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Abstract
Biomass-derived 5-hydroxymethylfurfural (HMF) is a versatile and key platform chemical critical
to underpinning a sustainable chemical industry based on biomass. This study explores the
innovative use of zeolites and hierarchical zeolites, derived through alkaline desilication, as
catalytic materials for fructose dehydration. Functionalised with sulfonic acid sites, these materials
demonstrate elevated catalytic performance, particularly maximising HMF yields. The increased
mesoporosity facilitates higher sulfonic acid incorporation, leading to improved fructose
conversion. However, yields are sensitive to reaction duration, with longer time negatively
impacting the selectivity towards HMF due to further in-series reactions. Optimal results were
achieved under microwave irradiation in a biphasic medium, achieving an HMF selectivity of
∼73% at fructose conversion of∼88% in just 5 min at 170 ◦C, emphasising energy efficiency and
catalyst accessibility. The best catalyst modifications lead to a reduction in the activation energy of
fructose conversion by approximately 35% relative to the uncatalysed process, in conjunction with
significant improvements in process sustainability, which align with the United Nations sustainable
development goals (SDGs) in Affordable and Clean Energy (SDG 7), Industry, Innovation, and
Infrastructure (SDG 9), Responsible Consumption and Production (SDG 12), and Climate Action
(SDG 13).

1. Introduction

The continuous unsustainable consumption of non-renewable fossil resources, coupled with growing
concerns about the severity of anthropogenic environmental pollution, motivates the development and
implementation of sustainable processes within the chemical industry [1, 2]. Biomass conversion into
value-added chemicals has emerged as a desirable and viable alternative for reducing humanity’s dependence
on fossil resources [2–4]. Among the plethora of possible bio-based chemicals, 5-hydroxymethylfurfural
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Scheme 1. Fructose conversion to the HMF and potential side reactions.

(HMF) is considered a prime candidate, given its potential as a key intermediate in the production of
replacements for crude oil based fuels, solvents, and monomers [2–4]. HMF production via carbohydrate
dehydration, specifically acid-catalysed fructose dehydration, represents a convenient and practical
production route [5–8].

Various acid catalysts, both homogenous (e.g. mineral [9] and organic acids [10]) and heterogeneous,
have been investigated for fructose dehydration to HMF. Considering separation efficiency, heterogeneous
catalysts are preferred, with HMF production from fructose reported over H-form zeolites [11, 12],
ion-exchange resins [13], and supported sulfonic acids [14]. The inherent Brønsted acidity of such systems
governs dehydration reactions [12, 15, 16], of which catalysts with sulfonic acid groups (-SO3H) show high
efficiency due to their strong acidity [5–8, 14, 17, 18]. Conventional deposition of sulfonic acids onto
support structures proceeds through the grafting of mercaptopropyl silanes, typically in hydrocarbon
solvents, e.g. toluene [5, 18–22]. However, to prevent the undesired use of solvents with an unfavourable
environmental, health and sustainability profile within catalysts synthesis [23], it is desirable to employ
‘greener’ solvents, with water being the best example [24].

Among the array of support materials, zeolites are interesting candidates due to their high surface area,
good thermal stability, and commercial availability and economics [19, 20, 25, 26], which lend them to
applications in various fields such as ion exchange [27–29], gas separation [29, 30], and catalysis [29, 31].
However, their microporous nature imposes substantial diffusion resistance, limiting both incorporating and
converting bulky species and substrates. Hierarchical zeolites with the typical micro-meso-porous networks
[32] can overcome this through the provision of secondary large pores, allowing higher molecular transfer
within their zeolitic frameworks. In addition, the presence of reactive terminal silanols on the surface of
mesopores can serve as the anchoring point as well for functionalisation via silanisation reactions [33].

A major drawback that plagues HMF production is the occurrence of undesirable side reactions
(scheme 1) [16, 34, 35], which are exacerbated when conducted in water, resulting in the formation of
soluble and insoluble humins, and formic and levulinic acid, with HMF yields typically under 50% [15, 35].
Employing alternative reaction media, including polar organic solvents [5, 6, 36–39], and ionic liquids [7,
40], was found to promote higher HMF yields. For example, DMSO [5, 17], and ionic liquids (e.g. [bmim]Br
[40] and [bmim]Cl [7]) can achieve yields in excess of 90% and 80%, respectively. However, their high
boiling points hinder subsequent downstream product isolation [15, 41], while the catalytic nature of the
former masks the intrinsic performance of added catalysts [12], and economic concerns plague the latter
[42]. Alternatively, interactions of the product with the catalytic active sites, which lead to unwanted side
reactions, can be controlled to maximise HMF yields, either through diffusion [14] or the deployment of
biphasic reaction systems [12]. The latter combines an aqueous reaction phase (which contains the catalysts)
and a second immiscible extraction phase (often an organic solvent), allowing HMF extraction as it is
produced, thereby reducing undesirable production of humins and/or HMF hydration to levulinic and
formic acid [43, 44]. Employing lower boiling point organic solvents as the extraction phase, i.e. methyl
isobutyl ketone (MIBK) and 2-butanol (2-BuOH), can aid product isolation, with both (alongside water)
ideal green reaction media candidates [45, 46].

This work aimed to develop novel solid acid catalysts of sulfonic acid functionalised zeolites for facile
fructose dehydration into HMF, with the aim of enhancing the performance of industrially relevant catalytic
materials. We first explored various commercial zeolites (i.e. HY, HBeta, HZSM5 and HMOR) and sulfonic
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acid-functionalised derivatives in a biphasic reaction medium comprising H2O (reaction phase) and MIBK
and 2-BuOH (extraction phase), identifying HY as a candidate (due to its superior performance and green
credentials on initial screening) for further engineering. To control porosity, the parent zeolites were
subjected to alkaline treatments, while acidity was tuned via functionalisation with the sulfonic acid groups.
In addition, modification of the process reaction parameters was investigated to understand their impact.
From these, the optimal process conditions and catalyst choice are established based on those resulting in the
greatest energy efficiency and greenest credentials.

2. Experimental section

2.1. Materials and chemicals

D(-)-fructose (for biochemistry), D-(+)-glucose (⩾99.5%), levulinic acid (98%), formic acid (for HPLC),
HMF (99.9%), furfural (ACS reagent, 99%), toluene (HPLC grade), hydrogen peroxide (H2O2, 50 wt %),
isopropyl alcohol (IPA, HPLC grade), (MIBK, ACS reagent,⩾99.9%), 2-butanol (anhydrous, 99.5%),
sodium hydroxide (NaOH, 99%), ammonium nitrate (NH4NO3, ACS reagent,⩾98%), potassium chloride
(KCl) were purchased from Sigma Aldrich. 3-mercaptopropyltrimethoxysilane (MPTMS, 97%) was
purchased from Fluorochem Limited. All the chemicals were used as received without further purification.
HY (CBV760), NH4-ZSM5 (CBV5524G), NH4-Beta (CP814C), and NH4-MOR (CBV21A) were purchased
from Zeolyst International (UK). HY (CBV760) is manufactured via steam and acid treatment of a high Si:Al
HY zeolite, which, upon tuning Si:Al, results in the creation of complementary mesoporosity [47]. Before
use, NH4-ZSM5, NH4-Beta, and NH4-MOR were calcined at 550 ◦C for 5 h (ramp rate 5 ◦C min−1) to
convert to the H+ form denoted as HZSM5, HBeta, and HMOR, respectively.

2.2. Catalyst preparation
2.2.1. Alkaline treatment
Parent HY zeolite (5 g) was dispersed in aq. NaOH (various concentrations of 0.001, 0.01, 0.055 and 0.1 M,
100 cm3). The slurry was heated to 50 ◦C and stirred for 2 h, then quenched using an ice water bath for
15 min and centrifuged (3000 G, 10 min) to isolate the solid. The solid was washed five times with deionised
(DI) water before being dried under vacuum at 120 ◦C overnight. Ion exchange was conducted with aq.
NH4NO3 (1 M, 30 cm3 gzeolite−1) in triplicate at 80 ◦C for 2 h under stirring. The solid was isolated by
centrifugation, washed five times using DI water, and dried at 120 ◦C under vacuum overnight. The solid
was calcined at 550 ◦C for 5 h (ramp rate 5 ◦C min−1) to give the H+ form zeolite. The obtained samples
were denoted as HY, HY-0.001, HY-0.01, HY-0.055, and HY-0.1, respectively, in accordance with the
concentrations of NaOH used during desilication.

2.2.2. Grafting sulfonic groups in toluene/H2O
Scheme 2 summarises the synthesis route of sulfonic-acid functionalised zeolites. Parent HY, HZSM5, HBeta,
or HMOR zeolite (1 g), and MPTMS (2.5 g) were dispersed in toluene (20 cm3). The solution was heated to
60 ◦C and stirred for 6 h, before quenching in an ice water bath for 15 min and centrifugation (3000 G,
10 mins) to obtain the solid product. The solid was washed five times with ethanol before being dried at
100 ◦C overnight. Subsequently, thiol groups were converted into sulfonic acid groups by oxidation through
stirring in an aq. H2O2 solution (50 wt.%, 1/10 (wt./vol.) catalyst/H2O2) at room temperature for at least
10 h. The solid was isolated by centrifugation (3000 G, 10 mins) and washed five times with ethanol before
being dried at 100 ◦C overnight. The obtained samples were denoted as SO3H/HY-Tol, SO3H/HZSM5-Tol,
SO3H/HBeta-Tol, SO3H/HMOR-Tol, respectively. Aqueous grafting was conducted for HY zeolites under an
identical protocol, except for the substitution of toluene with DI H2O as the grafting solvent. The obtained
catalyst was named SO3H/HY-H2O. The use of hierarchical HY (alkane treated) as support architectures
yielded SO3H/HY-0.001-H2O, SO3H/HY-0.01-H2O, SO3H/HY-0.055-H2O and SO3H/HY-0.1-H2O,
respectively (with the numerical value representing the concentration employed during desilication).

2.3. Catalyst characterisation
X-ray diffraction (XRD) patterns were obtained using the Philips X’Pert x-ray diffractometer, employing a
CuKα radiation source (λ= 1.5406 Å) operating at 40 kV and 40 mA, with scans collected from 5◦ to 55◦ 2θ
with a step size of 0.0334◦. Relative crystallinity was calculated based on integrated peak areas [48, 49], with
the parent zeolite as the [48]. Nitrogen (N2) adsorption analysis was carried out at liquid N2 temperature of
−196 ◦C on a Quantachrome Quadrasorb SI-20. Prior to analysis, samples were degassed using a Flovac
Degasser FVD-3 Quantachrome instrument at 250 ◦C for 12 h. The specific surface area of materials was
determined using the Brunauer–Emmett–Teller (BET) method over the relative pressure range from 0.05 to
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Scheme 2. The synthesis route of sulfonic acid-functionalised zeolites.

0.2, where a linear relationship was observed. Pore size analysis was conducted using the Barrett–
Joyner–Halenda method and the desorption branch of isotherms. Scanning electron microscopy (SEM) was
performed using Philips XL30 FEG, operating with a beam acceleration voltage of 15 kV. Particle size
distribution was analysed using Image-J® software. X-ray photoelectron spectroscopy (XPS) was performed
using a Kratos Axis SUPRA, equipped with a monochromated Al kα (1486.69 eV) x-ray source operating at
15 mA emission and 12 kV HT (180 W) with a spot size/analysis area of 700× 300 µm. Spectra were
processed and deconvoluted using a CasaXPS v. 2.3.19PR1.0. Background subtraction was performed using
the shirley or quadratic method. Binding energies were calibrated to adventitious carbon at 284.8 eV. CHNS
analysis was performed on a Thermo Scientific Flash 2000 Elemental Analyser. Brønsted acidity of the
catalyst was determined by ion exchange and pH measurement with a Jenway PH meter [50]. Catalyst (0.1 g)
was mixed with aq. KCl (0.1 M, 10 cm3) and stirred for 24 h at room temperature. pH evolution was
measured for each mixture until a constant value was recorded. The concentration of accessible acid groups
was calculated using equation (S1) [50] in the supporting information (SI). Pyridine adsorption on acid sites
was evaluated by Fourier transform infrared (FTIR) spectroscopy, conducted using a Bruker Tensor-27 FTIR
spectrometer. The ground sample (sieved to⩾300 mesh) was dried at 140 ◦C for 12 h prior to pyridine
(15 ml pyridine) vapour exposure in a vacuum desiccator at−0.1 MPa for 12 h. Following adsorption, the
liquid pyridine was removed from the desiccator, and the sample was maintained at−0.1 MPa for 30 min.
The sample was dried at 140 ◦C for 12 h to remove any physisorbed pyridine. The sample was pressed into a
mould to provide a smooth surface for analysis.

2.4. Catalysis
Fructose dehydration was conducted in an Anton Paar Monowave 400 reactor using 30 cm3 reaction vials
(Anton Paar G30). Fructose (0.15 g, 5 wt./v%) was dissolved in the reaction phase DI H2O (3 cm3) before the
catalyst (0.06 g, 2 wt./v%) and extraction phase (6 cm3) of MIBK: 2-BuOH (v/v= 7:3) were added, with the
latter having been observed to enhance extraction efficiency in our previous work [12]. The biphasic reaction
mixture was heated to 160 ◦C (160 ◦C min−1) and held for the desired reaction time with stirring at
800 rpm. The reactor vessel was cooled to 70 ◦C under flowing air before quenching to room temperature in
an ice water bath. The catalyst was isolated by centrifugation (3000 G, 10 min), with aliquots (0.2 cm3) of the
reaction and extraction phases prepared for high-performance liquid chromatography (HPLC) analysis by
dilution with DI H2O (1:50 v/v) or IPA (1:50 v/v), and filtration with a polyethersulfone syringe filter
(0.2 µm). Catalyst reusability was evaluated over 4 recycles under optimal conditions, with a constant
catalyst:solvent:substrate. For each recycle, the spent catalyst from the previous reaction was recovered via
centrifugation (3000 G, 10 min), washed with DI water or acetone (30 cm3) in triplicate, and dried at 80 ◦C
under vacuum overnight. An oxidation regeneration through stirring in an H2O2 solution (50 wt.%, 10 cm3)
for 24 h was also investigated.

Quantitative analysis of reaction samples was carried out using HPLC on an Agilent Infinity 1220
equipped with refractive index and UV detectors, the latter set at a wavelength of 254 nm. Product resolution
was achieved on a Bio-Rad Aminex HPX-87H ion exclusion column (300 mm× 7.8 mm), using a 0.01 N
H2SO4 mobile phase (flow rate of 0.6 cm3 min−1) under isothermal conditions (column oven at 50 ◦C).
Humins are calculated from the missing carbon balance. Fructose conversion (mol%), product yield
(mol%), product selectivity (%), and the partition ratio (PR) of HMF are defined in the ESI (equations
(S2)–(S5)). PR is defined as the ratio of the weight fraction of HMF in the extraction phase to the weight
fraction of HMF in the reaction phase [51]. Total energy efficiency coefficient (η) was calculated (equation
(S6)), which is the amount of HMF produced per unit of work [12, 17], with total energy consumption
evaluated using an inline plug-in power meter to record total energy consumption. Turnover frequency
(TOF) was calculated via equation (S7). Green metrics, including E-factor (solvent recycled) (equation (S8)),
process mass intensity (PMI) (equation (S9)), energy economy coefficient (ε) (equation (S10)), and
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environmental energy impact factor (ξ) (equation (S11)), have been calculated to evaluate process efficiency
as a way to assess environmental impact [52–55]. Details of the green metrics are presented in the ESI.

Based on the literature [56–58], a pseudo-first-order kinetic model was devised to demonstrate the
conversion of fructose. Thus, the rate of fructose conversion is expressed as follows as a first-order reaction:

− r [fructose] =−−d [fructose]

dt
= k [fructose] (1)

k is the pseudo-first-order rate constant of fructose conversion at a certain reaction temperature (min−1),
from which activation energies are determined using the Arrhenius equation.

3. Results and discussion

3.1. Catalyst characterisation
XRD patterns of the zeolite supports are consistent with data from the International Zeolite Association, with
sulfonic acid grafting shown to have no detrimental impact (as illustrated in figure 1) [59]. HBeta, HZSM5,
and HMOR show complete retention of zeolite crystallinity (table 1), with only a slight decrease observed for
HY. This apparent decrease in HY coincides with significantly higher sulfur content, which is attributed to its
higher surface area, specifically its higher external surface area within this zeolite, which provides additional
highly accessible sites for sulfonic acid functionalisation. It is worthwhile noting that this external surface area
reflects the combination of mesopores, macropores, and external surfaces. Alkaline treatment of HY, whose
effect on XRD patterns is shown in figure S1, reveals a direct correlation in the loss of crystallinity with NaOH
solution concentration, with relative crystallinity quantified in table 1. This treatment induces the hydrolysis
of Si–O–Al bonds, leading to the creation of Si-OH and Al-OH species, resulting in the breakdown, at least
partially, of the zeolite framework and the creation of extra porosity [60]. It is this disruption of the unit cell
long-range order that results in the loss of crystallinity observed. Under the more extreme conditions, NaOH
concentrations⩾0.055 M, the solid is converted into an amorphous alumina silicate state and thus no longer
a zeolitic material, consistent with studies by García et al [61] and Zhu et al [62]. Figure S1(b) shows aqueous
sulfonation of HY zeolites resulted in significantly less of an impact relative to the alkaline treatment, with,
where the zeolite framework was still present in the support it was preserved post sulfonic acid deposition.
Interestingly, though, a greater degree of crystallinity loss occurs when grafting in water rather than toluene,
which coincides with a greater degree of sulfur incorporation. We attribute this to an increase in grafting sites
generated by further hydrolysis of the framework (as identified by the drop in crystallinity in table 1).

N2 adsorption-desorption isotherms of the four commercial zeolites and their corresponding sulfonated
versions are shown in figure 2. All exhibit IUPAC type IV isotherms, with H4 hysteresis, indicative of
mesoporosity. While the original structure remains after sulfonic acid functionalisation, concurring with
XRD findings, the volume of mesoporosity decreases (less apparent hysteresis), with quantitative analysis
summarised in table 1. Surface areas, total and external (which incorporates mesopores and macropores),
and pore volumes, both microporous and mesoporous, all decline after sulfonation. The impact is greatest
for SO3H/HY-H2O, which coincides with it possessing the highest sulfur loading (table 1), with a reduction
of 84% in total surface area and a 52% decrease in total pore volumes. A direct correlation between the
degree of grafting, i.e. sulfur incorporation, and a decrease in porosity is clear, as shown in figure S2 [63].
Thus, the drop in porosity is indicative of either incorporation of acid sites within the pores or grafting
across them, i.e. capping them, an issue more likely to impact microporosity. Sulfur content from CHNS
elemental analysis, reported in table 1, reveals an increase in grafting efficiency when switching grafting
solvent to water, consistent with the work of Pirez et al [24]. Furthermore, as shown in figure S3, S loading
displays the direct linear correlation with increased acid site loading, i.e. consistent with S incorporation
introducing new acidity. FTIR spectra of pyridine adsorption for HY and SO3H/HY-H2O, presented in figure
S4, reveal IR bands at∼1545 cm−1, 1490 cm−1 and 1450–1445 cm−1 for the parent zeolite, confirming the
existence of both Lewis and Brønsted acidity. In contrast, the grafting of sulphonic acid groups, i.e. in
SO3H/HY-H2O, results in the loss of Lewis acidity, with no peak observed at 1450–1445 cm−1. Thus, grafting
positively influences the Brønsted acidity of the catalysts, which in turn should be beneficial in the
promotion of fructose dehydration.

Figure S5 displays N2 adsorption–desorption isotherms of the hierarchical HY series and their
corresponding sulfonated versions. Desilication at low NaOH concentrations, i.e. HY-0.001 and HY-0.01,
results in retention of the type IV isotherms with H4 hysteresis of the parent HY zeolite, in agreement with
XRD and further evidence that the framework architecture is not negatively impacted. As observed
previously, acid site grafting within these two zeolites results in a drop in porosity (table 1). In contrast, HY
zeolites treated with higher NaOH concentration show a transition from H4 to H1 hysteresis, with a
significant increase in mesopore volume and a simultaneous drop in microporosity. This is evidence of a
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Figure 1. XRD patterns of (a) HY and SO3H/HY-Tol, (b) HBeta and SO3H/HBeta-Tol, (c) HZSM5 and SO3H/HZSM5-Tol, and
(d) HMOR and SO3H/HMOR-Tol.

Table 1. Characterisation of catalysts to show various physicochemical properties.

Catalysts
Crystallinity
(%)

SBET
(m2 g−1)

Sexternal
a

(m2 g−1)
Vmicro

a

(cm3 g−1)
Vmeso

b

(cm3 g−1)

Sulfur
contentc

(%)

Acid
capacityd

(µmol g−1)

HY 100 813± 81 225± 23 0.27± 0.03 0.27± 0.03 — 7.3± 0.4
SO3H/HY-Tol 91 372± 37 90± 9 0.13± 0.01 0.12± 0.01 4.2± 0.001 29.8± 1.3
SO3H/HY-H2O 79 127± 13 40± 4 0.04 0.08± 0.01 5.2± 0.002 42.4± 1.0
HBeta 100 539± 54 139± 14 0.18± 0.02 0.12± 0.01 — 9.5± 0.3
SO3H/HBeta-Tol 100 380± 38 52± 5 0.15± 0.02 0.08± 0.01 2.9± 0.001 24.9± 0.6
HZSM5 100 374± 37 111± 11 0.12± 0.01 0.14± 0.01 — 23.4± 0.7
SO3H/HZSM5-Tol 100 161± 16 76± 8 0.04 0.10± 0.01 0.8 24.3± 1.0
HMOR 100 520± 52 92± 9 0.19± 0.02 0.12± 0.01 — 37.6± 1.0
SO3H/HMOR-Tol 100 422± 42 57± 6 0.16± 0.02 0.12± 0.01 0.8 50.7± 1.1
HY-0.001 44 755± 76 188± 19 0.26± 0.03 0.36± 0.04 — 8.6± 2.1
HY-0.01 43 785± 79 237± 24 0.25± 0.03 0.38± 0.04 — 6.7± 0.8
HY-0.055 −e 145± 15 127± 13 0 0.47± 0.05 — 1.8± 0.3
HY-0.1 −e 158± 16 156± 16 0 0.48± 0.05 — 1.7± 0.3
SO3H/HY-0.001-H2O 31 224± 22 86± 9 0.06± 0.01 0.16± 0.02 5.7± 0.002 46.6± 0.1
SO3H/HY-0.01-H2O 31 221± 22 49± 5 0.11± 0.01 0.19± 0.02 5.1± 0.002 42.8± 0.0
SO3H/HY-0.055-H2O −e 69± 7 69± 7 0 0.22± 0.02 2.9± 0.001 24.2± 2.2
SO3H/HY-0.1-H2O −e 72± 7 66± 7 0 0.22± 0.02 3.1± 0.001 24.7± 2.4
a by t-plot method.
b Vmeso = Vtotal (BET) − Vmicro(t-plot).
c determined by CHNS analysis.
d determined by ion exchange and pH measurement.
e destruction of the crystalline phase by the treatment yields an amorphous structure.
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Figure 2. N2 adsorption-desorption isotherms: (a) HY, SO3H/HY-Tol and SO3H/HY-H2O, (b) HBeta and SO3H/HBeta-Tol, (c)
HZSM5 and SO3H/HZSM5-Tol, (d) HMOR and SO3H/HMOR-Tol.

significant transformation of the porous nature of the materials and is consistent with the complete atomic
level restructuring shown by XRD. Furthermore, this restructuring results in a simultaneous drop in total
surface area and an increase in average mesopore diameter (figure S6), jumping from 3.8 nm (HY, HY-0.001,
and HY-0.01) to 6.5 nm and 7.8 nm for HY-0.1 and HY-0.055, respectively. However, even with such
dramatic changes in pore framework structure, grafting of sulfonic acid sites still imparts a drop in porosity.

SEM, shown in figures S7–S9, reveals that neither sulfonation nor NaOH treatment impacts zeolite
morphology [21, 64]. For example, it is possible to observe retention of the octahedral morphology of all
materials corresponding to the faujasite type zeolite, even where XRD confirm complete destruction of the
zeolite crystalline framework, i.e. for NaOH treatment at concentration⩾0.055 M. Moreover, the average
particle size shows no significant change in size (the largest decrease in size being only 20% for HY-0.055).
Thus, where destruction of the micropore framework does occur, it does not lead to a complete restructuring
of the alumina-silicate particle. Furthermore, the absence of observing a second solid species, post-sulfonic
acid grafting, discredits the possibility of the inherent acidity of the zeolite support catalysing the
self-condensation MPTMS.

The nature of the grafted sulfur species was probed by x-ray photoelectron spectroscopy (XPS), allowing
for qualitative and quantitative analysis [65, 66]. Figure S10 illustrates two sulfur species present: a high
binding energy species at∼168.5 eV, consistent with sulfonic acid (R-S(=O)2-OH) [65, 66], and a second at
∼163.5 eV, corresponding to thiol (-SH) functional groups [65]. In all cases, the second species (thiol) was
the minor species with a relative amount of less than 10%.

3.2. Catalytic activity
Reaction condition evaluation was performed by evaluating the green credentials of the parent HY zeolite
under various ratios of the biphasic reaction media (figure S11). An aqueous-to-organic volume ratio of 1:2
is shown to be favourable, including surpassing the current state-of-the-art (table S1), with the highest PR of
1.96. a reduction in the use of organic solvents, and elimination of the use of DMSO [12, 13, 67, 68].
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Figure 3. (a) Fructose conversion, (b) HMF yield (as a function of reaction time) over four non-sulfonated zeolites (HY, HBeta,
HZSM5 and HMOR) and their sulfonated versions from fructose dehydration. Reaction conditions: 5 wt% fructose, 2 wt%
catalyst loading, 3 cm3 water/4.2 cm3 MIBK: 1.8 cm3 2-BuOH, 160 ◦C, 800 rpm, microwave irradiation. The lines represent the
trend of fructose conversion and HMF yield as a function of reaction time and are added to aid visualisation.

Fructose dehydration over the commercial zeolites and their sulfonated equivalents using optimal
biphasic conditions are shown in figure 3, with fructose dehydration promoted over all catalysts relative to a
blank reaction. Despite HMOR possessing the highest Brønsted acidity (table 1) of the parent zeolites, its
performance is the poorest, whilst HY and HZSM5 achieve the highest conversion, which in part is
attributed to their greater mesoporosity. However, acidity (accessibility and/or strength) is also likely critical,
given the significant difference in TOFHMF production of 42 (HZSM5) vs 480 (HY) h−1 (table 2). Thus, HY is
more effective in utilising its inherent acidity for fructose dehydration. While this may reflect the fact that it
possesses the largest micropore size, they are still smaller than the substrate, especially for a hydrated species
[69]. Thus, it is more likely that the elevated mesoporosity of HY is the major contributing factor (table 1
and figure S6).

The positive impact of sulfonation on all zeolites is prominent, with increases of up to∼300% for
SO3H/HBeta-Tol. Moreover, TOFs (table 2) further demonstrate the benefit, which, given this account for
acid site loadings, the enhancement can only reflect the greater intrinsic activity of the sulfonic acid sites.
This, in turn, means that the Brønsted acid sites of the sulfonic acid are more effective than those originating
from the zeolite framework. This arises either from differences in acid strength, which, due to the low
thermal stability organic functional group cannot be evaluated by TPD, or accessibility, likely given these
sites (due to size) are expected to be predominately within the complementary mesopores present within the
zeolites and on external surfaces [33]. However, a combination of the two is also a possibility. Of the four
different zeolite frameworks, sulfonic acid functionalised HY (SO3H/HY-Tol) exhibits optimal green
credentials with the lowest E-factor (1.24), PMI (119.75), ξ (139.84) and highest ε (0.00886) and thus is
identified as the ideal candidate for further catalyst development studies.

Switching grafting solvent from toluene to water not only addresses catalyst synthesis sustainability, at
least partially, but also positively impacts catalyst activity. A significant increase in the initial reaction rate
(table 2) is achieved, driven in part by greater grafting efficiency. That is, water increases the density of
sulfonic acid sites, which are likewise present, to a higher degree, within accessible mesopores and on
external surfaces. However, this higher acid site loading consequently leads to reduced HMF yields after
20 min (figure S12), arising from increased side reactions (figure S13), i.e. humin formation from self and
cross (with fructose) polymerisation, which Brønsted acid sites also facilitate, alongside minor levels of
formic and levulinic acids from hydration, glucose from isomerisation, and furfural.

The catalytic performance of the alkaline-treated HY zeolites and their corresponding sulfonated versions
are reported in table 2 and figure 4. Where the intrinsic zeolite framework is retained, namely HY-0.001 and
HY-0.01, conversion and yield improve relative to HY, which is accredited to their greater mesopore volumes
(note comparable acid loading for all three), leading to enhanced internal mass transfer. This is further
apparent from the TOFs, which show up to a 50% increase with regard to HMF production. Conversely, for
HY-0.055 and HY-0.1, in which the zeolite framework is destroyed, poorer performance is observed due to
the loss of acid sites. However, the greater accessibility of the acidity that is retained, reflected by large
mesopore volumes from N2 sorption isotherms, does result in greater TOFs, indicating that accessibility truly
is key, especially when the majority of the acid sites are residing within micropores as is the case for the
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Table 2. Fructose consumption and HMF production TOFs were calculated using rate over initial 5 min and total and sulfonic acid site
loadings, respectivelya.

Catalyst

Fructose
conv rate

(µmol min−1)
TOF fructose conversion

(min−1)b
HMF production
rate (µmol min−1)

TOF HMF production

(min−1)b

Blank 4.42± 0.13 / 0.7± 0.01 /
HY 3.98± 0.14 9.1± 0.46 3.5± 0.10 8.0± 0.40
SO3H/HY-Tol 56.36± 1.69 31.5± 1.58

(22.4± 1.12)
45.4± 1.36 25.4± 1.27

(17.4± 0.87)
SO3H/HY-H2O 116.65± 3.50 45.8± 2.29

(36.7± 1.84)
85.7± 2.57 33.1± 1.65

(25.7± 1.28)
HBeta 0.41± 0.01 0.7± 0.04 2.0± 0.06 3.6± 0.18
SO3H/HBeta-Tol 49.70± 1.49 33.2± 1.66

(33.3± 1.67)
19.6± 0.59 13.1± 0.65

(9.5± 0.48)
HZSM5 1.99± 0.06 1.4± 0.07 1.0± 0.03 0.7± 0.04
SO3H/HZSM5-Tol 8.47± 0.25 5.8± 0.29

(4.4± 0.22)
3.1± 0.09 2.1± 0.11

(1.4± 0.07)
HMOR 0.32± 0.01 0.1± 0.01 1.1± 0.03 0.5± 0.02
SO3H/HMOR-Tol 5.06± 0.05 1.7± 0.08

(1.5± 0.08)
7.9± 0.24 2.6± 0.13

(2.1± 0.11)
HY-0.001 4.74± 0.14 9.2± 0.46 5.6± 0.17 13.3± 0.66
HY-0.01 4.74± 0.14 11.8± 0.59 5.1± 0.15 14.1± 0.71
HY-0.055 2.91± 0.03 26.9± 0.42 1.5± 0.05 16.0± 0.80
HY-0.1 2.74± 0.08 26.9± 1.34 1.6± 0.05 18.0± 0.90
SO3H/HY-0.001-H2O 110.54± 3.32 39.5± 1.98

(30.3± 0.65)
85.7± 2.57 30.6± 1.53

(17.4± 0.87)
SO3H/HY-0.01-H2O 117.04± 3.51 45.5± 2.28

(33.7± 0.65)
88.0± 2.64 34.2± 1.71

(20.1± 1.00)
SO3H/HY-0.055-H2O 85.62± 2.57 58.9± 2.95

(32.0± 0.65)
65.6± 1.97 45.1± 2.26

(29.1± 1.45)
SO3H/HY-0.1-H2O 92.02± 2.76 62.2± 3.11

(35.3± 0.65)
68.3± 2.05 46.1± 2.31

(28.1± 1.41)

a Each reaction was performed at 160 ◦C with 0.06 g of catalyst, 3 cm3 water/4.2 cm3 MIBK: 1.8 cm3 2-BuOH.
b Value in parenthesis reflects the contribution from sulfonic acid groups only.

Figure 4. (a) Fructose conversion, (b) HMF yield (as a function of reaction time) over alkaline-treated HY zeolites and their
corresponding sulfonated versions using water as the grafting solvent from fructose dehydration. Reaction conditions: 5 wt%
fructose, 2 wt% catalyst loading, 3 cm3 water/4.2 cm3 MIBK: 1.8 cm3 2-BuOH, 160 ◦C, 800 rpm, microwave irradiation. The
lines represent the trend of fructose conversion and HMF yield as a function of reaction time and are added to aid visualisation.

parent HY. As previously, grafting sulfonic acids elevates catalytic activity; however, the introduction of extra
mesoporosity via NaOH treatment of the parent zeolite did not show any further benefit, e.g.
SO3H/HY-0.001-H2O and SO3H//HY-0.01-H2O perform comparably with SO3H/HY-H2O. This is proposed
to arise due to desilication occurring throughout the zeolite framework, i.e. some of the extra mesoporosity
generated is only accessible via micropores, and thus, these extra mesopores are not as accessible as
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Table 3. Energy efficiency and green metrics of HMF production from fructose at optimal reaction times based on HMF yields over
SO3H/HY-H2O catalystsa.

Reaction
temp (◦C)

Reaction
time (min)

HMF yield
(µmol)

Consumed
energy (kJ)

Energy
efficiency

(µmol kJ−1 l−1) E-factor
εMol ◦C−1

min−1 ξ

140 75 502 547 102 1.37 5.74× 10−3 238
150 45 516 360 159 1.30 9.19× 10−3 142
160 10 533 122 484 1.23 4.00× 10−3 31
170 5 537 86 691 1.21 7.59× 10−3 16

a Reaction conditions: 5 wt.% fructose, 2 wt.% catalysts loading, 3 cm3 water/4.2 cm3 MIBK: 1.8 cm3 2-BuOH, 800 rpm, microwave

irradiation.

mesopores generated from the surface of the zeolite or the external surface of the zeolite. In contrast,
SO3H//HY-0.055-H2O and SO3H//HY-0.1-H2O initially show significantly lower conversion and HMF
yields, resulting from the collapsed pore framework and lower surface area, resulting in lower S/Acid
loadings. However, the reduced acidity is beneficial to HMF yield at extended reaction times, greater than
20 min, with reduced humin formation compared with SO3H/HY-0.001-H2O and SO3H//HY-0.01-H2O
(figure S13). A comparison of TOFs reveals an identical trend to the parent zeolites, i.e. the destruction of the
zeolite framework is not detrimental to the normalised activity. This is further proof that the overall catalyst
performance is governed by acidity, be it from sulfonic or alumina silicate species, on the external surface
and within accessible mesopores, i.e. the more facile diffusion to these sites is key. Finally, common TOFs
from the sulfonic site alone, across the parent and desilicated HY series, is clear evidence of comparable
activity of the grafted sulfonic sites, and thus their deposition must be in comparable accessible pores,
i.e. within mesopores and not micropores.

Assessment of grafting success, through elemental analysis (CHNS), reveals sulfonic acid grafting is
significantly less than 100% efficient, with SO3H/HY-H2O exhibiting a sulfur loading of 5.23%, i.e. only
∼15% of the MPTMS is actually grafted onto the zeolite with its use in huge excess. To investigate this and
the possibility for more efficient usage of MPTMS, a series of catalysts based on the HY zeolite with
theoretical loadings varied from 100% to 10% (assuming 100% grafting efficiency) was produced under
identical conditions, being denoted as 0.5% S (10%), 1.1% S (40%), 2.6% S (70%), 4.1% S (100%),
respectively. The resulting S and acid loading are reported in table S2 and, as shown in figure S14, reveal a
strong linear increase in acid loading with S content (as expected). Moreover, an extrapolated intercept of the
trendline (7.4 µmol g−1) is in excellent agreement with the inherent Brønsted acidity of HY parent zeolite
(7.3 µmol g−1), indicating that the Brønsted sites within the zeolite micropores are not sites for grafting,
consistent with the findings of Mitchell et al [33]. The impact of varying MPTMS on the performance of the
resulting catalysts for fructose dehydration is displayed in figure S15. The less than 100% efficiency of the
grafting process (table S2) accounts for lower conversions and yields than expected; however, a comparison
of TOFs reveals a common TOF across the series, and therefore, the differences in conversion are solely a
result of decreased acid site loadings.

Figure S16 shows the impact of reaction temperatures on the catalytic dehydration of fructose. At
elevated temperatures,⩾160 ◦C, and in the presence of SO3H/HY-H2O-24 h, HMF yields display a volcano
plot as a function of time whilst fructose conversion continues to increase. This drop in preference towards
HMF, with extended reaction times, is further evidence of the undesirable formation of humins and other
by-products [12, 70, 71]. Dropping reaction temperature to 150 ◦C and below hinders the rate of fructose
dehydration but beneficially impacts HMF selectivity, although with optimal HMF yields taking considerably
longer (table 3), with the increase in time outweighing any energy savings from running at lower
temperatures. An optimal reaction temperature and time of 170 ◦C and 5 min achieves the greatest energy
efficiency and greenest credentials of catalytic processes, giving rise to a process energy efficiency of
691 µmol kJ−1 l−1, exceeding that of our previous study by a factor of∼6 [12].

Further insight into the conversion of fructose over SO3H/HY-H2O is revealed from reaction kinetics,
with kinetic profiles from fructose conversion at differing reaction temperatures, for systems with and
without SO3H/HY-H2O (figures 5 and S17), employed to evaluate kinetic parameters, i.e. rate constants,
reaction orders, and activation energies. First-order kinetics for fructose conversion are confirmed, with
activation energy (Ea) and pre-exponential factor (A), derived from Arrhenius plots, with SO3H/HY-H2O
(141 kJ mol−1,1.83× 1016 min−1) exhibiting a comparable Ea to values reported for strong homogeneous
acid catalysts (namely HCl) [72, 73].

Catalyst reusability was investigated under optimised reaction conditions, with the corresponding results
shown in figure 6. Whilst initial retainment of performance was observed (run 2), an increasing drop in
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Figure 5. (a) Kinetic profiles of fructose-to-HMF conversion over SO3H/HY-H2O catalysts; (b) Arrhenius plot of the formation of
HMF from fructose over SO3H/HY-H2O catalysts. Reaction conditions: 5 wt.% fructose, 2 wt.% catalysts, 3 cm3 water/4.2 cm3

MIBK: 1.8 cm3 2-BuOH, 800 rpm, microwave irradiation.

Figure 6. The reusability of SO3H/HY-H2O for HMF production from fructose. Reaction conditions: 5 wt.% fructose, 2 wt.%
catalysts, 3 cm3 water/4.2 cm3 MIBK: 1.8 cm3 2-BuOH, 800 rpm, 170 ◦C, 5 mins, microwave irradiation.

HMF yield occurred over runs 3–5, with TOF dropping to less than 20% of the fresh catalyst (table S4). This
decline is attributed to two factors: (i) deposition of humins on the catalyst, which water nor acetone can
remove, leading to pore and active site blockage, as confirmed by an increase in carbon content, and (ii)
decreased S loading, due to C deposition, S leaching, or a combination (table S4). Gupta et al [21] and Bisen
et al [19] have reported the use of H2O2 to regenerate the activity of sulfonic acid catalytic sites. Replicating
this reactivation approach, under identical conditions to the original synthesis, restored SO3H/HY-H2O to its
initial white colour and reinstated∼90% of initial performance. Moreover, the successful regeneration of the
catalyst via H2O2 treatment confirms that the deactivation initially observed arises from C deposition and
not leaching of the sulfonic acid functionality.

The potential of the optimal SO3H/HY-H2O catalyst was explored for its performance towards the
conversion of glucose, being benchmarked against a blank reaction under the optimal condition identified
from the fructose studies (figure S18). This represents a further step in lignocellulose valorisation, with
glucose seen as the precursor to fructose, via isomerisation, in the overall process. There is clearly a significant
impact resulting from the presence of SO3H/HY-H2O, with conversion increasing by a factor of 2.5, whereas
HMF yield shows an increase of a factor of 10. Thus, while SO3H/HY-H2O is only mildly effective in
promoting glucose conversion, due to the absence of Lewis acidity (figure S4), it significantly impacts HMF
production. Thus, the aim would appear to be the engineering of catalytic systems with a balance of Lewis
acidity (for glucose isomerisation) and Brønsted acidity (for fructose dehydration) if expanding HMF
production beyond fructose to glucose and glucose-containing carbohydrates is to be realised.

Benchmarking the overall sustainability of the catalytic process against current state-of-the-art solid acid
catalysts reported is depicted in figure 7, with full details in table S5. The coupling of SO3H/HY-H2O within
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Figure 7. Comparison of green metrics of different solid acid catalysts for catalytic fructose dehydration into HMF employing
biphasic reaction media. For clarity, only the Top 10 lowest ξ studies are shown in the plot. Full data are listed in table S5.

a biphasic reaction media under microwave irradiation performs highly favourably, increasing the
sustainability of the process [52, 53, 55], relative to other zeolites [11, 12, 43], and while SAPO-44 [74] does
show superior HMF yields, longer reaction times harm its claim for being a more sustainable system owing
to increased energy use. Likewise, SO3H/HY-H2O is preferable to other sulfonic acid-based catalysts, e.g. via
deposition on MCM-41 [75] and SBA-15 [76].

4. Conclusions

The development of a sustainable chemical industry demands innovative use of current catalytic materials, in
particular for biomass conversion to chemicals of interest, such as HMF. Zeolites and hierarchical zeolites,
the latter resulting from the enhanced introduction of complementary mesoporosity, represent ideal
candidates for functionalisation with sulfonic acid sites, which in turn are prime of subsequent deployment
in fructose dehydration. Increased highly accessible mesoporosity facilitates sulfonic acid incorporation,
which elevates fructose conversion and maximises HMF yields, with the additional acidity from sulfonic acid
sites dramatically enhancing catalytic performance relative to the inherent acidity of the zeolite framework.
However, yields from the sulfonic acid functionalised materials are highly sensitive to reaction duration, with
extended durations imparting a negative influence on yields from the further reaction of HMF into
carboxylic acids and humins. Catalyst performance within a biphasic reaction medium (water/MIBK:
2-BuOH (7:3)) under microwave irradiation, with the optimal catalyst (SO3H/HY-H2O), leads to 64% HMF
yields within only 5 min at 170 ◦C, which results in optimal green credentials, specifically energy economy
coefficient (7.59× 10−2), due to the significantly reduced reaction duration. Moreover, the destruction of
the zeolite framework via harsher desilication conditions is shown not to be excessively detrimental to the
resulting performance of supported sulfonic acid sites, with TOFs comparable irrespective of the support they
are grafted to. This indicates that accessibility is key, given that these can be predicted not to reside within
micropores due to their size. A final benefit of sulfonic acid incorporation as a route to catalyst production
for fructose dehydration to HMF is facile catalyst reactivation through stirring in an aqueous H2O2 solution.
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