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Summary
Background Smartwatch data has been found to identify Parkinson’s disease (PD) several years before the clinical
diagnosis. However, it has not been assessed against the gold standard but costly and invasive biological and path-
ological markers for PD. These include dopaminergic imaging (DaTscan) and cerebrospinal fluid alpha-synuclein
seed amplification assay (SAA), which are being studied as markers thought to represent the onset of PD pathology.

Methods Here, we combined clinical and biological data from the Parkinson’s Progression Marker Initiative (PPMI)
cohort with long-term (mean: 485 days) at-home digital monitoring data collected using the Verily Study Watch. We
derived a digital risk score based on sleep, vital signs, and physical activity features to distinguish between PD
(N = 143) and healthy controls (N = 34), achieving an area under precision-recall curve of 0.96 ± 0.01. We
compared it with the Movement Disorder Society (MDS) research criteria for prodromal PD to detect
dopaminergic deficit or α-synuclein aggregation in an at-risk cohort consisting of people with genetic markers or
prodromal symptoms without a diagnosis of PD (N = 109, mean age = 64.62 ± 6.86, 40 men and 69 women).

Findings The digital risk correlated with the MDS research criteria (r = 0.36, p-value = 1.46 × 10−4) and was increased
in individuals with subthreshold Parkinsonism (p-value = 4.99 × 10−6) and hyposmia (p-value = 3.77 × 10−2). The
digital risk was correlated to a stronger degree with DaTscan putamen binding ratio (r = −0.32, p-value = 6.64 × 10−4)
than the MDS criteria (r = −0.19, p-value = 6.81 × 10−3) but to a weaker degree with SAA (r = 0.2, p-value = 3.9 × 10−2)
than the MDS (r = 0.43, p-value = 1.3 × 10−5). The digital risk score achieved higher sensitivity in identifying syn-
ucleinopathy or neurodegeneration (0.59) than the MDS score (0.35) but performed on-par with hyposmia (0.59) with
a combination of hyposmia and digital risk score achieving the highest sensitivity (0.71). The digital risk score showed
lower precision (0.18) than other models.

Interpretation A digital risk score from smartwatch data should be further explored as a possible first sensitive
screening tool for presence of α-synuclein aggregation or dopaminergic deficit followed by subsequent more specific
tests to reduce false positives.
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Research in context

Evidence before this study
We searched PubMed with the search term: (“Parkinson” AND
“prodromal”) AND (“digital” OR “wearable” OR “smartwatch”)
AND (“DaTscan” OR “seed amplification assay”) for articles
published in English on or before June 10, 2024, in any field.
This resulted in no found articles. However, research into
digital markers for early detection of Parkinson’s disease
((“Parkinson” AND “prodromal”) AND (“digital” OR
“wearable” OR “smartwatch”)) has gained interest over the
past years with 44 studies identified of which multiple
highlight the potential value of such technology for early
screening. Research for biological markers of Parkinson’s
disease ((“Parkinson” AND “prodromal”) AND (“DaTscan” OR
“seed amplification assay”)) has led to two recent publications
discussing potential biological definitions of Parkinson’s
disease of which both include dopaminergic imaging and
alpha-synuclein SAA as potential tests. The combination of
both these fields has not yet been explored.

Added value of this study
This study relates digital risk to biological and pathological
markers of Parkinson’s disease in an at-risk cohort. The
strengths of our analysis include the quantitative evaluation
of various risk markers in a well-studied cohort. Key findings
in this study include: the digital risk score being elevated in
individuals with subthreshold Parkinsonism and hyposmia,
the correlation of the digital risk score with not only an
established prodromal score (MDS) but also biological and
pathological markers, and a higher sensitivity in identifying
individuals with biological or pathological markers for the
digital risk score than the established MDS criteria.

Implications of all the available evidence
Our results show that digital risk scores are related to
biological and pathological markers and suggest a crucial role
for digital risk scores in early screening for Parkinson’s disease,
especially as a first indicator in a sequential screening process.
Introduction
The diagnosis of Parkinson’s disease (PD) continues to
rely on clinical judgement, requiring evidence of motor
signs. However, by that time 50–70% of the neurons
producing dopamine, which help control movement,
have already degenerated.1 Therefore, identifying people
prior to this is of high clinical value, and essential for
the investigation of neuroprotective therapies. The
phase predating the clinical diagnosis is termed ‘pro-
dromal’, can span multiple years, and is characterised by
a multitude of symptoms and signs including rapid-eye
movement (REM) behavioural sleep disorder (RBD),
hyposmia, constipation, or mood disorders.2

Existing risk scores trying to identify individuals
during the prodromal phase, such as the Movement
Disorder Society (MDS) research criteria3 or PREDICT-
PD,4 are based on lifestyle and genetic factors as well as
prodromal symptoms. Such prodromal risk scores,
however, show low sensitivity over ten-year follow-up
(35%).5,6 Biological and pathological markers for PD
have shown promising performance in prodromal co-
horts, with dopamine transporter (DaT) binding found
to be reduced in ∼40% of patients with idiopathic RBD
(iRBD)7,8 with 36.48% converting to PD within 4.7
years.9 Recently, a cerebrospinal fluid (CSF) test detect-
ing abnormal α-synuclein protein accumulation (seed
amplification assay (SAA)) has been found to be highly
predictive for idiopathic PD, and to be present in in-
dividuals with hyposmia (88.9%) and RBD (84.8%).10

Based on DaTscan positivity and α-synuclein SAA, a
biological definition and a staging system of PD have
been suggested.11,12 Despite the high specificity of the
biological and pathological markers, they are not suited
for population-based screening due to their associated
cost, invasiveness, and time requirements.

Previously, we have shown that one week of accel-
erometer data can identify people years prior to their
clinical diagnosis.13 Digital sensor data can be passively
collected at home with low-cost devices, addressing the
limitations of the above-mentioned markers. The rela-
tionship between biological and pathological markers
of PD and digital risk has not yet been investigated,
with positive findings underlining the validity of digital
screening.

In this study, we used data from participants at-risk
of developing PD enrolled in the well-characterised
Parkinson’s disease Progression Marker Initiative
(PPMI).14 We analysed data gathered over 1.3 years from
multi-sensor smartwatches to develop a digital risk score
for PD risk. Furthermore, we evaluated this digital risk
score by comparing it with existing prodromal, biolog-
ical, and pathological markers in an unseen at-risk
group.
Methods
Study cohort
PPMI has collected data from individuals recently
diagnosed with PD, individuals at risk, and individuals
without a diagnosis since 2010. We focused on in-
dividuals who have been supplied with a Verily Study
Watch (developed by Verily Life Sciences, FDA-cleared
www.thelancet.com Vol 117 July, 2025
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Diagnosis Subgroup Sample size Male sex Age accelerometry

Proportion Mean Std

HC All 35 0.54 66.69 12.23

PD All 149 0.60 68.48 8.62

At-risk All 151 0.37 64.49 6.97

At-risk LRRK2 59 0.41 64.60 6.93

At-risk GBA 90 0.34 63.91 7.06

At-risk Hyposmia 29 0.48 68.57 7.34

At-risk RBD 2 1.00 70.40 4.68

At-risk Positive DaTscan 14 0.50 70.28 3.62

At-risk Positive SAA 19 0.53 69.98 5.78

Demographic and prodromal marker information for the PD, healthy control, and the different at-risk groups.

Table 2: Study cohort.

Articles
Class II medical device, 510(k) K182456 and K213357), a
multi-sensor smartwatch that is equipped with acceler-
ometer, gyroscope, electrocardiogram, and photo-
plethysmography (Table 1). We used the analytic dataset
cohort assignment which was derived by the Consensus
Cohort Committee that reevaluated the clinical data of
subjects. The at-risk group was formed of people with
polysomnography (PSG)-proven RBD, confirmed hypo-
smia by the consensus committee, or mutations in
Mendelian inherited genes considered causative or
contributing to increased risk in PD (e.g., LRRK2, GBA,
SNCA, Parkin, Pink1) (Table 2).

Digital data
Digital data collection took place between 2018 and 2020
inviting all US-based subjects to wear a Verily Study
Watch for 23 h per day for up to two years with the actual
average wear time being about 18 h. Derived measures
were provided by Verily (Table 1) and accessed in
November 2022. The derived data including 1-h interval
timeseries data on physical activity (step count, walking
minutes), sleep (total time, REM time, non-rapid eye
movement (NREM) time, deep NREM time, light NREM
time, wake after sleep onset (WASO), awakenings, sleep
efficiency), and vital signs (pulse rate, mean root mean
squared successive differences (RMSSD) (heart beat),
median RMSSD, RMSSD variance) were available for 149
individuals diagnosed with PD, 158 individuals in the at-
risk group, and 35 individuals without a diagnosis,
covering a mean of 485 days. Six participants originally
assigned to the at-risk group received a diagnosis of PD
after recruitment but before digital data collection; these
individuals were excluded from analysis. Not all 14 time
series were available for every participant.

Clinical and biological data
Data was downloaded from PPMI in 2021 and access to
sequestered data was provided in 2023. The following
clinical assessments were retrieved: University of
Pennsylvania Smell Identification Test (UPSIT),18
Modality Category Sensors #Features Features

Physical
activity

Ambulatory 3-axis
accelerometer

1 Hourly walking minutes

Step 3-axis
accelerometer

1 Hourly step count

Sleep Sleep
onset/
offset

Accelerometer,
PPG

4 Sleep efficiency, number
awakenings, total sleep t
after sleep onset

Sleep
stages

Accelerometer,
PPG

4 REM, NREM, light NREM

Vital
signs

Pulse rate PPG 1 Total mean pulse rate pe

The different hourly statistics as derived from the smartwatch data are described. This
Electrocardiography, RMSSD: root mean square of successive differences between norm

Table 1: Derived digital markers as provided by Verily.
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Unified Parkinson Disease Rating Scale (UPDRS)
scores,19 Scales for Outcomes in Parkinson’s disease
(SCOPA) autonome, and REM sleep behaviour disorder
screening questionnaire (RBDSQ).20

The most recent minimum putamen striatal binding
ratio (SBR) was calculated from DaTscan data and the
binary indicator of DaTscan positivity was obtained
from PPMI. These measurements were on average
0.33 ± 1.91 years before the digital data collection ended.

α-Synuclein SAA data from baseline CSF samples
included the mean Fmax values across the three repeti-
tions and the provided SAA classification. These mea-
surements were on average 3.4 ± 1.38 years before the
digital data collection ended. We used the most recent
SAA data available at the time of this study; however,
PPMI currently provides SAA results only from baseline
samples. Future availability of more recent longitudinal
data would allow further refinement of our analyses.

Prodromal markers and risk factors
We retrieved all data necessary to calculate the MDS
prodromal risk score3 (Table 3). We were not able to
retrieve information on substantia nigra
Model

2-class classifier (walk/run vs other) trained on 215,000 h of self-report labelled free-living
data from 1800 adult subjects with out-of sample performance of 87%

Frequency-based model validated against ankle-worn gait monitor on 329 days of free-
living data of 75 adult subjects with 18% mean absolute error15

of
ime, wake

Algorithm trained on PPG and ECG validated against majority vote of three wearables on
176 nights in home setting of 50 adult subjects with median absolute error of sleep onset
of 6 min and 9 min for sleep offset

, deep NREM Algorithm trained on PPG and ECG validated against majority vote of three wearables on
176 nights in home setting of 50 adult subjects with an overall accuracy of 70%16

r hour Algorithm from ADI validated against heart rate of ECG on one to 2 h of in-clinic data of
50 adult subjects with a mean absolute error of 10.7 beats per minute ADI202317

information is taken from the accompanying documents on PPMI LONI. PPG: Photoplethysmography, ECG:
al heartbeats, REM: rapid eye movement.
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Risk factors

Age Age at data retrieval date: 01.10.2021

Sex Male

Pesticide exposure FOUND questionnaire whether occupational exposure

Non-use of caffeine FOUND questionnaire less than 6 cups of tea or 3 cups of coffee weekly

Never smoke FOUND questionnaire not ever smoked regularly

Previous smoke FOUND questionnaire ever smoked regularly and not smoke currently

Current smoke FOUND current regular smoker

Physical inactivity

1st degree relative with PD Mother, father, or sibling with PD diagnosis (only used when PRS unavailable)

PRS Polygenic risk score calculated with Nalls, et al.21

Low if in lowest quartile, high if in highest quartile

Diabetes mellitus type II Medical condition log searched for ‘(?!.*pre)(?!.*borderline)((.*(II|2|two).*Diabet.*)|.*Diabet.*type.*(II|2|two).*)’

Prodromal markers

Poven RBD Medical condition log searched for ‘.*(REM behavi|RBD|Rapid Eye).*’ or listed under confirmed RBD in analytic dataset

RBD test Ever scored higher than 5 on RBDSQ

Positive DaTscan Visual inspection of DaTscan abnormal or minimum putamen SBR 2 std away from healthy control mean

Subthreshold parkinsonism Ever UPDRS III score excluding postural and kinetic tremor above 6

Olfactory loss Medical condition log searched for ‘.*(hyposmia|anosmia).*’ or listed under confirmed hyposmia in analytic dataset or ever scored below 1.5 std from age
and sex matched mean22

Constipation Medical condition log searched for ‘.*constipation.*’ OR UPDRS I 1.11 > 1

Excessive daytime
sleepiness

Medical condition log searched for ‘.*sleepiness.*’ OR UPDRS I 1.13 > 1

Urinary dysfunction Medical condition log searched for ‘(?!fecal).*incontinence.*’ OR UPDRS I 1.10 > 1

Orthostatic hypotension Medical condition log searched for ‘.*hypotension.*’ OR UPDRS I 1.12 > 1

Erectile dysfunction Medical condition log searched for ‘.*erectile.*’ OR SCOPA autonome 22 > 1

Depression Medical condition log searched for ‘.*(anxiety|depression).*’ OR UPDRS I 1.3 > 1

Cognitive deficit Ever cognitive categorisation listed as mild impairment or dementia

We describe the process of obtaining risk and prodromal markers from PPMI data. The selection of markers was taken from Heinzel, Berg.3

Table 3: Risk factors and prodromal markers.
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hyperechogenicity or urate levels, as these measure-
ments were not uniformly collected in the PPMI
study.

Statistics
All analyses were performed in python 3.9 using sklearn
1.2.123 for model training and evaluation, tsfresh 0.20.024

for timeseries feature extraction, scipy 1.10.0 and pin-
gouin 0.5.3 for statistical testing,25 and matplotlib 3.6.3 and
seaborn 0.12.2 for creating figures. Data loading and
manipulation has been facilitated through an adapted
version of pypmi (https://github.com/aschalkamp/pypmi).
All associated code will be made available at https://github.
com/aschalkamp/PPMI_DigitalPaper, which can be used
to replicate the performed analyses and retrieve the digital
risk score. Analysis and reporting followed the TRIPO-
D+AI guidelines.

Digital timeseries feature extraction
First, the overall mean over time was computed for each
subject for each digital marker. The group of participants
diagnosed with PD (68.48 ± 6.97 years) was significantly
older than the at-risk group (64.49 ± 6.97) (Cohen’s
d = 0.51, p-value = 1.4 × 10−5) and had a higher proportion
of males (0.6) than the at-risk group (0.37) (Table 2) thus
linear models were fit on the healthy controls (N = 34/35)
to identify the effect of age and sex on each marker. The
resulting residuals were compared with two-sided t-tests
with significant results defined as passing 0.05 FDR
correction.

Second, tsfresh was applied for each subject for each
raw, unadjusted digital feature to extract timeseries
features. This resulted in 783 features such as
maximum, minimum, skewness, kurtosis, and trend for
each of the 14 digital timeseries, leading to a total of
10,962 features per subject.

Risk models
The model described in the MDS research criteria3 was
implemented using their suggested 80% probability
threshold to binarise the resulting risk score. We
include two versions of this: 1) a full version, 2) a
restricted version excluding DaTscan positivity. The
latter serves as a better representation when applied in
the general population.

We computed the digital risk score by training elastic
net logistic regression models identifying participants
diagnosed with PD (N = 134) from healthy controls
(N = 34) based on the computed digital timeseries fea-
tures including only subjects with complete data
www.thelancet.com Vol 117 July, 2025
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(removed subjects PD = 15 and HC = 1). The at-risk
group was not used for model training or validation at
any point. A nested cross-validation was used with an
inner and outer five-fold stratified split so internal vali-
dation was applied. For each fold in the outer cross-
validation loop, the respective training dataset was
used to standardise the data. The inner split was used to
run a grid search to identify the best penalty parameter
between 101 and 104 for alpha and between 0 and 1 for
the L1 ratio (Table 4). The area under the precision-
recall curve (AUPRC) was used as the evaluation score
for model selection. We compared the model’s perfor-
mance to a baseline model using only age and male sex
as predictors. The model’s coefficients were assessed for
stability and significance across folds after Bonferroni
correction. The predicted probabilities were retrieved for
all subjects, including the unseen evaluation set of at-
risk subjects, as the average over the outer folds. The
optimal threshold for identifying participants diagnosed
with PD from healthy controls in terms of F1-score was
found to be 0.54.

We performed additional analyses on the effect of
the considered timeframe, the considered feature sets,
and the applied machine learning model on the per-
formance. All models were trained as outlined in the
main manuscript in nested 5-fold cross validation where
the inner loop performed gridsearch to identify the best
hyperparameters. Performance was compared with area
under the precision-recall curve (AUPRC) across the five
outer test folds. First, we explored the performance of
various machine learning models to identify partici-
pants diagnosed with PD from healthy controls. We
compared logistic regression with elastic net penalty to
random forests, support vector machines with poly-
nomial kernel, and support vector machines with radial
basis functions (Table 4). We chose logistic regression
over the other models as it showed similar performance
while being the simplest and most interpretable one.
We explored how restriction to specific feature sets af-
fects performance. We trained three models: one
restricted to physical activity features, one to vital signs,
and one to sleep. We further analysed how the digital
risk score would perform if restricted to one week of
data as compared to the model using the whole
Logistic regression Polynomial support ve

Penalty Elastic net

C np.logspace(1, 4, 5) np.logspace(1, 4, 5)

L1–L2 ratio np.linspace(0, 1, 5)

Number of estimators

Maximum depth

Degree [3, 4, 5]

For each machine learning model, the hyperparameters are listed on which gridsearch

Table 4: Hyperparameters for machine learning models in gridsearch.

www.thelancet.com Vol 117 July, 2025
observation time of 1.3 years. For this, we identified the
last hour when data was recorded for each subject and
extracted the data up to seven days before. We then
applied tsfresh as before, obtaining 783 features per
timeseries and fitted the logistic regression model just
as before.

Comparison of predicted risks
109 of the 151 subjects in the at-risk group, who did not
yet get a diagnosis of PD and for whom future pheno-
conversion status is unknown, had complete data
available (Table 5). The digital risk score could be
computed for 139 (incomplete data for 12) with an
additional 30 being removed due to missing SAA, thus
leading to the 109 subjects considered. We compared
each pair of risk scores, pathological and biological
markers with Pearson’s correlation. Significant correla-
tions are reported when passing 0.05 FDR correction.
We assessed which known prodromal markers and risk
factors (Table 3) were associated with higher digital risk
scores using Welch’s two-sided t-tests with 0.05 FDR
correction. We only included the 14 markers for which
10 or more cases and controls were available. We further
compared the estimated digital and MDS-based risk
scores across biologically defined subgroups using two
recently proposed frameworks for PD classification: the
NSD staging system,11 which defines disease progres-
sion based on genetic risk (G), synuclein pathology (S),
dopaminergic dysfunction (D), and clinical signs (C)11

and the biological SynNeurGe classification system12

using Welch’s two-sided t-tests with 0.05 FDR correc-
tion. Following the SynNeurGe biological definition of
PD, which combines genetics (G), α-synucleinopathy
(S), and neurodegeneration (N), our at-risk cohort had
92 genetically predisposed individuals (GP+S−N−), 9
genetic Parkinson’s type synucleinopathy (GP+S+N−), 3
Non-PD neurodegeneration (GP+S−N+), 4 sporadic PD
(GP−S+N+), and 1 sporadic Parkinson’s type synuclein-
opathy (GP−S+N−). Following the NSD staging system,
95 individuals are not assigned to any stage, 2 to 1A
(S+N−C−), 8 to 2A (S+N−C+), and 4 to 2B (S+N+C+).
This system does not allow for S− in presence of D+,
which occurs in 4 individuals in our cohort, potentially
due to the SAA being conducted at an earlier time point.
ctor machine RBF support vector machine Random forest

np.logspace(1, 4, 5)

[50, 125, 200]

[15, 57, 100]

was performed to identify the optimal values.
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Proportion/mean Std

Demographics

Male 0.37

Age [years] 64.62 6.86

Cohort criteria

LRRK2 0.35

GBA 0.61

RBD PSG-proven 0.00

Hyposmia 0.20

Prodromal markers

RBDSQ > 5 0.44

Constipation 0.23

Depression anxiety 0.37

Excessive daytime sleepiness 0.24

UPDRS > 6 0.28

Erectile dysfunction 0.14

Urinary dysfunction 0.17

Orthostatic hypotension 0.16

Diabetes II 0.05

Cognitive impairment 0.20

Biological/pathological markers

SAA+ 0.13

DaT+ 0.06

The at-risk group on which the digital risk score is evaluated is presented with
proportion of prodromal markers present, mean age, and sex information.

Table 5: Evaluation cohort.
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Evaluation of risk scores
Assuming that DaTscan or CSF SAA serve as the gold
standard for future conversion to PD, we assessed the
performance of the digital risk model, the MDS pro-
dromal model,3 and hyposmia in this scenario,
computing recall, precision, and F1 score. We further
assessed how a chaining of tests (i.e., first performing a
digital screening and then sending all predicted posi-
tives to further tests) affected these performance
metrics.

Assessment of individuals with biological or
pathological markers and low digital risk
We investigated individuals not identified by the dig-
ital risk model but that had positive CSF SAA (N = 4)
or positive DaTscan (N = 4) in more detail. We
computed Welch’s two-sided t-test for the maximum
ever recorded UPDRS III score comparing these in-
dividuals with individuals showing correctly identified
(high digital risk and (DaTscan positive or SAA pos-
itive)). We repeated this analysis for hyposmia, and
the restricted MDS prodromal risk score and report
results as significant when passing 0.05 Bonferroni
correction.

Role of funders
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Ethics
All 48 participating PPMI sites received approval from
their respective institutional review boards (IRBs), and
written informed consent was obtained from all partic-
ipants, including those enrolled in the at-risk cohort.
The PPMI study is registered at ClinicalTrials.gov
(NCT01141023). This analysis additionally used DaTs-
can and CSF α-synuclein SAA results from at-risk
group, obtained from the PPMI database after
approval by the PPMI Data Access Committee.
Results
Digital outcome measures capture differences in
at-risk groups
The PPMI dataset provided a mean of 485 days of at
home monitoring for 14 features describing physical ac-
tivity, sleep, and vital signs in 1-h intervals (Table 1) for
343 subjects derived from the multi-sensor Verily Study
Watch. The cohort included individuals diagnosed with
PD (N = 149), the at-risk group (N = 158) which consists
of individuals identified based on specific genetic (GBA,
LRRK2, SNCA) and/or prodromal (polysomnography-
proven RBD, hyposmia) markers, and unaffected controls
(N = 35) (Tables 2 and 6). Note that not all 14 derived
digital measures were available for every subject. Seven
individuals of the at-risk group converted before digital
data collection and were removed.

We computed the mean for each digital measure over
the complete period of observation. Comparing these
average measures demonstrated that all physical activity
measures were reduced in participants diagnosed with PD
compared to controls (Fig. 1, Supplementary Table S1,
Supplementary Figure S1): step count (Cohen’s
d = 1.24, p-value = 9.57 × 10−10, two-sided t-test), walking
minutes (Cohen’s d = 1.04, p-value = 2.03 × 10−7, two-
sided t-test). Four of the eight sleep measures were also
significantly lower in individuals diagnosed with PD
compared to controls; sleep length (Cohen’s d = 0.62,
p-value = 2.56 × 10−3, two-sided t-test), sleep efficiency
(Cohen’s d = 1.15, p-value = 1.69 × 10−8, two-sided t-test),
REM (Cohen’s d = 1.2, p-value = 4.11 × 10−9, two-sided
t-test), and deep NREM sleep length (Cohen’s d = 0.94,
p-value = 3.37 × 10−6, two-sided t-test). None of the
four digital vital signs were significantly different
between individuals with Parkinson’s disease and healthy
controls.

Due to the heterogeneity of the at-risk group, we split
the group by specific identifiers. The whole at-risk group
including genetic carriers and those with prodromal
symptoms did not show any differences to healthy
controls. Differences between controls and the at-risk
subgroups were observed for sleep efficiency,
which was significantly reduced in individuals with
hyposmia (Cohen’s d = 1.04, p-value = 1.93 × 10−4, two-
sided t-test), positive DaTscan (Cohen’s d = 1.05,
p-value = 2.76 × 10−3, two-sided t-test), or positive SAA
www.thelancet.com Vol 117 July, 2025
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Variable Sex Sample
size

Age
(Mean ± Std)

LRRK2 (%) GBA (%) RBD PSG-proven
(%)

Hyposmia
(%)

DaT+ (%) SAA+ (%)

Healthy control Male 19 66.16 ± 11.47 / / / / / /

Healthy control Female 16 67.31 ± 13.42 / / / / / /

PD Male 89 68.43 ± 8.81 / / / / / /

PD Female 60 68.56 ± 8.40 / / / / / /

At-risk Male 56 65.08 ± 7.54 59 (39.07%) 90 (59.6%) 2 (1.32%) 29 (19.21%) 14 (9.27%) 19 (12.58%)

At-risk Female 95 64.14 ± 6.62 / / / / / /

At-risk evaluation cohort (all) Male 40 65.08 ± 7.54 38 (34.86%) 66 (60.55%) 0 (0%) 22 (20.18%) 7 (6.42%) 14 (12.84%)

At-risk evaluation cohort (all) Female 69 64.14 ± 6.62 / / 0 (0%) / / /

At-risk evaluation cohort (LRRK2) Male 13 6580 ± 8.07 13 (100%) 0 (0%) 0 (0%) 2 (15.38%) 0 (0%) 2 (15.38%)

At-risk evaluation cohort (LRRK2) Female 25 64.19 ± 5.57 25 (100%) 0 (0%) 0 (0%) 4 (16%) 1 (8%) 2 (8%)

At-risk evaluation cohort (GBA) Male 42 64.45 ± 7.27 0 (0%) 42 (100%) 0 (0%) 4 (16.67%) 0 (0%) 1 (4.17%)

At-risk evaluation cohort (GBA) Female 24 63.82 ± 7.07 0 (0%) 24 (100%) 0 (0%) 7 (16.67%) 1 (2.38%) 4 (9.52%)

At-risk evaluation cohort (hyposmia) Male 9 71.30 ± 6.33 2 (22.22%) 4 (44.44%) 0 (0%) 9 (100%) 2 (22.22%) 5 (55.56%)

At-risk evaluation cohort (hyposmia) Female 13 64.40 ± 5.66 4 (30.77%) 7 (53.85%) 0 (0%) 13 (100%) 2 (15.38%) 5 (38.46%)

At-risk evaluation cohort (positive
DaTscan)

Male 2 72.74 ± 0.13 0 (0%) 0 (0%) 0 (0%) 2 (100%) 2 (100%) 2 (100%)

At-risk evaluation cohort (positive
DaTscan)

Female 5 69.97 ± 4.15 2 (40%) 1 (20%) 0 (0%) 2 (40%) 5 (100%) 2 (40%)

At-risk evaluation cohort (positive SAA) Male 6 71.22 ± 7.47 2 (25%) 4 (50%) 0 (0%) 5 (83.33%) 2 (25%) 6 (100%)

At-risk evaluation cohort (positive SAA) Female 8 68.71 ± 5.28 2 (33.33%) 1 (16.67%) 0 (0%) 5 (62.5%) 2 (33.33%) 8 (100%)

For each cohort the sample size, proportion male and mean age at digital data collection is shown. This is for the overall cohort and then we show those also for the evaluation cohort which was selected
from the at-risk cohort as those having all data available. We further show the percentages of LRRK2, GBA, hyposmia, DaT+, and SAA+ per cohort.

Table 6: Demographic characteristics.
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(Cohen’s d = 1.14, p-value = 3.09 × 10−4, two-sided t-test)
(Fig. 1). Individuals with hyposmia showed significant
differences to the controls in five measures, individuals
with SAA positivity showed differences in four, and
individuals with DaTscan positivity differed in one
measure (Supplementary Figure S1, Supplementary
Table S1). Overall, the digital measures hold informa-
tion relevant to PD and its prodromal markers.

Long-term digital risk score identifies Parkinson’s
disease
We obtained digital risk scores (Fig. 2) from models
trained on the 783 timeseries features as extracted with
tsfresh for each of the 14 digital measures (Supplementary
Table S2). The logistic regression model was trained to
identify participants diagnosed with PD (N = 135) from
healthy controls (N = 34), leaving the at-risk group
(N = 109) as a separate evaluation dataset not seen during
training or validation (Table 6). The digital risk model
(AUPRC = 0.96 ± 0.01) significantly outperformed the
baseline model (AUPRC = 0.8 ± 0.04, p-value = 8 × 10−6)
(Fig. 3a, Supplementary Figure S2a). Consistently selected
features predominantly originated from REM sleep time
(41.39%) and step count (48.28%) (Supplementary
Figure S3). Logistic regression performed on-par with
other machine learning methods (Fig. 3a, Supplementary
Figure S2a). Ablation analyses on the considered feature
sets revealed the union of all features to perform better
than models trained on subsets (Fig. 3c, Supplementary
Figure S2c) with a model only trained on vital signs
www.thelancet.com Vol 117 July, 2025
performing worst. Additional analyses on the considered
timeframe showed longer timespans to better distinguish
between participants diagnosed with PD and control
(Fig. 3d, Supplementary Figure S2d).

Digital risk score relates to Movement Disorder
Society research criteria
We computed a prodromal risk score using the model
defined in the MDS research criteria3 (Fig. 2, Table 3).
In our at-risk evaluation cohort (Table 5), our digital risk
score was significantly correlated with the MDS risk
score (Pearson’s r = 0.36, p-value = 2.43 × 10−4, N = 109,
t-test) and the restricted MDS score excluding DaTscan
information (Pearson’s r = 0.37, p-value = 1.65 × 10−4, t-
test, Fig. 4, Supplementary Table S3).

We investigated which known risk factors and pro-
dromal symptoms implied significant differences in digital
risk. Individuals with subthreshold Parkinsonism (UPDRS
III > 6) (Cohen’s d = 1.11, p-value = 5.83 × 10−6, Welch’s t-
test), hyposmia (Cohen’s d = 0.67, p-value = 3.88 × 10−2,
Welch’s t-test), or depression (Cohen’s d = 0.62,
p-value = 1.07 × 10−2, Welch’s t-test) had higher digital risk
scores (Fig. 5a, Supplementary Tables S4 and S5).

Digital risk score represents neurodegeneration and
synucleinopathy
The digital risk score was correlated weakly but signifi-
cantly with the minimum putamen SBR derived from
DaTscan (Pearson’s r = −0.32, p-value = 9.49 × 10−4, t-test)
and the CSF α-synuclein SAA (Pearson’s r = 0.2,
7
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Fig. 2: Derivation of risk scores and overview of statistical analyses. Overview of analysis. Derivation of risk scores and biological and
pathological markers. Illustration of performed tests and modelling.

Fig. 1: Digital measures capture differences in at-risk groups. The boxplots show the residual overall mean of digitally tracked sleep efficiency
adjusted for age and sex with parameters learnt from a linear regression on the healthy controls. The overall mean is computed over the whole
observation time per subject for each group. The boxplots depict the group median and quartiles per group with the whiskers showing the Q3 + 1.5
interquartile range (IQR) and Q1 − 1.5 IQR (Parkinson’s disease cases: PD; healthy controls: HC; carriers of genetic risk alleles or prodromal symptoms
without a diagnosis of PD: GBA, LRRK2, hyposmia, polysomnography-proven RBD, positive DaTscan, positive SAA; union of these: at-risk). The
number in the yellow box indicates the number of individuals per group. Group differences were calculated with two-sided t-test comparing PD and
HC to each of the at-risk groups. Lines and numbers show significant differences with 0.05 FDR corrected p-values.

Articles

8 www.thelancet.com Vol 117 July, 2025

http://www.thelancet.com


a b

c d

Fig. 3: Performance of digital risk models. The performances for the digital risk score models are shown compared to a) baseline, b) other
machine learning models, c) other feature sets, and d) other considered time frames. The precision-recall curves are shown as the mean on the
outer 5-folds of the nested cross-validation. The shaded area displays the 95% Confidence Interval (CI). For each classifier, the legend shows the
mean area under the precision-recall curve (AUPRC) with the standard deviation. SVM: support vector machine, rbf: radial basis function,
RF: random forest.
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p-value = 3.9 × 10−2, t-test, Fig. 4, Supplementary Table S3).
Compared to the restricted MDS risk score, which also
correlated to a similar degree with these biological and
pathological markers, the digital risk score showed a
stronger correlation with DaTscan (−0.32 vs −0.2) but a
weaker one with CSF α-synuclein SAA (0.2 vs 0.43).

Recent efforts have been made to derive biological
definitions for PD, we investigated the digital risk score
against two systems: SynNeurGe12 and NSD.11 Following
the SynNeurGe definitions, our digital risk score was
highest in participants with sporadic PD (0.74 ± 0.38
(N = 4)) and lowest for groups without synucleinopathy
(GP+S−N−: 0.52 ± 0.32 (N = 92), GP+S−N+: 0.41 ± 0.06
(N = 3)) (Fig. 5b). Similar observations can be made
for the MDS criteria. Following the NDS staging system,
www.thelancet.com Vol 117 July, 2025
the digital risk score increases with each stage whereas
the MDS prodromal score shows a steep increase only
from stage 2 onwards (Fig. 5c).

Digital risk score more sensitively detects
synucleinopathy and neurodegeneration than MDS
criteria
As no individuals in our at-risk group received a diag-
nosis of PD after digital data collection, we had no gold
standard information on phenoconversion available.
Instead, we assessed the risk models for their ability to
identify synucleinopathy and neurodegeneration as
measured with α-synuclein SAA and DaTscan, which
are known to already be altered in the prodromal
stage.9,10,26
9
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Fig. 4: Digital risk score correlates with MDS prodromal score and biological markers. The relation between the different risk scores and
biological markers is shown. On the diagonal, the distribution for each diagnostic group is displayed (PD: diagnosed Parkinson’s disease, HC:
healthy control, Prodromal: at-risk cohort of genetic mutations carriers and individuals with prodromal symptoms). The scatterplot shows the
relation between each pair of markers (digital: digital risk score, MDS restricted: Movement Disorder Society (MDS) prodromal risk score without
DaTscan information, MDS: MDS prodromal risk score with DaTscan information if available, CSF α-synuclein SAA Fmax mean: mean value of
the five repetitions of seed amplification assay (SAA) on CSF, DaTscan minimum putamen: minimum of hemispheres dopaminergic imaging
scan (DaTscan) striatal binding ratio (SBR10) in putamen) in the at-risk group (N = 109) with the text box displaying the Pearson r coefficient
and the 0.05 FDR corrected p-value.
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The digital model identified 28.57% more of the in-
dividuals with synucleinopathy or neurodegeneration
than the MDS model (Table 7, Supplementary
Table S6). While the digital risk score showed higher
recall than the MDS model, it had lower precision
(Table 7, Supplementary Table S6). Compared to hypo-
smia, as determined by UPSIT test and medical records
(Table 3), the digital model had equal recall, except for
DaTscan positivity where hyposmia identified one
additional participant correctly (Supplementary
Table S6). Generally, hyposmia performed better or
equal to the digital risk score. The two tests, however,
identified distinct individuals for SAA positivity with a
combined risk identifying 12 of the 14 SAA positive
cases increasing the recall by 0.12.

The risk models could be biased towards identifying
only those individuals already presenting with minor
motor impairments (Supplementary Table S7). The in-
dividuals that the digital model did not identify but that
had either positive SAA or DaT, had lower maximum
UPDRS III scores (mean = 1.86 ± 2.27, N = 7) than the
ones correctly identified by the digital risk
(mean = 15.7 ± 11.33, N = 10) (Cohen’s d = 1.56, p-
value = 3.74 × 10−3, Welch’s t-test). Hyposmia (Cohen’s
d = 1.65, p-value = 2.58 × 10−3, Welch’s t-test) and the
restricted MDS prodromal risk score (Cohen’s d = 3.1,
p-value = 2.15 × 10−4, Welch’s t-test) showed this same
bias towards individuals with higher UPDRS III scores
being identified and those with lower being missed.

Of the 109 at-risk subjects the digital risk score
identified 51.38% (N = 56) as high risk whereas the
MDS research criteria only flagged 8.26% (N = 9),
which can also be seen in the bi-modal distribution for
the digital risk score compared to a heavy-tailed one for
www.thelancet.com Vol 117 July, 2025
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Fig. 5: Digital risk score is increased in individuals with known prodromal markers and biological classification groups. a) The boxplots
show the difference in digital risk score between carriers and non-carriers (x-axis). The 0.05 FDR-corrected p-value from two-sided Welch t-test
is shown. The yellow box presents the number of subjects in each group. This plot shows those prodromal markers and risk factors from the
model included in Heinzel, Berg3 that were significant after FDR-correction. A complete table with statistical results can be found in
Supplementary Table S4. b) The distribution of risk scores for the different biological groups defined by SynNeurGe12 for the digital, the MDS,
and the restricted MDS risk scores. c) The distribution of the risk score for the different biological stages defined by NSD11 for the digital, MDS,
and the restricted MDS risk scores.
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the MDS model (Fig. 4). Sequential testing could be
applied such that all predicted positive cases from the
digital risk model would be sent for further testing with
hyposmia, with the final examination being performed
with CSF α-synuclein SAA or DaTscan. Favouring the
sensitive digital risk over the MDS score for such a
sequential screening is indicated by 11 more in-
dividuals with either DaT+ or SAA+ being identified
rather than missed with the MDS (Supplementary
Figure S4).
Discussion
We leveraged the 1.3-years of continuously collected
smartwatch data from the PPMI cohort to derive a dig-
ital risk score. Individuals with known prodromal
markers, subthreshold Parkinsonism or hyposmia,
demonstrated an increased digital risk. The digital risk
score more sensitively detected neurodegeneration or
synucleinopathy than the MDS research criteria.3

We have previously demonstrated the ability to iden-
tify those who will go on to receive a future diagnosis
of PD using one week of accelerometer data.13 Here,
we evaluated long-term digital markers derived from a
www.thelancet.com Vol 117 July, 2025
multi-sensor device worn by individuals harbouring ge-
netic risk variants or prodromal markers for PD. We
assessed the improvement in using the whole observa-
tion time versus the last week of data available and found
a significant improvement for the long-term risk. The
addition of the PPG sensor allowed the extraction of sleep
stages and vital signs, which significantly contributed to
the digital risk (Fig. 3, Supplementary Figures S2 and
S3). The extended timeframe and measures thus
contributed to an improved digital risk score.

With the digital risk correlating with biological and
pathological markers of PD, its relevance for early
screening was further highlighted. Compared to the
MDS research criteria, the digital risk score had a higher
recall for CSF α-synuclein SAA positivity (increase by
0.29) and DaTscan positivity (increase by 0.29). The
MDS score poses much importance on the RBD status
does not commonly occur in LRRK2 carriers with a PD
diagnosis.27 Previous research reported hyposmia as a
good predictor for DaTscan positivity28 with a recall of
0.96 and a precision of 0.14. In our dataset, hyposmia
achieved a recall of 0.57 and a precision of 0.18.
This discrepancy could be attributed to a different
method for ascertainment of hyposmia or population
11
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TN FP FN TP Precision Recall F1 score

MDS 89 3 11 6 0.67 0.35 0.46

MDS restricted 88 4 11 6 0.6 0.35 0.44

Hyposmia 80 12 7 10 0.45 0.59 0.51

Digital 46 46 7 10 0.18 0.59 0.27

Digital + hyposmia 42 50 5 12 0.19 0.71 0.3

SAA 92 0 3 14 1 0.82 0.9

DaTscan 92 0 10 7 1 0.41 0.58

Due to a lack of future conversion information, we display the performance of each risk score against the combination of DaTscan positivity and SAA positivity. The number
of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) is shown alongside precision, recall, and F1 score. Importantly, MDS includes
information on DaTscan positivity in its model, hence, we included a restricted version without this information as well.

Table 7: The digital risk score sensitively identifies people with biological or pathological markers of Parkinson’s disease.
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characteristics. Generally, hyposmia performed as well
or better than the digital risk score. However, we noted
that distinct individuals were identified for CSF α-syn-
uclein SAA positivity by the digital risk score and
hyposmia, with a combination identifying 85.71% of
CSF α-synuclein SAA positive cases.

The digital risk score identified half of the at-risk
group as high-risk. This could indicate a high rate of
false positives, placing a burden on healthcare systems to
undertake additional screening tests, and anxiety for the
individuals incorrectly identified as being at high-risk.
Prior to additional invasive testing being undertaken
based on digital risk, further clinical examination should
be performed (including testing for hyposmia), aligning
with current recruiting strategies for prodromal cohorts.29

The true rate of false positives remains to be determined
due to the missing information on future pheno-
conversion in the current dataset. Although CSF α-syn-
uclein SAA and DaTscan are good markers for the
neuropathological changes associated with PD, they are
not diagnostic tools.10 For example, LRRK2 carriers who
have a diagnosis of PD do not necessarily have positive
SAA with around 33% testing negative.10 Ongoing follow-
up is thus needed to assess the true predictive perfor-
mance of the risk scores based on phenoconversion.

A digital risk score could be integrated in a sequen-
tial screening pipeline as the first test to be performed.
Due to the passive data collection and ongoing recording
of data, a digital risk score can easily be calculated on a
rolling basis. This is in contrast to the MDS criteria that
include various clinical tests to be carried out, including
DaTscan, which is generally only performed when PD is
already suspected.30 The sequential screening pipeline
could incorporate DaTscan as a secondary test, which
has previously been proposed.31 The first test in this
pipeline should be accessible, cheap, and scalable.
Hyposmia is currently the most promising early
screening marker for PD with the test being low-cost
and easily accessible.28,32 Here, we showed that a digi-
tal risk score could offer an alternative or addition to this
test with passively collected digital data having the
advantage of continuous and passive longer-term follow-
up. As our analysis showed that the union of hyposmia
and the digital risk identified SAA or DaTscan positivity
the best, a combination of these two would increase
their individual recall from 0.59 each to 0.71 when
combined while remaining cost efficient.

The primary limitations of this study relate to data
availability and choice of methodology. Due to the Verily
Study Watch only being introduced 10 years after the start
of the PPMI study, for some individuals the different data
modalities have been collected several years apart,
limiting the comparability between modalities. With the
digital risk being collected most recently, its detection
performance could be attributed to individuals being
potentially closer to phenoconversion. The PPMI at-risk
group currently only includes 28 individuals known to
have subsequently received a diagnosis (converters) of
which only seven had digital data available with six con-
verting prior to data collection and one without a known
conversion date, limiting the assessment of the true risk
of developing PD. Notable sample size restrictions limit
the power and generalisability of our results. The control
group available for model training and validation was
restricted to 34 healthy controls due to only few healthy
controls wearing smartwatches within the PPMI study,
restricting our analysis and prohibiting age-sex matching.
The evaluation cohort of 109 subjects only included
7 DaT+ and 14 SAA+ cases. Our study was further
limited to the derived features provided by Verily, the
code for which is proprietary, limiting reproducibility in
other cohorts. As sleep scores differ highly between de-
vices and employed processing and have not reached the
same performance as achieved with PSG,33 the included
sleep features should be interpreted with this variability
in mind. Further potential confounders that have not
been assessed include medication and comorbidities.
Race and ethnicity have not been assessed in this analysis
and the representativeness of the reported results
remains to be assessed. Finally, due to lack of an inde-
pendent validation cohort from a separate study, our
findings remain to be replicated in the future.
www.thelancet.com Vol 117 July, 2025
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In conclusion, long-term digital monitoring can
inform disease risk outperforming the MDS research
criteria for prodromal PD to detect neurodegeneration or
synucleinopathy. Sequential screening methods should be
further developed and implemented to facilitate recruit-
ment of individuals into future clinical trials focussed on
dopaminergic deficits or α-synucleinopathy.
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