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A B S T R A C T   

Digital rock analysis (DRA) is fundamental for geo-energy research, enabling the characterisation of micro-
structures for applications like hydrocarbon recovery, carbon storage, and groundwater modelling. Although 2D 
CT images provide valuable pore-scale data, the scarcity of real-world datasets limits the effectiveness of ad-
vanced analysis. Generative AI presents a promising approach for synthesizing high-quality rock images but 
faces key challenges, including high computational demands, insufficient evaluation metrics, and the trade-off 
between image fidelity and diversity. To address these limitations, this study proposes the use of Low-Rank 
Adaptation (LoRA) for fine-tuning stable diffusion models, significantly reducing computational requirements 
while maintaining image quality. A systematic investigation was conducted to evaluate the influence of LoRA 
training parameters, including rank and learning rate, on the quality of generated images. Image outputs were 
assessed using both standard generative metrics, such as Kernel Inception Distance (KID), and domain-specific 
metrics, including porosity, pore count, and pore area distributions. The optimised LoRA-enhanced diffusion 
model achieved a 92.6 % reduction in KID relative to baseline models, while also improving inference speed. 
Building on these advancements, this study demonstrates that the LoRA-enhanced diffusion model significantly 
improves neural network extrapolation in incomplete data scenarios through statistically consistent synthetic 
generation. Despite control challenges, this approach reduces costs and enables diverse applications, bridging 
fundamental rock physics with practical energy research.   

1. Introduction 

Digital rock analysis (DRA) has emerged as an essential metho-
dology in geo-energy research, facilitating comprehensive character-
isation of rock microstructures for applications including hydrocarbon 
recovery, carbon storage, and groundwater flow modelling. Among the 
available imaging techniques, two-dimensional (2D) computed tomo-
graphy (CT) offers a cost-effective means of acquiring essential pore- 
scale information, facilitating both analysis and modelling of subsurface 
structures. However, the limited availability of real 2D CT datasets 
poses a significant barrier to the development of intelligent, data-driven 
analysis methods. 

Recent advancements in generative artificial intelligence (AI), par-
ticularly the development of generative adversarial networks (GANs) 
and diffusion models, present promising opportunities for the synthesis 

of high-quality two-dimensional rock images. Compared to traditional 
image generation methods, deep learning approaches are more flexible 
and capable of capturing the complex granular details found in CT 
imagery of various rock types. Despite their potential, several critical 
challenges remain unresolved: (1) State-of-the-art generative models 
require substantial computational resources for full model training, 
limiting their practical application in specialised scientific domains like 
digital rock analysis; and (2) Current assessments of generated images 
rely on generic metrics, which fail to fully capture the geological and 
physical properties relevant to domain experts. Moreover, systematic 
studies of both fidelity and diversity in generated rock CT images are 
lacking. 

To address these challenges, this study introduces a novel approach 
that leverages Low-Rank Adaptation (LoRA) to fine-tune stable diffu-
sion models for efficient, high-quality generation of 2D CT rock images. 
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The proposed method significantly reduces computational overhead 
while maintaining or improving generative performance in geoscien-
tific applications. The core contributions of this work are as follows:  

• LoRA is employed as a lightweight adaptation technique, injecting 
low-rank updates into selected layers of the stable diffusion model. 
This enables rapid fine-tuning without requiring full retraining, 
thereby reducing computational costs while preserving output 
quality. 

• Critical parameters involved in both training and generation, in-
cluding LoRA rank and learning rate, are systematically evaluated to 
determine their influence on image fidelity and diversity. The study 
provides practical recommendations for parameter selection in real- 
world applications.  

• A novel evaluation framework is implemented, combining standard 
generative metrics (e.g., Kernel Inception Distance (KID)) with do-
main-specific properties such as porosity, pore count, and pore area 
distribution. This ensures that generated images are not only vi-
sually plausible but also geologically meaningful. 

The primary objective of this research is to demonstrate the effec-
tiveness of LoRA-adapted stable diffusion in producing realistic 2D CT 
rock images, optimise its configuration for computational efficiency 
and image quality, and validate a domain-aware evaluation metho-
dology. By bridging the gap between generative AI and domain-specific 
geological imaging, this study provides a foundation for broader ap-
plications in digital rock physics and data-driven geo-energy modelling. 
The paper is structured as follows: Section 2 reviews related work on 
digital rock image generation, including traditional statistical methods 
and modern deep learning approaches, with a focus on diffusion models 
and LoRA fine-tuning. Section 3 details the research methodology, in-
cluding model architecture, dataset preparation, and evaluation me-
trics. Section 4 presents experimental results, analysing the impact of 
different LoRA configurations on image quality and comparing perfor-
mance with baseline models. Section 5 discusses the implications of the 
findings, potential applications, limitations, and directions for future 
research. Section 6 concludes the study by summarising the key con-
tributions and research significance. 

2. Literature review 

DRA, as a frontier field in modern geoscience and materials re-
search, leverages advanced imaging technologies to capture the com-
plex microstructures of porous materials. Since its inception in the 
1990s, DRA has evolved through the integration of numerical simula-
tion and advanced imaging technologies, becoming widely applied in 
petroleum engineering, hydrogeology, and carbon storage studies 
(Yang et al., 2024; Chi et al., 2024; Esmaeili, 2024). Micro-computed 
tomography (micro-CT), in particular, offers high-resolution imaging 
capabilities that reveal intricate pore geometries at the microscale. 
However, despite its utility, micro-CT imaging remains constrained by 
long acquisition times, limited sample availability, and its inability to 
fully capture the heterogeneity of rock microstructures (Cnudde and 
Boone, 2013). These limitations have driven an urgent need for alter-
native approaches that can generate representative and diverse porous 
media images, while preserving key geological properties (Okabe and 
Blunt, 2004; Tahmasebi and Sahimi, 2013; Mosser et al., 2017). 

Digital rock image generation methods can be broadly classified into 
two categories: traditional statistical methods and deep learning 
methods. Traditional statistical methods include object-centred ap-
proaches, process-based methods, and pixel-level information techni-
ques, which primarily rely on statistical and geological theories. In 
contrast, deep learning methods achieve automatic image generation 
and reconstruction through artificial neural networks and machine 
learning algorithms. Additionally, deep learning has been widely ap-
plied in digital rock analysis, involving multiple tasks such as image 

segmentation, super-resolution, and pore-scale modelling. However, 
obtaining sufficient training data remains a key bottleneck constraining 
technological development (Li et al., 2023; Karimpouli et al., 2024). 

2.1. Traditional methods 

Traditional digital rock image generation techniques can be broadly 
categorised into three classes: object-centred approaches, process-based 
models, and pixel-level statistical methods. These methods are pre-
dominantly grounded in geological theory and statistical modelling. 

Object-centred methods treat rock structures as assemblies of dis-
crete entities, such as grains and pores, with spatial configurations 
determined through heuristics or optimisation algorithms like simu-
lated annealing (Diogenes et al., 2008). While conceptually intuitive 
and computationally stable, these techniques struggle to capture large- 
scale pore connectivity and detailed morphological variations due to 
their reliance on low-order statistical information. Process-based 
methods aim to simulate geological formation processes, such as sedi-
mentation or diagenesis, resulting in more realistic structures (Biswal 
et al., 2007; ØREN and Bakke, 2002). However, these simulations often 
require extensive parameter tuning, are computationally intensive, and 
are limited in generalisability. Translating complex geological phe-
nomena into efficient and accurate computational models remains a 
core challenge in this category. 

Pixel-level geostatistical approaches model the rock structure on a 
voxel grid using spatial statistics. Two-point statistics (TPS), such as the 
Joshi-Quiblier-Adler method, provide porosity-consistent image genera-
tion based on correlation functions (Yeong and Torquato, 1998; Torquato, 
2002), but fail to capture higher-order spatial patterns. In contrast, multi- 
point statistics (MPS) techniques, such as Single Normal Equation Simu-
lation (SNESIM), direct sampling, and cross-correlation-based simulation, 
extract complex spatial features from training images (Tahmasebi and 
Sahimi, 2013; Okabe and Blunt, 2005; Strebelle, 2002; Mariethoz et al., 
2010). While MPS improves global realism, it still struggles to preserve 
fine structural details and often requires high-quality training datasets. 

2.2. Deep learning methods 

Deep learning has achieved remarkable success in image generation, 
particularly in facial recognition, scene generation, and medical ima-
ging. GANs demonstrate unique advantages in digital rock reconstruc-
tion. As a data-driven approach, GANs require no prior information, 
avoid the complexity of manual feature design, and can rapidly gen-
erate new structures after training (Goodfellow et al., 2014). Early 
milestone works successfully generated microstructures of various rock 
types, including berea packs, Berea sandstone, and Ketton limestone 
(Mosser et al., 2017, 2018). Subsequently, researchers expanded GANs' 
applications to innovative areas such as shale digital core reconstruc-
tion, image resolution enhancement, and three-dimensional structure 
reconstruction from two-dimensional fragments (Zha et al., 2020; Zhao 
et al., 2023; Feng et al., 2020; Kench and Cooper, 2021). 

Despite their success, GANs face persistent training challenges, no-
tably mode collapse and instability (Liu et al., 2020). In response, dif-
fusion models have emerged as a promising alternative. These models 
simulate a two-stage process—first adding noise to training data, then 
learning to reverse this diffusion to synthesise new images (Ho et al., 
2020). These models simulate a diffusion process from order to disorder 
and back to order, gradually adding noise and then systematically re-
moving it to generate data. Their core advantages lie in training sta-
bility and high-quality sample generation, effectively avoiding the 
mode collapse problems common in GANs. Across a diverse range of 
applications, from synthesising realistic images to performing precise 
image segmentation and enhancing resolution through super-resolution 
techniques, diffusion models have demonstrated remarkable success 
and versatility (Dhariwal and Nichol, 2021; Saharia et al., 2022; Choi 
et al., 2021; Rombach et al., 2022). 
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These advancements in diffusion modelling have opened new 
pathways for addressing longstanding challenges in the field of digital 
rock analysis, particularly the persistent issue of limited training data. 
In digital rock research, diffusion models have achieved micro-CT 
image resolution enhancement and high-quality paired image data 
augmentation (Ma et al., 2024). Researchers have begun leveraging 
these powerful generative capabilities to create synthetic datasets that 
complement real measurements. For example, Esmaeili et al (Esmaeili, 
2024). proposed a diffusion-based framework that fuses synthetic and 
real digital rock images to address data scarcity, improving both image 
realism and physical property estimation. These developments indicate 
that diffusion models are well-suited to address the limitations of tra-
ditional techniques, particularly the need for flexible, data-driven ap-
proaches in geoscientific imaging. 

While both traditional and deep learning-based methods have ad-
vanced the field of digital rock image generation, several critical lim-
itations remain. First, high computational costs associated with training 
full-scale diffusion models pose significant barriers to widespread 
adoption. Second, existing evaluation metrics, such as Fréchet Inception 
Distance (FID) and Kernel Inception Distance (KID), primarily assess 
visual similarity and fail to capture domain-specific properties like 
porosity, connectivity, or pore size distribution. Third, there is a lack of 
systematic analysis addressing the trade-off between fidelity (pre-
servation of geological realism) and diversity (variation in structural 
features) in generated outputs. 

To address these challenges, this study introduces a novel approach 
that leverages LoRA to fine-tune stable diffusion models for digital rock 
CT image generation. The proposed method reduces computational 
demands, improves physical realism, and enables fine control over 
output diversity through parameter tuning. Additionally, it in-
corporates domain-specific evaluation metrics, such as porosity, pore 
count, and size distribution, to assess the geological plausibility of the 
generated images. By integrating lightweight fine-tuning, systematic 
parameter analysis, and application-aware evaluation, this work aims 
to bridge the gap between state-of-the-art generative methods and 
practical needs in geo-energy and porous media research. 

3. Methodology 

This section presents the proposed framework for generating high- 
fidelity and diverse 2D rock CT images using LoRA-enhanced stable 
diffusion. The methodology encompasses dataset preparation, model 
training, image generation, and evaluation. Fig. 1 illustrates the overall 
workflow, including data annotation, LoRA fine-tuning, and parameter 
optimisation for guided image synthesis. 

3.1. Dataset and preprocessing 

This study utilises the Digital Rocks Super Resolution Dataset 1 
(DRSRD1) (Wang et al., 2019), specifically the 2D Bentheimer sand-
stone subset. This dataset comprises high-resolution micro-CT images 
with a spatial resolution of 3.8 µm. A total of 1000 2D slices were se-
lected, each with a resolution of 800 × 800 pixels. To prepare the data 
for generative modelling, each image was binarised to separate pore 
spaces from the rock matrix. Semantic annotations were added to de-
scribe properties such as porosity, enabling conditional image genera-
tion. These preprocessed binary images served as the foundation for 
both training and evaluation tasks. 

3.2. Model architecture and fine-tuning 

3.2.1. Stable diffusion model 
Stable diffusion is an advanced diffusion model that generates high- 

quality images through a series of denoising steps, demonstrating ex-
ceptional performance in image generation across numerous domains. 
Rock CT images typically originate from high-resolution microfocus X- 

ray tomography scans, featuring complex pore networks, mineral grain 
boundaries, and micrometre-scale structural details. These character-
istics impose high demands on image generation models, requiring 
them to not only achieve high resolution but also accurately reproduce 
the physical reality of geological structures. 

The core principle of diffusion models is to add Gaussian noise to the 
original image x0(i.e., real rock CT slices) through a forward diffusion 
process. After multiple time steps t , the image is transformed into a pure 
noise distribution. Then, the reverse diffusion process gradually re-
constructs the image by denoising. Compared to traditional GANs, the 
probabilistic denoising mechanism of stable diffusion is better suited for 
modelling the complex textures and randomness in rock CT images (Ma 
et al., 2024). The architecture of stable diffusion is based on U-Net. This 
is a symmetric convolutional neural network that maintains spatial 
consistency between the input (e.g., 512 ×512 pixel rock CT slices) and 
the output. U-Net includes both downsampling and upsampling paths. 
These paths are composed of Wide ResNet blocks, group normalisation, 
and self-attention mechanisms, which help capture long-range de-
pendencies between rock pores and particles. The diffusion time step t
is embedded into each residual block using sinusoidal positional em-
bedding. This helps simulate how noise changes over time. The forward 
diffusion process can be mathematically described as: 

= +dx f x dt g t dw( ) ( )t (1) 

where dx denotes the infinitesimal change in the image state at time t , 
f x( )t is the drift term controlling the deterministic evolution, dt is a 
small time increment, g t( ) is the diffusion coefficient determining the 
noise intensity over time, and dw represents the increment of a Wiener 
process, introducing Gaussian noise via standard Brownian motion. 
This equation describes how the structure of the rock CT image is 
gradually disrupted by adding random noise, leading to a pure noise 
distribution. The training objective is to infer noise from noisy samples 
through conditional denoising, optimising the loss function： 

+f x t tmin ( , ) 2 (2) 

where represents Gaussian noise, t is the time step, +x t is the image 
with corresponding noise added at the time step t , and +f x t t( , ) is the 
noise predicted by the model. By minimising this loss, the model learns to 
recover fine-grained geological textures from noise. However, training the 
full diffusion model from scratch requires high-end GPUs and substantial 
resources. Hence, low-rank adaptation can be used to fine-tune it efficiently. 

3.2.2. Low-rank adaptation (LoRA) 
LoRA is a lightweight fine-tuning technique that adapts the stable 

diffusion model to the generation of rock CT images by adding a small 
number of low-rank parameter matrices. This generation process re-
quires not only high fidelity but also accurate reflection of geological 
properties such as porosity, grain size distribution, and rock type 
characteristics. Traditional fine-tuning methods adapt to new tasks by 
adjusting the entire weight matrix (W ), resulting in updated weights 

+W W . LoRA's innovation lies in decomposing the weight update into 
a product of two low-rank matrices: =W A B• . This decomposition 
significantly reduces memory and computational requirements while 
maintaining the ability to adapt to the features of rock CT images. 

In this study, LoRA is applied to the U-Net backbone of the stable 
diffusion model, including convolutional, group normalisation, and 
self-attention layers. These layers are frozen, and only the LoRA para-
meters are trained. This approach preserves core denoising capabilities 
while enabling the model to learn domain-specific features, such as 
pore geometry and grain boundaries in sandstone CT images. LoRA 
parameters are applied in parallel to the frozen layers, eliminating in-
ference latency and facilitating rapid adaptation to diverse rock types. 
To enhance the quality of rock CT image generation, LoRA hy-
perparameters are fine-tuned, including the rank of low-rank matrices 
and the scaling factor that controls the magnitude of LoRA updates. 
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3.3. Generation process 

After completing LoRA fine-tuning, the generation process of rock 
CT images is implemented through reverse diffusion sampling, aiming 
to create images with geological characteristics from random noise. The 
generation process starts from pure noise and reconstructs the rock CT 
images through iterative denoising. The update formula for single-step 
reverse diffusion, combined with text prompts (through condition c) 
and guidance scale (s), can be expressed as： 

= + +( )x x x t s x t c x t z[ ( , ) ( ( , , ) ( , ))]t t t t t t1
1

1 1 ¯t

t
t

(3) 

where xt 1is the image state from the time step t to t 1, the noise 
scheduling parameter at time step t , controlling the amount of noise 
added or removed in each step, t is the cumulative denoising factor, 
representing the degree of denoising from the initial time to t , and t is 
the noise predicted by the U-Net controlled by condition c (text 
prompt). 

This formula combines unconditional and conditional noise pre-
dictions through the Classifier-Free Guidance mechanism. x t( , )t
provides a denoising baseline for random rock structures, while 

x t c( , , )t adjusts the denoising direction according to text prompts 

(such as porosity descriptions), and s controls the balance between the 
two. This mechanism balances geological control and structural ran-
domness. Based on this, three key parameters were studied:  

• Text prompt (c): Text prompts describing geological properties 
(e.g., "A CT scan of sandstone with a porosity of 0.213") are em-
bedded via the CLIP model into a condition vector. This vector di-
rectly modulates the denoising trajectory, guiding the model to 
produce images that exhibit the specified porosity and micro-
structure.  

• Guidance scale (s): This scalar controls the emphasis on the text 
condition. Higher values (e.g., 15–20) increase adherence to the 
prompt but may introduce artefacts such as over-sharpened grain 
boundaries. Lower values (e.g., 7.5) allow more structural ran-
domness but may reduce prompt fidelity.  

• Iteration steps (T): The number of reverse diffusion steps directly 
influences image clarity. Higher values (100−200) yield better pore 
edge definition and mineral detail but increase computational load. 
Lower values may speed up inference at the cost of structural fidelity. 

These parameters were systematically varied and analysed to un-
derstand their impact on the geological validity and visual realism of 
the generated images. 

Fig. 1. The overall framework of the proposed method.  
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3.4. Evaluation matrics 

To assess the quality and utility of generated CT images, both fi-
delity and diversity are evaluated using domain-appropriate metrics. 
Regarding fidelity, the focus is on visual authenticity, accuracy of 
geological features, and consistency of statistical distributions. The core 
value of rock CT images lies in their microstructural features, such as 
porosity. Therefore, the evaluation metrics should reflect the similarity 
between generated images and real CT data in these aspects. As for 
diversity, the examination focuses on whether the generated images can 
not only follow the patterns of the original data but also extend beyond, 
producing porous images with porosity values not present in the ori-
ginal dataset. Consequently, this study employs two main categories of 
metrics: one category is Kernel Inception Distance (KID), which uses 
deep learning algorithms to analyse the fidelity between generated 
images and original images. The other category is pore-related features 
associated with the physical properties of rock CT images, including 
porosity distribution, quantified using KL divergence, and statistical 
analysis of pore count and pore area distribution. 

3.4.1. Kernel inception distance (KID) 
KID is a metric that measures the similarity between the distribu-

tions of generated images and real images, particularly suitable for 
evaluating the visual authenticity of rock CT images (Bińkowski et al., 
2021). Unlike the Inception Score (IS), KID uses feature embeddings 
from Inception V3 and kernel methods to measure maximum mean 
discrepancy (MMD), offering greater robustness and reduced bias. For 
rock CT images, KID assesses whether generated images are close to real 
data in aspects such as pore networks and grain boundaries by ex-
tracting high-level features from images. The calculation formula for 
KID is： 

= E k x E k xKID | [ ( , )] [ ( , )] |x P x P MMD
2

r g (4) 

where Pris Distribution of real rock CT images, Pg is the Distribution of 
generated rock CT images, k x( , ) is Kernel function, used to map 
images to feature space, E is expectation operation, and | |MMD

2 is 
square of maximum mean discrepancy, measuring the distance between 
two distributions. 

In this study, 512 × 512 pixel images were input into a pretrained 
Inception V3 model, and KID scores were computed from the extracted 
features. Lower KID values indicate that the generated images are vi-
sually closer to real CT data, suggesting successful replication of geolo-
gical features such as pore connectivity and mineral grain morphology. 

3.4.2. Porosity and kullback–leibler (KL) divergence 
Porosity is a fundamental physical property of porous media, di-

rectly influencing reservoir permeability and subsurface flow beha-
viour. To evaluate the geological fidelity of the generated images, 
porosity and pore area were calculated using a binary segmentation 
method. For various generation conditions (such as different prompts or 
Guidance Scale values), 1000 images were generated under each con-
dition to calculate their porosity distribution match with the real rock 
CT dataset. The real dataset (denoted as Pr) and each set of generated 
images (denoted as Pg, 1000 images per set) underwent binarisation to 
calculate the porosity of each image. For the construction of porosity 
distribution, porosity values were divided into bins, and probability 
distributions of the real dataset and generated image sets in each bin 
were calculated, denoted as P ( )r and P ( )g respectively. The KL 
Divergence between these two distributions is defined as: 

= ( )D P P P( | ) ( ) logr g r
P
PKL

( )
( )

r
g (5) 

Where P ( )r is probability of porosity ϕ in the real rock CT dataset. 
P ( )g is probability of porosity ϕ in the generated image set. is the 
summation over all porosity bins. 

A lower KL divergence value indicates a stronger alignment between 
the porosity distributions of the generated and real datasets, validating 
the model’s ability to generate physically realistic and geologically 
meaningful structures. 

4. Experimental results 

Diffusion models, particularly stable diffusion, have achieved re-
markable success in image generation due to their denoising-based 
generative capabilities and architectural robustness. However, training 
a complete diffusion model from scratch typically requires substantial 
computational resources and time constraints that are often present in 
practical applications. LoRA offers an efficient fine-tuning solution by 
introducing low-rank decomposition matrices into pre-trained models. 
This significantly reduces the number of trainable parameters, thereby 
decreasing both computational and memory costs while maintaining 
model performance. LoRA thus provides a promising path towards ef-
ficient optimisation in resource-constrained environments. 

To comprehensively evaluate the effectiveness of LoRA-enhanced 
stable diffusion in generating rock CT images, the experimental pro-
cedure is divided into two main phases: training and generation. During 
the training phase, the focus is on assessing the impact of LoRA-specific 
parameters such as Network Dim and Network Alpha, with the Kernel 
Inception Distance (KID) used as the primary evaluation metric. 
Meanwhile, the generation phase investigates how generation para-
meters, such as text prompt, guidance scale, and sampling steps, affect 
image quality, diversity, and geological realism, particularly in relation 
to pore-scale features. 

4.1. Training process parameters 

This experiment evaluates the impact of different LoRA configura-
tion parameters, Network Dim and Network Alpha, on generation 
quality, and to conduct a comprehensive comparison with diffusion 
model. Network Dim determines the rank of the LoRA network, which 
reflects the complexity of low-rank features that the LoRA module can 
learn. A higher value allows the model to capture more complex fea-
tures, but it also increases computational load and memory usage. 
Network Alpha is a scaling factor for LoRA weights, influencing both 
the learning rate and training stability. If the Alpha value is too high, it 
may lead to instability or overfitting; if too low, it can degrade gen-
eration quality. Therefore, selecting appropriate values for these two 
parameters is critical for effective LoRA fine-tuning. 

Fig. 2 shows the generated data from the trained models, including 
original data, outputs from a diffusion model trained from scratch 
(Esmaeili, 2024) and images generated under different parameter set-
tings after 2000 training steps. The goal is to analyse model performance 
under limited training iterations. The tested parameter configurations are 
summarised in Table 1. For all four LoRA settings, Network Dim is set to 
twice the value of Network Alpha, except for the baseline model. 

The results show that the LoRA-enhanced stable diffusion model 
consistently outperforms the baseline model across all tested config-
urations. As shown in Fig. 2, the baseline model produces porous 
structures with blurred boundaries, missing small-scale pore details, 
uneven spatial distribution, and excessive local aggregation. The op-
timal configuration, Parameter 3 (Network Dim = 32, Alpha = 16), 
achieves a KID value of 0.0427, representing a 92.6 % reduction com-
pared to the baseline (0.5795). This highlights the model's capacity to 
accurately replicate geological textures under limited training. 

The optimal configuration (r = 32) achieves a KID value of 0.0427, 
which is a 92.6 % reduction compared to the diffusion model (0.5795), 
indicating a substantial improvement in generation quality. As the 
Network Dim value increases from 8 to 32, the KID value consistently 
decreases (0.2236 → 0.1949 → 0.0427), demonstrating that higher 
rank parameters allow the model to better capture data features. In  
Fig. 2, it can be observed that when Network Dim is relatively small, the 
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model learns the noise areas of the original image, leading to under-
fitting. However, when Network Dim increases further to 64, the KID 
value drops to 0.0842, and the image shows a typical "U-shaped curve" 
feature. This indicates that a higher r is not always better in the gen-
eration of rock CT images. In Parameter 4 of Fig. 2, significant loss of 

particle information occurs. A very high Network Dim value may cause 
the model to overfit, limiting its generalisation ability and reducing its 
ability to express fine details in the image. Furthermore, the KID var-
iance for the r = 32 configuration (1.5816e-07) is the lowest, further 
confirming the stability of its generation quality. 

Fig. 2. Original and generated data under different model trainings.  

Table 1 
Model training parameters and results.       

Model Parameters Network Dim Network Alpha KID Value Variance  

Diffusion Model (Esmaeili, 2024) - -  0.5795 1.5994e−07 
Parameter 1 8 4  0.2236 2.3724e−07 
Parameter 2 16 8  0.1949 1.7257e−07 
Parameter 3 32 16  0.0427 1.5816e−07 
Parameter 4 64 32  0.0842 2.1204e−07 
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4.2. Porosity distribution 

Stable diffusion involves not only the impact of training parameters 
on generation quality but also the effect of different parameter settings 
during the generation process, particularly in the case of rock CT 
images. As a type of porous material, rock CT images have porosity as 
one of their key structural parameters, directly affecting critical prop-
erties such as material density, strength, permeability, and adsorption. 

In this experiment, the impact of stable diffusion parameters on the 
porosity of generated images is analysed, focusing on the relationship 
between the porosity values in the prompts and the guidance scale. A 
structured prompt template is used: "A CT scan of sandstone with a 
porosity of {porosity}", testing three porosity values (0.20, 0.25, 0.30). 
For each value, four guidance scale parameters (5, 7.5, 15, 20) are 
assessed to examine their effects on the results. The goal is twofold: (1) 
to assess whether stable diffusion could generate images with porosity 
values matching the prompt; (2) to evaluate how the guidance scale 
influences the distribution and realism of the generated porosity. 

The results show that the generated images’ porosity values are 
mainly influenced by the guidance scale, rather than the prompt. This 
occurs because porosity is not part of the loss function during training 
but rather serves as a guiding prompt. As such, the model learns only 
from the original image data, making the guidance scale's impact more 
prominent. Table 2 shows the porosity statistics of images generated 
under various experimental conditions. "P" represents different porosity 
values in the prompts, while "GS" indicates the guidance scale. The 
average porosity of the generated images remain similar across dif-
ferent prompt settings when the guidance scale is the same, indicating 
that the generation process relies more on the guidance scale than on 
the prompt itself. Fig. 3(e) further illustrates this, where the box maps 
demonstrate consistent patterns across different prompt settings at the 
same guidance scale. 

Fig. 3(a)–(c) illustrate how the porosity distributions shift under 
different prompt values. At low guidance scales (GS = 5), the model 
produces higher porosity values (∼0.295), regardless of the prompt, as 
seen in P0.20-GS5, P0.25-GS5, and P0.30-GS5 samples. These values 
exceed the real sample value of 0.2260 and do not follow prompt va-
lues. The underlying mechanism here involves the model's tendency to 
favor creativity over constraint when guidance is minimal - essentially 
giving the generative process more room to explore diverse possibilities 
rather than strictly adhering to prompts. This is further confirmed by KL 
Divergence measurements, which reached their highest values (13−16) 
at GS= 5, indicating significant differences from the original distribu-
tion. In contrast, at high guidance scales (GS = 15 or 20), the model 
produces lower porosity values (∼0.20) that converge toward the mean 
of the original data, even when prompted for higher porosities. For 
instance, P0.20-GS20, P0.25-GS20, and P0.30-GS20 yielded values of 
0.2023, 0.2009, and 0.2003 respectively. Fig. 3(d) shows that at 

GS= 15, KL divergence reached its lowest point (∼0.25), suggesting 
optimal similarity to the original distribution, while increasing to 
GS= 20 caused KL divergence to rise again (4−5), following a "U- 
shaped" trend. Fig. 3(e) further confirms that at the same GS value, 
output porosity remains nearly constant across different prompts, in-
dicating alignment with dominant training data patterns rather than 
prompts. This analysis demonstrates that GS ≈ 15 represents the op-
timal balance, producing porosity distributions that most closely re-
semble real rock CT data. 

Overall, the results of the analysis demonstrate that the generation 
of rock CT images with specific porosity using stable diffusion is pre-
dominantly controlled by the guidance scale rather than the porosity 
values specified in prompts. The P0.20-GS15 combination produces 
images with porosity distributions closest to the original data, ex-
hibiting minimal KL divergence and thus representing the most realistic 
rock CT images. For greater diversity in generated images, lower gui-
dance scale values are preferable, as they offer more varied results 
while maintaining reasonable distribution characteristics. These find-
ings highlight that when using stable diffusion to generate porous 
material images, adjusting the guidance scale should be prioritised over 
modifying porosity values in prompts. The optimal parameter selection 
depends on whether the priority is authenticity (higher GS) or diversity 
(lower GS). 

4.3. Porous area distribution 

This section investigates the model’s capability to simulate not just 
porosity values but also the distribution and size of pores, which di-
rectly affect the microstructural realism of generated porous media. The 
study evaluates how well the model reproduces pore area distributions 
within the training data range and whether it can extrapolate to unseen 
porosity levels. To assess this, the pore quantity, spatial distribution, 
and microstructural characteristics were compared between original 
and generated CT images. Fig. 4 shows the porosity area distribution for 
original, in-range, and out-of-range generated data, with pore sizes 
categorised into 0–500 pixels (blue), 500–1000 pixels (green), and 
1000 + pixels (red), highlighting the diversity of CT rock images. This 
colour-coded segmentation highlights how pore size composition varies 
with porosity. 

For data with the same porosity, the pore count and distribution 
between original and generated images were compared. While overall 
distribution patterns remained similar, notable diversity in local fea-
tures was observed. In Fig. 4, comparing the Original Image and Gen-
erated within Data Range, although images with the same porosity were 
generated, there were differences in the area distribution of pores of 
varying sizes. Specifically, as shown in Fig. 5(a) and (b), for a porosity 
of 0.1884, small pores (0–500 pixels) decreased from 93.46 % in the 
original image to 87.11 % in the generated image, while medium-sized 

Table 2 
Porosity statistics under different generation conditions.        

Label Prompt Guidance Scale Avg. Porosity Std. Dev. KL Divergence 

Original - - 0.2260 0.0159 0.0000 
P0.20-GS5 0.20 5.0 0.2959 0.0256 16.2073 
P0.20-GS7.5 0.20 7.5 0.2700 0.0225 6.6871 
P0.20-GS15 0.20 15.0 0.2194 0.0177 0.2390 
P0.20-GS20 0.20 20.0 0.2023 0.0138 4.4085 
P0.25-GS5 0.25 5.0 0.2958 0.0266 13.3591 
P0.25-GS7.5 0.25 7.5 0.2701 0.0230 5.7343 
P0.25-GS15 0.25 15.0 0.2194 0.0179 0.2749 
P0.25-GS20 0.25 20.0 0.2009 0.0149 4.9716 
P0.30-GS5 0.30 5.0 0.2958 0.0274 14.4281 
P0.30-GS7.5 0.30 7.5 0.2695 0.0228 5.3943 
P0.30-GS15 0.30 15.0 0.2201 0.0163 0.2499 
P0.30-GS20 0.30 20.0 0.2003 0.0158 5.4240    
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pores (500–1000 pixels) increased from 3.39 % to 8.36 %. Similarly, for 
a porosity of 0.2312, large pores (1000 + pixels) significantly increased 
from 50.65 % to 70.33 % in the generated images. These differences 
suggest that while the global porosity metric remains stable, the local 
pore morphology becomes more varied in generated images. This di-
versity likely results from the stochastic design of the model and the 
influence of data augmentation during training, allowing the genera-
tion of structurally diverse yet physically plausible samples. 

To evaluate the model’s extrapolation capabilities, images with 
porosity values outside the training data range—such as 0.1636, 
0.2972, and 0.3584—are selected from the existing generated dataset.  
Fig. 4 shows that Lower porosity (0.1636) generated samples with 
fewer small pores and relatively increased medium/large pores com-
pared to in-range samples like 0.1884. Higher porosities (0.2972, 
0.3584) lead to a significant increase in large pore areas, especially at 
0.3584, where the red regions dominate. As shown in Fig. 5(c) and (d), 

the extrapolated porosity data (marked with red asterisks) has a si-
milar pore count distribution to the original data. In terms of area, the 
0.1636 sample has fewer small pore regions compared to 0.1884, 
while the large pore area is relatively higher. For porosities 0.2972 
and 0.3584, the large pore areas increase significantly, especially at 
0.3584, where the proportion is notably higher than in the 0.2639 
sample. The pore feature variations in the extrapolated images closely 
align with the original image data. This consistency confirms the 
physical validity and practical usability of the extrapolated results. 
These results strongly indicate that the generation model can not only 
accurately replicate the pore distribution characteristics within the 
original data range but also reasonably predict pore distribution be-
yond this range. This confirms that the model has learned the un-
derlying relationship between porosity and pore geometry, and is 
capable of generalising beyond the training set while maintaining 
geological plausibility. 

Fig. 3. Comparative study of porosity distribution with varying promt and guided scale.  
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4.4. Generation iterations 

The number of sampling steps in diffusion models is a critical hy-
perparameter that directly affects both the quality of generated images 
and the computational cost associated with the generation process. This 
section investigates the trade-off between image fidelity and inference 
time by analysing how different step counts influence the KID and the 
time required to generate a batch of 50 images. Fig. 6 presents the 
results of this analysis, highlighting the relationship between sampling 
steps, image quality, and computational efficiency. 

As the number of sampling steps increases, the KID value decreases 
substantially, indicating improved alignment between the distribution 
of generated images and that of the real data. For instance, increasing 
the number of steps from 10 to 100 results in a significant drop in KID, 
from 0.0972 to 0.0291. This improvement demonstrates that additional 
diffusion steps enable the model to better refine image features and 
reduce generative noise. However, the benefits of increasing the step 

count diminish beyond a certain threshold. When the number of steps is 
increased to 500, the KID value changes only marginally to 0.0305. This 
suggests that while early increments in step count notably enhance 
image realism, further increases yield only negligible improvements. 

In contrast, the computational cost escalates sharply with higher 
step counts. The time required to generate 50 images rises from 92.37 s 
at 10 steps to 3395.44 s at 500 steps. This exponential increase in in-
ference time imposes a significant burden on computational resources. 
Notably, at 50 steps, the generation process requires 350.14 s and 
achieves a KID of 0.0427. This result reflects a desirable balance be-
tween image quality and computational efficiency. While higher step 
counts continue to improve image fidelity slightly, the marginal gains 
are outweighed by the substantial increase in time cost. 

In conclusion, the findings suggest that 50 sampling steps represent 
an effective compromise between realism and efficiency. This config-
uration is capable of producing high-quality porous media images with 
a relatively low computational burden. Consequently, for practical 

Fig. 4. Comparative porosity area distribution: original, in-range generated, and out-of-range generated data.  
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applications in which both generation speed and image fidelity are 
important, selecting a moderate number of diffusion steps, such as 50, is 
recommended. This choice ensures that the model remains efficient 
without significantly sacrificing the structural realism of the generated 
outputs. 

5. Discussion 

5.1. Impact of data distribution incompleteness 

The performance of neural network models is highly dependent on 
the completeness and representativeness of their training data dis-
tributions. This dependency is particularly critical in fields such as 
geological image analysis, medical diagnostics, and industrial inspec-
tion, where data diversity directly influences model reliability. 
However, in real-world scenarios, achieving complete data coverage is 
often infeasible due to constraints such as data acquisition costs, 
equipment limitations, safety concerns, or the natural rarity of certain 
phenomena. As a result, models are frequently exposed to out-of-dis-
tribution (OOD) data during deployment, leading to a significant 

reduction in prediction reliability. This challenge has prompted a re-
assessment of deep learning's generalisation capacity and highlighted 
data distribution incompleteness as a key bottleneck in high-reliability 
applications. 

This study explores the potential of generative AI, specifically LoRA 
fine-tuned Stable Diffusion, to mitigate the effects of data distribution 
incompleteness. The approach aims to improve neural networks’ ca-
pacity for OOD prediction by supplementing incomplete datasets with 
statistically consistent synthetic samples. As illustrated in Fig. 7(a), an 
80 %−20 % training-testing split is adopted to emulate real-world data 
scarcity conditions. During training, both the baseline model trained on 
incomplete data and the enhanced model using generative augmenta-
tion exhibite similar convergence behaviours (Figs. 7(b) and 7(c)). 
However, their performance on the test set diverges significantly. 

The model trained solely on incomplete data perform poorly on 
OOD samples, returning high error metrics: MSE = 0.0021, RMSE 
= 0.0455, MAE = 0.0359, and a negative R² = −1.6824. As shown in  
Fig. 7(d), the model exhibites large prediction errors, particularly in 
regions outside the training distribution. This reflects the fundamental 
limitation of conventional neural networks in extrapolation tasks, they 
tend to learn statistical associations within observed data rather than 
capturing the underlying generative mechanisms. 

In contrast, the model enhanced with LoRA fine-tuned Stable 
Diffusion data achieves significantly better results, with MSE ap-
proaching zero, RMSE = 0.0051, MAE = 0.0042, and an R² = 0.9660. 
The visualisation in Fig. 7(e) clearly illustrates this improvement, with 
reduced error evident across the results. These results confirm that data 
generated by generative models can effectively bridge gaps in the ori-
ginal dataset, enabling neural networks to generalise beyond their in-
itial training distribution. Unlike traditional data augmentation 
methods, such as image flipping, cropping, or rotation, generative 
models learn the underlying distributional patterns, offering a statisti-
cally grounded method to improve robustness in neural networks. This 
approach is particularly valuable in safety-critical systems, resource- 
constrained environments, and domains requiring high predictive re-
liability under data scarcity. 

Fig. 5. Comparative porosity void metrics among original, within-range, and out-of-range data.  

Fig. 6. Effects of sampling steps on inference time and KID score.  
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In summary, integrating generative AI into the data pipeline sig-
nificantly enhances the generalisation capability of neural networks. By 
learning and replicating the broader data distribution, LoRA-enhanced 
Stable Diffusion offers a practical and scalable solution to the long-
standing challenge of incomplete training data, supporting the devel-
opment of more robust and deployable machine learning systems. 

5.2. Future directions and broader implications 

To further illustrate the methodological framework and its broader 
implications, Fig. 8 presents a conceptual overview of the LoRA fine- 
tuning stable diffusion pipeline, along with its key advantages, limita-
tions, and future research directions. The pipeline is structured into four 
primary stages. The first stage, data preparation, involves image col-
lection, preprocessing, and prompt engineering to ensure the input data 
is suitable for model training and generation. The second stage, LoRA 
fine-tuning, includes low-rank adaptation and hyperparameter optimi-
sation, enabling efficient fine-tuning with only a small fraction (1–4 %) 
of the total model parameters. This significantly reduces computational 
costs while preserving the model’s expressive capacity. The third stage, 
image generation, leverages the stable diffusion model alongside gui-
dance scale tuning and sampling step optimisation to enhance control 
over image fidelity, realism, and structural accuracy. Finally, the fourth 

stage, evaluation, assesses the generated outputs using fidelity and di-
versity metrics to determine their quality and utility for downstream 
applications. 

This approach offers several key advantages. It enables the gen-
eration of images with high structural diversity, supports rapid gen-
eration due to lightweight fine-tuning, and maintains high fidelity in 
reproducing geological textures and features. However, the framework 
also presents notable challenges. The stochastic nature of diffusion 
models introduces strong randomness, making it difficult to con-
sistently control specific features such as porosity or grain orientation. 
Additionally, the model is parameter sensitive, requiring careful cali-
bration of tuning parameters (e.g., Network Dim, guidance scale) for 
different datasets or material types, which may complicate deployment 
in diverse operational environments. 

Despite these limitations, the framework shows immense potential 
across a broad range of scientific imaging applications. As illustrated in 
the lower section of Fig. 8, eight promising research directions highlight 
the versatility of this approach. Data augmentation allows for the ex-
pansion of limited datasets by synthesising realistic and diverse porous 
media images. Multi-scale image simulation supports the generation of 
consistent images across spatial scales, facilitating pore-scale analysis 
from nanometres to centimetres. Conditional image generation enables 
the synthesis of images based on physical parameters such as porosity, 

Fig. 7. Comparative analysis of incomplete data model and generative AI enhanced model.  
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aiding in property-specific dataset creation. Domain adaptation allows 
the model to be transferred across different geological or material do-
mains with minimal retraining. Moreover, the framework can support 
AI training by generating diverse datasets for model development, and 
improve image restoration by completing or repairing noisy or in-
complete scientific images. It can also produce temporal image se-
quences, enabling the simulation of time-evolving phenomena such as 
crack propagation, and perform image translation between different 
imaging modalities (e.g., CT to SEM) or resolutions, enhancing imaging 
workflows. 

In summary, the LoRA-enhanced stable diffusion pipeline provides a 
scalable, efficient, and highly adaptable solution for scientific image 
generation. With continued improvements in algorithmic design, in-
corporation of physics-based constraints, and integration across ima-
ging modalities, this approach is poised to play a transformative role in 
digital rock physics, materials science, and related fields. 

6. Conclusion 

This study has demonstrated that integrating LoRA with a stable 
diffusion framework offers an efficient and high-fidelity solution for the 
generation of digital rock CT images. By leveraging a lightweight fine- 
tuning strategy, the proposed approach significantly reduces compu-
tational and memory demands while maintaining high generative 
quality. Through systematic experimentation, several key findings have 
emerged that highlight the effectiveness and versatility of this method. 

First, LoRA fine-tuning provides a resource-efficient optimisation 
strategy for adapting diffusion models to domain-specific tasks. The 
optimal configuration, using a network dimension of 32 and a scaling 
factor of 16, achieved a 92.6 % improvement in KID compared to a full 
diffusion model trained from scratch, while modifying only a small 
fraction of the model’s parameters. Second, the guidance scale was 
found to play a critical role in determining the porosity characteristics 

of generated images. A guidance scale of approximately 15 yielded 
porosity distributions most closely aligned with the original CT data. 
This highlights the importance of prompt conditioning in controlling 
structural realism during generation. Third, the number of sampling 
steps introduces a trade-off between image quality and computational 
efficiency. While increased steps improve fidelity, the gains diminish 
beyond 50 steps, making it a practical balance point for generation 
tasks. Fourth, the model exhibits a strong capacity to learn and gen-
eralise the underlying relationship between porosity and pore-scale 
morphology. Notably, when applied to out-of-distribution prediction 
tasks, the use of LoRA-generated images markedly improved neural 
network performance, from an R² value of –1.6824 to 0.9660, demon-
strating the model’s utility in addressing data distribution incomplete-
ness and enhancing robustness in extrapolation scenarios. 

Collectively, these findings confirm that LoRA-enhanced stable diffu-
sion offers a powerful and flexible generative framework for digital rock 
analysis. It supports a wide range of downstream applications, including 
data augmentation, multi-scale simulation, conditional image generation, 
and domain adaptation, with significant implications for geo-energy re-
search and beyond. While challenges such as parameter sensitivity and 
output randomness persist, ongoing advances in diffusion modelling, 
physical constraint integration, and cross-modal learning are expected to 
further improve controllability and generalisation. In this context, the 
proposed framework not only bridges critical data gaps in digital rock 
physics but also lays the groundwork for innovative applications across 
geosciences, materials engineering, and scientific imaging. As such, it 
presents a promising direction for future research and practical deploy-
ment in both academic and industrial settings. 
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