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• The accuracy of isoscapes, including 
machine learning isoscapes, cannot be 
assumed

• Increasing data points showed dimin
ishing returns in improving isoscape 
accuracy

• Low root mean squared error did not 
indicate isoscape accuracy for new data 
points

• The generalizability of strontium iso
scapes across archives requires further 
research

• Isoscapes should be validated before 
they are used for interpretation
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A B S T R A C T

Strontium isotope analysis is widely used to evaluate the provenance and mobility of biological specimens. 
Frequently applied in archaeology, palaeontology, ecology, forensics, and food science, strontium isotope 
analysis compares the 87Sr/86Sr ratio of a specimen against a strontium isoscape – a representation of expected 
87Sr/86Sr ratios across a landscape – to identify areas that are more and/or less likely to be the source of the 
specimen. Strontium isoscapes are built using different methods, but all approaches start with empirical 87Sr/86Sr 
ratios sampled from areas with known coordinates and use them to assign likely 87Sr/86Sr ratios to unknown 
areas. Following the publication of Bataille et al., 2018 and Bataille et al., 2020, machine learning using a 
random forest algorithm has become a common method of producing strontium isoscapes. Despite the recog
nition that this method requires training with local ratios, especially in geologically complex regions, very little 
work has evaluated machine learning isoscapes’ accuracy. This study compares and evaluates two previously 
published machine learning isoscapes of Sardinia against new empirical data provided by the project ZANBA. 
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The ZANBA data is then used to create a third machine learning map of Sardinia, which is tested against pre
viously published empirical data. The three isoscapes show different levels of predictive accuracy, with more 
primary data points leading to more correct predictions. However, a densely sampled landscape did not create an 
isoscape that gave substantially more accurate predictions than a moderately densely sampled landscape when 
tested against primary data from outside the original sampling areas. Areas of an isoscape with low root mean 
squared error (RMSE), which is often interpreted as indicating accuracy, did not necessarily give more correct 
predictions. Finally, a machine learning isoscape of Sardinia that incorporates both new and previously pub
lished empirical data is presented.

1. Introduction

Strontium isotope analysis is widely used to understand locations of 
origin and patterns of mobility in archaeology, palaeontology, ecology, 
forensics, food studies, and other disciplines. Interpreting the results of 
strontium (Sr) isotope analysis of biological specimens requires 
comparing analyzed ratios against a baseline map or isoscape, a repre
sentation of expected bioavailable 87Sr/86Sr ratios across a geographical 
area. Bioavailable Sr refers to the Sr that can be taken up from bedrocks, 
sediments, and dusts by living organisms and incorporated into their 
tissues. For many applications, mapping the bioavailable Sr of plants, 
animals, and humans is most relevant; this bioavailable Sr comes pri
marily from sediments and waters. However, for some applications, it 
may be relevant to consider the bioavailable Sr of organisms that can 
take Sr more directly from rocks and dust.

Isotopic baseline maps and isoscapes are created using three main 
methods: domain mapping, contour mapping, and machine learning 
(ML, see (Holt et al., 2021) for a review of these methods). While each of 
these methods has advantages and disadvantages, an important advan
tage of contour mapping and ML is their ability to produce an isoscape 
for a large area based on a small number of directly analyzed samples. 
Undertaking isotopic analysis of primary samples is time consuming and 
can be logistically challenging, while processing a large number of 
samples may be prohibitively expensive. For these reasons, contour 
mapping and – increasingly – ML have become the preferred methods for 
producing isoscapes (Janzen et al., 2020; Scaffidi et al., 2020; Serna 
et al., 2020; Barbarena et al., 2021; Funck et al., 2021; Lazzerini et al., 
2021; Reich et al., 2021; Kramer et al., 2022; Käßner et al., 2023; Wang 
et al., 2023; Tarrant et al., 2024). However, a drawback of using contour 
mapping and ML isoscapes to interpret the results from additional 
samples is that it is difficult to assess how accurately an isoscape reflects 
the actual distributions of isotopic bioavailability in nature without 
widespread primary analysis, which is precisely what contour mapping 
and ML isoscapes were developed to avoid. Consequently, studies that 
empirically assess the predictive performance of ML maps remain rare.

This study addresses this issue using the island of Sardinia as a case 
study. New, high-density empirical data provided by the project ZANBA: 
Zooarchaeology of the Nuragic Bronze Age is used to evaluate and 
compare the predictive accuracy of two previously published ML 
87Sr/86Sr isoscapes of Sardinia that operate at different scales. These 
comprise Bataille et al.’s global isoscape (Bataille et al., 2020), which 
was developed with five primary data points from Sardinia, and Gigante 
et al.’s isoscape of southern Sardinia (Gigante et al., 2023), which in
cludes 30 primary data points. Next, we use the ZANBA data to build a 
new ML isoscape for Sardinia. We then test the ZANBA isoscape as well 
as the Bataille et al. global isoscape using the empirical data from 
Gigante et al. This assesses the performance of a ML approach to pro
ducing isoscapes when different types, numbers, and distributions of 
primary data points are used to train the model. Finally, we combine the 
ZANBA data and the Gigante et al. data to build a ML isoscape based on 
all the 87Sr/86Sr plant ratios currently available.

2. Previous research

2.1. Isoscape production

Isotopic analysis for the purpose of identifying the provenance and/ 
or mobility patterns of biological specimens has been part of many 
disciplines’ toolkits since the 1980s (Chisholm et al., 1986; Ericson, 
1985; Graustein and Armstrong, 1983; Sealy et al., 1986). As more 
research was undertaken, the requirement of being able to relate the 
results of isotopic analysis to specific geographical locations or areas 
became increasingly apparent (Grupe et al., 1997; Price et al., 1994). In 
the 2000s, the use of isoscapes emerged (Bowen and Wilkinson, 2002; 
Bowen and Revenaugh, 2003; Dutton et al., 2005; Lykoudis and Argir
iou, 2007; van der Veer et al., 2009), referring to maps of isotopic 
variation across regions that are produced by iteratively applying pre
dictive models that estimate the local isotopic composition of environ
mental materials using empirical values from known coordinates 
(Bowen, 2010). Isoscapes were rapidly utilized to assess provenance and 
mobility of biological specimens (Fenner and Frost, 2009; Graham et al., 
2010; Hobson et al., 2010; Rogers et al., 2012; Trueman et al., 2012). 
Major debates about issues such as the nature of immigration in the past 
continue to arise in the application of isoscapes (Madgwick et al., 2019; 
Barclay and Brophy, 2020; Madgwick et al., 2021; Evans et al., 2022), 
highlighting the need for isoscapes to be both accurate and interpreted 
correctly.

2.2. Machine learning in isoscape production

Compared to traditional geostatistical tools, such as Kriging inter
polation, ML models exploit labelled datasets, including environmental 
and geological information, to predict the isotopic ratios of areas with 
similar features over a predetermined spatial range. Specifically, pio
neering works on the application of ML to predict isotopic distribution 
showed that Random Forest (RF) regression provides the lowest pre
diction errors (Bataille et al., 2018). RF is a tree-based supervised ML 
algorithm that builds numerous random decision trees with boot
strapped subsets of the original variables and observations. In addition 
to their superior performance, RF models offer another benefit, namely 
the capability to extract information directly from the dataset, specif
ically identifying which variable best predicts the Sr isotope ratio. This 
feature enables RF models to offer insights into the local Sr cycle, aiding 
in the identification of primary sources of bioavailable Sr. So far, RF has 
been used to model Sr isotope data from several regions worldwide 
(Barbarena et al., 2021; Funck et al., 2021; Käßner et al., 2023; Wang 
et al., 2023; Bataille et al., 2020; Gigante et al., 2023; Bataille et al., 
2018; Armaroli et al., 2024).

2.3. Strontium isoscapes of Sardinia

Four recent strontium isoscapes have included or addressed Sardinia 
(Bataille et al., 2020; Gigante et al., 2023; Emery et al., 2018; Lugli et al., 
2022), though only one has Sardinia as a research focus (Gigante et al., 
2023). Emery et al. offer the first 87Sr/86Sr isoscape specifically for Italy, 
including Sicily and Sardinia (Emery et al., 2018). Their isoscape uses 
inverse distance weighting to interpolate between 199 sampled Sr 
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isotope ratios and covers a total land area of 294,140 km2 (Central In
telligence Agency, 2023), averaging one known Sr isotope ratio per 
1478 km2. The values come from published studies of diverse strontium 
archives, including sediments, spring waters, archaeological human and 
faunal remains, and modern foodstuffs. The authors acknowledge the 
problems inherent in combining values for bioavailable and non
bioavailable Sr and offer their map as a preliminary first step in prov
enance and mobility studies in Italy.

While Emery et al.’s sampled Sr isotope ratios are geographically 
well distributed for much of peninsular Italy, the isoscape for Sardinia is 
based on a small number of tightly clustered values, placing almost the 
entirety of Sardinia within a single 87Sr/86Sr range (0.7123–0.7157). 
These results are not problematic for Emery et al.’s research goals, which 
do not include Sardinia, but they do mean that Emery et al.’s isoscape 
does not provide sufficient resolution for even preliminary provenance 
and mobility studies on Sardinia. The Emery et al. isoscape is therefore 
not evaluated in this study.

Bataille et al.’s global Sr isoscape (Bataille et al., 2020) offers another 
possibility for interpreting empirical results from Sardinian samples. 
Their isoscape is offered as an advance toward more accurate isoscape 
development rather than as a finished product for any specific area: the 
authors explicitly recommend their isoscape for broad scale approaches, 
particularly for informing where additional targeted sampling for spe
cific research questions should be undertaken, and they note that the 
extrapolation may not be valid in geologically complex and data-poor 
regions, both of which would characterize Sardinia at the time they 
produced the isoscape. Only five empirical values from Sardinia were 
incorporated into the production of the global isoscape, all of which 
were taken on rock. We therefore acknowledge that by evaluating the 
Bataille et al. isoscape against empirical plant data from Sardinia, we are 
not using directly comparable data. However, the global map was 
intended for broader use than predicting lithological values, and the fact 
that an isoscape is now available for the entire globe has prompted its 
relatively widespread use for interpretation, sometimes without addi
tional training or validation. It is therefore useful to consider the results 
of such an application in a geologically diverse area such as Sardinia.

Lugli et al. (Lugli et al., 2022) offer an isoscape of Italy that is an 
expansion of Emery et al.’s database, using both novel and previously 
published data to arrive at 1920 sampled values from 777 locations, an 
average of one empirical value per 387 km2. The sampled values include 
both bioavailable and nonbioavailable sources of Sr. To interpolate their 
isoscape, Lugli et al. employ Ordinary Kriging and Universal Kriging, 
this latter drifted by a geolithological map built ad-hoc. They 
acknowledge that bioavailable Sr data is preferable when building iso
scapes to provenance biological tissues, and therefore produce two 
maps, one using exclusively bioavailable data and one that includes both 
bioavailable and nonbioavailable Sr ratios. Overall, they find that Uni
versal Kriging with external drift produced the best map, with the lowest 
root mean squared errors (RMSE) being associated with the Universal 
Kriging map based on the bioavailable samples, although the difference 
was not substantial.

With respect to Sardinia specifically, Lugli et al.’s isoscape does not 
improve substantially on Emery et al.’s isoscape. Lugli et al. include one 
additional Sr isotope ratio from the northwest of the island, but other
wise they rely on the same five tightly clustered samples used by Emery 
et al. Lugli et al. acknowledge that the number of samples for Sardinia is 
insufficient, and they exclude Sardinia from their Ordinary Kriging 
interpolation. They also note that the largest model errors for their maps 
come from Sardinia and Sicily due to the low numbers of values for these 
areas. Their interpolated Sr isotope ratios for Sardinia range approxi
mately 0.7115–0.7143 in the bioavailable map and approximately 
0.7124–0.7147 in the map that includes the nonbioavailable values.

Gigante et al. (Gigante et al., 2023) offer the only previous Sardinia- 
specific isoscape in the literature. Their isoscape covers 5227 km2 of 
southern Sardinia and is built using 30 novel Sr isotope ratios from 
modern plants using a ML approach with a Random Forest algorithm 

based on 6 external predictors selected from a possible 21 by the VSURF 
R package. The sampling density of the map is 1 sample per 174 km2 

with the samples clustered primarily around the east and south coasts of 
Sardinia’s Sulcis region. The modelled values range between 0.70927 
and 0.71190.

3. Materials and methods

3.1. Selection of the sampling area

The lithology of the island of Sardinia is complex. The Carta Geologica 
di base della Sardegna in scala 1:25.000 (Carta Geologica) (Carta Geologica 
di base della Sardegna in scala 1:25.000, 2008) identifies 777 unique 
bedrock categories that range in age from Quaternary deposits of gravels, 
sands, and silts to Precambrian-Palaeozoic mica-schists. The goal of the 
current study was to produce a densely sampled isoscape, making the 
sampling of the entirety of such a geologically varied island unfeasible. 
The sampling area was therefore defined as the section of Sardinia that 
falls between 39.5◦ and 40◦ N latitude, a total of approximately 6580 km2 

(Fig. 1). Over a third of the age categories of bedrocks on Sardinia iden
tified by the Carta Geologica (Carta Geologica di base della Sardegna in 
scala 1:25.000, 2008) are present in the study area (Fig. 2). Because the 
age of the rock is the most important factor determining its 87Sr/86Sr 
ratio, the study area was judged to provide good regional coverage while 
also serving as a potential starting point for mapping the rest of the island.

The original data in this paper was produced by the Marie Skło
dowska-Curie funded project ZANBA: ZooArchaeology of the Nuragic 
Bronze Age. The sampling area includes the primary archaeological 
site studied by ZANBA, Nuraghe Sa Conca ‘e sa Cresia (Siddi (SU)) 
(Holt and Perra, 2021; Holt et al., 2022), as well as several sites where 
human and animal remains have been the subjects of previous carbon 
(δ13C), nitrogen (δ15N), and oxygen (δ18O) isotope studies (Atzeni 
et al., 2013; Lai et al., 2011; Lai et al., 2014; Lai et al., 2017).

3.2. Defining sampling domains and selecting sampling targets

The defined sampling area included 53 distinct categories of bedrock 
ages as defined by the Carta Geologica (Carta Geologica di base della 
Sardegna in scala 1:25.000, 2008). The Carta Geologica notes some un
certainty about the age ranges assigned to fourteen of these categories; 
these categories were therefore excluded as potential sampling targets. 
All 14 of the excluded categories have correlates that are not considered 
uncertain, making it possible to extrapolate probable strontium isotope 
ratios for them. There was substantial chronological overlap among the 
39 remaining bedrock categories, allowing them to be combined into 
broader groupings.

Strontium isotope ratios in parent bedrocks are mainly determined 
by the original rubidium/strontium content of the bedrock and its age; 
however, some studies have indicated that lithology rather than age is a 
better predictive variable for 87Sr/86Sr ratios (Willmes et al., 2018). We 
therefore grouped our 39 remaining bedrock categories by both age and 
lithology. Because of both the scope of the study and the nature of the 
data in the Carta Geologica (Carta Geologica di base della Sardegna in 
scala 1:25.000, 2008), it was necessary to combine bedrock lithologies 
at different chronological scales, and generally the more recent bedrock 
groupings are more precise. Of the 22 categories that resulted from this 
grouping, four categories covered extremely small portions of the study 
area and were therefore not targeted for sampling: Upper Eocene- 
Oligocene sedimentary; Mesozoic sedimentary; Late Palaeozoic-early 
Mesozoic conglomerates and sedimentary; and Late Palaeozoic lime
stones, metalimestones, and dolomites.

To characterize the strontium isotope ratios of each of the 18 
remaining bedrock categories (Table 1), we selected target sampling 
points throughout the bedrock category. These target points were cho
sen arbitrarily to provide representative spatial distribution across the 
category while avoiding settlements and other areas where recent 
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human activities may have affected the composition of the sediments. A 
total of 128 target points were selected, approximately 1 sample per 52 
km2, making central Sardinia one of the most densely sampled areas for 
the creation of an isoscape globally (Fig. 2).

3.3. Archive selection and field collection

We chose modern plants as the archive to be sampled in preference to 
other commonly used archives such as surface waters, soil leachates, and 
sediments. A general consensus is emerging that, in much of the world, 
plants provide the best sources of bioavailable strontium for modeling 
isotopic values used to provenance terrestrial biological specimens 
(Britton et al., 2020; Evans et al., 2009; Maurer et al., 2012; Ryan et al., 
2018). To minimize the potential effects of outliers, we followed a ho
mogenized plant sampling methodology (Johnson, 2018). The sampling 
process took each target point as the center of a sampling area, which 
was defined as a 500 m radius around the target point. Within each 
sampling area, we selected three sub-sampling locations based, first, on 
a map-based assessment of the presence of vegetation, followed by a 
field assessment of the accessibility of areas with vegetation and the type 
of vegetation contained in the accessible areas. Sub-sampling locations 
were chosen to be as spread out as possible within the sampling area 
while taking into consideration the constraints of time and effort relative 
to their accessibility. Whenever possible, samples were taken as far as 
possible from roads and paths (Ryan et al., 2018). In addition, areas <50 
m from rivers, streams or cultivated areas were avoided whenever 
possible (Britton et al., 2020; Sillen et al., 1998). Private properties, 
military areas, and protected ecological zones created further con
straints in the choice of target points and sub-sampling locations. Use of 
GPS positioning and maps of lithological areas uploaded to a smart
phone device ensured that samples were taken within the targeted 
lithological zones.

We preferred trees and shrubs that were 2–3 m tall for sampling 

because their root depths are more likely to avoid contaminating surface 
treatments (Britton et al., 2020; Johnson, 2018; Hartman and Richards, 
2014), although not all studies have found significant differences be
tween more deep- and more shallow-rooted plants (Willmes et al., 
2018). Whenever possible, we sampled different tree and shrub species 
within a sampling area to avoid exaggerating any potential metabolic 
peculiarities of specific species. For each specimen, an average of ten 
leaves or small branches were collected and stored in a paper envelope. 
Details regarding sample species and sampling area were recorded in- 
field. In particular, we noted when ideal sampling standards could not 
be met (e.g. the sampling area was entirely cultivated, there was an 
absence of 2–3 m vegetation in the sampling area, the samples were 
taken <50 m away from rivers/roads).

3.4. Sample processing

We prepared samples for strontium isotope chemistry in the labo
ratories of Cardiff University BioArchaeology. First, the plants were 
freeze dried. Then, approximately 0.25–0.35 g of each plant was crushed 
by hand while wearing clean nitrile gloves and combined with samples 
of plants from the same sampling area, resulting in a mixed sample of 
approximately 1.0 g. For plant digestion and subsequent strontium 
analysis, samples were transferred to the clean laboratory (class 100, 
laminar flow) of the Cardiff Earth Laboratory for Trace Element and 
Isotope Chemistry (CELTIC). About 0.5 g of each mixed plant sample 
was transferred to a clean beaker and 2 mL of concentrated HNO3 was 
added to begin the digestion process. A lid was placed on each beaker 
and partially tightened, allowing for gas to escape, and the samples were 
left to digest under a fume hood for at least a week. Next, 2 mL of 30–32 
% H2O2 was added to each sample to continue the digestion process. A 
lid was placed on each sample and partially tightened to allow gas to 
escape, and the samples were left to digest under a fume hood for at least 
2–3 days. Finally, the lids were removed, and the samples were placed 

Fig. 1. The location and extent of the study area within the island of Sardinia.
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on a hot plate to dry down, well spaced-out from each other to avoid 
possible contamination from bubbling as the samples dried.

After at least one day, when the samples were fully dried, 1 mL of 8 M 
HNO3 was added to each sample, and the samples were covered with 
fully tightened lids and allowed to flux on a hot plate for at least one day 
until fully dissolved. The redissolved digested samples often included 
relatively large amounts of viscous organic material that was found to 
clog the columns during strontium extraction; the samples were there
fore transferred to clean microcentrifuge tubes using unique clean 
pipette tips and centrifuged for 2–3 min. Only the liquid portion of the 
sample was transferred to the columns for strontium extraction. The 
presence of viscous material in the digested samples may indicate that 
not all organics were fully digested and that the results for each sam
pling target do not represent a precise 1:1:1 contribution from the three 
component plants.

Strontium extraction from plant samples used Sr.Spec™ resin using a 
revised version of protocol of Font et al. (Font et al., 2007). Matrix el
ements (including Ca and traces of Rb) were eluted in several washes of 
8 M HNO3 and the samples placed on a hotplate (120 ◦C) overnight. This 
process was then repeated for a second pass to remove all remaining Ca. 
Once purified samples were dry, they were redissolved in 2 % HNO3. 
Strontium isotope ratios were measured using a Nu Instruments Multi- 
Collector Inductively Coupled Plasma mass spectrometer (MC-ICP- 
MS). All data was first corrected for on-peak blank intensities, then mass 
bias corrected using the exponential law and a normalization ratio of 
8.375209 for 88Sr/86Sr (Nier, 1938). Residual krypton (Kr) and 
rubidium (87Rb) interferences were monitored and corrected for using 
82Kr and 83Kr (83Kr/84Kr = 0.20175 and 83Kr/86Kr = 0.66474; without 
normalization) and 85Rb (85Rb/87Rb = 2.5926), respectively. Analysis of 
NIST SRM 987 during the analytical session gave a 87Sr/86Sr value of 

Fig. 2. The locations of the ZANBA sampling targets within the 18 bedrock categories.
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Table 1 
The results of the ZANBA 87Sr/86Sr sampling strategy by bedrock category.

ZANBA Bedrock category Number of 
samples in 
category

Median 
87Sr/86Sr 
ratio

Mean 
87Sr/86Sr 
ratio

Lowest 
87Sr/86Sr 
ratio

Highest 
87Sr/86Sr 
ratio

Description Bedrock codes in the Carta 
Geologica di base della Sardegna 
in scala 1:25.000

Holocene 9 0.710333 0.710032 0.707065 0.712775 Holocene sediments linked to gravity, 
floods, winds, lakes, and beaches. 
Holocene travertines

a, a1, a1a, b, b2, ba, bb, bc, bn, 
bna, bnb, bnc, d, e, e2, e3, e5, 
ea, eb, g2, f1

Upper Pleistocene- 
Holocene

4 0.709505 0.709682 0.709143 0.710575 Upper Pleistocene-Holocene ancient 
beach deposits: Sands, sandstones, 
calcirudites, gravels with bivalves, 
gastropods, with subordinate sandy-silty 
deposits and coastal tin chalcilutites

g

Plio-Pleistocene volcanic 
and sedimentary

8 0.708069 0.708138 0.706657 0.710434 Plio-Pleistocene volcanics including 
basalts, porphyritic andesites, and 
scoriaceous breccias proximal to the 
eruptive centers. Plio-Pleistocene 
conglomerates, breccias, and 
sedimentary

BGFb, BGFc, BGR, BGRa, 
GPAa, RIU, RSR, UCU, ULA, 
ZEP, NBB, NCA, ORS2a, 
ORS2c, ORS2d, PVM1, 
PVM2a, PVM2b, PVM2c

Plio-Pleistocene rhyolite 
and rhyodacite

2 0.708839 0.708839 0.708208 0.709470 Plio-Pleistocene rhyolites and 
rhyodacites: rhyolites and rhyodacites 
from afiric to porphyritic, dacites and 
rhyodacites from afiric to slightly 
porphyritic

GPA, MSU

Late Miocene 1 – – 0.709172 0.709172 Late Miocene sedimentary: limestones, 
clayey and arenaceous silts, marly clays, 
arenaceous marls and silts

CLS, CTS, SMR, SMRa

Late Oligocene-Mid 
Miocene volcanic and 
sedimentary

9 0.709049 0.709154 0.707256 0.710517 Late Oligocene-Mid Miocene volcanics: 
andesites, porphyrics, basalts and 
basaltic andesites. Late Oligocene-Mid 
Miocene tuffs and breccias. Late 
Oligocene-Mid Miocene sedimentary: 
sandstones, marls, and conglomerates. 
Late Oligocene-Mid Miocene limestones

AAZ, AAZa, ATU, ATZ, BDU, 
BNS, BPL2, BSU, BSUa, BSUb, 
DIU, ECI, JOR, MIA, MIR, 
MMN, PAM, PDDa, PDDb, 
RCU, SMIa, TGR, TTZ, USSe, 
VTT, ZAR, ARX, MIAa, MIRa, 
RMLa, SMI, USS, USSa, GST, 
GSTa, GSTb, GSTc, NLL1, 
NLL1a, NLL2, NLL2a, RML, 
RMLb, RRTb, RUNa, TDI, TILa, 
RRTa, USSf, USSg, VLG

Late Oligocene-Mid 
Miocene rhyolite and 
rhyodacite

3 0.709260 0.709203 0.709070 0.709280 Late Oligocene-Mid Miocene rhyolites 
and rhyodacites

ALJ, DUL, GHE, IOI, IRU, NVT, 
RUN, UZZ

Early Eocene 
sedimentary and 
conglomerate

2 0.710544 0.710544 0.710059 0.711030 Early Eocene sedimentary and 
conglomerates: coarse sandstones and 
polygenic conglomerates, clays and 
marls, and limestones

FMCa, FMCb, FMCc

Mid-Late Jurassic 6 0.709115 0.709050 0.708539 0.709296 Mid-Late Jurassic: dolomites, 
arenaceous dolomites, dolomitic 
limestones, very mature quartz and 
quartzarenite conglomerates

DOR, GNS

Mid-Triassic 
sedimentary, 
conglomerate, and 
limestone

1 – – 0.709168 0.709168 Mid-Triassic: sandstones, argillites, silts, 
marly levels with chalk and polygenic 
conglomerates, Laminated limestones, 
finely stratified limestones and 
dolomitic limestones

BUN, MUK

Late Palaeozoic volcanic 
and sedimentary

13 0.711065 0.711534 0.710135 0.716199 Late Palaeozoic volcanics: granites, 
granitoids, granodiorites, quartz, 
gabbros, amphibolic tonalites. Late 
Palaeozoic sedimentary and 
conglomerates

ABS1a, ABS1b, ABS2a, ABS2b, 
ABS3, ap, fb, fg, fi, fp, fq, fz, 
GIN, GTU1, GTU4, LNU1, 
LNU1a, LNU1b, LNU1c, 
LNU1d, LNU2b, LNU2c, mg, 
MTR, OTUa, OTUb, OTUd, 
OTUe, pb, pe, PFDb, RRL, TPU, 
TTL, URD, VGD1e, VGD2a, 
VLDc, VLDd, VLDe, LUD, 
LUDa, LUDb, LUDc

Late Palaeozoic rhyolite 
and potassium feldspar

14 0.711488 0.711611 0.709614 0.714438 Late Palaeozoic with potassium 
feldspars. Late Palaeozoic with rhyolites. 
Late Palaeozoic deposits with mixed 
rhyolite and andesite/dacitic 
components

GTU2, GTU3, LNU1e, LNU2a, 
LNU2d, MDV, OTUc, OTUf, 
OVOb, VGD1b, VGD1c, PEU, 
PFDa, pr, pa, pp

Mid-Late Palaeozoic 
marble, 
metaconglomerate, 
and limestone

10 0.710611 0.710538 0.708006 0.711541 Mid-Late Palaeozoic: marbles, dolomite 
marbles, metapelites, metasandstones, 
metaconglomerates, limestones

ASU, CSA, CSAa, CSAb, FLU, 
MUX, PMN, PMNa, PMNb, 
PMNc, SGA, SGAa, SGAb, VLL

Early-Mid Palaeozoic 
volcanic in origin

8 0.711064 0.711234 0.710032 0.713050 Early-Mid Palaeozoic mostly volcanic 
origin: metamorphic derivatives of 
alkaline basalts and volcanic 
metagrovacche, alkaline metabasites in 

ACNc, md, MGM, MSV, MSVb, 
ORRa, ORRb

(continued on next page)
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0.710292 ± 0.000007 (2σ, n = 11) and all data is corrected to a NIST 
SRM 987 values of 0.710248 (Avanzinelli et al., 2005). Total procedural 
blanks are typically <20 pg of Sr, which is negligible relative to the Sr in 
each sample. Accuracy of the method was assessed by measurement of 
87Sr/86Sr in NIST SRM 1400 (Bone Ash), which gave a 87Sr/86Sr value of 
0.713129 ± 0.000019 (2SD), which is consistent with all published 
values (0.713126 ± 0.000017, (Romaniello et al., 2015; Weber et al., 
2018)). Additionally, EC-5, an in-house coral standard, has been run 
alongside the NIST SRM 1400, giving a 87Sr/86Sr value of 0.709162 ±
0.000020 (2SD, n = 217). Individual errors for the reported samples are 
similar to the 2 standard deviation of the NIST 1400 and EC-5.

3.5. Machine learning isoscapes

To build our 87Sr/86Sr isoscapes of Sardinia we used a Random Forest 
regression (RF) with multiple predictors (randomForest package) (Liaw 
and Wiener, 2002), following the method of Bataille et al. (2020)
(Bataille et al., 2020). We developed two distinct models: one using 
solely the empirical data from ZANBA, and another incorporating the 
empirical data from Gigante et al. (Gigante et al., 2023). We did not 
incorporate the empirical data from Bataille et al. (Bataille et al., 2020) 
because this data came from non-plant archives (Fig. 3).

Ten and eight external variables respectively, obtained from global 
raster maps, were selected by VSURF based on their importance in 
predicting the 87Sr/86Sr ratio for the ZANBA-only and the combined 
datasets respectively. These variables were: r.bouger is the bouger 
anomaly; r.cec is the soil cation exchange capacity; r.clay is the clay soil 
content (weight %); r.dust is a multi-models average (g.m− 2.yr− 1) of 
atmospheric mineral aerosol; r.minage_geol and r.maxage_geol are the log 
of the minimum and maximum geological ages from GLiM (high-reso
lution Global Lithological Map) (Hartmann and Moosdorf, 2012); r.pet is 
the potential evapotranspiration; r.srsrq1 is the predicted first quartile of 
the global 87Sr/86Sr model reported in (Bataille et al., 2014); r.ssa and r. 
ssaw are multi-models average of sea salt depositions (for more infor
mation on the variables refer to (Bataille et al., 2020)). The significance 
of predictors in the RF model is determined through two criteria: the % 
IncMSE, representing the proportional rise in cross-validation mean 
squared error when the values of a particular variable are randomly 
permuted, and the IncNodePurity, indicating the influence of a specific 
variable on tree-split purity. Model trees were generated with n = 3 
variables at a time (mtry = 3). A 10-fold cross validation was then 

Table 1 (continued )

ZANBA Bedrock category Number of 
samples in 
category 

Median 
87Sr/86Sr 
ratio 

Mean 
87Sr/86Sr 
ratio 

Lowest 
87Sr/86Sr 
ratio 

Highest 
87Sr/86Sr 
ratio 

Description Bedrock codes in the Carta 
Geologica di base della Sardegna 
in scala 1:25.000

the strands position and alkaline 
metagabbros

Early-Mid Palaeozoic 
sedimentary and 
conglomerate

10 0.711241 0.711388 0.709694 0.713312 Early-Mid Palaeozoic mostly 
sedimentary and conglomerate origin: 
metapelites, fossiliferous carbonate 
metasiltites, metalimestones

ACN, ACNa, MGMa, MRV, 
MRVa, MSVa, MUZ, MUZa, 
MUZb, ORR, ORRc, OSI, PSR

Early-Mid Palaeozoic 
rhyolite and potassium 
feldspar

8 0.711967 0.712226 0.710796 0.715056 Early-Mid Palaeozoic: rhyolites and 
potassium feldspars: rhiodacytic 
porphyry, metariolites, afanitic 
metariolites, porphyritic gray-dark 
metariolites and metariodacites, 
metatuffs and metaepiclastites with 
varying degrees of alteration

mr, MSVc, PGS, PRF, PRFa, vs

Early Palaeozoic 18 0.711745 0.711903 0.707065 0.714497 Early Palaeozoic: all bedrock types GEN, SVI, SVIa, SVIb
Precambrian-Palaeozoic 3 0.712741 0.712816 0.712723 0.712984 Precambrian-Palaeozoic: all bedrock 

types
df, mi, pn, sc

Not included in study – – – – – Holocene sediments related to recent 
anthropogenic activity with a high 
likelihood of chemical alterations not 
representative of the past. Lakes and 
unclassifiable areas. Bedrock types 
minimally represented within the study 
area.

H, h1i, h1m, h1n, h1r, h1u, ha, 
L, nc, BGFa, BRD, TUL, LCP, 
CIX

Fig. 3. The locations of the empirical data from ZANBA (plant archives), 
Gigante et al., 2023 (plant archives), and Bataille et al., 2020 (non- 
plant archives).
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performed to check the prediction power of the models as RMSE (Root 
Mean Square Error). The RMSE of the ZANBA-only model and the 
ZANBA/Gigante et al. combined model were both equal to ~0.0012, 
with R2 = 0.5. The associated spatial uncertainty maps were generated 
through a quantile RF regression (ranger) (Wright and Ziegler, 2017), 
calculated as half of the q0.84 - q0.16 difference (i.e. lower and upper 
limits of a ~ 68 % interval).

4. Results

4.1. ZANBA empirical data

The results of the ZANBA sampling are presented here by bedrock 
category using median and interquartile range, following the method
ology of Evans et al. (Evans et al., 2023) Additionally, the mean ratios, 
lowest and highest ratios, and number of samples for each bedrock 
category are given in Table 1. Results for each of the individual target 
points are available as a spreadsheet in the supplementary materials.

The plant samples from 16 of the 18 bedrock categories gave median 
87Sr/86Sr ratios ranging from 0.708069 (Plio-Pleistocene volcanic and 
sedimentary) to 0.712741 (Precambrian-Palaeozoic; Table 1). Two of 
the bedrock categories, Late Miocene bedrocks and Mid-Triassic sedi
mentary, conglomerate, and limestone bedrocks, were present in the 
study area in very small areas and were represented by a single plant 
sample each; a median ratio could therefore not be calculated for these 
categories. The sample for the Late Miocene bedrocks gave a 87Sr/86Sr 
ratio of 0.709172, and the sample for the Mid-Triassic sedimentary, 
conglomerate, and limestone bedrocks gave a 87Sr/86Sr ratio of 
0.709168. Notably, the plants growing on the Upper Pleistocene- 
Holocene bedrocks (0.709505) and the plants growing on the Holo
cene sediments (0.710513) gave higher median values than might have 

been expected.
Interquartile ranges ranged from 0.0001 (Late Oligocene-Mid 

Miocene rhyolite and rhyodacite) to 0.0017 (Holocene). Broadly, 
plants growing on younger bedrocks and bedrocks with less parent Rb 
had smaller interquartile ranges and plants growing on older bedrocks 
and bedrocks with more parent Rb had larger interquartile ranges. 
Because the number of samples taken for each bedrock category differed 
widely, the Pearson correlation coefficient was used to assess whether 
the breadth of the interquartile range was correlated with the number of 
samples taken. The coefficient was calculated for the dataset both 
including (n = 16, r = 0.529 t-score = 2.330, p-value = 0.035) and 
excluding (n = 11, r = 0.121, t-score = 0.366, p-value = 0.723) bedrock 
categories with four or fewer samples, but in neither case was the cor
relation found to be significant. While the broad pattern holds, it is only 
very general, and it is noteworthy that the plants growing on the Ho
locene sediments had the largest interquartile range.

Overall, the plant ratios for the bedrock categories fall into two 
overlapping ranges (Fig. 4). The first range, ratios from 0.707143 to 
0.710334, includes the Plio-Pleistocene volcanic and sedimentary bed
rocks, the Plio-Pleistocene rhyolites and rhyodacites, the Late 
Oligocene-Mid-Miocene volcanic and sedimentary bedrocks, the Mid- 
Late Jurassic bedrocks, the Mid-Triassic sedimentary and conglom
erate bedrocks and limestones, the Late Miocene bedrocks, the Late 
Oligocene-Mid-Miocene rhyolites and rhyodacites, and the Upper 
Pleistocene-Holocene bedrocks in order of lowest to highest median or 
single value where only one plant sample was analyzed. The second 
range, 0.710394 to 712,984, includes the Mid-Late Palaeozoic marbles, 
metaconglomerates, and limestones, the Early-Mid Palaeozoic volcanic 
in origin, the Late Palaeozoic volcanic and sedimentary bedrocks, the 
Early-Mid Palaeozoic sedimentary and conglomerate in origin, the Late 
Palaeozoic rhyolites and potassium feldspars, the Early Palaeozoic 

Fig. 4. The results of the ZANBA analyses by bedrock category showing the median, interquartile range, and outliers, following the methodology of Evans 
et al., 2023.
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bedrocks, the Early-Mid Palaeozoic rhyolites and potassium feldspars, 
and the Precambrian-Palaeozoic bedrocks in order of lowest to highest 
median. The plant ratios for the Holocene sediments span much of both 
ranges, while the plant ratios for the Early Eocene sedimentary and 
conglomerate bedrocks span small parts of both ranges.

4.2. Machine learning isoscapes

We generated two new ML isoscapes (Fig. 5): the first built from the 
ZANBA data alone and the second built from the ZANBA data combined 
with the published 87Sr/86Sr ratios from Gigante et al. (Gigante et al., 
2023). Because the entire island and not only the original ZANBA study 
area was modelled using the ZANBA data, the ZANBA-only isoscape has 
a sampling density of approximately 1 sample per 188 km2. The isoscape 
modelled from the combined data has a sampling density of approxi
mately 1 sample per 152 km2. Both maps and their associated errors are 
available as GeoTIFFs 2–5 in the supplementary data.

The modelled ratios in the ML isoscape built from the ZANBA data 
alone range from 0.70746 to 0.71365, slightly contracting the empirical 
data, which includes five ratios <0.70746 and six ratios >0.71365. The 
modelled ratios in the ML isoscape built from the combined ZANBA and 
Gigante et al. (Gigante et al., 2023) data are similar, ranging from 
0.70738 to 0.71375. In general, the inclusion of the Gigante et al. 
(Gigante et al., 2023) data tended to shift the predicted ratios lower in 
the fourth decimal place. Additionally, the inclusion of the data from 

Gigante et al. (Gigante et al., 2023) allowed the modeling of some parts 
of the island, particularly around the coasts, that were excluded when 
only the data from ZANBA were used.

5. Discussion

5.1. Holocene sediments in the ZANBA sampling area

One interesting characteristic of the ZANBA empirical results is the 
large interquartile range of the 87Sr/86Sr ratios of the plants growing on 
the Holocene sediments. There are several possible explanations for this. 
One explanation is that the parent bedrocks of these Holocene sediments 
may vary widely in age and composition, leading to a breadth of local 
87Sr/86Sr ratios. Another possible explanation is that, as the primary 
locations of agriculture in central Sardinia, these sediments have been 
differentially affected by chemical treatments and fertilizers. The po
tential effects of agricultural treatments on the strontium composition of 
soils, surface waters, and groundwaters are well known (Zieliński et al., 
2016; Böhlke and Horan, 2000; Blanz et al., 2019; Thomsen and 
Andreasen, 2019; Andreasen and Thomsen, 2021; Thomsen et al., 2021; 
Zieliński et al., 2021), and although we tried to avoid sampling in areas 
that were under cultivation or near cultivated fields, avoiding the in
fluence of agriculture was difficult for Holocene sediments, which are 
the site of much of the larger-scale agriculture on Sardinia. However, the 
results from building the ML isoscapes would suggest that fertilizers are 

Fig. 5. The 87Sr/86Sr ratio ML isoscapes built from the ZANBA data (left) and from the combined data of ZANBA and Gigante et al., 2023 (right).
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not the cause of the variation in the Holocene sediments. If fertilizers 
played a large role in affecting the 87Sr/86Sr ratios of the analyzed plants 
from any bedrock group, we would expect the r.fert and/or r.pfert vari
ables to be selected by VSURF, which was not the case (see discussion 
below).

5.2. Machine learning isoscapes

The ten variables selected by VSURF for the ZANBA-only isoscape 
lead to interesting interpretations (Fig. 6). The selection of both r.ssa and 

r.ssaw suggests that sea spray is an important contributor to bioavailable 
strontium, as might be expected for an island. The same is true for r.dust, 
which may relate to seasonal summer winds carrying dust northward 
from the Sahara. The variable r.pet might also be expected given the hot 
summer temperatures and strong winds. However, the fact that the 
variable r.fert, which is the global nitrogen fertilization, was not selected 
suggests that the use of fertilizer did not affect the empirical data. We 
further tested this conclusion by adding the global phosphate fertiliza
tion r.pfert and rerunning the model (Potter et al., 2010; Potter et al., 
2012); r.pfert was also not selected. Whether the failure of VSURF to 

Fig. 6. Graphs of the importance of the variables and the partial dependences in the ZANBA-only ML isoscape produced by VSURF. These graphs represent the 
relationships between the Sr isotopes and each of the variables where it is at its maximum.
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select either r.fert or r.pfert is because fertilizer is not an important 
component of bioavailable strontium in central Sardinia or whether it is 
because the ZANBA sampling strategy successfully avoided areas 
affected by fertilizer cannot be assessed with our data. Further research 
into the historical use of fertilizers in central Sardinia would be neces
sary to fully understand the r.fert and r.pfert results.

For the isoscape built from the combined ZANBA and Gigante et al. 
data, VSURF selects the same variables except that it does not identify r. 
ssaw and r.pet as affecting the model (Fig. 7). This may suggest that 
evapotranspiration has a more significant effect on bioavailable stron
tium in the interior of Sardinia that it does closer to the coasts.

5.3. Comparing isoscapes using empirical data

The dense sampling methodology employed by ZANBA gives us the 
opportunity to compare the modelled values from different densities of 
primary sampling, 1 point per 4818 km2 (5 primary data points) in 
Bataille et al. (Bataille et al., 2020) and 1 point per 174 km2 (30 primary 
data points) in Gigante et al. (Gigante et al., 2023), against the empirical 

87Sr/86Sr ratios for specific locations in central Sardinia. Although the 
ZANBA sampling strategy was devised before Gigante et al. was pub
lished, 23 of ZANBA’s sampling targets are made up of samples that fall 
completely within Gigante et al.’s (Gigante et al., 2023) modelled iso
scape, and an additional three of ZANBA’s sampling targets include one 
or two samples that fall within it. We therefore focused on these 26 
points as a useful set to evaluate both the Bataille et al. (Bataille et al., 
2020) and the Gigante et al. (Gigante et al., 2023) isoscapes.

To assess whether the modelled isoscapes correctly predicted the 
ZANBA empirical ratios, we established a range for each empirical ratio 
by adding and subtracting the empirical uncertainty from the empirical 
ratio. This empirical range was then compared to two sets of predicted 
ranges. The first set was the predicted value at the ZANBA target point 
+/− each isoscape’s calculated uncertainty. The second set was inten
ded to reflect the homogenized sampling strategy used by ZANBA, which 
meant that sometimes the three individual plant samples that were 
combined to make up the ratio representing the sampling target came 
from areas of the isoscapes with two or three different predictions and 
uncertainties/standard errors. Where this was the case, we calculated a 

Fig. 7. Graphs of the importance of the variables and the partial dependences in the ZANBA/Gigante et al. combined ML isoscape produced by VSURF. These graphs 
represent the relationships between the Sr isotopes and each of the variables where it is at its maximum.

E. Holt et al.                                                                                                                                                                                                                                     Science of the Total Environment 989 (2025) 179880 

11 



weighted arithmetic mean for the prediction, as well as a weighted 
arithmetic mean for the error. For example, if the three ZANBA samples 
that made up the ratio for Point X came from three different prediction 
and uncertainty zones, the prediction and uncertainty were (X1 + X2 +

X3)/3. However, if two of the samples came from one prediction zone 
and the third came from a different zone, the prediction and uncertainty 
were ((X1*2) + X2)/3.

Comparing the ZANBA empirical ranges with the target point pre
diction ranges, Bataille et al. correctly predicted 10 of 26 ratios (average 
size of prediction range = 0.00243, Fig. 8a). One of the target points fell 
outside the Gigante et al. modelled isoscape, so using this method 
Gigante et al. correctly predicted 13 of 25 ratios (average size of pre
diction range = 0.00201, Fig. 8b). Comparing the ZANBA empirical 
ranges with the weighted average prediction ranges, Bataille et al. 
correctly predicted 9 of 26 ratios (average size of prediction range =
0.00243, Fig. 9a) and Gigante et al. correctly predicted 14 of 26 (average 
size of prediction range = 0.00201, Fig. 9b).

The 30 87Sr/86Sr ratios taken on plants published by Gigante et al. 
provide a similar opportunity to interrogate the Bataille et al. isoscape 

and the new isoscape produced from the ZANBA data. Of these 30 ratios, 
26 came from areas modelled by the Bataille et al. and ZANBA isoscapes. 
The Bataille et al. isoscape correctly predicted 5 of the 26 ratios (average 
size of prediction range = 0.00176, Fig. 10a), while the ZANBA isoscape 
correctly predicted 16 (average size of prediction range = 0.00255, 
Fig. 10b).

In addition to assessing whether the isoscapes correctly predicted the 
empirical data, it is useful to assess the degree of inaccuracy of the 
incorrect predictions. To do this, we calculated a “miss size” that was the 
arithmetic mean of the amounts by which all the lowest or highest 
values of the incorrect prediction ranges for a given set were off from the 
highest or lowest values (respectively) of the ranges of the empirical 
data. Comparing the Bataille et al. and Gigante et al. isoscapes against 
the ZANBA empirical data, using the target point prediction method, 
Bataille et al.’s 16 incorrect predictions had a mean miss size of 0.00110 
(range: 0.00002–0.00309), while Gigante et al.’s 12 incorrect pre
dictions had a mean miss size of 0.00096 (range: 0.00004–0.00245). 
Using the weighted average prediction method, the Bataille et al. iso
scape’s 17 incorrect predictions had a mean miss size of 0.00187 (range: 

Fig. 8. ZANBA experimental 87Sr/86Sr ratio ranges (black lines) compared with A) Bataille et al., 2020 target point predicted ranges (colored bars, top panel) and B) 
Gigante et al., 2023 target point predicted ranges (colored bars, bottom panel).
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0.00002–0.00309), while the Gigante et al. isoscape’s 12 incorrect 
predictions had a mean miss size of 0.00089 (range: 0.00004–0.00250). 
These results are broadly comparable both between isoscapes and be
tween prediction methods, though the Gigante et al. isoscape’s incorrect 
predictions were slightly closer than those of the Bataille et al. isoscape. 
The Bataille et al. isoscape performed slightly better when evaluated 
with the target point prediction method, while the Gigante et al. iso
scape performed slightly better when evaluated with the weighted 
average prediction method.

Considering the Bataille et al. and ZANBA isoscapes against the 
Gigante et al. empirical data, the Bataille et al. isoscape’s 21 incorrect 
predictions had a mean miss size of 0.00112 (range: 0.00008–0.00257). 
The ZANBA isoscape’s 10 incorrect predictions had a mean miss size of 
0.00060 (range: 0.00009–0.00124).

It is important to note that the Bataille et al. isoscape was notably less 
accurate predicting the Gigante et al. empirical data than it was pre
dicting the ZANBA empirical data, and that the average by which these 
predictions were off was similar. This is important because the average 
Root Mean Squared Error (RMSE) of the isoscape’s predictions for the 
Gigante et al. empirical data was smaller than for the ZANBA empirical 

data (0.00088 vs. 0.00121 (TP)/0.00122 (WA)). In discussions of iso
scapes, low RMSE’s are often pointed to as indications that an isoscape is 
accurate (Bataille et al., 2018). The results of our study serve as a 
reminder that RMSE describes only the model and the data used to 
create it. If this data is unrepresentative in any way, the resulting iso
scape may not be usable for interpretation despite low RMSE. With only 
5 empirical values from Sardinia incorporated into the Bataille et al. 
isoscape, it is clear that – in this case – the data is unrepresentative, 
whatever the RMSE. However, in other isoscapes, the non- 
representativeness of the data may be less apparent. RMSE should 
therefore not be emphasized as expressing the real-world validity and 
applicability of an isoscape. Independent spatial validation with addi
tional data is needed even for isoscapes with low RMSE before they can 
be used confidently for interpretation.

5.4. Using isoscapes to interpret new data

The improved accuracy of predictions demonstrated by comparing 
the isoscapes of Bataille et al. (5 empirical ratios from Sardinia), Gigante 
et al. (30 empirical ratios), and ZANBA (128 empirical ratios) strongly 

Fig. 9. ZANBA experimental 87Sr/86Sr ratio ranges (black lines) compared with A) Bataille et al., 2020 weighted average predicted ranges (colored bars, top panel) 
and B) Gigante et al., 2023 weighted average predicted ranges (colored bars, bottom panel).
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suggests that increasingly accurate isoscapes can be produced from 
sufficient samples using the Random Forest ML method developed by 
Bataille et al. (Bataille et al., 2020). However, the improvement between 
the Gigante et al. isoscape (14 correct predictions, average prediction 
inaccuracy of 0.000892624) and the ZANBA isoscape (16 correct pre
dictions, average prediction inaccuracy of 0.000598642) is not as great 
as might be expected given that the ZANBA isoscape is built from four 
times as many empirical ratios. In both cases, the isoscapes were built 
from empirical ratios taken at locations that were relatively far away 
from the locations of the empirical ratios used to test them. These 
findings suggest that sampling density must be balanced with sample 
distribution to achieve isoscapes accurate enough to use for interpreta
tion. More specific recommendations relating the complexity of an 
area’s geology with the density of samples required to produce accurate 
isoscapes will require additional research but represent a fruitful di
rection of future study.

Despite the demonstrable improvement in accuracy between the 
Gigante et al. and ZANBA isoscapes, the overall accuracy of these 

Sardinia-specific isoscapes remains problematic. Fourteen and 16 cor
rect predictions out of a possible 26 is only a little better than could be 
expected from estimating based on lithological character. However, 
these results may give an overly pessimistic view of the accuracy of 
isoscapes in general. Sardinia has a complex geology compressed into a 
relatively small area: a possible reason why the densely sampled ZANBA 
landscape did not create a substantially more accurate isoscape than the 
moderately densely sampled landscape of Gigante et al. is that the 
ZANBA bedrock categories may have been over-grouped, and therefore 
the samples did not fully reflect the complexity of the geology despite 
their density. Isoscapes built from empirical values sampled from less 
complex geologies may be more accurate.

It is also important to consider that plant samples were used to assess 
the accuracy of the isoscapes. Plants are prone to outliers (Lahtinen 
et al., 2021), a problem that homogenized sampling was developed to 
address. It is possible that the ML maps in this study would have per
formed better in predicting the strontium ratios of local animals, whose 
feeding patterns would average the ratios of the plants, other foods, and 
waters consumed. Evaluating plant-based isoscapes against animal 
samples from individuals with known feeding patterns is an important 
next step in confirming the isoscapes’ interpretive potential and the 
degree to which they are generalizable across specimen types.

Our results indicate the importance of multi-isotope studies to assess 
provenance at this stage of isotope research. Isoscapes of individual 
isotopic ratios are likely to be less accurate than we hope they are, with 
the resulting single-isotope studies prone to interpretive error. Many 
researchers already employ a probabilistic assessments of multi-isotope 
studies to assess provenance (Laffoon et al., 2017). Such methods will 
always be important in isotopic studies given the exclusionary nature of 
isotopic provenancing; however, we would argue that probabilistic as
sessments of multi-isotope studies are currently essential for interpre
tation and will remain so until individual isoscapes are demonstrated to 
have sufficient predictive accuracy. We would also argue that the vali
dation and refinement of existing isoscapes represents a next phase of 
research leading toward successful provenancing.

6. Conclusions

The comparison of ML isoscapes presented here is encouraging while 
simultaneously serving as a cautionary tale. Increasing the number of 
empirical 87Sr/86Sr ratios did improve the accuracy of ML isoscapes; 
however, there was a clear problem of diminishing returns. Further 
methodological research is necessary to understand how the accuracy of 
ML isoscapes can be improved beyond simply including more samples. 
We also found that low RSME was not inherently an indication of an 
accurate isoscape and should not be used uncritically as such. To 
conclude, we emphasize, as have the authors of all the isoscapes dis
cussed in this paper, that any isoscape we produce is a step toward an 
optimal isoscape rather than a final product. We hope that the isoscape 
of Sardinia built from the combined empirical data from ZANBA and 
Gigante et al., which is available in the supplementary materials, will 
serve as an inspiration for the collection of further empirical data and 
subsequent refinement of both general methodologies and specific 
isoscapes.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2025.179880.
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