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Abstract: Forests play a crucial role in the global carbon cycle. Extrapolating the 1 

current knowledge of the relationship between tree growth and climate conditions to 2 

unobserved regions or past/future periods is essential for mitigating and adapting to 3 

global change. Tree growth extrapolations typically rely on either a temporal model 4 

using long-term time series from a single site or a spatial model using multi-year 5 

averages across climatic gradients. Both models have inherent strengths and limitations. 6 

Integrating temporal-spatial variations to quantify drivers of system variations is a key 7 

issue in macrosystems ecology studies, but is rare in tree growth extrapolation models. 8 

Based on the random forest algorithm, we used Picea mariana tree-ring data as a case 9 

study to explore the potential of the integrating temporal-spatial (TS) model, which 10 

integrates both temporal and spatial variations. To examine the prediction skills of 11 

models, we provided isolated validation datasets for rigorous testing. Results revealed 12 

that (1) for extrapolating temporal variations, both temporal and TS models performed 13 

well, while the spatial model performed extremely poorly; (2) For extrapolating spatial 14 

variations, both spatial and TS models performed well, while the temporal model 15 

performed extremely poorly; and (3) for extrapolating TS variations, only the TS model 16 

performed acceptably, while both temporal and spatial models performed extremely 17 

poorly. In contrast, the TS model showed significantly higher predictive skill. In 18 

summary, this study provides a rare empirical evaluation, demonstrating that the TS 19 

model exhibits notably higher predictive skill compared to the temporal and spatial 20 

models. Furthermore, our evaluation studies emphasize the necessity of testing the 21 

extrapolation capacity of models using independent external validation data, which has 22 
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significant implications for the field of tree growth extrapolation. The TS model offers 23 

valuable insights for research planning and informed management decisions, 24 

particularly in regions with a limited number of observations.   25 

Keywords: climate change, forest, growth extrapolations, random forest, temporal-26 

spatial model, tree-ring  27 

1 Introduction  28 

Forests play a crucial role in the global carbon cycle by absorbing substantial 29 

atmospheric CO2 from human activities(Friedlingstein et al., 2020) and storing it in 30 

woody biomass for decades to centuries(Körner, 2017). Understanding and simulating 31 

forest dynamics are essential for guiding environmental policies and management 32 

strategies aimed at mitigating and adapting to global change(Chausson et al., 2020; 33 

Beaulne et al., 2021). Tree-ring observations provide long-term, annual records of 34 

individual tree growth with unparalleled spatiotemporal coverage and resolution, 35 

making them valuable for evaluating and simulating forest dynamics(Babst et al., 2017; 36 

Zhao et al., 2019). Extrapolating the current knowledge of the relationship between tree 37 

growth and climate conditions to unobserved regions or past/future periods is a key 38 

priority for tree-ring research. Ideally, effective modeling requires dense coverage of 39 

tree-ring observations across climatic gradients(Babst et al., 2018), yet logistical, 40 

financial and technical constraints often limit data collection(Miller et al., 2004). 41 

Consequently, scientists face the challenge of making reliable extrapolations across 42 

both spatial and temporal domains using available data.  43 

Temporal model, fitted using long-term time series to describe how growth varies 44 
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over time experiencing different climatic gradients, is one approach for tree growth 45 

extrapolation. Due to the limited overlapping period of tree-ring and climate 46 

observations, typically spanning only a few decades, it captures the fast processes 47 

operating on interannual time-scales while disregarding the slower processes(Adler et 48 

al., 2020; Rodríguez-Morata et al., 2020). The temporal model usually densely covers 49 

a limited climatic gradient, as the climate at a given location typically exhibits relatively 50 

small-amplitude oscillatory variations(Blois et al., 2013).  51 

As well as temporal variation, tree growth also exhibits spatial variation(Wu et al., 52 

2022). Thus, spatial model, fitted using multi-year averages to describe how growth 53 

varies across sites under different climate conditions, represents a complementary 54 

approach for simulating tree growth. It captures the interactions between fast and slow 55 

processes over long-term periods but provides no information about the transition speed 56 

between different growth states(Adler et al., 2020; Bradter et al., 2022). Spatial model 57 

usually sparsely covers a broad climatic gradient, as existing tree-ring observations, 58 

primarily used for dendroclimatology, focus on marginal growth conditions(Babst et al., 59 

2018). However, some studies have reported that the spatial and temporal model yield 60 

very different extrapolations(Oedekoven et al., 2017; Adler et al., 2020).  61 

Integrating temporal-spatial variations to quantify drivers of system variations is 62 

a key issue in macrosystems ecology studies(Levy et al., 2014). Several studies have 63 

shown that a deeper understanding of the mechanisms driving community assembly 64 

and biodiversity dynamics can be achieved by integrating temporal-spatial 65 

variations(White et al., 2010; Rull, 2014; Engels et al., 2020). However, research using 66 
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integrated temporal-spatial variations in tree growth extrapolation model (i.e., TS 67 

model) is even rarer than studies focusing solely on spatial variation. 68 

The performance of tree growth extrapolation models is evaluated during 69 

validation by examining the correlation between predictions and observations. This 70 

often relies on a re-substitution process, where data used for model training are also 71 

used for testing, potentially leading to an overestimation of model performance(Araujo 72 

et al., 2005). Some studies warn that models optimized to handle data noise may 73 

introduce bias in estimates of prediction errors, potentially losing generality outside the 74 

original data(Olden & Jackson, 2000; Olden et al., 2002). To address this, methods such 75 

as cross-validation and jack-knifing have been proposed. Among these, cross-validation 76 

is frequently employed as it can reduce the need for additional observations(Đorđević 77 

et al., 2019; Bodesheim et al., 2022). Nonetheless, training and validation data are often 78 

tested under identical climate conditions, which is basically unrealistic for extrapolating 79 

tree growth. In contrast, independent external validation, which comprises data not used 80 

during extrapolation model developing, serves as a more rigorous test of model 81 

robustness and generalizability(Kothari et al., 2023). However, external validation of 82 

tree growth extrapolation model under climate change remains poorly explored. 83 

Here, we used Picea mariana in the Québec, Canada as a case study for exploring 84 

the application potential of temporal, spatial and TS growth extrapolation models. To 85 

capture the complex nonlinear relationship between growth and climate conditions, we 86 

apply the random forest algorithm to build extrapolation models. We also evaluate the 87 

robustness and generalizability of models using independent external validation data. 88 
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2 Data materials and methods 89 

2.1 Study area 90 

We use the Picea mariana (Mill.) B.S.P in the northern temperate and boreal forest 91 

zones of Québec, Canada as a case study. The climate spans from humid continental in 92 

the south, characterized by hot humid summers and long cold winters, to subarctic in 93 

the north with cooler summers and extended colder winters. The elevation of the study 94 

area increases from about 0 m a.s.l. in the boundary to about 1233 m a.s.l. in the central 95 

area (Fig 1b). The study area experienced relative climatic stability for most of the 20th 96 

century followed by a consistent warming began in the early 1990s (Fig 1c). Picea 97 

mariana is commonly selected for dendrochronology studies due to its distinctly 98 

marked annual growth rings, climatic sensitivity and abundance throughout the North 99 

American boreal forest(Beaudoin et al., 2014; D’orangeville et al., 2016). 100 

 101 

Fig 1 Spatial-temporal distribution of tree-ring sample sites. (a) Spatial range of Picea mariana 102 

(colored area) and Sample sites (blue circles), (b) Number of tree-ring sample sites and (c) Temporal 103 

variation of mean annual temperature at each of tree-ring sample sites in the study 104 
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2.2 Tree-ring data 105 

Tree-ring width data were retrieved from the International Tree-Ring Data Bank 106 

(https://www.ncei.noaa.gov/pub/data/paleo/treering/measurements/), a public database 107 

known for its utility in investigating long-term tree growth patterns(Zhao et al., 2019; 108 

Pearl et al., 2020). First, we downloaded all available tree-ring width data of Picea 109 

mariana for the study area. We then thoroughly cleaned and filtered the tree-ring width 110 

data to ensure that all cores met the following criteria: the radius was greater than 5 cm 111 

and less than 100 cm, and the average ring width and 95% of annual ring widths were 112 

less than 1 cm. We further subset the tree-ring width to include only measurements after 113 

1950, as the significant improvement in the quality of climate data after 1949(Harris et 114 

al., 2020). Finally, we retained 38,170 ring width measurements from 733 cores across 115 

28 sites. The number of sites available for each year peaks before 1988 and declines 116 

dramatically thereafter: at 57% of sites the last measurements was before 1988, at 86% 117 

of sites before 2011, and only two sites have measurements in 2022 (Fig 1c).  118 

We transformed the tree-ring width to annual basal area increments (BAI, mm2/yr), 119 

which are closely related to tree productivity(Mirabel et al., 2023) using the formula: 120 

BAI = π(𝑅𝑡
2 − 𝑅𝑡−1

2 ) 121 

where, R represents the tree radius and t represents the year of tree-ring formation. To 122 

estimate tree radius, we assumed that the ring width was uniform in a circular cross-123 

section of the tree, and the oldest record corresponded to the pith (i.e., radius at any 124 

given year is the sum of all previous ring widths). Tree age was estimated as the sum 125 

of recorded rings. Single BAI and age series for the same site were averaged by Tukey's 126 

https://www.ncei.noaa.gov/pub/data/paleo/treering/measurements/
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Biweight Robust Mean method into a site BAI and age chronology. All these procedures 127 

were performed using the dplR package(Bunn et al., 2021) in R software(Team, 2018). 128 

2.3 Climatic data 129 

As driving tree growth variables, we used monthly temperature (°C), precipitation 130 

(mm), cloud cover (%), potential evapotranspiration (PET, mm/d), and diurnal 131 

temperature range (DTR, °C) spanning 1949-2022 with a spatial resolution of 0.5° from 132 

the Climate Research Unit Time Series (CRU TS) V 4.07 dataset(Harris et al., 2020). 133 

To obtain these variables for the individual tree-ring sample sites, values were extracted 134 

from the gridded dataset and the corresponding grid pixels. Considering the influence 135 

of both previous and current year on tree growth for a single year, we incorporated 136 

climatic variables from May of previous year to October of current year. 137 

2.4 Experimental design 138 

In this study, three major steps were taken to evaluate the potential of models in 139 

simulating tree growth variations (Fig 2). First, we established the foundational 140 

database. Second, we constructed the temporal and spatial variation datasets for tree 141 

growth and their driving factors. Finally, we fitted and evaluated three tree growth 142 

variation extrapolation models. 143 
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 144 

Fig 2 The experimental design and workflow to evaluate the performance of extrapolation models 145 

in tree growth variation. PET and DTR represent the potential evapotranspiration and diurnal 146 

temperature range, respectively. TS, integrating temporal-spatial. 147 

2.4.1 Constructing the temporal and spatial variations 148 

For temporal variation data, the dissimilarities of BAI, age and climate conditions 149 

between all sample pairs at a single tree-ring site over time were calculated then 150 

combined with temporal comparisons obtained from all other sites. For example, within 151 
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site1, the temporal dissimilarities in tree growth were calculated by a subtraction 152 

expression (e.g., growth in 2000 minus growth in 2001). For spatial variation data, the 153 

dissimilarities between all site pairs for a single year across space were calculated and 154 

then combined with spatial comparisons obtained from all other years. For example, in 155 

the year 2000, the spatial dissimilarities in tree growth were calculated by a subtraction 156 

expression (e.g., growth at site1 minus growth at site2). 157 

To build and evaluate extrapolation models, we split the temporal and spatial 158 

dissimilarities data into training, testing (i.e., internal validation) and validation (i.e., 159 

external validation) partitions (Fig 3). We randomly selected 70% of sites, and then (1) 160 

assigned 70% of their temporal dissimilarities to construct temporal training and testing 161 

data (16,984 pairwise dissimilarities) and the remaining 30% to construct temporal 162 

validation data (7,279 pairwise); (2) assigned 70% of their spatial dissimilarities to 163 

construct spatial training and testing data (5,116 pairwise) and the remaining 30% to 164 

construct spatial validation data (2,192 pairwise); (3) pooled their temporal and spatial 165 

dissimilarities together to construct TS training and testing data (22,100 pairwise). For 166 

the remaining 30% of sites, we pooled their temporal and spatial dissimilarities together 167 

to construct TS validation data (12,655 pairwise). Through the above processes, we 168 

combined tree growth and climate data across space and time and thus integrates 169 

shifting niches, no-analog climatic conditions, and other factors to capture diverse 170 

manifestations of growth-climate relationships(Nogués‐Bravo, 2009; Blois et al., 2013). 171 

Moreover, the integration created large datasets, enhancing analytical power. 172 
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 173 

Fig 3 Data composition used for model building and evaluation. TS, integrating temporal-spatial 174 

2.4.2 Building and evaluating extrapolation models 175 

We used the random forest (RF) algorithm as a multivariate non-parametric 176 

regression method(Bhuyan et al., 2017) to explore the effects of age and climate on tree 177 

growth variations. The RF algorithm, an ensemble learning method developed by 178 

Breiman (2001), constructs several random decision trees during training phase, with 179 

the ultimate output being the average of all decision trees results(Liaw & Wiener, 2002). 180 

It is widely applied in extrapolations and well-suited for high-dimensional non-linear 181 

modeling of tree growth(Mirabel et al., 2023; Jevšenak et al., 2024). Incorporating 182 

Tobler’ First Law of Geography(Tobler, 1970), which emphasizes the importance of 183 

spatial proximity, we incorporate space distance as an explanatory variable. 184 

Recognizing the influence of adaptive plasticity on growth response to climate, i.e., the 185 

effects of rapid and slow climate changes may vary(DeSoto et al., 2014; Wilmking et 186 

al., 2020), we also incorporate time distance as an explanatory variable. Ecologically, 187 

the relationship between growth and climate often reflects non-linearities, resembling 188 

reaction norms in evolutionary biology, and featuring physiological optima and either 189 
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threshold or saturation effects(Wilmking et al., 2020). Identical climate variations 190 

under various climate conditions may result in diverse impacts on growth, potentially 191 

even exhibiting opposite signs. Thus, we further estimate interactions of climate 192 

conditions between sample pairs at a single site over time, or between site pairs for a 193 

single year across space. Finally, the fitting function has the form: 194 

∆𝐵𝐴𝐼 ~ 𝑓 (∆𝑎𝑔𝑒,
∆𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑖,𝑘

(1 + 𝑑𝑖𝑠𝑡𝑇) ∗ (1 + 𝑑𝑖𝑠𝑡𝑆)
, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑜𝑛𝑠𝑒𝑡,𝑖,𝑘 ∗ 𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑒𝑛𝑑,𝑖,𝑘) 195 

where, ∆BAI, ∆age and ∆climate represent the dissimilarities of BAI, age and climate 196 

between sample pairs at a single site over time, or between site pairs for a single year 197 

across space, respectively. The index i specifies five climate variables: temperature, 198 

precipitation, cloud cover, potential evapotranspiration and diurnal temperature range. 199 

The index k specifies six 2-month seasons, starting from the previous year’s July and 200 

August, September and October, …, until the current year’s September and October 201 

(noting that the winter season spans from previous November to current April). The 202 

index onset and end specify the onset and end climate condition for tree growth 203 

variations. The terms distT and distS represent the time and space distance between 204 

sample pairs at a single site over time, or between site pairs for a single year across 205 

space. To prevent division by zero, a bias term of 1 is added to both distT and distS. The 206 

RF model was fitted with the ‘sklearn’ package from Python(Pedregosa et al., 2011). 207 

We then built three extrapolation models: (1) the temporal model fitted using 208 

temporal training and testing data, (2) the spatial model fitted using spatial training and 209 

testing data, and (3) the TS model fitted using TS training and testing data. To mitigate 210 

overfitting, we used a 10-fold cross-validation approach to search for the best 211 
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parameters(Hastie et al., 2009). In this approach, the input data was randomly split each 212 

time by assigning 90% train the model and the remaining 10% to test the model (i.e., 213 

the internal validation). The determination coefficients (R2) were used to evaluate 214 

model accuracy, with a higher value closer to 1 indicating a more accurate model(Alavi 215 

et al., 2010). The mean absolute error (MAE) and root mean square error (RMSE) were 216 

adopted to depict the average magnitude of errors. MAE equal to 0 indicates predictions 217 

completely coincides with observations, and the model is deemed ideal. Although 218 

RMSE is sensitive to outliers, it avoids using absolute values and is deemed more 219 

suitable than MAE when model errors conform to a normal distribution(Chai & Draxler, 220 

2014). The value of R2, MAE and RMSE are in the ranges [0, 1], [0, +∞] and [0, +∞], 221 

respectively, and were calculated using the following formulas: 222 

𝑅2 = 1 −
∑ (𝑌𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑌𝑖)
2𝑁

𝑖=1

∑ (𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛)2𝑁
𝑖=1

 223 

MAE =  
∑ |𝑌𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑌𝑖|𝑁
𝑖=1

𝑁
 224 

RMSE =  √
∑ (𝑌𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑌𝑖)
2𝑁

𝑖=1

𝑁
 225 

where, N is the number of samples, 𝑌𝑖
𝑚𝑜𝑑𝑒𝑙 is model predictions, 𝑌𝑖 is observations, 226 

𝑌𝑚𝑒𝑎𝑛 is the mean of observations. 227 

The Time-for-Time, Time-for-Space and Time-for-TS methods were applied to 228 

evaluate the predictive skill of temporal model on the temporal, spatial, and integrating 229 

temporal-spatial (TS) dissimilarities, respectively. Similarly, the Space-for-Time, 230 

Space-for-Space and Space-for-TS were applied to evaluate the predictive skill of 231 

spatial model on the temporal, spatial, and TS dissimilarities, respectively. Finally, the 232 
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TS-for-Time, TS-for-Space and TS-for-TS were applied to evaluate the predictive skill 233 

of TS model on the temporal, spatial, and TS dissimilarities, respectively. 234 

3 Results 235 

The error metrices calculated for the training and testing data of three extrapolation 236 

models are shown in the Table 1. R2 values of all models exceed 0.95 for the training 237 

data, indicating that more than 95% of the variance in the training data can be explained 238 

by the explanatory variables. Additionally, the low MAE and RMSE values 239 

demonstrate that all extrapolation models can effectively fit the training data. Compared 240 

to the training phase, the relatively low R2 values and high MAE and RMSE values 241 

during testing phase are understandable, given the greater challenge of predicting 242 

unseen data during fitting process. Although overfitting might be present, all models 243 

exhibit an R2 greater than 0.71 for the testing data, along with low MAE and RMSE 244 

values, indicating their good generalization ability for the testing data.  245 

Table 1 The statistical evaluation of three extrapolation models  246 

Model 
Training  Testing 

R2 MAE RMSE  R2 MAE RMSE 

Temporal 0.952 0.07 0.12  0.710 0.19 0.29 

Spatial 0.973 0.16 0.24  0.865 0.42 0.57 

TS 0.965 0.09 0.16  0.798 0.23 0.38 

Certain differences in the relative importance of explanatory variables were 247 

observed among three extrapolation models (Fig 4). For the temporal model, diurnal 248 

temperature range factors (26.57%) were identified as the most important climatic 249 

variables in explaining tree growth variations, followed by the potential 250 

evapotranspiration factors (19.34%) and age (16.14%). Diurnal temperature range 251 
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factors were also the most important climatic variables for both spatial (32.55%) and 252 

TS model (31.65%), while the order of importance thereafter changes to cloud cover 253 

factors (28.83% and 17.08%) and temperature factors (10.38% and 15.40%). Among 254 

the 61 predictor variables (Table S1), Age_dif (16.14%), Dtr*_Winter (13.06%) and 255 

Pet*_Summer (3.83%) were the top three important variables for the temporal model. 256 

For the spatial model, Cld*_Winter (15.61%), Age_dif (9.03%) and Cld_dif_Winter 257 

(8.17%) were the top three important variables. In contrast, for the TS model, Age_dif 258 

(10.38%) was the most important variable, with Cld*_Autumn (7.80%) and 259 

Dtr*_spring (6.41%) being the second and third most important. In general, Age_dif 260 

was a very important variable in explaining tree growth variations, consistently ranking 261 

within the top two in all extrapolation models. 262 

 263 

Fig 4 The relative importance of 6 types explanatory variables contributing to tree growth variations 264 

as determined from the (a) Temporal, (b) Spatial and (c) TS models. Cld, cloud cover; Dtr, diurnal 265 

temperature range; Pet, potential evapotranspiration; Pre, precipitation; Tmp, temperature. 266 

Aside from the internal validation (e.g., temporal, spatial and TS testing data), we 267 

also evaluated the model performance under less ideal scenarios using independent 268 

external validation data (e.g., three validation data). Performance of the temporal model 269 
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experienced a slight decrease, dropping from R2 = 0.71 (internal, see testing R2 in the 270 

Table 1) to 0.69 (external, Fig 5a), representing a 3% decrease. This was followed by 271 

the spatial model, which experienced a 6% decrease from 0.86 to 0.81 (Fig 5e). In 272 

contrast, the TS model’s performance experienced the most significant decrease, 273 

dropping substantially by 59% from 0.8 to 0.21 (Fig 5i). This might be attributed to the 274 

greater differences between the TS validation data and the TS training and testing data, 275 

compared to the other two approaches, as the validation data is comprised of entirely 276 

independent tree-ring sites. These findings indicate that all extrapolation models 277 

exhibited declines in performance from internal to independent external validation.  278 
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 279 

Fig 5 Performance of temporal model (a-c), spatial model (d-f) and TS model (g-i) for simulating 280 

the temporal dissimilarities (a, d, g), spatial dissimilarities (b, e, h), and TS dissimilarities (c, f, i) of 281 

tree growth. In all cases, color represents point density, with yellow indicating higher density. The 282 

blue lines indicate best-fit lines from ordinary least squares regression, and red dashed lines indicate 283 

the 1:1 line. R2 denotes the goodness of fit.  284 

The Space-for-Time substitution method exhibited extremely poor performance 285 

(Fig 5d). The relationship between temporal dissimilarities predicted by spatial model 286 

and observed temporal dissimilarities was notably weak (R2 < 0.01), and the predictive 287 

skill using Space-for-Time substitution relative to Time-for-Time substitution dropped 288 
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to almost zero (0.22%, Table 2). In contrast, predicted temporal dissimilarities were 289 

comparable between the TS-for-Time substitution and Time-for-Time substitution (Fig 290 

5g). The association between temporal dissimilarities predicted by TS model and 291 

observed temporal dissimilarities was fairly strong (R2 = 0.68), with the TS-for-Time 292 

substitution exhibiting 99.82% of the predictive skill using Time-for-Time substitution, 293 

resulting in a slight loss of predictive skill (Table 2). 294 

Table 2 Results of ordinary least-squares regression between observed and predicted dissimilarities 295 

to explain the predictive performance of each substitution method 296 

Dataset Method β α R2 Skill: % 

Temporal 

dissimilarities 

Time-for-Time -0.009 0.578 0.6851 100 

Space-for-Time 0.731 0.027 0.0015 0.22 

TS-for-Time -0.011 0.567 0.6839 99.82 

Spatial 

dissimilarities 

Space-for-Space -0.027 0.733 0.8055 100 

Time-for-Space 0.645 0.006 0.0003 0.03 

TS-for-Space -0.032 0.702 0.8037 99.78 

TS 

dissimilarities 

TS-for-TS -0.133 0.306 0.2094 100 

Time-for-TS -0.046 0.128 0.0312 14.90 

Space-for-TS 0.639 0.255 0.0689 32.90 

Note: β, α, and R2 represent the slope, intercept, and goodness of fit of the ordinary least-297 

squares regression, respectively. Predictive skill for temporal dissimilarities was calculated by 298 

dividing the R2 of each substitution method by the R2 of Time-for-Time substitution (i.e., R2
Time-for-299 

Time/R2
Time-for-Time, R2

Space-for-Time/R2
Time-for-Time, R2

TS-for-Time/R2
Time-for-Time). Predictive skill for spatial 300 

dissimilarities was calculated by dividing the R2 of each substitution method by the R2 of Space-301 

for-Space substitution (i.e., R2
Space-for-Space/R2

Space-for-Space, R2
Time-for-Space/R2

Space-for-Space, R2
TS-for-302 

Space/R2
Space-for-Space). Similarly, predictive skill for TS (integrating temporal-spatial) dissimilarities 303 

was calculated by dividing the R2 of each substitution method by the R2 of TS-for-TS substitution 304 

(i.e., R2
TS-for-TS/R2

TS-for-TS, R2
Time-for-TS/R2

TS-for-TS, R2
Space-for-TS/R2

TS-for-TS). 305 
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The Time-for-Space substitution method also performed extremely poor, with the 306 

fit between spatial dissimilarities predicted by temporal model and observed spatial 307 

dissimilarities being notably weak (R2 < 0.01, Fig 5b). Inevitably, the predictive skill 308 

using Time-for-Space substitution relative to Space-for-Space substitution dropped to 309 

almost zero (0.03%, Table 2). Similar to the TS-for-Time substitution, the TS-for-Space 310 

substitution performed well (R2 = 0.80, Fig 5h), achieving 99.78% of the predictive 311 

skill using Space-for-Space substitution (Table 2). 312 

For the TS dissimilarities, a fairly weak goodness of fit was observed between the 313 

observations and predictions from both temporal model (R2 = 0.03, Fig 5c) and spatial 314 

model (R2 = 0.07, Fig 5f). The predictive skill using Time-for-TS substitution and 315 

Space-for-TS substitution achieved 14.9% and 32.9% of the predictive skill using TS-316 

for-TS substitution, respectively (Table 2). 317 

4 Discussions 318 

4.1 Generalization performance of extrapolation models 319 

Assessments of accuracy for tree growth extrapolation models under climate 320 

changes typically rely on the re-substitution process, where the data used for model 321 

training also serve for validation(Klesse et al., 2020; Bodesheim et al., 2022; Zuidema 322 

et al., 2022). However, this process may lead to models overfitting the training and 323 

validation data, casting doubt on whether high accuracy on internal data reflects good 324 

predictive accuracy on independent external data (i.e., data outside the original 325 

data)(Olden & Jackson, 2000). To address this, we evaluated model accuracy by 326 

applying adjusted models onto external validation data and comparing the consistency 327 
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between predictions and observations. Results showed that three growth extrapolation 328 

models fitted well on training data (R2 > 0.95), produced accurate predictions on 329 

internal validation (testing data, R2 = 0.71-0.86) and yield good to acceptable 330 

predictions on external validation data (R2 = 0.21-0.81). We also found that the 331 

performance of all models declined sequentially from training to internal validation and 332 

further to external validation. This is understandable since the external validation data 333 

is primarily unseen by models during their building phase and may encompass 334 

observations both within and outside the ranges of input variables(Ashraf & Dua, 2023). 335 

Of course, this result supports the cautious use of accuracy measurements on internal 336 

data as a surrogate for accuracy on external independent data(Araujo et al., 2005). 337 

In addition, the R2 of 0.21 seems quite low, representing only 21% of the explained 338 

variance. However, it is important to consider that environmental factors other than 339 

climate, such as soil, biotic, human activities, and various others not incorporated into 340 

our models, also affect tree growth and further led to its nonlinear response to climate 341 

change(Vaganov et al., 2011; Biermann & Grissino-Mayer, 2018). This makes it 342 

impossible to account for all potential factors driving variations in tree growth(Babst et 343 

al., 2018). Moreover, with only 28 sites representing a small part of the Picea mariana 344 

distribution, there is some epistemic uncertainty in capturing tree growth variations. 345 

Errors are thus an inherent property of extrapolation models(Stewart, 2000), and it is 346 

unrealistic to expect consistently high precision in predictions on external validation 347 

data. Nevertheless, the performance analysis on external validation confirmed the 348 

adequate modeling and generalization ability of the random forest model for tree 349 
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growth variations, at least over modest time and space scales. 350 

4.2 Opportunity for extrapolation models on tree growth 351 

Using data from sample sites to drive temporal/spatial models for extrapolation of 352 

unobserved regions or past/future periods has always been pivotal in ecological 353 

inquiry(Miller et al., 2004; Dormann, 2007; Casalegno et al., 2010). The evaluation 354 

results showed that the temporal model performed extremely poorly on the 355 

extrapolation of spatial and integrating temporal-spatial (TS) variations, while the 356 

spatial model performed extremely poorly on the extrapolation of temporal and TS 357 

variations. This discrepancy may be attributed to three main reasons. Firstly, the rates 358 

and magnitudes of growth variation along climatic gradients do not entirely similar 359 

across time and space, which was further confirmed by the notable discrepancy in the 360 

relative importance of explanatory variables between temporal and spatial models. 361 

Secondly, the extent of temporal and spatial climatic gradients often mismatch, with 362 

spatial climatic variation always larger than temporal variation(Blois et al., 2013; Belle 363 

et al., 2022). Finally, ecological processes driving growth variation operate on different 364 

timescales across time (short) and space (long)(Adler et al., 2020). For example, 365 

temporal dissimilarities are mainly driven by rapid environmental changes(Lovell et al., 366 

2023), while spatial dissimilarities may result from long-term evolutionary adaptation 367 

in long-lived sessile organisms(Clark et al., 2001). Additionally, our results 368 

demonstrated the effective performance of the TS model on the extrapolation of both 369 

temporal and spatial variations. This is unsurprising, as integrating temporal and spatial 370 

variations can provide insights that are not possible to get from either alone and may 371 
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mitigate some inherent weaknesses in each type of variation. 372 

The almost 100% predictive skill of TS-for-Time and TS-for-Space substitutions, 373 

coupled with good performance on the extrapolation of TS variations, collectively 374 

demonstrate the TS model’s effectiveness in capturing tree growth variation. Here, we 375 

constructed the temporal and spatial growth dissimilarities dataset, providing a 376 

substantial sample size for growth dissimilarity models. Whereas, the sample size for 377 

temporal and spatial growth models is unlikely to be so large. The temporal model is 378 

based on the relationship between tree productivity and climate factors over time at a 379 

single site, with the sample size determined by the length of time series at that site. The 380 

spatial model is based on the relationship between multiyear averages of productivity 381 

and climate factors across space, with the sample size determined by the number of 382 

sites. While the TS model incorporates all-time series, achieving a notably larger 383 

sample size compared to temporal and spatial models, thus enhancing analytical power.  384 

In summary, this study provides a rare empirical evaluation of whether the 385 

temporal, spatial, and TS models can be effectively used for extrapolating to 386 

unobserved regions or past and future periods. And we suggest that (1) when 387 

performing temporal extrapolation at sample sites, both temporal and TS models are 388 

suitable, but the TS model should be prioritized unless the time series of that site is 389 

extensive; (2) when performing spatial extrapolation on sample sites with partial 390 

observations, both spatial and TS models are suitable, but the TS model should be 391 

prioritized unless there are numerous sites; and (3) when performing extrapolation on 392 

completely unobserved regions, only the TS model can achieve an acceptable level. 393 
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Compared to the almost zero accuracy of the temporal and spatial models, the TS model 394 

demonstrated notably higher predictive skill but had limited accuracy at 21%, still 395 

facing numerous challenges in extrapolating tree growth. 396 

4.3 Implications 397 

Our evaluation studies emphasize the essential of testing the extrapolation capacity 398 

of extrapolation models using independent external validation data, which has 399 

significant implications for the field of tree growth extrapolation. While three 400 

extrapolation models in this study performed well during internal and independent 401 

external validation, we remain cautious about their predictive capacities over distant 402 

past/future periods or spatial distances. Reaction norms may change, especially when 403 

the new climate conditions fall outside the range experienced during 404 

modeling(Hodgson et al., 2011), potentially causing unobserved growth patterns to 405 

deviate systematically from model projections. This phenomenon holds true even for 406 

long-lived sessile organisms with heightened levels of phenotypic plasticity in growth. 407 

Nevertheless, quantitative predictions based on the best available science are still 408 

preferable to proceeding blindly(Rastetter, 1996; Miller et al., 2004), offering valuable 409 

insights for research planning and informed management decisions, especially in 410 

regions with only a finite number of observations. Therefore, this study complements 411 

studies that have focused on modeling tree growth and provides scientific guidance for 412 

selecting methods for extrapolation of tree growth under climate change.  413 

Additionally, we acknowledge that extrapolating the TS model to unobserved 414 

regions or past/future periods still faces numerous challenges. In the future, more work 415 
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should focus on considering more comprehensive environmental factors and improving 416 

their spatiotemporal resolution to further enhance the predictive skill of TS model. 417 

5 Conclusions 418 

This study explored the potential of an integrated temporal-spatial (TS) model for 419 

extrapolating tree growth variations using tree-ring data of Picea mariana. The 420 

predictive skills of the TS model were compared with those of the temporal and spatial 421 

models using independent external validation data. The results showed that: (1) for the 422 

extrapolation of temporal variations, both the temporal and TS model provided good 423 

results, while the spatial model was extremely poor; (2) for the extrapolation of spatial 424 

variations, both the spatial and TS model provided good results, while the temporal 425 

model was extremely poor; (3) for the extrapolation of integrating temporal-spatial 426 

variations, only the TS model provided acceptable results, while both the temporal and 427 

spatial model were extremely poor. In summary, the TS model demonstrated notably 428 

higher predictive skill but had limited accuracy at 21%, still facing numerous challenges 429 

in extrapolating tree growth. This study provides scientific guidance for the 430 

extrapolation of tree growth under climate change, especially in regions with limited 431 

observations. In future work, it will be important to include more comprehensive 432 

environmental factors and improve their spatiotemporal resolution. 433 
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