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Abstract. X-ray ptychography is a scanning coherent diffraction imaging technique
which combines nanometer-scale resolution with high penetration depth. This method
has been proven to be suitable for scanning weakly absorbing samples and therefore
potentially very valuable for medical applications such as brain imaging. However, cur-
rently employed scanning techniques present challenges: step-scanning is too slow and
inefficient, while fly-scanning introduces blurring and noise into reconstructions due to
the motion and reduced photon counts per pixel. To date, only a few methods have
been proposed to denoise reconstructions, most of which rely on traditional approaches
and are limited in addressing the challenges posed by noise and blurring. To overcome
these limitations, we investigate the possibility of using a deep learning-based denoising
method combined with position binning. The deep learning-based denoising method,
Deep Image Prior (DIP), denoises the reconstructions while position binning increases
the photon count statistics per pixel. The method can be integrated within the existing
iterative phase retrieval algorithms to denoise the object or probe in between iterations.
The method is tested in far-field geometry on two different samples: a Siemens star reso-
lution target and a polymer-based phantom mimicking the white matter of the brain. By
assessing the resolution via Fourier ring correlation, we measure up to a 14% increase
in the resolution. However, depending on the architecture used, artifacts due to ma-
chine hallucination appear in the denoised images which could be affecting the observed
enhancement in resolution. This will be the subject of further investigation.
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1 Introduction
For many years, imaging techniques such as electron microscopy or visible microscopy were the go-to
methods for achieving a high magnification of objects. Such microscopy techniques require the use of an
optical element, such as a lens, to form an image. The quality of the image is limited by the performance of
the lens which is determined by multiple factors, including efficiency, numerical aperture, and aberrations.
To manufacture high performance lenses is increasingly difficult when working in the hard X-ray regime.

Coherent Diffraction Imaging (CDI) overcomes the lens-induced limitations of standard microscopy
methods by replacing the lens with computational algorithms (1; 2; 3; 4; 5). The detector is placed
where the lens would be to collect diffraction patterns, and computational algorithms form an image
starting from the recorded diffraction patterns. The resulting image of the object is aberration-free and
theoretically diffraction-limited in resolution.

Ptychography, a scanning form of CDI, allows imaging of extended objects by shifting the illumination
with respect to the sample at overlapping steps (3). In conventional ptychography, the scan is done in
step-scan mode which is inefficient as it is affected by the overhead due to the move-settle waiting
time. To speed up the scanning process, the fly-scanning approach has been introduced (6), (7), where
the illumination moves at a constant velocity across the object. Although fly-scanning enables fast
ptychography, the motion induces blur and, when also combined with low photon statistics, results in
noisy reconstructions. This poses a significant challenge especially in medical imaging as some useful
features might be lost during the denoising process.

Traditional denoising methods, such as filtering or statistical methods are often applied to denoise
medical images (8). However, they are generally limited to specific imaging methods or noise types
(9). Deep learning-based denoising methods offer an alternative (10) but they require extensive training
data and ground truth images as labels which are difficult to obtain in ptychography except through
simulations. Considering the lack of ground truth data and the limited amount of available training data,
we propose the use of a deep learning denoising method called Deep Image Prior (DIP), to remove the
noise from reconstructions. This approach utilizes the inherent structure of the imaging data without
requiring extensive training datasets, thus offering a promising solution for improving the resolution of
the ultra-fast X-ray ptychography reconstruction.

2 Methods
2.1 Experimental Setup
Experimental data were acquired at beamline I13-1 at the Diamond Light Source. Using a double crystal
Si-111 monochromator, X-rays with the energy of 11.1 keV are selected. A Fresnel Zone Plate (FZP) with
a diameter of 400 µm, outer width of 200 nm is used as the pre-sample focusing optics. An order sorting
aperture, with a diameter of 10 µm, is placed close to the focus of the FZP to select the first diffraction
order and filter out the higher orders while a central stop is placed right after the FZP, to block the
zeroth order. The sample is positioned 8mm downstream of the focal plane and 10m downstream of the
sample. A vacuum pipe filled with He, placed in between the sample and the detector, minimizes air
scattering.

2.2 Detector
The diffraction patterns in the far-field were acquired with an ultra-fast, hybrid single photon counting
prototype detector, SELUN, a novel development by DECTRIS AG. Its ASIC allows a continuous frame
rate of up to 120 kHz. This high frame rate is enabled by fast front-end electronics and high data readout
speed which can reach up to 10GB s−1 in combination with on-chip compression and the possibility for
2×2 binning. This prototype can count more than 45Mcounts/pixel/s unbinned at 11.1 keV photons
and 50% energy threshold. The detector features a silicon sensor with a thickness of 450 µm on a single
chip, 192×192 pixels with a size of 100 µm × 100 µm, covering an active area of 19.2mm × 19.2mm (11).
Thus, this detector offers a high frame rate, high dynamic range, and measurements without readout
noise nor dark current, providing a well-suited solution for fast-scanning ptychography.

2.3 Tool for Reconstruction and Analysis of Reconstruction Quality
All the data presented in this paper were processed using the ePIE algorithm implemented within the
PtyREX code (12). The spatial resolution of the reconstructions was assessed using the Fourier ring
correlation method (FRC) (13), which is a commonly used image resolution assessment metric (13), (14).
It determines the resolution, which is the intersection point of the FRC curve with a predetermined
threshold, in Fourier space from a single image as explained in reference (15) and implemented in a
Python code called siFRC (16).

2.4 Position Binning
Ptychography allows the imaging of extended objects. However, as the object size increases, very large
datasets are produced, creating a substantial computational burden. During the reported experiment,
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data were acquired with very fine spatial steps with a step size of 0.025 µm and position binning can be
applied to reduce computational time and increase statistics. Position binning involves summing counts
of multiple diffractograms from a few neighbouring scanning positions up to a certain bin size. This
approach increases the photon counts per pixel and consequently improves the Signal-to-Noise Ratio
(SNR), which is critical for more accurate reconstructions.

2.5 A Deep Learning Denoising Approach: Deep Image Prior
Deep learning methods have been applied in ptychography to replace phase retrieval and to prevent
crosstalk between slices in multislice ptychography (17; 18; 19; 20). In this work we aim to apply DIP
for denoising purposes. DIP suggests that the network’s architecture inherently captures a significant
portion of the statistics of the image without requiring any training or trained parameters (21). To find
optimal parameters that will result in the restored/clean image, DIP searches for the parameters space in
each iteration. At early iterations, the architecture learns the clean/noiseless image, and noise is added
to the clean image after some iteration, meaning the convergence to the clean image is reached before
the end of the training process. Beyond this point, the network learns the noise along with the clean
image, leading to a decrease in the network’s performance and metrics. The denoising experiments were
performed on different image types: a polymer-based high-resolution brain white matter phantom and a
more geometrical and regular Siemens star resolution target.

For all denoising experiments, we employed a U-Net architecture with a feature map configuration
of [8, 16, 32, 64, 128] (Arch 1) as recommended in the work by Ulyanov and collaborators (21). Addi-
tionally, for the brain sample, we tested an alternative architecture with a feature map configuration of
[128, 128, 128, 128, 128] (Arch 2). Both architectures included two residual connections, five downsam-
pling and five upsampling layers and were implemented using PyTorch (22) and Monai (23). The Adam
optimizer with a learning rate 3× 10−5 was used and the Mean Squared Error (MSE) was utilized as a
loss function. An early stopping criterion, based on the loss function, was employed to prevent overfit-
ting, and the architectures were trained for 4000 epochs if the early stopping criteria were not met. The
performance of the architecture was monitored by checking the PSNR score. The network was trained
on an NVIDIA Corporation GA104GL [RTX A4000] GPU with 125 GB of RAM resulting in 2-3 minutes
per image to complete the denoising for the Siemens star. For all experiments, a fixed random image
was given as an input, and all architectural parameters were set as specified before for both Arch1 and
Arch2.

3 Results
3.1 Denoising of The Siemens Star
The reconstructed Siemens star test sample, which contained noise and blurring artifacts, was post-
processed using Arch1. During the training, the model parameters were iteratively optimized by gradient
search to minimize the difference between the noisy reconstruction and the desired clean image. The
FRC was calculated to assess the resolution, with the results presented in Figure 1 and Table 1. Figure 1
shows the reconstructed images obtained without, Figure 1a, and with, Figure 1c, position binning. We
observed that the denoised version of the unbinned measurement, Figure 1b, appeared noisier than its
original counterpart, Figure 1a. In contrast, Figure 1d shows the denoised and binned reconstruction and
demonstrates that the DIP denoising step was more effective and improved the resolution when applied to
the binned reconstruction, Figure 1c. However, upon closer inspection of the denoised image, we observed
regular grid artifact in the denoised reconstruction of Siemens star object, as shown in Figure 1d.

Data type Label Denoised Intersection point Resolution
Original recons. a - 0.351 126 nm
Original recons. b ✓ 0.331 134 nm
Binned recons. c - 0.365 121 nm
Binned recons. d ✓ 0.409 108 nm

Table 1: Intersection points and resolution values for different reconstructions with a reconstructed pixel
size of 44 nm.
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(a) (b) (c) (d) (e) (f)

Figure 1: The effect of binning and denoising with Arch1 on the resolution of the reconstruc-
tions of a Siemens star phantom. (a) Original reconstruction, where the data is acquired at 28 kHz.
(b) The denoised version of the original reconstruction (a). (c) The binned version of the original data
acquired at 28 kHz. (d) The denoised version of the binned data (c). (e) The difference map, highlighting
the difference between the denoised-binned reconstruction (d) and the original noisy reconstruction (a).
(f) Radial profile intensity comparison of c and d.

3.2 Denoising of The Brain Phantom
The brain phantom is made of polymer microcylinders of polycaprolactone (PCL) to mimic the axons
in the white matter of the brain. This phantom, by being thoroughly characterized and with closely
matching the density to the brain tissue, has demonstrated its representativeness of white matter tissue
(24), (25). We applied Arch1 to the unbinned noisy reconstruction of the brain phantom results of
which are shown Figure 2 (b). As for the Siemens star, a regular grid artifact appears in the denoised
image, (red square in Figure 2 (b)) but this time more visible than the Siemens star, possibly due to
the less regular nature of the sample. To understand if the hallucinations are architecture-dependent,
we performed the denoising using another architecture, Arch2, on the brain sample, as it is easier to
detect the artifact on a less regular sample. The results are reported in Figure 2(d), where no artifacts
are observed which suggests that the artifacts might be architecture dependent.

(a) (b) (c) (d)

Figure 2: Reconstructions of a brain white matter phantom. Non-denoised and denoised re-
constructions, with Arch1 and Arch2, of the brain white matter phantom are shown in a, b, and d
respectively. The artifact generated by the Arch1 and the difference map between non-denoised and
denoised reconstructions using Arch 1 are shown in the b and d respectively.

To evaluate any change in resolution after the denoising, FRC analysis was performed. Both denoised
and original reconstructions were cropped and Hanning window applied to minimize boundary effects.
The measured resolutions are 179 nm, 170 nm and 240 nm respectively. However, FRC analysis of the
denoised brain reconstruction with Arch1 is not reliable due to the artifact while the denoising with
Arch2 worsens the resolution.

4 Discussion
There were previous attempts to utilize conventional methods to denoise ptychography reconstructions
(26) (27). This work investigates a strategy for noise removal in ultra-fast X-ray ptychography by using
a deep learning method, DIP.

When measurements are acquired at very fine steps, binning can help with the denoising procedure
since it increases the statistics, resulting in better reconstructions with higher resolution and SNR, as
shown in Figure 1 (a,c) and Table 1. Consequently, the Siemens star sample was binned prior to denoising.
However, binning too many positions would introduce blurring (de-coherence), which could be mitigated
by increasing the number of spatial modes in the reconstruction (28) which will be explored in future
work.

To test the effectiveness of the proposed deep learning denoising method, we applied the method
to different object types. We found that, regardless of the object type, images denoised with Arch1
exhibited machine hallucinations. Furthermore, we suspect that the grid artifact could contribute to the
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higher resolution observed in the Fourier ring correlation analysis of the reconstruction denoised with
Arch1 compared to the original image.

Hallucinations of a deep learning model occur when an algorithm generates features that do not corre-
spond to the actual sample structures. To investigate whether the artifact/hallucination is architecture-
dependent, we denoised the brain phantom reconstruction using Arch2. Unlike Arch1, Arch2 did not
generate any hallucinations. The reason why these artifacts only appears in Arch1 is unknown and re-
quires further investigation. Moreover, while the artifacts were easily detected in the irregular biological
tissue, it was harder to detect them in the regular Siemens star sample. Therefore, this highlights a
potential risk: hallucinations may go undetected when the method is applied to regular structures, such
as integrated circuits.

Summarising, DIP shows potential for applications in ptychographic reconstruction, both as a denoiser
and as a prior generator in post-processing. DIP can be integrated into phase retrieval algorithms between
iterations to remove noise and prevent its propagation across iterations. Additionally, a trained DIP
network can be used to generate reconstruction priors for both the object and the probe, which can
then be fed into iterative reconstruction algorithms. However, our experiments have shown architecture
dependent weaknesses of the method, which require further investigation as well as comparison with
standard non-ML-powered denoising methods.
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