analysis and practical engineering, ontologies can 575 

facilitate better communication between stakeholders, ensuring that data is both accurate and 576 

timely. This would allow for more efficient risk management, improved decision-making 577 

processes, and a more responsive approach to the dynamic conditions encountered in 578 

underground excavation projects. 579 

Table 6. Challenges in rockburst management 580 

Rockburst prediction 
 Lack of general applicable empirical standards 
 Projects applicability of numerical simulation methods remains to be verified 
 Limitations of datasets in data-driven methods 

 



 

 

Rockburst prevention 
 A certain understanding of the rockburst mechanism for support designers 
 Support system involve many factors, making the dynamic design process complex 
 Lack of effective collaboration between prediction and prevention 

 581 

Although the potential and benefits of ontology are widely acknowledged, there is, to the 582 

best of the authors' knowledge, a notable gap specifically targeted towards ontological 583 

frameworks for underground excavations. This gap underscores the necessity for focused 584 

research aimed at bridging these gaps and exploring the way for future advancements in the field 585 

of underground engineering. As illustrated in Fig. 13, the proposed ontology-based framework 586 

provides a comprehensive solution for managing the lifecycle of underground excavation projects. 587 

The framework is designed to enhance the efficiency of information integration, sharing, and 588 

analysis by unifying heterogeneous data sources into a semantically rich, machine-readable 589 

structure. It facilitates improved decision-making by enabling automated reasoning, real-time 590 

analysis, and cross-disciplinary collaboration.  591 

The proposed methodology is composed of three main components: (1) Data collection and 592 

preliminary processing; (2) Ontology knowledge base and data analysis; (3) Intelligent decision 593 

support system. At the core of this framework lies the ontological model, which seamlessly 594 

integrates data, analysis, and decision-making processes to ensure smooth and efficient operation. 595 

The detailed workflow of the methodology is outlined as follows: (1) Data collection and 596 

preliminary processing: Initially, data and information from various domains, such as geological 597 

surveys, structural designs, monitoring systems, and construction activities, are collected and 598 

subjected to preliminary processing to ensure data quality and consistency. These processed data 599 

are then uploaded to a cloud-based database, making them readily accessible for subsequent 600 

analysis and processing. (2) Ontology knowledge base and data analysis: When a user submits an 601 

engineering requirement through the user interface, the ontology knowledge base executes 602 

semantic queries and facilitates data transfer to identify and retrieve the relevant data 603 

corresponding to the specified requirement (illustrated by the blue line in the workflow). The 604 

ontological model then collaborates with advanced data-driven technologies, such as machine 605 

learning algorithms, simulation models, or finite element analysis, to analyze the data tailored to 606 



 

 

the specific engineering context. This stage leverages the semantic richness of the ontology to 607 

ensure accurate data interpretation and analysis. (3) Intelligent decision support system: The 608 

results of the data analysis and semantic reasoning are synthesized and fed back to the user in an 609 

intuitive and actionable format (depicted by the red line in the workflow). This enables 610 

stakeholders to make informed decisions based on a comprehensive understanding of the 611 

underlying data and inferred insights.  612 

The proposed framework represents an open, computable, and evolvable knowledge-driven 613 

model built on big data principles, specifically tailored for underground excavation projects. 614 

These key characteristics are defined as follows: Openness: The framework accommodates 615 

diverse data sources, including geological exploration data, structural design parameters, 616 

construction engineering records, expert knowledge, industry standards, socio-environmental 617 

information, and real-time monitoring data. This inclusiveness ensures that the framework 618 

remains adaptable to multidisciplinary engineering contexts. Computability: By leveraging the 619 

ontological model, the framework employs various analytical technologies and methodologies to 620 

uncover hidden patterns and relationships within dynamically evolving engineering datasets. This 621 

enables efficient and scalable processing of complex, multi-dimensional data. Evolvability: The 622 

framework is designed to continuously update and expand its knowledge base and analytical 623 

capabilities, incorporating new data sources, evolving technologies, and emerging challenges. 624 

This adaptability ensures the system remains robust and forward-compatible, capable of 625 

addressing future needs in underground engineering.  626 

By integrating these components and capabilities, the framework provides a comprehensive 627 

and intelligent approach to managing the complexities of underground excavation. It not only 628 

enhances decision-making processes but also promotes higher efficiency, safety, and 629 

sustainability throughout the entire project lifecycle. The methodology bridges the gap between 630 

traditional engineering practices and advanced knowledge-driven technologies, paving the way 631 

for a more intelligent, data-centric future in underground engineering 632 



 

 

 633 

Fig. 13. An ontological framework for risk management of underground engineering. 634 

7 Conclusion 635 

The rockburst, as one of the major unsolved issues in geoscience poses a great challenge to 636 

the safety and stability of underground projects. This paper presents a comprehensive review and 637 

comprehensive literature analysis of rockburst research published in the 21st century. Based on 638 



 

 

the scientometric analysis of 2449 relevant articles, an intuitively discussed for the development, 639 

hot topics, and future trends of rockburst is provided. Subsequently, a comprehensive review 640 

focusing on the rockburst prediction and prevention was conducted to explore the current 641 

challenges in managing rockburst. The analysis suggests that while the application of data-driven 642 

methods provides new insights into rockburst prediction, there is still a significant disconnect 643 

between these techniques and engineering practice, potentially hindering effective rockburst 644 

prevention. In addition, the complex design of rockburst support systems necessitates timely and 645 

effective optimization, but the challenges of delayed and inaccurate data sharing in large-scale 646 

engineering projects exacerbate these issues. To address these challenges, this paper introduces a 647 

novel methodology for managing underground excavations. Based on the ontology, the 648 

framework seeks to integrate multisource data and employ advanced analysis techniques to 649 

improve decision-making, information sharing, and safety throughout underground excavations. 650 

This ontological framework includes three key components: data collection and preliminary 651 

processing, ontology knowledge base and data analysis, intelligent decision support system. The 652 

proposed methodology provides a systematic guide for the digital advancements in underground 653 

excavations, yet it requires further validation and optimization in future research to guarantee its 654 

efficacy and reliability. 655 
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