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Strontium isotopes (87Sr/86Sr) are increasingly used as a provenance tool in multiple disciplines.
Application to biological materials requires knowledge of the variation in bioavailable 87Sr/86Sr
across the landscape, potentially in the form of an isoscape (a quantitative model of spatial isotopic
variability). This paper summarizes and provides advice on our current understanding of the main
concerns in creating and interpreting isoscapes of bioavailable 87Sr/86Sr. Isoscape creation approaches
include domain mapping, geostatistical contour mapping and machine learning, the last becoming
more readily achievable with the availability of software packages. It is critically important to
develop isoscapes at a resolution appropriate for addressing the research questions. Choice of
sample materials depends on the research questions and availability: plants or fauna with small
ranges are favoured, with some analytes (snails, soil leachates) posing challenges. Interpreting 87Sr/
86Sr in biological tissues requires considering Sr metabolism and the timing of tissue formation, thus
far underappreciated. The numerous sources of error involved in developing and applying isoscapes
must be recognized to avoid over-interpreting data and spurious provenance precision. We hope
this paper will help researchers investigating provenance, mobility, landscape use and migration to
develop the most appropriate isoscapes for their purposes, and possible future use by others.

1. Introduction
Strontium isotopes (87Sr/86Sr) are increasingly widely used as a provenance tool across many fields,
including archaeology, ecology, biology, forensics and the food industry (e.g. [1–16]). In recent years,
there has been substantial development in the field, especially improvements in the creation of
quantitative spatial models of isotopic variation, or ‘isoscapes’, and the use of probabilistic models
for geographic allocation. Yet, some important challenges remain, many of which were identified in
reviews by Holt et al. [17] and Bataille et al. [18]. In January 2024, the authors of this paper held a
five-day meeting in Cape Town, South Africa, to workshop these issues, discuss best practices in the
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construction and interpretation of isoscapes, and flag aspects requiring further research. This article
summarizes the outcomes of those discussions. We hope it will be useful to the growing community of
researchers using strontium isotope provenancing worldwide.

The application of 87Sr/86Sr as a provenance tool is based on the ratios of strontium and rubidium
isotopes in the local environment, which in most cases derive from the underlying local geology. 87Sr
is the stable radiogenic daughter isotope of 87Rb (t½ = 48.8 × 109 years), while 86Sr is stable and largely
invariant over time. Older rocks and those rich in 87Rb show relatively high 87Sr/86Sr, while younger
(e.g. recent volcanic) substrates have lower values. Although bioavailable 87Sr/86Sr (i.e. that taken up
by plants and animals) can differ from that of bedrock, these ratios are persistent in soils derived
from parent substrates (albeit with other inputs, and outputs—see below), in the tissues of the plants
growing in those soils, the herbivores feeding on those plants, and the predators preying on them.
The single mass unit difference between 87Sr and 86Sr is small in relation to total mass, so there is
little mass-dependent fractionation of these isotopes along the food chain, though see [19,20]. The
small amount that does occur is corrected for by adjusting all measured 87Sr/86Sr to a constant value
of 0.1194 for 86Sr/88Sr [21]. The 87Sr/86Sr of consumers should therefore track the mixing of ingested
food (and in some cases water) with distinct 87Sr/86Sr, taking into account differences in strontium
concentrations of each Sr source, and possible differential digestion and absorption of each source
within the digestive tract of species with differing gut pH [22,23]. 87Sr/86Sr in the environment may
differ from bedrock ratios if the geology is heterogeneous and contains minerals with differing 87Sr/
86Sr and varying susceptibilities to weathering, such as granite and sandstone [24–26]. In addition,
soils (and therefore plants and animals) can incorporate Sr from sources other than bedrock, such
as atmospheric, fluvial and anthropogenic sources. Atmospheric inputs include precipitation and
wind-transported dust, marine aerosols and volcanic ash (e.g [26–29]). The importance of these inputs
depends on the magnitude of the fluxes, and the levels of endogenous bedrock-derived strontium
in the soils. Coastal regions may have 87Sr/86Sr dominated by Sr from seawater-derived aerosols and
precipitation or geologically recent carbonate-rich sands draped over underlying geology [4,26,30–
32]. This influence can extend hundreds of kilometres inland [33]. Rivers flowing through different
geological formations may contain dissolved Sr and/or contribute sediments with 87Sr/86Sr that differs
from local bedrock [24,34–36]. Anthropogenic activities, such as quarrying, mining, soil transport and
the addition of agricultural lime, can substantially alter soil 87Sr/86Sr [37–39] and introduce greater
variation through the soil profile [40]. These and similar processes may cause bioavailable 87Sr/86Sr to be
decoupled from that of local bedrock [41,42].

Multiple possible Sr inputs at different scales make isoscapes of 87Sr/86Sr more challenging to
develop and use than (for example) isoscapes of 18O/16O (δ180) and 2H/1H (δ2H) in precipitation, in
which variation driven by large-scale atmospheric processes leads to more consistent patterning [43].
For these reasons, 87Sr/86Sr provenancing in many regions cannot be undertaken with reference to
geological maps alone and requires the development of isoscapes, or predictive models of geospatial
variation in 87Sr/86Sr [44]. In other words, isoscapes are not simply maps of empirical data, they are sets
of expectations (mathematical predictions) derived from both first principles and a limited amount of
empirical data. They tend to preferentially emphasize overall patterning over the degree of variation at
individual localities. Isoscapes enable us to visualize and model 87Sr/86Sr across a landscape, incorporat-
ing multiple different Sr sources. Strontium isoscapes are usually generated from baseline reference
material (e.g. plants) and then used to track the mobility of animals or humans by matching 87Sr/86Sr
from their tissues to the isoscape. This approach works well due to negligible trophic fractionation of
87Sr/86Sr, and the stability of these ratios over time scales relevant to ecology, forensics, archaeology and
related disciplines. There are, however, several challenges, which we examine below.

First, it is important to note that 87Sr/86Sr will not address all questions about mobility and prove-
nance. Modelling the distribution of 87Sr/86Sr requires considerable laboratory and computing effort
and is not to be undertaken lightly. Researchers should first carefully consider whether there is a
reasonable expectation that the spatial patterning in 87Sr/86Sr is likely to be capable of addressing the
particular research question, given the nature of the landscape and its geological formations.

Below, we explore key questions that formed the main topics of discussion in our 2024 workshop.
Many of us have found these difficult to resolve in our own work. Holt et al. [17] provide an excellent
overview of the field. Based on their review and other recent papers, we selected the following topics:
the relative merits of different approaches to isoscape development, sample collection strategies, choice
of sample type and the requisite preparation and analysis, complications with using isoscapes to assign
provenance, including the influence of consumer biology and metabolism, whether it is necessary to
tailor isoscapes for specific applications, uncertainties and limitations and future directions for the
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field. These topics span both fundamental principles and laboratory practice. The choices researchers
make may differ depending on the field of study and the specific research questions, but we hope that
the application of these principles will guide practitioners towards better outcomes.

2. Approaches to isoscape development: are machine-learning isoscapes
better than other types?

The framing of this question, and some of the section headings below, may appear to be leading
the reader towards particular conclusions. These are, however, informed by careful reading of the
current literature, which guided our discussions. We believe that this more targeted approach helps
discriminate between various possible options and leads to a clearer understanding of current best
practice.

There are currently three main approaches to developing isoscapes of bioavailable 87Sr/86Sr, each
with advantages and disadvantages. The first, domain mapping, is based on clustering empirically
measured 87Sr/86Sr (normally bounded or grouped by lithology), while the second and third, geostatis-
tical and machine learning approaches, respectively, use empirical 87Sr/86Sr measurements alongside
other environmental datasets to model and predict 87Sr/86Sr variation. These approaches have been
described [17,45] and compared elsewhere [45–47], but for completeness, we outline the basics of each
below.

Domain mapping is a clustering technique that groups empirical 87Sr/86Sr data derived from
different user-defined domains, generally geological units [17]. Each unit is then assigned a median
and range. This is an easy, conservative and fast approach to visualizing patterns of bioavailable
87Sr/86Sr, but it depends heavily on good sample coverage and the assignment of the domains [17]. If
these are geological units, the assumption is that geology is the dominant driver of 87Sr/86Sr, and the
quality of the isoscape will depend on the quality and resolution of geological maps used to delineate
domains, as well as careful field observations determining the context of each sampled site. If there
are other influences on 87Sr/86Sr, these are captured in the form of large uncertainties per domain.
This method is, therefore, most useful in regions where lithology plays the dominant role and is
well-mapped, and other Sr inputs are limited. Domains can be defined based not only on lithological
units but, for example, on proximity to the coast, where 87Sr/86Sr is likely to be similar across different
geological substrates because of marine-derived Sr inputs [48,49]. Similarly, specific domains can be
created to encompass (for example) old-growth forests, where the more soluble (e.g. carbonate-based)
Sr components of the soil may be leached out and/or sequestered in the vegetation, so the bioavailable
87Sr/86Sr signal becomes dominated by the less-soluble soil component [50]. The strontium isoscape
of Great Britain, available through the British Geological Survey, was created using domain mapping
(biosphere isotope domains). The isoscape, the data on which it is based and various tools, including
a useful query function, are all freely available at https://www.bgs.ac.uk/datasets/biosphere-isotope-
domains-gb/.

The second approach uses various geostatistical methods, such as inverse distance weighting and
kriging, to develop an output that can be visualized as a contour map. This enables continuous
predictions of 87Sr/86Sr variation derived from measured known-origin samples [17]. Such maps are
based on the principle of spatial autocorrelation, in which points closer together are considered to
be more closely related (i.e. ratios will be more similar) than those further away. The simplest such
method, inverse distance weighting (IDW), simply uses the distance between a locality with unknown
87Sr/86Sr and each point with a known value to weight their influences on the prediction. The scaling
between distance and weight of influence in IDW is either assumed a priori or optimized by comparing
predictions against testing data. Alternatively, kriging methods predict 87Sr/86Sr at a particular location
using a variogram model to account for trends in the spatial autocorrelation between pairs of points
in the dataset, and assign weights to the observations. In contrast to IDW, the variogram model (and
thus weights used in kriging prediction) is fitted to the known-origin data. There are several types
of kriging. Simple kriging assumes a known constant mean autocorrelation, while ordinary kriging
assumes an unknown constant mean, which is locally estimated. Universal kriging (or kriging with
external drift) incorporates second-order effects by estimating a trend based on an auxiliary predictor
and uses this instead of the local mean used in ordinary kriging [47]. Empirical Bayesian kriging
automates parameter selection and accounts for the error of the semivariogram. Co-kriging incorpo-
rates one or more secondary datasets spatially correlated with 87Sr/86Sr distributions (e.g. soil, plant
and water 87Sr/86Sr datasets [46]) to try to increase prediction precision. However, this also introduces
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more variability due to the additional estimations of the autocorrelation for the secondary variable,
as well as the cross-correlation between variables. These geostatistical approaches include uncertainty
assessments that allow one to assess the probability of a correct prediction [45]. One major limitation
of these methods is that they assume that patterns of variation in 87Sr/86Sr are continuous across the
landscape. Although geostatistics-based isoscapes are relatively easy and quick to create and can be
readily extrapolated to adjacent regions, they cannot accurately represent discrete, nonlinear patterns
of bioavailable 87Sr/86Sr (e.g. across heterogeneous geology), even when co-kriging with a geological
map.

The third approach, the use of machine learning models, particularly random forest regression, is
the most recent development. In this method, single decision trees play a central role. Each decision
tree uses predictor variables to split the empirical dataset of 87Sr/86Sr into groups of similar values.
The tree does this by making a series of decisions based on the variability within each predictor
variable [18,45,51]. The potential predictor variables can be anything that may affect 87Sr/86Sr, such
as geology, distance from the coast, dust, volcanic ash deposition, precipitation and others. Although
single decision trees can theoretically be used in isolation, they are prone to overfitting and instability,
where even slight changes in the training data can result in significant changes to the model. Random
forest algorithms address these issues by creating an ensemble of multiple decision trees. Each tree
is trained in parallel using a random subset of the training data and predictor variables, a process
known as ‘bagging’ [52]. The performance of the model is validated through n-fold cross-validation
with the possibility for spatial partitioning of the testing set to avoid geographic biases. This means
that n random subsets of the data are removed prior to model development and used to test the created
model. The results are averaged to produce a final model that is less prone to overfitting, more stable
and more robust. This can be done multiple times with different, random test sets; however, there is
a trade-off as fewer data are then available for model development. This testing process need not be
uniform or truly random: it is possible to target ‘problem’ areas with known low accuracy based on
prior knowledge, areas with low sampling density or specific areas of interest based on the research
question. Initially, random forest models make no assumptions about which predictor variables are
the main drivers of 87Sr/86Sr variation, and all variables are incorporated into the model. However, one
can use variable selection algorithms such as variable selection using random forests (VSURF) [53] to
select the most suitable predictors for a given study area (i.e. the predictors with the strongest effect
on the model’s predictive power). VSURF uses an iterative simulation process, constructing many
random forest models but selectively removing specific variables to quantify their effect on the model
performance. Through this process, the algorithm iteratively removes the least relevant predictor
variables based on their lack of impact on the model performance, and finally refines the variable
selection by removing any redundant predictor variables, see [53]. The relationship between predictors
and 87Sr/86Sr can be conveniently visualized through partial dependence plots. Using the most relevant
selected variables, the random forest algorithm is then tuned to build the most parsimonious and
best-performing random forest model integrating selected geospatial predictors.

Random forest modelling is an effective method for mapping bioavailable 87Sr/86Sr, in many
situations outperforming other modelling approaches [45]. Compared to domain mapping and
geostatistical approaches, random forest has several advantages for predicting 87Sr/86Sr. It allows
seamless integration of multidimensional data (e.g. points, categorical geological maps and continuous
rasters of climate variables), and it copes well with outlying 87Sr/86Sr values. This approach accurately
predicts the multiscale patterns of 87Sr/86Sr, resolving some of the limitations of contour mapping
and domain mapping techniques. Although still reliant on empirical 87Sr/86Sr data, since random
forest models incorporate additional correlated predictor variables, they can perform adequately in
areas with low sample coverage [17]. However, as random forest models become more complex, they
incorporate more predictors and require more empirical 87Sr/86Sr data, which can be difficult to obtain
and can reach the limits of computing power on personal computers. At this point, they require cluster
computing resources.

Additionally, the random forest framework does not account for spatial autocorrelation within
the calibration dataset [54], limiting its ability to handle geographic sampling biases. Predictions and
spatial uncertainty are not influenced by the location of the sampling sites, and regional bias might
be introduced by sampling some areas more heavily than others. Recent studies using random forest
models to map soil properties have proposed several approaches to overcome this issue. Sampling
distribution can be accounted for by introducing geographic features as covariates in the model [55,56],
and local variation can be integrated by combining multi-scale random forest models [57] or by
weighting the prediction according to the distance from the nearest sampling sites [58]. There are also
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advantages in integrating multiple algorithms, including random forest, through ensemble machine
learning to improve the accuracy and reduce the errors of the predictions [55,59]. While random
forest models rely on a single algorithm, ensemble approaches use a set of methods that combine
the predictions of multiple individual models, improving the performance and robustness of the final
model [60]. The landmap package in R [61] provides methods for spatial prediction using ensemble
machine learning and accounts for spatial auto-correlation by using oblique geographic coordinates as
covariates [56]. Applied to bioavailable 87Sr/86Sr mapping in Eastern Canada, the ensemble approach
provided similar predictions to the classic random forest model but with reduced spatial uncertainty,
particularly in highly radiogenic areas with high uncertainty [54]. Although powerful, ensemble
approaches that integrate local variation require a good spatial distribution of samples and more
computing power than traditional random forest methods, which may limit their application to
large-scale 87Sr/86Sr isoscapes.

3. What is the best sample collection methodology for creating isoscapes?
Sample collection strategies should be shaped by the chosen isoscape approach, the research questions
to be answered, and the scale, resolution and budget of the project. Although systematic sampling
(e.g. on a grid) may be desirable (e.g. [62]), this is not always practical or possible. Topography may
limit access to some areas, and there may be restricted entry to privately owned land or reserves.
Agricultural and other land use practices may make some areas unsuitable for sampling. Collaborative
sampling with other projects, or obtaining samples from existing museum collections with sufficient
metadata [11,51,63–65], can be cost-effective and efficient alternatives to field collection, specifically for
the purpose of isoscape development.

Issues of scale and resolution are of central concern in landscape-level studies. Any interpolation
method can be used to create isoscapes at any scale. Global or continental-scale isoscapes (e.g. [18,65]),
that rely heavily on geospatial statistics and global covariate data are valuable as preliminary tools,
including assessing whether the Sr isotope system is likely to help answer a given research question at
any one locale. Many broad-scale isoscapes are, however, limited by the availability and geographically
biased distribution of bioavailable 87Sr/86Sr data globally, as well as the relatively low resolution of
global covariate data. As such, global models will usually require recalibration using local, potentially
higher-resolution empirical and covariate information for application at regional and local scales. The
required isoscape resolution is challenging to determine. For example, trying to provenance a butterfly
which developed from a caterpillar that lived on a single plant is very different from tracking large
mammals feeding over much bigger areas.

Ideally, one might wish for isoscapes based on covariate data and samples collected at a level
of resolution relevant to the research questions about mobility or migration. Areas with few bioa-
vailable 87Sr/86Sr data points or substantial geological complexity will require more intensive sam-
pling. Heterogeneous felsic or metamorphic lithologies often tend to show greater 87Sr/86Sr variability,
compared with more homogeneous carbonate rock types such as chalk and limestones [18]. Evans et al.
[66] (as cited in [17]) found radiogenic igneous rock to have approximately 0.5% (0.0012–0.0036 per mil)
1 s.d. reproducibility, compared with approximately 0.05% (0.0004–0.0008 per mil) for carbonates.

When collecting samples, it is recommended to think beyond the current project, considering
possible future use of the data by researchers interested in different questions. For each sample, it
is important to record the GPS coordinates, elevation and geology or lithology, both from the published
geological map of the area and actual field observations from the site. Due to limitations of scale and
resolution, bedrock shown on a geological map may be draped by a thick layer of sediment or capped
by a secondary deposit such as calcrete or ferricrete, and these observations are important to note.
Apps in development to aid the collection of sample metadata will automatically fill out a number of
these fields.

4. Are plants the best samples for isoscape creation?
The choice of material for empirical field measurements of 87Sr/86Sr depends on what is available in the
area of interest and on the temporal and geographical scale of the research question. Most isoscapes
are built using soil, plant, faunal or water samples, or a combination of these sample types. Terrestrial
isoscapes differ from river isoscapes.
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Some isoscapes are based on 87Sr/86Sr measurements of soil samples, but it can be difficult to
estimate bioavailable 87Sr/86Sr from soils. Soils usually include resistant (less soluble) and more soluble
components, so complete dissolution of bulk soils in strong acid yields total 87Sr/86Sr, which may be
substantially different from the more soluble bioavailable signal taken up by plants and ultimately
animals [34]. For the production of isoscapes, therefore, researchers typically leach soil samples to
extract the more mobile (approximately equivalent to bioavailable) strontium fraction. The 87Sr/86Sr
obtained is influenced by the leaching protocol (i.e. the reagent used, its concentration, duration of
leaching, etc. [39,67,68]). These are examined in more detail in the sample preparation section. Some
researchers report close correlations between 87Sr/86Sr of soil leachates and plants on a large scale
[46,69], but several participants in the workshop have found soil leachates to yield such inconsistent
results (e.g. [70]) that they now prefer other sample materials for estimation of bioavailable 87Sr/86Sr.
In addition, 87Sr/86Sr in soils is highly susceptible to the effects of recent agricultural practices, such as
the addition of lime [37,38,40,69], bone meal or basalt rock dust [71] used to supply minerals. Some
organic fertilizers contain negligible quantities of calcium and strontium, so will not affect soil 87Sr/86Sr.
Organic-rich fertilizers tend to increase soil δ15N, thus providing a marker of their presence [72–75].
Soil amendments will need to be taken into account if the intention is to provenance agricultural
products [13] or apply 87Sr/86Sr in modern forensics [51].

Plants are generally considered a good material for estimating bioavailable 87Sr/86Sr [28,31,36,42,63],
although they may be scarce in arid environments. As plants are primary producers at the base of
the food web, patterning in plant 87Sr/86Sr will likely be a reliable proxy for ratios in consumers,
although as organisms rooted in one spot, they may show more small-scale inter-individual variation
than mobile animals. Any type of plant material (i.e. leaf, stem or bark, etc.) should be suitable
and have similar 87Sr/86Sr [70]. Opinions differ on the importance of identifying sampled plants to
species or at least genus level. There is no logical reason why 87Sr/86Sr should co-vary with taxonomy
(as demonstrated by O’Regan et al. [76]), yet some researchers recommend recording plant species
sampled [67]. In highly speciose biomes, identifying plants to species (and sometimes even genus) level
can require the presence of flowers or fruit, which severely constrains sampling options. However,
the depth and extent of root systems can vary substantially between species and between small and
large specimens of the same species. It is therefore recommended to provide an estimate of plant
type and rooting depth (shallow, medium, deep), as plants with different rooting depths may access
different Sr sources in the soil [28,36,39,77–80], although this does not apply in all environments
[47]. Attempts to characterize the bioavailable 87Sr/86Sr of the ecosystem as a whole should factor
this into the collecting strategy and include both shallow- (e.g. grasses), medium- (e.g. shrubs) and
deep-rooted plants (e.g. trees). Pooled samples from multiple plant species will generate an averaged
signal [4,63,81] and reduce point bias [17]. A more targeted sampling strategy may be preferred for
some research questions (e.g. if investigating organisms that live on specific plant species, like monarch
butterflies, or that consume either deep- or shallow-rooted plants, such as browsing versus grazing
herbivores [11,36]). Soil pH and cation exchange capacity can covary with 87Sr/86Sr [18,45]. O’Regan
et al. [76] investigated whether mycorrhizal associations influence plant 87Sr/86Sr because mycorrhizae
can change the pH of soils and thus influence the dissolution of minerals [82,83]. They found no
significant differences between plants with and without associated mycorrhizae, although this may
vary in different geological substrates, growing conditions and plant taxa sampled.

In some parts of the world, exotic dust can make a substantial contribution to the strontium budgets
of plants [28,84]. Plant 87Sr/86Sr can also be impacted by anthropogenic alterations to the soil. If these
are not relevant to the research question (i.e. the isoscape is not designed for a modern or forensic
use-case), careful choice of sampling locality—avoiding areas currently or recently cultivated—can
mitigate the problem. In general, the importance of fertilizer use for plant 87Sr/86Sr will need to
be assessed on a case-by-case basis, including the possible influence on adjacent uncultivated areas
[37,38,40].

Faunal samples (e.g. animal bones or teeth) have the advantage (compared with plants) of integrat-
ing 87Sr/86Sr over the animal’s feeding range, rather than providing spot values. Small terrestrial wild
or commensal species such as rodents, with relatively small territories and short life-spans, have
been used to estimate ‘local’ 87Sr/86Sr values, with both modern [1,64,85,86] and archaeological fauna
[87–89]. However, one must ensure that such animals are local and not deposited a long distance
away from their home range by an owl, for example [90]. Animals with large home ranges, correlated
with larger body size [91], may incorporate Sr from multiple regions with different 87Sr/86Sr, making
them unsuitable for constructing isoscapes, but see [92]. Some studies have shown overall consis-
tency between species with small foraging ranges and plants (e.g. [29]), while others have not (e.g.
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[93]), highlighting the context-dependent nature of strontium propagation. In regions that have been
intensively farmed for a long time, with a commensurate degree of soil modification, palaeo-studies
may require isoscapes based on historical or archaeological materials [87].

A number of studies have analysed snail shells, reasoning that these contain significant amounts of
strontium, are straightforward to collect, will yield reliably localized signals and are easy to process in
the lab. It appears, however, that the 87Sr/86Sr of snails are strongly influenced by rainwater, probably
because snails are heavily dependent on rainwater to generate slime [31]. If the 87Sr/86Sr of rainwater
differs from the local geological substrate, snails may not be a reliable proxy for local bioavailable
values. Other studies have found snails to track 87Sr/86Sr of shallow-rooted rather than deep-rooted
plants [28], to be biased towards values for soil carbonates [39], and to yield reduced ranges of
variation compared with local plants [36]. They may also prove difficult to find in certain areas (acidic
soils, montane regions, etc.). All in all, snail shells appear sub-optimal for constructing isoscapes of
bioavailable 87Sr/86Sr.

Water samples are easy to collect. Near a river’s source at a high elevation, water 87Sr/86Sr will
resemble that of bedrock (at least, the fraction of bedrock susceptible to weathering). Downstream at
lower elevations, the river may incorporate Sr from precipitation runoff through multiple geological
formations with variable Sr contributions [24,34]. Although uncommon, freshwater 87Sr/86Sr can exhibit
substantial temporal variation in environments with marked wet or dry seasons due to the alternat-
ing relative importance of surface runoff versus aquifer groundwater input [94]. Plants growing
on floodplains near rivers have been found to have river-derived 87Sr/86Sr signals that differ from
surrounding geological substrates [34,36]. Developing isoscapes of river systems requires the use of
dendritic network models to adequately account for their complexity. These are discussed in detail
elsewhere; see [95]. While the importance of Sr inputs from drinking water in consumer Sr budgets
will vary with the relative concentration of Sr in the water versus that in the food, it is typically
less impactful than food [96], suggesting that the collection of waters can be complementary but not
necessarily a core requisite in bioavailability sampling studies.

5. How should samples be prepared and analysed?
The different sample types discussed above require different preparation for analysis. How samples
are prepared will also depend on how Sr will be introduced into the mass spectrometer: typically,
either in solution or via laser ablation with a multi-collector inductively coupled plasma mass
spectrometer (MC-ICP-MS) or in solid form with a thermal ionization mass spectrometer (TIMS). Both
TIMS and solution-based MC-ICP-MS offer high precision but involve a significant amount of sample
preparation, typically acid digestion of ashed, powdered or bulk samples in a cleanroom laboratory,
followed by Sr isolation using ion exchange chromatography (e.g. [97,98]). Although Sr is a trace
metal, it is ubiquitous in the environment, including in unfiltered air. In the US, the concentration
of strontium in urban air was on average 20 ng m−3 in the 1970s and has increased with growing
air pollution [99,100]. The isolation of small amounts of Sr therefore requires a cleanroom laboratory
to avoid atmospheric dust and avoidance of unnecessary exposure to metal surfaces, frequently a
source of Sr contamination. Class 1000 or ISO 6 certified laboratories should indicate a sufficiently
uncontaminated space. However, for a more thorough assessment of potential contaminants in the lab
environment and in reagents, procedural blanks should be included in each batch of samples or at least
measured at regular intervals. Sr concentrations in blanks below 1% of the values in samples being
analysed indicate a clean work environment and process.

5.1. Sample measurement metadata
Metadata recorded along with analytical results should include the laboratory where the measure-
ments were conducted and the protocols used during sample preparation. Laboratories should report
the long-term, 2σ external reproducibility of their repeated analyses of a matrix-matched standard with
Sr concentration similar to the samples (i.e. the 2σ standard deviation of the facility). Along with the
number of analyses, this enables the calculation of the standard error if desired. Suitable standards
include US Geological Survey BCR-2 [101] and BHVO-2 [102] for rocks and soil samples, NIST SRM
1400 and 1486 for bone and tooth samples [103], and NIST SRM 1515 for plant samples [104,105].
Alongside this, the standard error of the reference materials run during a particular project should
also be reported. The reference value used in the analytical facility for NIST SRM 987 to which 87Sr/86Sr
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measurements are referenced should also be quoted (e.g. 0.710255 from Waight et al. [106]) to enable
different datasets to be renormalized to the same value for direct comparability. Note that the value of
0.71034 ± 0.00036 originally reported for SRM 987 [107] is outdated, and a large, improved set of values
from many facilities is available [108]. Values for laboratory procedural blanks, the magnitude of blank
elemental Sr, results for known unknowns analysed alongside project samples, and the numbers of
repeat analyses should also be reported. Finally, it is helpful to include strontium concentrations of
samples, if available.

5.2. Soil samples
For isoscapes of bioavailable 87Sr/86Sr, soils should be leached to isolate the bioavailable and thus
biologically meaningful Sr fraction, which is water soluble and exchangeable. As mentioned above,
different leaching protocols yield different 87Sr/86Sr, and there is little consensus on which are best [68].
Published studies variously report leaching with water alone [39], nitric, acetic [46,69,109] or hydro-
chloric acid [110] of varying concentrations (0.1–1 M) or 1 M ammonium nitrate solution (NH4NO3)
[111] following the protocol DIN International Organization for Standardization (ISO) 19730 [112].
Some studies have compared multiple methods [13,67,68,113,114]. The leachates are then separated
using centrifugation [115] or by filtering through a syringe or pipette equipped with a membrane
[51], dried down, and Sr is isolated using ion exchange column chromatography. For the sake of data
reproducibility and metadata analysis, authors should publish details of the protocol used for leaching.

5.3. Plant samples
Once collected, plant samples should be stored in unbleached, lightly closed paper bags and allowed
to dry out completely to avoid the formation of mould. If long-distance (international) transport is
necessary before analysis, it may be advisable to first char them (if they will ultimately be ashed),
to avoid the possible need for plant importation permits. In the field, plants can be wrapped in
aluminium foil and left near a fire, allowing them to turn into charcoal [116]. Alternatively, plants can
be frozen at −80°C for 72 h [28] or gamma-irradiated [115] to destroy seeds and pests.

Some studies have rinsed plants with deionized or ultrapure water before analysis to remove
surface dust [11,29,36,117], while others have not, presumably (although not necessarily explicitly)
reasoning that atmospheric Sr deposition contributes to bioavailable 87Sr/86Sr ingested by consumers
feeding on plants [4,63]. In a study in the UK, Warham [70] found that unwashed leaves and inner
woody material from the same trees, Warham yielded the same 87Sr/86Sr.

Field-collected plant samples are usually sub-sampled for processing in the laboratory. To ensure
the recovery of sufficient amounts of Sr, we recommend preparing at least 1.5 g of dry plant matter or
approximately 20 mg of ash. In the laboratory, plants are either ashed or treated with strong oxidizing
agents (e.g. hot nitric acid) to remove organic compounds that can interfere with the separation of Sr
on resins used in column chromatography. Increasingly, many laboratories use microwave digestion to
achieve this more efficiently (e.g. [62]). A typical ashing protocol is as follows: the dry material is cut
or crumbled into small pieces (combining different specimens if desired) to partially fill pre-cleaned
crucibles made of porcelain, ceramic or pure silica or quartz, leaving space for air to circulate. The
crucibles are then placed in a muffle furnace with temperatures between 500°C and 800°C for about 10
h, depending on the laboratory. The resultant ash is homogenized in the crucible, transferred to a clean
storage vial and is then ready for acid digestion and separation of Sr in a clean lab setting. If plants
are to be analysed for other isotope systems such as carbon, nitrogen or sulphur, sub-samples must be
removed before ashing. Another method is to dry the plants overnight in an oven at approximately
40°C, then homogenize into a fine powder before acid digestion, possibly using a microwave digestor
[31].

5.4. Bone and enamel samples
Like plants, organic-rich bones are either ashed or treated with hot nitric acid. For calcium-rich
materials such as bone, 10–30 mg will contain sufficient Sr for analysis, with similar preparation and
Sr separation methods to those employed for plants as described above. Alternatively, hard, mostly
inorganic sample materials, such as well-preserved tooth enamel, are suitable for analysis by laser
ablation MC-ICP-MS.
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Laser ablation needs minimal sample preparation and has high spatial resolution but relatively
low precision. Corrections for isobaric interferences may be required (e.g. [118–120]). It is quicker and
less destructive than solution ICP-MS or TIMS since it does not require separation of Sr [121]. The
method is minimally destructive for small samples (e.g. individual human teeth) that can be placed
in the laser chamber; larger ones (e.g. large animal teeth) may have to be sub-sampled. Laser ablation
requires samples to have relatively high concentrations of Sr and low Rb (since Rb cannot be removed
before analysis and the 87Rb isobaric interference has to be corrected, although future technological
developments may help to mitigate this issue). The 2σ external reproducibility (two s.d. values of
the mean value of multiple repeated analyses of the same sample) of 87Sr/86Sr measurements by laser
ablation is typically 0.0002–0.0003 [122], larger than for solution analyses (where the uncertainty is
typically in the fifth decimal place). Uncertainty in the fourth decimal place may be perfectly adequate
given the numerous sources of variation in plants and animals. Laser ablation allows spatially highly
resolved analyses of targeted areas of a sample, enabling the investigation of (for example) changes
throughout tooth formation, or focus on areas with the best preservation. This is more difficult with
solution methods, which require targeted enamel removal before digestion. If laser ablation is to be
used, care should be taken that any cleaning of the sample will not compromise the isotopic measure-
ments. Experience in the MC-ICP-MS Facility in Geological Sciences at the University of Cape Town
indicates that wiping the surface of the tooth with acetone before analysis is problematic, since acetone
leaves behind an organic residue. Ethanol or methanol does not, so is preferred for this purpose.
This lab has also found that juvenile teeth are often not suitable for laser ablation, likely due to less
mineralized enamel. While undertaking measurements on flat surfaces (sectioned or sliced samples, or
even polished thin sections) is generally preferred, analyses of slightly curved surfaces can produce
reliable data combined with mass correction [123].

Ancient (archaeological, palaeontological, some historical) samples may have undergone diagenetic
changes that compromise our ability to measure biogenic 87Sr/86Sr. Understanding diagenesis comprises
a substantial field of study in its own right [124,125], which is beyond the scope of this article,
although there is one near-consensus point: bone is far more vulnerable to diagenesis than tooth
enamel [126]. Unless calcined [127], or modern without prolonged contact with the soil [128], bone
is best avoided as a sample material for 87Sr/86Sr. With regards to possible pre-treatment protocols,
we note that methods designed to remove one diagenetic component (e.g. carbon or oxygen) from
calcified tissues do not necessarily remove others (e.g. strontium). Oxygen occurs in calcified tissues in
various chemical forms (carbonate, phosphate, in the hydration layer), some structural and others only
loosely bound and hence readily exchangeable. Strontium, on the other hand, generally substitutes
for calcium in the crystal lattice of bioapatite. Crowley et al. [129] found measurable differences in
87Sr/86Sr between samples of powdered tooth enamel prepared using different chemical pre-treatments.
However, they cautioned that possible contamination introduced in the laboratory could not be ruled
out [129]. Removing the outer layers of tooth enamel before analysis can help eliminate diagenetically
altered material. Protocols for measurement of 87Sr/86Sr by laser ablation typically do this using a rapid
pre-ablation cleaning laser sweep along the intended path of analysis with a slightly larger spot size to
remove the outer few microns of enamel (typically 2−5 μm) [123].

6. What are the complications with assigning provenance?
Once an isoscape has been created, there are multiple ways to use it for geographically assigning
samples of unknown origin. The simplest is visual comparison to match the 87Sr/86Sr of the unknown to
the different zones on the isoscape. There are also GIS-based tools [130] and probabilistic approaches
such as the assignR package in R [131], which also allows for the incorporation of additional constraints
from other isotopic or non-isotopic data. The term ‘assignment’ is somewhat misleading, as the
identified, assigned location simply represents the area of most probable origin. Bayesian probabilistic
approaches like that implemented in assignR do not generate areas of zero probability (i.e. there is
always some possibility of any particular locality being the origin).

The isotopic composition of consumer tissues reflects combined Sr inputs from various sources over
a period of time. The more mobile the individual, and the more heterogeneous the landscape, the
more sources will be incorporated. In complex cases, the consumer may match none of the contribu-
ting sources, or may yield a value compatible with more than one combination of sources, termed
equifinality.
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In regions of relatively homogeneous 87Sr/86Sr, such as many carbonate-based geological substrates,
variations between consumers in the fourth decimal place can be meaningful [66]. In areas of more
heterogeneous lithology and mineralogy, variations in the fourth place may merely be noise. Assign-
ment can be refined with the use of contextual knowledge such as the topography of the area, rates
of erosion and reworking of a landscape, known migration patterns of the species studied and/or
combining with other isotopic tracers. However, one should be conscious of the influence of this
prior information on the assignment. Incorrect assumptions may substantially bias or compromise the
interpretations drawn or result in circular or confirmatory logic.

7. What are the influences of biology and metabolism on consumer tissue
Sr?

Sr isotope provenancing of organic materials lies at the intersection between biology and geology.
The geological aspects are relatively well understood, but much less attention has been paid to the
biology. It has long been known that strontium is incorporated into vertebrate calcified tissues because
it substitutes for calcium, replacing it in bioapatite [132,133]. Absorption of alkaline earth elements in
the mammalian digestive tract favours calcium and discriminates against Sr [132,134], so the extent of
Sr incorporation is proportional to [Sr]/[Ca]. Foods with high [Sr]/[Ca] (e.g. plants and dairy foods)
contribute more Sr to consumer tissues than those with low [Sr]/[Ca] (mainly non-dairy animal foods)
[42,135,136]. Vitamin D-rich foods promote dietary Ca absorption; this may apply also to Sr [133].
The biopurification process results in reduced variance in [Sr]/[Ca] and 87Sr/86Sr as food sources are
averaged up the food chain [42]. In Britain, the interquartile range of variation seen in 87Sr/86Sr in
archaeological human tooth enamel is approximately half that of plants, although the means and
medians are similar [137]. Relatively little attention has been paid to [Sr]/[Ca] in isoscapes (although
see [15]), but if these vary systematically across the landscape, we might expect to see differential
contributions of foods from different regions (i.e. unequal visibility of various regions) in consumer
87Sr/86Sr. Lewis et al. [19] found that [Sr]/[Ca] in pig tissues increased with a greater proportion of
marine food (fishmeal, which likely included small bones). We note also that the concentration of
Sr in seawater is typically 8 ppm [26], compared with <1 ppm in rainwater [32]. The proportion of
marine-derived Sr incorporated into the diet in the form of seafood or salt can influence 87Sr/86Sr in
tissues and potentially skew provenance studies if unaccounted for [133,138]. Ingested dust influences
consumer tissue 87Sr/86Sr [139], although gritstone, sandstone and granite grindstones used in grain
processing appear to have little effect [140].

Details of the rates and processes of Sr uptake in different species, and mobilization and recycling of
Sr already in the skeleton (especially in relation to nutritional status and pregnancy and lactation) are
not well understood. Only a few, relatively small studies have analysed animals fed controlled diets.
The patterns reported thus far are inconsistent: inter-individual variation in 87Sr/86Sr among animals fed
isotopically monotonous diets ranged from the third decimal place (0.001) for guinea pigs [139] to the
fourth decimal place (0.00062) for cattle [141] and the fifth place (0.00002–0.00008) for pigs [19] (but
see [142]). Weber et al. [139] found larger inter-individual differences in guinea pigs compared with
rats fed on the same diets. Inter-species differences may derive from different digestive efficiencies,
perhaps linked to different pH in the digestive tract. It is critically important to know how much of the
87Sr/86Sr variation we see in our unknowns might result from within-animal biological factors alone. We
can then estimate the threshold above which differences in 87Sr/86Sr are attributable to different diets
and/or places of residence. Further multigenerational controlled feeding studies with larger numbers
of animals are urgently needed to improve our understanding of this issue.

87Sr/86Sr in body tissues reflects food and drink consumed at the time of tissue formation, buffered
by 87Sr/86Sr already circulating within the body. Even rapid movement to very different lithologies,
resulting in a sudden change in dietary 87Sr/86Sr, will lead to a relatively gradual change in tissue
87Sr/86Sr due to the dilution of newly ingested Sr by the available body pool [143,144]. This effect is
well-known for stable light isotopes (e.g. [145]), and additional studies on 87Sr/86Sr turnover may lead
to the development of models to correct for this process in specific taxa (e.g. [144]). In mammals,
bone mineral from the mother’s skeleton is resorbed and incorporated into the metabolic pool during
lactation, so 87Sr/86Sr in milk, and calcified tissues forming in suckling infants, reflect a mixture of the
mother’s current food and drink and that dating from earlier in her life. In humans, mothers typically
lose 2–8% bone density during lactation [146], and some studies report that maternal skeletal turnover
may be as high as 10–30% during pregnancy and lactation [147,148]. The implication is that 87Sr/86Sr of
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calcified tissues formed in early life will be influenced by diet and place of residence over more than
one generation. Although the contribution of maternal Sr to infants is well known, the implications for
provenance have not been adequately addressed.

8. Do specific applications require custom isoscapes?
The degree to which specific applications (such as provenancing animal species with different
behaviours or various types of materials like glass, ceramics or eggshells) require different isoscapes
probably needs to be decided on a case-by-case basis. For example, isoscapes of bioavailable 87Sr/86Sr
may be suitable for assessing the origins of materials such as glass in which Sr comes mostly from
wood ash [149,150], and for ceramics if geology is a major driver of 87Sr/86Sr variation in a particu-
lar study area [151]. One view is that researchers should not re-use existing isoscapes for different
purposes, but rather create new ones tailored to specific research questions using the same freely
available data. It is valuable to create a flexible, adjustable isoscape in which different types of samples
can be included or excluded to tailor the output to a particular research question. For example, if 87Sr/
86Sr varies significantly and consistently with rooting depth, it might be desirable to develop separate
isoscapes for grazing and browsing animals, based on shallow- and deep-rooted plants, respectively.
The calRaster function in the assignR package is one potentially useful tool in this regard: it can
convert isoscapes developed with one type of material (e.g. plants) into versions suitable for other
applications by re-calibrating with a small number of known origin samples of the second type (e.g.
butterfly wings, ratite eggshell or dental enamel). The function uses linear modelling and assumes that
a systematic, linear relationship exists between the existing isoscape and the target sample material
(although this may not always be the case for 87Sr/86Sr). If the relationship is chaotic or not a linear
function of the existing isoscape values (visualized by the generated plots and statistics), calRaster will
not improve the accuracy of the isoscape. However, it will still propagate the uncertainty inherent
in the comparison between the sample substrate and the isoscape, giving a more realistic estimate of
uncertainty for use in subsequent assignment calculations. It is important to recognize when this is the
case and adjust your analysis accordingly. For example, a very weak relationship between the isoscape
and the target sample values could mean that the selected isoscape is a poor representation of the
study system. One approach would be to evaluate other isoscapes (e.g. generated using different data
or methods) to figure out whether they perform better. Alternatively, a weak relationship may also
demonstrate more fundamental limitations of the method. For example, in the case of contemporary
North Americans studied by Verostick et al. [152], the low slope and noisy relationship shown in
their fig. 3B probably reflect (in large part) the isotopic homogenization of Sr sources in contemporary
humans through globalization of diet and individual travel. In these cases, it is important to recognize
the aspatial variation and factor it into assignment analyses.

In a comparison of 87Sr/86Sr isoscapes of Western Europe based on soils, plants, and surface waters,
Bataille et al. [45] reported offsets in the third decimal place. This is not surprising given that there
are difficulties with assessing bioavailable 87Sr/86Sr in soils, as discussed above, and the patterning of
87Sr/86Sr in aquatic systems differs from that of terrestrial systems. In the southern Andes, Barberena
et al. [93] reported a higher correlation between measured and predicted 87Sr/86Sr for an isoscape
based on rodents compared with one based on both rodents and plants collected from the same
landscape. Variation in rodent ratios was driven by a smaller number of variables, mostly related to
geology, compared with variation in plants, for which several bioclimatic variables played a role. As
the authors point out, in this case, the faunal isoscape is likely to be better suited to provenancing
archaeological fauna and humans than the plant isoscape. However, the sample sizes used in this study
were relatively small, given the large study area.

9. What are the remaining uncertainties and limitations of strontium
isoscapes?

Regardless of the details of isoscape creation, robust and honest quantification of the uncertainties
in the isoscape predictions is critical when evaluating the origin of unknown samples using proba-
bilistic methods [153,154]. In these approaches, the predicted isoscape value (mean prediction and
uncertainty) at any given location is used to estimate the distribution of 87Sr/86Sr at each location
of the isoscape. By comparing the 87Sr/86Sr of a sample of unknown origin to the estimated 87Sr/86Sr
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distribution at each site, one can assess the likelihood that this sample might have come from any
given location on the isoscape. Overly optimistic uncertainty estimates will give the impression that the
sample origin is more tightly constrained than it really is, while pessimistic estimates will underrepre-
sent the strength of the isotopic assignment. A common error is to confuse uncertainty estimates of the
mean isoscape predictions with the variance expected among individuals originating from a common
location. As we are almost always seeking to constrain the origin of individuals, isoscape uncertainty
estimates should ideally incorporate the variability between individuals within a local population.
This is currently not standard practice for 87Sr/86Sr, although it is for 18O/16O and 2H/1H isoscapes in
which researchers frequently analyse multiple known-origin specimens from the same location (e.g.
[155,156]). Different methods exist for generating robust uncertainty estimates, ranging from analytical
propagation of component uncertainties to estimating ‘bulk’ uncertainty by comparing system-specific,
known-origin data with isoscape predictions (as is done in the calRaster function discussed above, for
example [153]). Each method has benefits and limitations, which are beyond the scope of this review,
but isoscape developers should report how uncertainty was estimated, and users should assess the
adequacy of the estimates for their application.

To illustrate the uncertainties associated with the predictive modelling approach, isoscapes should
be accompanied by standard error maps. Higher predictive standard error in some regions may be
the result of low sample size, skewed sample distribution, spatially heterogeneous predictor variables
or a combination of these factors. These prediction error maps are particularly important when using
isoscapes to assign provenance of a given specimen (e.g. in assignR), allowing a degree of assignment
uncertainty integration. Areas with high prediction errors can also help identify regions with poorer
sample coverage for targeted future sampling efforts. However, standard predictive error maps may
not be the only tool to identify areas that require local re-sampling or cautious use; in their strontium
isoscape of sub-Saharan Africa, Wang et al. [65] employed multivariate Mahalanobis distance as an
indicator of environmental dissimilarity, to identify regions with unusual environmental (predictor
variable) conditions not well represented by the training dataset [157].

A number of uncertainties and limitations associated with Sr isoscapes remain. They include
uncertainties associated with the covariates, such as the accuracy of geological maps and model
calibration for the past (e.g. changes in the position of shorelines, shifts in vegetation cover, changes
in surface geology like alluvium deposition and other significant natural or human modification of
the landscape). There are also uncertainties in the development of isoscapes, including how to manage
regions without training data. Should one extrapolate into unsampled areas, or should they be left
blank to be filled in by later studies? Extrapolation will produce predictions with increased uncertainty
and runs the risk of an end-user being overly confident in the results. The decisions surrounding
the risks of extrapolation can, of course, be case-specific, but leaving areas blank is advisable given
that random forest cannot reliably extrapolate 87Sr/86Sr predictions into unsampled areas [158]. This
is particularly true for continental-scale isoscapes with large spatial gaps between datapoints and
highly heterogeneous environmental conditions, but possibly less relevant for comparatively focused
isoscapes in homogeneous landscapes. Some areas may be less likely candidates for activities such as
ancient human land use, based on the historical or archaeological record or even the topography. A
large sedimentary basin or area of loess may have significantly less variability in 87Sr/86Sr across a large
area than a mountain range, but may represent a more likely area of use by agriculturalists.

9.1. Sources of error
There are many possible sources of error during the process of sample collection and analysis. Errors
can occur at the point of initial sample collection (e.g. mistakes in animal species identification, plants
growing in unusual microhabitats) or during subsequent preparation (e.g. inadequate homogeniza-
tion). Contamination of the sample, such as with solvents used as cleaning agents, can occur before or
after the sample arrives in the lab and this can be challenging to detect. Instrument errors can result
from (for example) low Sr concentrations, or interferences. It is important to analyse matrix-matched
known unknowns (i.e. test samples of materials similar to the samples) and choose appropriate
international and in-house standards to monitor, assess and minimize such errors.
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10. Where to from here?
10.1. Adding other isotopes
Including other isotope systems alongside 87Sr/86Sr is useful for provenance studies and should increase
the accuracy of assignments [159] and may expand the current boundaries of the field by making
visible previously unforeseen connections. Oxygen (18O/16O, expressed as δ18O) and hydrogen (2H/1H,
expressed as δD or δ2H) show gradients with precipitation [153,160,161]. Patterning in sulphur (34S/32S,
expressed as δ34S) is more complex, but applications include proximity to the coast and identifying
wetland inhabitants [162–164]. Lead isotopes can help to refine likely origins when 87Sr/86Sr is not
definitive e.g. [165]). Pb derives from both natural geological sources and anthropogenic ones, such
as lead pipes and leaded petrol; the extensive use of Pb-rich materials in the Roman Empire is well-
known [166,167]. It may be easy to identify contamination by anthropogenic sources. Millard et al.
[168] found that if samples have Pb concentrations below 0.87 ppm, there is little risk of anthropogenic
contamination, so isotope analysis is likely to provide meaningful clues to provenance. Both Pb and
Sr can be isolated from the same sample, although the very low concentration of Pb in human teeth
means that reliable analyses require relatively large sample sizes. The precise relationship between
geological and bioavailable plant Pb has not been closely investigated, but because animals take up Pb
mostly via accidental ingestion of soil or dust [169,170], rather than from food, isotope measurements
for Pb-containing minerals are more usable as a tracing tool, and there is less need for mapping of
bioavailable Pb isotope ratios than there is for Sr. Neodymium isotopes (143Nd/144Nd) show an inverse
relationship with Sr isotopes. The mammalian gut discriminates strongly against the absorption of
rare earth elements, so there are very low concentrations of Nd in mammal teeth [171]. Neodymium
isotopes may therefore be less helpful for provenancing humans or other mammals, but potentially
useful for materials such as ratite eggshells.

In addition to the use of other isotope systems to bolster interpretations based on 87Sr/86Sr, strontium
isotopes are also important in reinforcing or challenging inferences drawn from other isotope datasets
in archaeology and palaeoecology. 87Sr/86Sr can be used to trace or exclude non-local provenance
and past mobility. For example, studies reconstructing regional palaeotemperatures based on δ18O of
ungulate teeth have also analysed 87Sr/86Sr on intra-tooth oxygen isotope peaks and troughs to exclude
the possibility that the animal was migratory; we can thus be confident that the δ18O values reflect
‘local’ seasonal climatic variation (e.g. [172]). Similarly, δ66Zn analysis, a relatively new method of
reconstructing trophic level in ancient food webs from tooth enamel, may increasingly be paired with
87Sr/86Sr to ensure that variability in zinc isotopes reflects trophic level rather than variations in bedrock
composition [173,174].

10.2. Isoscapes for forensics
The application of isotopes for provenance in forensics has garnered substantial interest, including
the use of multiple isotope systems to assist in reconstructing residence and travel history for the
identification or repatriation of human remains [9,175], and sourcing of illegally traded wild plants
[176] and animals [43,177,178]. The value of 87Sr/86Sr is probably limited in urban human populations
that buy and consume internationally sourced foods from supermarkets (although see [179]); it is likely
to be more useful in the case of rural subsistence farmers. Strontium isotopes also play a role in ‘food
forensics’ [180] to demonstrate the geographical origins of food products, sometimes required for food
authentication. For example, 87Sr/86Sr has been shown to be useful in differentiating the origins of
European wines (e.g. [181]), allowing the detection of counterfeit wines [182]. Along with other isotope
systems, strontium isotopes are, however, used mainly as a forensic investigative tool (rather than as
evidence in court) because of the limitations of their inherent uncertainty. Isotope approaches can only
identify areas of probable origin or exclude other unlikely regions. Definitive proof of provenance
requires additional types of forensic evidence. Nevertheless, forensic studies incorporating isotopes are
a growing focus. It is worth noting that for forensic purposes, agricultural and industrial alteration
of landscape 87Sr/86Sr will need to be explicitly incorporated into isoscape design, instead of being
excluded as is usually the case in archaeological or other palaeo-studies.
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10.3. Data repositories
As the quantity of isotopic data in the literature grows, long-term open-access storage, making data
available and accessible for multiple different uses, is a goal for the field as a whole. There are
multiple repositories for isotope data (e.g. [183,184]); we highlight two. IsoBank is a multi-disciplinary
repository founded in 2017 with funding from the US National Science Foundation [185]. It is USA-
and Canada-focused but is expanding to other regions [186]. There is a strong focus on metadata
requirements to promote usage in multiple, diverse applications, and there are plans to create database
interfaces that will allow data to be accessed and used directly in scientific software packages that
enable isoscape development and analysis. The second, IsoArcH, is an archaeology-focused, com-
munity-driven platform that stores isotopic data for academic purposes with standardized metadata
definitions and language, shared using the FAIR and CARE principles [187,188]. It was originally
focused on Europe and, to a lesser extent, Asia, but has expanded to incorporate over 65 000 measure-
ments from all over the world. An excellent map function shows the geographical distribution of data.
It is an open-access repository where one can create private projects with a DOI and multiple collabora-
tors that can instantly go public upon manuscript acceptance. It requires donations to keep it running,
which can be built into grant budgets. Initiatives are underway to compile and harmonize existing
published bioavailable 87Sr/86Sr data for incorporation into these repositories, to provide researchers
across many disciplines with a foundation for their individual research projects. Researchers are
encouraged to engage with these platforms, making use of currently available data and uploading
newly acquired data directly. These repositories also include valuable lists of references to published
studies. Since these data repositories are open-access, there is a chance that data may be misused to
produce research of questionable scientific value or that contributors to the repository may not be
given proper credit. Therefore, robust peer review remains critical to achieve quality publications and
ensure correct citation of the papers where the data were originally published, not just the repository
itself.

10.4. Ethics and accessibility
The use of isotope analyses for investigating diet, provenance, mobility and migration can raise ethical
concerns. These require consideration to ensure we work mindfully in the academic and non-aca-
demic spheres in which our research is relevant [189]. Additionally, there are ethical challenges with
publishing forensic data, such as the locations of endangered plant or animal species, at risk of being
exploited.

Isoscape maps should be developed using colour palettes that, where possible, are legible for people
with red–green colour vision deficiency, and we should use different shapes or sizes for data points in
graphics, rather than relying on colour alone to distinguish them. Various tools and palettes have been
developed to support the visualization of different types of data, and many of these can be accessed
directly in scientific software environments like R and Python. The colorbrewer tool and libraries
(colorbrewer2.org) have several useful colour palettes, and COBLIS (color-blindness.com/coblis-color-
blindness-simulator) is a useful website that simulates how a colour-blind person would see an
uploaded figure.

It is a concern that many researchers around the world have little or unequal access to the expertise
and facilities required to carry out 87Sr/86Sr and other isotopic analyses. Many regions have significant
economic challenges that hinder exposure to and training in laboratory-based sciences. Nevertheless,
there are opportunities to obtain funding for training and collaboration with established laboratories.

11. Conclusions
This article highlights the enormous potential of 87Sr/86Sr isoscapes to help address questions about the
origin and movement of goods, people and animals in many different fields, including archaeology,
ecology, forensics, wildlife conservation, food science and others. Major concerns for practitioners
include the choice of approach to creating an isoscape. In many cases, domain mapping performs well,
yielding user-friendly isoscapes. In complex situations, however, especially where there are multiple
important strontium inputs, machine learning approaches (especially random forest) are probably best.
These require significant developer skills and access to adequate computing capacity. The choice of
samples to be collected will depend on what is available, but most researchers favour plants because
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they form the base of the food web and are widely available (except in extreme environments). For
landscape-level isoscape construction, the most widely applicable approach to bioavailable 87Sr/86Sr
determination is by sampling plants within defined geological contexts. Faunal remains (modern
and/or ancient) can, where present, supplement and complement plants. We survey strategies and
processes for sample collection, preparation and analysis. An important contribution of this paper
is that it highlights the relatively understudied influence of biology and strontium metabolism on
87Sr/86Sr in consumer tissues, particularly with regards to dietary choices and gut absorption, and
also maternal recycling of skeletal Sr during pregnancy and lactation and how this may influence the
chemistry of the growing tissues of offspring. We discuss the limits of applicability of isoscapes, in
terms of materials and uncertainties, and the estimation of those uncertainties and the role this should
have in assignment and data interpretation. Researchers need to make their own choices about the
issues explored here, depending on their field of study and research questions, but we hope that the
insights offered here will guide practitioners towards better outcomes.
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