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ABSTRACT
Accurate demand forecasting is vital for ensuring reliable access to contraceptive products, support-
ing key processes like procurement, inventory, and distribution. However, forecasting contraceptive
demand in developing countries presents challenges, including incomplete data, poor data qual-
ity, and the need to account for multiple geographical and product factors. Current methods often
rely on simple forecasting techniques, which fail to capture demand uncertainties arising from these
factors, warranting expert involvement. Our study aims to improve contraceptive demand forecast-
ing by combining probabilistic forecastingmethods with expert knowledge. We developed a hybrid
model that combines point forecasts from domain-specific model with probabilistic distributions
from statistical and machine learning approaches, enabling human input to fine-tune and enhance
the system-generated forecasts. This approach helps address the uncertainties in demand and is
particularly useful in resource-limited settings. We evaluate different forecasting methods, includ-
ing time series, Bayesian,machine learning, and foundational time seriesmethods alongsideour new
hybrid approach. By comparing thesemethods,weprovide insights into their strengths,weaknesses,
and computational requirements. Our research fills a gap in forecasting contraceptive demand and
offers a practical framework that combines algorithmic and human expertise. Our proposed model
can also be generalised to other humanitarian contexts with similar data patterns.
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1. Introduction

A fundamental aspect of ensuring reliable access to
contraceptive products lies in accurate demand fore-
casting, as demand forecasting forms the foundation
of efficient and reliable procurement, sourcing, storage,
allocation, and distribution processes for contraceptive
products (Altay and Narayanan 2022). However, the
task of producing accurate and reliable demand fore-
casts for contraceptives in developing countries presents
numerous challenges (De-Arteaga et al. 2018). These
challenges include the unavailability of comprehensive
data (LaCroix et al. 2023), poor data quality (De Boeck
et al. 2023), and the necessity to forecast across multiple
geographical and product hierarchies (Sedgh, Ashford,
and Hussain 2016).

Despite the complexity inherent in demand forecast-
ing, many forecasts in practice are often generated using
simple methods such as the moving average of histori-
cal consumption data or demographic forecasting tech-
niques (USAID 2000). However, these methods rarely

CONTACT Harsha Chamara Hewage HalgamuweHewageHR@cardiff.ac.uk Data Lab for Social Good Group, Cardiff Business School, Cardiff University,
Cardiff CF10 3EU, United Kingdom

consider the complexities introduced by users switch-
ing from one contraceptive method to another, driven
by factors such as the introduction of new products,
health concerns, or issues with accessibility and availabil-
ity (Akhlaghi, Serumaga, and Smith 2013). This inade-
quacy contributes to inefficiencies in the family planning
supply chain (FPSC) affecting the availability of contra-
ceptive products (Mukasa et al. 2017).

Evidence from the PMA2020 survey1 further under-
scores this issue, revealing that many health sites and
contraceptive outlets in developing countries often face
stockouts of contraceptive methods (Ahmed et al. 2019).
Such stockouts limit access to contraceptive products for
users when needed, either by restricting the availability of
preferred methods or by turning away users due to prod-
uct unavailability (New et al. 2017). Consequently, these
challenges contribute to an increase in unmet demand2

for contraceptive products (Baker et al. 2022).
The unmet demand for contraceptives is a signifi-

cant concern, as it leads to an estimated 121 million
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unintended pregnancies each year, roughly 331,000 per
day (UnitedNations 2021). This situation incurs substan-
tial costs, both for women and children and for soci-
ety at large (Sedgh, Ashford, and Hussain 2016). Over
60% of unintended pregnancies end in abortion, whether
safe or unsafe, legal or illegal, posing significant risks to
women’s lives (Bearak et al. 2020). Unfortunately, over
45% of these abortions are unsafe and result in mater-
nal deaths (Say et al. 2014). This situation is particularly
worse in developing countries, where approximately 7
million women are hospitalised each year due to unsafe
abortions (Singh and Maddow-Zimet 2016). Moreover,
this also creates a public health crisis, costing an esti-
mated 2.8 billion USD per year for abortion and post-
abortion care in low- andmiddle-income countries (Sully
et al. 2020). Recognizing its importance, this issue has
been prioritised as essential for achieving the 2023 Sus-
tainable Development Goals (SDGs).

Despite efforts by governments, foundations, and
donors to increase the uptake of contraceptive prod-
ucts through policy and program interventions (Mukasa
et al. 2017), developing countries continue to experience
high unmet demand, particularly due to persistent stock-
outs at local health sites and contraceptive outlets (Sedgh
and Hussain 2014). A key reason for this ongoing issue is
that these efforts and assessments are largely focussed on
the national or global level, which can mask the ground
reality due to local disparities (New et al. 2017).

Recognizing the need for an improved forecasting pro-
cess at the local health site level, the United States Agency
for International Development (USAID) launched the
‘Intelligent Forecasting Challenge: Model Future Contra-
ceptive Use’ (USAID 2020). This competition aimed to
source new solutions, test novel ideas, and scale effec-
tive approaches for contraceptive demand forecasting
using not only time series methods but also data driven
methods like machine learning (ML). However, the com-
petition missed a critical element of the contraceptive
demand forecasting process: quantifying and commu-
nicating the uncertainty, as it focussed exclusively on
point forecasts. On the other hand, the FPSC in develop-
ing countries is often associated with numerous uncer-
tainties, including complex patterns of demand, variable
lead times, and dependence on donor support (Mircetic
et al. 2022). These factors further exacerbate demand
uncertainty, necessitating the use of probabilistic estima-
tions to quantify the uncertainty of future demand.

Discussions with USAID officials highlighted that
decision-makers are particularly interested in the upper
bounds of prediction intervals, as they are keen to mit-
igate the risk of stockouts, a critical issue in contra-
ceptive supply chains. As LaCroix et al. (2023) have
noted, despite the acknowledged need for probabilistic

approaches, point predictions remain the default due to
the lack of standardisedmethodologies for incorporating
uncertainty into contraceptive demand forecasts. Proba-
bilistic estimations, by quantifying the uncertainty inher-
ent in these predictions, thus represent a valuable tool
for managing stock levels and reducing the risk of supply
shortages.

To our knowledge, no previous work has focussed on
probabilistic forecasting in contraceptive demand esti-
mation within the FPSC at the local healthcare site level.
Thus, this paper first addresses this gap by investigating a
probabilistic forecasting approach for estimating demand
for contraceptive products using data from January 2016
to December 2019, extracted from the Logistics Man-
agement Information System (LMIS) of Cote d’Ivoire.
This is the same dataset that was used in the competi-
tion.Moreover, since the publication of theContraceptive
Forecasting Handbook, which focuses on simple forecast-
ing methods (see USAID 2000 for more information),
there has been no literature evaluating the applicability
and usability of different forecasting methods in contra-
ceptive demand forecasting. Therefore, in this study, we
employ a range of forecasting methods, including time
series, Bayesian, ML and foundational time series meth-
ods,3 to produce point forecasts along with probabilistic
forecasts for all products across all healthcare sites.

Additionally, demandplannerswidely apply judgmen-
tal adjustments to incorporate external factors based
on their expertise in the FPSC setting (Altay and
Narayanan 2022). Our discussions with USAID pro-
fessionals revealed similar insights; they explained that
site-level demandplanners often adjust system-generated
forecasts or use judgmental forecasts to eliminate data
inaccuracies. These inaccuracies may arise because the
data used to prepare these forecasts may not reflect true
demand due to stockouts or incomplete data collection,
or because planners have additional information, such as
product discontinuation (De Boeck et al. 2023). Hence,
the human factor is valuable in this forecasting setup
(LaCroix et al. 2023).

Given that system-generated forecasts and human
forecasts offer distinct benefits, it is vital to design a
hybrid intelligence system that combines them. In this
context, where site-level demand planners produce point
forecasts, we are particularly interested in how to com-
bine point forecasts with probabilistic forecasts to pro-
duce combined probabilistic forecasts. However, the lit-
erature often treats point forecast combination methods
and probabilistic forecast combination methods sepa-
rately (Wang et al. 2023). To address this gap, we propose
a Constrained Quantile Regression Averaging (CQRA)
method4 to combine point forecasts made by experts
with probabilistic forecasts generated by a system-based
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forecasting method. We compare the forecast perfor-
mance using the Mean Absolute Scaled Error (MASE),
a scale-independent metric that provides robustness and
stability for point forecasts, and Continuous Ranked
Probability Scores (CRPS), a widely used metric in prob-
abilistic forecasting that assesses the sharpness and cali-
bration of the forecast distribution for probabilistic fore-
casts in a cross-validation setup. Finally, we compare our
method results against the submissions from the compe-
tition.

Thus, our contributions are as follows:

(1) We produce point forecasts along with forecast dis-
tributions for contraceptive products at the health-
care site level, quantifying uncertainties in future
contraceptive demand.

(2) We develop a novel method to combine point fore-
casts with probabilistic forecasts, allowing human
experts to incorporate their expertise into the fore-
cast and thereby providing a hybrid intelligence sys-
tem.

(3) We provide a detailed comparison of the perfor-
mance of time series, Bayesian, ML and founda-
tional time seriesmethods, and our proposed hybrid
method. Additionally, we provide a comparison of
the computational requirements for each method,
offering a holistic view of the differences between
these forecasting methods.

(4) We have made the code and data for our proposed
method, along with all other methods used in this
study, publicly accessible to ensure the reproducibil-
ity. Furthermore, our study adheres to the replica-
tion principle (Boylan et al. 2015), allowing for the
method’s generalisation across various sectors with
similar data patterns.

The remainder of the paper is structured as follows:
Section 2 provides a brief overview of the literature
and discusses its limitations to position our work. In
Section 3, we discuss the data and the experimental setup.
Section 4 presents the results of our analysis. In Section 5,
we summarise our findings, discuss the limitations, and
present ideas for future research directions.

2. Research background

Over the past few decades, reducing the unmet need for
contraceptives has been a central focus in the field of
FPSC (Mukasa et al. 2017). This issue has been recog-
nised as a critical agenda item in achieving the 2030
Sustainable Development Goals, particularly in expand-
ing access to contraception to ensure universal access to

family planning services (Kantorová et al. 2021). Conse-
quently, accurate and reliable demand forecasting plays
a crucial role in the FPSC, as it supports informed
decision making processes to ensure access to safe and
effective contraceptives, thereby empowering individuals
and communities to make informed reproductive health
choices (Ahmed et al. 2019).

The majority of literature on forecasting in the FPSC
has centred on estimating family planning indicators
at national or global levels to guide strategic decisions.
For instance, Ahmed et al. (2019) employed linear and
quadratic logistic regression methods to estimate the
modern contraceptive prevalence rate (mCPR)5 in five
sub-Saharan African countries, using data from the
PMA2020 survey. Similarly, New et al. (2017) examined
trends in three family planning indicators; (1) mCPR,
(2) unmet demand for modern contraceptives, and (3)
demand satisfied by modern contraceptives. Their study
covered the period from 1990 to 2030 for 29 states and
union territories in India. To conduct their analysis, they
employed a Bayesian hierarchical method, integrating
statistical time-series techniques with demographic fac-
tors drawn from the Demographic Health Survey (DHS)
(USAID 2024b), Annual Health Survey, and District-
Level Household Survey. Haakenstad et al. (2022) used
a spatio-temporal Gaussian process regression method
to estimate mCPR, method mix, and demand satisfied
for the global contraceptive prevalence rate between 1970
and 2019.

These national and global-level studies provide valu-
able strategic insights into contraceptive coverage and
trends. However, they were not designed to address
operational realities at local levels, such as variations
in demand and supply chain issues at individual ser-
vice delivery points. Their focus remains on broader,
aggregate-level decisions that inform national or global
policies and strategies (New et al. 2017). Thus, while these
studies may not capture the granular, site-specific chal-
lenges at the operational level, their contributions are still
highly valuable for higher-level planning and resource
allocation.

On the other hand, a fewer have addressed national-
level forecasts for specific contraceptive products. For
instance, Akhlaghi, Serumaga, and Smith (2013) esti-
matednational demand for condomsusing demographic-
based forecasting and a consumption-based moving
averagemethod, incorporating expert judgment to refine
predictions. Karanja et al. (2019) applied consumption-
based forecasting using Auto Regressive Integrated
Moving Average (ARIMA) and exponential smooth-
ing methods to estimate demand for contraceptive
pills, injectables, implants, and intrauterine contraceptive
devices (IUDs), using data from Kenya’s District Health
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Information System (DHIS). Moreover, Khan, Grady,
and Tifft (2015) used a demographic-based forecasting
approach integrating expert assumptions with DHS data
to estimate demand for Sayana Press, a new injectable
contraceptive, across 12 countries. These studies also
reflect a focus on national or strategic decision-making.

However, at the operational level, where service deliv-
ery occurs, forecasting must account for uncertainties
and variations specific to each location. In contrast
to aggregate studies that often incorporate probabilis-
tic forecasting, which includes prediction intervals to
manage uncertainty (Ahmed et al. 2019; Haakenstad
et al. 2022; New et al. 2017), operational studies like
Akhlaghi, Serumaga, and Smith (2013) and Karanja
et al. (2019) primarily used point forecasts. These point
forecasts provide a single estimate without explicitly
addressing the uncertainty surrounding the forecasted
values. In dynamic settings such as healthcare service
delivery, this can limit their applicability. Operational-
level contexts often experience demand variations due
to factors like stockouts, local preferences, and seasonal
changes (Mukasa et al. 2017).

Probabilistic forecasts, which include a range of possi-
ble outcomes (such as prediction intervals), are crucial in
such contexts because they acknowledge the uncertainty
and help supply chain managers make more informed
decisions (Rostami-Tabar, Browell, and Svetunkov 2024).
For example, Khan, Grady, and Tifft (2015) utilised sce-
nario analysis to acknowledge forecast uncertainty for
the injectable contraceptive Sayana Press in 12 coun-
tries. However, in the works of Akhlaghi, Serumaga, and
Smith (2013) and Karanja et al. (2019), only point pre-
dictions were generated, with no explicit consideration
of uncertainty in the forecasts. This omission poten-
tially limits the applicability of their findings in dynamic
operational contexts, as point forecasts, which provide a
single value estimate, are simpler but less adaptable to
fluctuating demand conditions.

In practice, however, many still rely on simple meth-
ods to produce point forecasts, despite the limita-
tions these approaches present in capturing the demand
variations for each contraceptive product. (Altay and
Narayanan 2022). Thesemethods often fail to address the
complexity of demand and attempt to answer multiple
questions using point forecasts (LaCroix et al. 2023). The
most commonly employed methods include: (1) extrap-
olating historical consumption using basic time series
methods, linear trends, averages, or simple regression
methods; (2) estimating consumption based on service
statistics, such as program plans; and (3) utilising popu-
lation demographics to project demand (USAID 2000).
In practice, however, many supply chain managers still
rely on point forecasts due to their simplicity, despite the

limitations of these approaches in accounting for demand
fluctuations at the local level (Altay andNarayanan 2022).
Common methods include basic time series meth-
ods, linear trends, and demographic-based projections
(USAID 2000). While these methods are easy to imple-
ment, they often overlook critical uncertainties and the
complexities of real-world contraceptive demand, such
as external shocks (e.g. global crises like COVID-19),
demand shifts due to market cannibalisation, or supply
chain disruptions (LaCroix et al. 2023).

As a result, these simplistic forecasting approaches
can lead to inefficiencies in ordering and distribution,
causing stockouts or overstocking at healthcare sites, ulti-
mately impairing access to essential contraceptive ser-
vices (Mukasa et al. 2017). This underscores the need
for more advanced forecasting methods that incorporate
both uncertainty and local variations in demand to opti-
mise supply chain performance and support better family
planning outcomes (Baker et al. 2022).

2.1. USAID intelligent forecasting competition

The USAID Intelligent Forecasting Competition
attempted to address the need for a more reliable contra-
ceptive demand forecasting method by inviting partici-
pants to develop intelligent forecasting methods. Specif-
ically, participants were tasked with forecasting contra-
ceptive consumption at the service delivery level of Côte
d’Ivoire’s public sector health system over a three-month
forecast horizon, using data provided from the Cote
d’Ivoire public health system to forecast the consump-
tion of contraceptives over three months. This compe-
tition attracted nearly 80 submissions from 40 partici-
pants, reflecting a diverse range of forecasting approaches
(USAID 2020).

The winning entry in the USAID Intelligent Forecast-
ing Competition, developed by Inventec Corporation,
used distinct models for each forecasting horizon. They
employed both LightGBM and Long Short-Term Mem-
ory (LSTM) methods, incorporating categorical features,
historical data, and future population projections. The
final forecast was derived from an ensemble of these
methods, with weights assigned differently for each fore-
casting horizon.

The second-place model employed an ensemble
approach, averaging the predictions from six separate
LightGBM models, each designed for a specific forecast-
ing horizon. This strategy reflects a robust method for
improving forecast accuracy through aggregation. The
third-best model also used LightGBM but incorporated
hyperparameter tuning and additional trend indicators,
such as linear and polynomial functions, alongside vari-
ous time-series features.
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Table 1. Summary of the top 10 models in the USAID intelligent forecasting competition.

Reference Method Metric Forecasting strategy Probabilistic
Global

forecasting
Cross

validation

Current study sNAIVE, Moving average, Exponential Smoothing State
Space, ARIMA, Syntetos-Boylan approximation, Bayesian
structural time series, Multiple Linear Regression, Light-
GBM, xgBoost, Random Forest, TimeGPT, Chronos, Lag
Llama, Demographic, Forecast combination models and
Proposed hybrid method

MASE, CRPS Recursive multi-step forecasting YES YES YES

Submission 1 An ensemble model of LightGBM and LSTM using
weighted average

MASE Direct multi-step forecasting NO YES NO

Submission 2 LSTMmodel MASE Direct multi-step forecasting NO YES NO
Submission 3 A simple ensemble of six LightGBMmodels MASE Direct multi-step forecasting NO YES NO
Submission 4 LightGBMmodel MASE Direct multi-step forecasting NO YES NO
Submission 5 LightGBMmodel MASE Recursive multi-step forecasting NO YES NO
Submission 6 A simple ensemble of six LightGBMmodels MASE Direct multi-step forecasting NO YES NO
Submission 7 A simple ensemble of LightGBM and LSTM MASE Recursive multi-step forecasting NO YES NO
Submission 8 A simple ensemble of three LightGBMmodels MASE Direct multi-step forecasting NO YES NO
Submission 9 Hierarchical timeseries model using ARIMA MASE Recursive multi-step forecasting NO NO NO
Submission 10 A simple ensemble of nine LSTMmodels andNaïve Bayes

model
MASE Recursive multi-step forecasting NO YES NO

Another notable submission employed hierarchical
forecasting with a bottom-up approach, using ARIMA
(AutoRegressive Integrated Moving Average) as the base
forecasting method. This method demonstrates the util-
ity of hierarchical techniques in complex forecasting sce-
narios. Additionally, a model that combined neural net-
works with a naive forecasting approach was also among
the top contenders. For longer time series, this model
used an ensemble of predictions from different neural
network architectures, including Convolutional Neural
Networks (CNN), Gated Recurrent Units (GRU), and
LSTMs, with the final prediction being the median of
these forecasts. For shorter time series, it used a naive
Bayes method. Table 1 presents a summary of the top 10
submissions in the competition.6

Although the competition significantly advanced fore-
casting methodologies, it primarily concentrated on
point forecasts, with limited attention to the quantifi-
cation of forecast uncertainty. Since the competition’s
objectives did not explicitly include probabilistic fore-
casting, criticising these methods for overlooking uncer-
tainty may be unwarranted. Nevertheless, incorporat-
ing uncertainty measures is crucial for improving fore-
cast reliability, as decision-makers in the field require
dynamic estimates that reflect the uncertainties asso-
ciated with contraceptive demand over time (LaCroix
et al. 2023). The absence of standard approaches for
incorporating uncertainty into forecasts highlights a sig-
nificant gap.While the competition represented a signifi-
cant step towards the development of advanced forecast-
ing methodologies, it did not fully address the need for
probabilistic estimations that can better inform decision
making by accounting for forecast variability.

2.2. Human judgment in contraceptive demand
forecasting

In reality, uncertainties in contraceptive demand arise
from complex patterns of product availability, vari-
able lead times, and the overreliance of donor sup-
port (Mircetic et al. 2022). These uncertainties are fur-
ther complicated by inadequacies in data collection,
storage, and sharing practices. Despite the implemen-
tation of Logistics Management Information Systems
(LMIS), field operatives frequently depend on paper-
based forms and Excel spreadsheets for data collection
and operationalmanagement (DeVries andVanWassen-
hove 2020). This reliance on outdated methods often
results in noisy, inaccurate, and incomplete data, thereby
complicating the forecasting efforts (Besiou and Van
Wassenhove 2020). Moreover, stockout driven consump-
tion data may not reflect actual demand, further distort-
ing the forecasting process (De Boeck et al. 2023).

Forecasting algorithms, while adept at processing
high-dimensional data, may struggle to detect these
sudden fluctuations and discontinuities in contracep-
tive demand (Hong, Lamberson, and Page 2021). Thus,
this leaves the expert to use their contextual knowledge
to understand the context of the data and incorporate
it with the forecasting process (Hong, Lamberson, and
Page 2021). Previous literature also suggests that experts
can improve the forecast performance when the exter-
nal information has not been added to the algorithm-
based forecasting method using their inside knowledge
and expertise7 (Davydenko and Fildes 2013; Fildes and
Goodwin 2007).

In the context of FPSC in developing countries, cur-
rent algorithm-based forecasting methods possess the
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capability to manage extensive datasets, including thou-
sands of time series across diverse geographies simul-
taneously (Hong, Lamberson, and Page 2021). How-
ever, these algorithms may not fully account for external
factors and contextual nuances that experts are adept
at identifying (De Vries and Van Wassenhove 2020).
This suggests that integrating human expertise with
algorithm-based forecasts could yield more reliable and
accurate predictions. Empirical evidence also supports
the notion that combining human judgment with algo-
rithmic forecasts enhances forecast performance (Fildes
et al. 2009; Petropoulos, Kourentzes et al. 2018). Further-
more, literature shows that such forecast combinations
improve forecasting accuracy compared to using either
method in isolation (Wang et al. 2023). This leads to the
critical question of how best to integrate human expertise
with algorithm-based forecasting.

Various approaches exist for integrating human judg-
ment with algorithmic forecasts, forming hybrid intelli-
gence systems that leverage the strengths of both. Brau,
Aloysius, and Siemsen (2023) categorise these methods
into five key types:

• Judgmental Adjustment – Experts modify algorithmic
forecasts based on contextual insights.

• Quantitative Correction – Systematic adjustments are
applied to human forecasts using statistical tech-
niques.

• Forecast Combination – Separate judgmental and
algorithm-based forecasts are merged into a single
forecast.

• Judgment as a Model Input – Expert knowledge is
incorporated as a predictive variable within the fore-
casting model.

• Integrative Judgment Learning – Human inputs itera-
tively refine model predictions through a structured
learning process.

Judgmental adjustments have been widely studied in
supply chain contexts, particularly in promotional set-
tings. Trapero, Pedregal et al. (2013) found that struc-
tured human interventions during promotions improved
forecasting accuracy. This aligns with findings from
Fildes and Petropoulos (2015), who argue that human
adjustments enhance reliability when bias is minimised.

Quantitative correction methods offer a structured
way to adjust forecasts while maintaining statistical
integrity. Fildes et al. (2009) highlight the importance
of systematic corrections to mitigate bias and improve
forecast accuracy.

Forecast combination has been explored as a way to
merge expert forecasts with algorithmic outputs. Good-
win (2000) highlights its effectiveness in capturing both

statistical trends and domain knowledge,making it a use-
ful technique when expert input is available alongside
data-driven predictions.

Another structured approach to integrating expert
knowledge into forecasting models is treating human
judgment as a direct input to model-building. Instead of
adjusting forecasts post hoc, this method incorporates
expert-driven insights as predictive variables, allowing
the model to factor in domain knowledge systematically.
Arvan et al. (2019) suggest that using expert judgment
as a model input can improve forecasting accuracy, par-
ticularly in cases where statistical models alone struggle
to capture contextual nuances. By embedding domain
expertise within the forecasting process, this approach
ensures that human insights are systematically integrated,
rather than relying on manual interventions.

On the other hand, integrative Judgment Learning
(Baecke, De Baets, and Vanderheyden 2017; Brau, Aloy-
sius, and Siemsen 2023) treat human adjustments as pre-
dictive variables, allowingmodels to systematically weigh
their impact. Similarly, Goodwin and Fildes (1999) sug-
gest that hybrid forecasting models should be designed
to correct systematic biases in human judgment while
maintaining adaptability.

Some studies explore hybrid forecasting methods
that do not fit neatly into a single category. These
approaches often involve adaptive weighting mecha-
nisms, optimisation-driven model adjustments, or
learning-based frameworks that dynamically integrate
human and machine-generated forecasts (Petropoulos,
Apiletti et al. 2022). While not explicitly categorised
under the five methods, these strategies contribute to
the broader understanding of how expert judgment and
algorithmic forecasts can be effectively combined.

In this context, two key considerations arise when
selecting an approach for combining forecasts: (1) health-
care staff at the site level in developing countries often
lack the specialised skills and training needed to develop
and maintain sophisticated forecasting methods (Altay
and Narayanan 2022), and (2) based on discussions with
USAID officials, healthcare staff typically produce only
point forecasts, often relying on their judgment, as also
highlighted in the literature (Akhlaghi, Serumaga, and
Smith 2013). Moreover, LaCroix et al. (2023) found that
although practitioners acknowledge the importance of
accounting for uncertainty, there is no widely adopted
standard for doing so. Judgmental point forecasts are
favoured because they align with the practical experience
and cognitive abilities of healthcare staff, who may find
it difficult to quantify uncertainty without formal train-
ing in probabilistic ms. Given these constraints, combin-
ing human judgmental forecasts with algorithmic fore-
casts presents a promising solution. Empirical studies
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consistently show that combining forecasts, whether
judgmental or model-based, generally improves accu-
racy over relying on individual forecasts alone (Ran-
jan and Gneiting 2010; Wang et al. 2023). However,
this introduces a challenge: how to effectively inte-
grate human point forecasts with probabilistic forecasts
from algorithms to produce a unified probabilistic fore-
cast. Although the literature on forecast combinations is
extensive, little attention has been paid to the integration
of point forecasts with probabilistic forecasts.8

2.3. Literature limitations summary

Despite advancements in contraceptive demand forecast-
ing, several key gaps remain unaddressed. First, the use of
probabilistic forecasting in FPSC remains limited. While
probabilisticmethods have beenwidely explored in other
domains, such as economic forecasting (Gneiting and
Katzfuss 2014; Krüger, Clark, and Ravazzolo 2017), their
application in FPSC is largely absent. Most existing stud-
ies rely on point forecasts, which do not account for
demanduncertainty,making supply chain planningmore
vulnerable to unexpected fluctuations. Given the inher-
ent unpredictability of contraceptive demand, incorpo-
rating probabilistic forecasting is critical for improving
stock management and mitigating stockout risks.

Second, contraceptive demand forecasting has pri-
marily been conducted at the national or regional
level (Akhlaghi, Serumaga, and Smith 2013; Karanja
et al. 2019), often overlooking demand variability at indi-
vidual healthcare sites. However, demand patterns vary
significantly across locations (Karimi et al. 2021), and
without localised forecasts, procurement decisions may
fail to align with actual site-level needs. This highlights
the need for forecasting approaches that can adapt to
site-specific demand while maintaining consistency with
broader supply chain strategies.

Third, while forecast combination techniques have
been extensively studied (Ranjan and Gneiting 2010),
their application in FPSC is underexplored. Existing
studies typically assess individual forecasting methods
without considering how integrating multiple forecasts
could improve accuracy, particularly in healthcare supply
chains. Additionally, there is limited empirical research
comparing different forecasting methods for contracep-
tive demand estimation, making it difficult to determine
the most effective approach in this context.

Finally, although judgmental adjustments are widely
used in FPSC (Fildes et al. 2009; Trapero, Pedregal
et al. 2013), there is no structured approach that sys-
tematically integrates expert knowledge while ensuring
coherence between human forecasts and probabilistic
distributions in FPSC settings. In economic forecasting,

Entropic Tilting has been used to refine probabilistic
distributions based on external point forecasts (Krüger,
Clark, andRavazzolo 2017;Metaxoglou and Smith 2016),
yet these methods do not explicitly ensure coherence
between expert judgment and forecast distributions. Our
study addresses this gap by proposing a hybrid fore-
casting approach that systematically integrates expert
forecasts with probabilistic models, ensuring that adjust-
ments remain statistically grounded while incorporating
expert insights.

3. Proposed hybrid approach

We propose a CQRA model to generate a combined
probabilistic forecast, utilising both point and proba-
bilistic forecasts. This approach builds upon the CQRA
model introduced by Wang et al. (2018), which focuses
on combining multiple probabilistic forecasts to produce
a consolidated forecast distribution. The key concept in
our proposed method is to generate quantiles from a
given probabilistic forecast and adjust each quantile using
weights. These weights are determined by treating the
point forecast as the ‘new reality’ and formulating a linear
programming (LP) problem thatminimises both the pin-
ball loss9 and the absolute error between point forecast
and mean of the weighted quantile forecast. The pinball
loss is a strictly proper scoring rule used to evaluate quan-
tile forecasts. It measures overall quantile performance
by rewarding sharpness and penalising miscalibration
(Hyndman and Athanasopoulos 2021).

On the other hand, our proposed CQRAmodel shares
similarities with the quantile combination approach of
Trapero, Cardós, and Kourentzes (2019), in that both
methods determine weights by minimising the tick-loss
function. However, a fundamental difference is that while
Trapero, Cardós, and Kourentzes (2019) combine quan-
tile forecasts generated from Kernel Density Estimators
(KDE) and GARCHmodels to optimise safety stock lev-
els, CQRA integrates expert point forecasts with prob-
abilistic forecasts. This allows CQRA to adjust forecast
distributions in response to human insights, particularly
in settings where domain knowledge complements algo-
rithmic predictions.

Figure 1 provides a schematic overview of our hybrid
probabilistic forecasting approach. It illustrates the inter-
action between expert-generated point forecasts and
model-based probabilistic forecasts, and how they are
integrated via the CQRA layer. Depending on the align-
ment between the expert input and the system fore-
casts, the model dynamically selects between the Hybrid
WeightedAverage orHybrid Bias Adjustment paths. This
process produces an adjusted forecast distribution that
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Figure 1. Overview of the hybrid forecasting model integrating demographic point forecasts and model-based probabilistic forecasts
via CQRA. The approach optimises quantile weights to align the forecast distribution’s central tendency with the expert forecast while
preserving distributional calibration, producing an adjusted probabilistic forecast.

aligns with domain knowledge while preserving statisti-
cal rigor. By explicitly formulating an optimisation prob-
lem that aligns expert-driven point forecasts with prob-
abilistic distributions, CQRA provides a structured way
to incorporate human intuition into data-driven forecast-
ing models, making it well-suited for FPSC and other
humanitarian supply chains.

On the other hand, Entropic Tilting has been used as a
flexible approach to adjust predictive densities by incor-
porating external information while maintaining the sta-
tistical properties of the original model. This method
systematically reweights the probability distribution of
forecasts to ensure coherence with expert knowledge
or external nowcasts. For example, Krüger, Clark, and
Ravazzolo (2017) applied Entropic Tilting to Bayesian
VAR forecasts by incorporating short-term nowcasts,
while Metaxoglou and Smith (2016) used it to refine
option-implied predictive densities for equity returns.
These approaches allow for seamless adjustments of pre-
dictive distributions while minimising distortions to the
baseline statistical model. While Entropic Tilting pro-
vides a suitable method for combining probabilistic and

point forecasts, our proposed CQRA model differs in
its optimisation framework, which ensures alignment
between expert-driven point forecasts and probabilistic
forecasts in a constrained manner. Unlike Entropic Tilt-
ing, which reweights distributions without necessarily
enforcing coherence between expert forecasts and the
final probabilistic forecast, CQRA imposes constraints
that ensure consistency between the adjusted forecast
distribution and expert input. This makes CQRA par-
ticularly well-suited for supply chain applications where
domain knowledge plays a critical role in refiningmodel-
based predictions.

Let the quantile levels be defined as:

{q1, q2, . . . , qn} where qi ∈ [0.01, 0.99]

For a set ofweightsw1,w2, . . . ,wn corresponding to these
quantiles, the weighted quantile forecast ŷt(qi) for each
quantile qi at time t is given by:

ŷ(qi)
t = wi · ProbForecast(qi)t

where ProbForecast(qi)t is the probabilistic forecast for
quantile qi at time t.
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The pinball loss for a quantile qi and the point forecast
PointForecastt is defined as:

Lqi(yt , ŷ
(qi)
t ) = (yt − ŷ(qi)

t ) ·
(
qi − 1(yt < ŷ(qi)

t )
)

The weighted mean forecast across all quantiles is calcu-
lated as:

ȳt = 1
n

n∑
i=1

ŷ(qi)
t

The total loss Lt across all quantiles for a single time point
t is expressed as:

Lt =
n∑

i=1

∣∣PointForecastt − ȳt
∣∣

+
n∑

i=1
max

(
0, (PointForecastt − ŷ(qi)

t )

·
(
qi − 1(PointForecastt < ŷ(qi)

t )
))

where;
∑n

i=1
∣∣PointForecastt − ȳt

∣∣measures the absolute
difference between point forecast and weighted mean
quantile forecasts.

The objective is to minimise the total loss Lt by opti-
mising the weights wi across all quantiles:

min
w1,w2,...,wn

T∑
t=1

Lt

subject to:

0 ≤ wi ≤ 1,
n∑

i=1
wi = 1

Once the optimal weights are identified, the final adjusted
quantile forecast ỹ(qi)

t for each quantile qi is:

ỹ(qi)
t = w∗

i · ProbForecast(qi)t

However, probabilistic forecasts may have a more dom-
inant influence in this approach since the weights wi
are restricted to the range [0, 1]. This implies that point
forecasts are expected to align closely with the fore-
cast distribution. When the probabilistic forecasts are
reliable and the point predictions do not significantly
deviate from the mean of the probabilistic forecast,
this approach is recommended. However, recognising
that this is often not the case in practice, we relax the
sum-to-one constraint on the combination weights to
provide greater flexibility in incorporating expert point
forecasts and accounting for bias. A similar relaxation
has been explored in prior research (e.g. Granger and
Ramanathan 1984), which suggests that imposing weight

constraints can sometimes lead to suboptimal forecasts
by failing to account for systematic biases. Furthermore,
Trapero, Cardós, and Kourentzes (2019) also show that
an unconstrained approach to optimising quantile fore-
cast combinations can yield improvements, particularly
in applications requiring adaptive weight adjustments.
By allowing weights to exceed unity and introducing a
bias factor, ourmodifiedCQRAapproach accommodates
situations where expert forecasts systematically deviate
from model-based predictions, enhancing the adaptabil-
ity and robustness of the combined forecast.

Modified Approach:

(1) We update the weighted quantile forecast ŷ(qi)
t as

follows:

ŷ(qi)
t = wi · ProbForecast(qi)t + bt

where bt is the bias factor at time t and it is calculated
as the parameter optimised alongside the weights.

(2) We remove the normalisation constraint
∑n

i=1 wi =
1 and increase the upper bound of wi to 5:

0 ≤ wi ≤ 5

Our sensitivity analysis showed that increasing the
upper bound beyond 5 did not significantly improve
method performance, making 5 an optimal choice
for balancing flexibility and control.

(3) After optimisation, we apply an adjustment factor
to ensure that the mean of the forecast distribution
aligns with the point forecast:

ỹ(qi)
t = w∗

i · ProbForecast(qi)t · adjt
The adjustment factor adjt is defined as:

adjt = PointForecastt
ȳt

These adjustments ensure that the combined probabilis-
tic forecast aligns with the central tendency of the point
forecast while still capturing the uncertainty in the pre-
diction. This approach is particularly useful when the
probabilistic forecast does not include external variables
that cause significant deviations in demand.

After generating the weighted quantile forecast ỹ(qi)
t

for each quantile qi, we create a smooth forecast dis-
tribution by linearly interpolating between the quantile
levels:

ỹt(xj) = ỹ(qi)
t +

(
xj − qi
qi+1 − qi

)
·
(
ỹ(qi+1)
t − ỹ(qi)

t

)

where qi ≤ xj < qi+1 and xj are the interpolation points.
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The final interpolated forecast distribution Ỹt for all
interpolation points xj is:

Ỹt = {ỹt(x1), ỹt(x2), . . . , ỹt(xm)}

Remark 3.1: When providing point forecasts to the
method, they should first be combined with the mean
forecasts from the probabilistic forecast using a simple
averaging method. This combined point forecast will
serve as the new central tendency (e.g. mean or median)
for the overall forecast. Based on this combined cen-
tral tendency, optimal weights will then be determined
to enhance the accuracy and balance of the forecast by
integrating both the point and probabilistic perspectives
effectively.

Remark 3.2: We refer to the first proposed combination
method as the Hybrid Weighted Average, and the revised
version of the combination method is termed theHybrid
Bias Adjustment.

Underlying assumptions of the method are;

(1) The probabilistic forecasts are well-calibrated.
(2) The point forecast accurately represents the central

tendency of the future distribution.
(3) The weights used for each quantile are restricted

to non-negative values, ensuring that the final fore-
cast distribution remains in the range of the original
probabilistic forecasts.

(4) A linear combination of quantile forecasts, point
forecasts, and bias adjustment is sufficient to repre-
sent the true forecast distribution.

(5) Linear interpolation between quantile levels accu-
rately reflects the true underlying distribution.

4. Experiment setup

4.1. Data collection and preprocessing

The data used in our study were extracted from the
LMIS of Cote d’Ivoire. The dataset encompassed 156
sites distributed across 81 districts in 20 regions, cover-
ing a span of 11 contraceptive products across 7 product
categories. These categories included female and male
condoms, emergency contraceptives, oral contraceptives,
injectables, implants, and IUDs. The dataset spanned
from January 2016 to December 2019 at a monthly
granularity containing 1454 time series. Figure 2 shows
the location of each site in Côte d’Ivoire by site type,
illustrating that the sites are distributed throughout the
country.

Our initial exploration indicated that there were no
duplicate values; however, some missing values were

present in the time series. Additionally, a few time series
contained stockout cases. Since our study does not focus
on handling stockouts in the forecasting process, we
removed the series with stockouts and missing values, as
we could not determine the reasons behind thosemissing
values. This filtering resulted in a final dataset of 1,360
time series.

In our study, we focus on stock distributed10 as the
target variable at the site level for various contraceptive
products.

4.2. Data exploration

First, we examined the time plots of the data at vari-
ous aggregation levels to observe the time series features
such as trend, seasonality, and noise. As illustrated in
Figure 3, higher aggregation levels reveal clearer sea-
sonal patterns and trends, while lower aggregation levels
exhibit increased volatility. Additionally, the plots high-
light notable differences in stock distribution across loca-
tions and products, suggesting the presence of distinct
patterns associated with each.

At the lowest aggregation level, depicted in Figure 4,
which focuses on product distribution at individual site
level, demand patterns become more heterogeneous,
comprising a mix of smooth, erratic, lumpy, and inter-
mittent demand types. Unlike the aggregate levels, where
trends and seasonality are more apparent, these patterns
are not easily discernible at the site level, further compli-
cating the forecasting process.

Next, we examined the time series data of the prod-
ucts at the site level to gain a clearer understanding of
trend and seasonality patterns, as our primary focus is
on forecasting each product at the site level. However,
due to the large number of time series, it was not visually
feasible to plot all individual series together to simul-
taneously inspect trends and seasonality. Therefore, we
employed the Seasonal and Trend Decomposition using
Loess (STL)method (Cleveland et al. 1990) to extract key
features from all 1,360 time series.

As shown inFigure 5, the strength of trend and season-
ality for each time series is represented on a scale from
0 to 1, where 0 indicates low strength and 1 indicates
high strength. The majority of the time series exhib-
ited moderate levels of both trend and seasonality. How-
ever, even within the same product code, we observed
variations in trend and seasonality patterns, which
posed challenges for the forecasting process. Conse-
quently, we considered a range of forecasting approaches,
including time series, Bayesian, ML, and foundational
time series methods, to determine which could most
effectively handle the diverse patterns within the time
series.
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Figure 2. Contraceptive stock distribution in Côte d’Ivoire by healthcare site location. The size of the circles represents the quantity of
stock distributed.

4.3. Forecasting setup

Our forecast setup began with data collection and prepa-
ration of a tidy dataset for the forecasting process. Follow-
ing this, we carried out feature engineering. As outlined
byKolassa, Rostami-Tabar, and Siemsen (2023), incorpo-
rating lag predictors and rolling window statistics is ben-
eficial for improving forecasting methods. In addition to
these, we also integrated categorical and date features into
the forecasting process. To ensure we selected the most
relevant variables, a feature importance analysis was con-
ducted to identify the best predictors for the forecasting
methods.

In the USAID forecasting competition, the planning
horizon was set to 3 months. However, instead of using
fixed training and test sets as in the competition, we
adopted the time series cross-validation approach to cre-
ate the training and test sets (Hyndman and Athana-
sopoulos 2021). Unlike the fixed approach, where the
same training and test sets are used for evaluation,
time series cross-validation moves the forecasting origin

forward by a fixed number of steps, producing multi-
ple forecasts at different points in time. This allows for
the calculation of multi-step errors, giving a more robust
view of how methods perform across various demand
scenarios, such as periods of high and low demand (Sve-
tunkov 2023).

In our cross-validation setup, we define the training
period as all available data up to September 2019, ensur-
ing sufficient historical observations for model learning.
The testing period consists of rolling evaluationwindows,
where each test set spans a 3-step-ahead forecasting hori-
zon to align with the competition requirements. At each
iteration, the training set expandswhile the test setmoves
forward by one step, maintaining a consistent evaluation
structure. We limited the number of rolling origins to 3
per series due to computational constraints, but this still
provided us with meaningful insights into method per-
formance over time. For forecasting, we employed recur-
sive multi-step forecasting and we generated 1000 future
paths per a series. All method development and hyper-
parameter tuning were conducted using only the training
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Figure 3. Time series of contraceptive product stock distributed (Jan 2016 –Dec 2019) at various levels. The x-axis represents themonth,
while the y-axis indicates thenumberof units distributed. Thepanels displaydata from theentire country (toppanel),withbreakdownsby
region, district, site, and product code. The bottom panel shows the number of units distributed in selected sites for specific products. To
ensure clarity and prevent overplotting, only five time series are displayed for each aggregate level. These series were selected randomly
and are characteristic of the patterns encountered at the respective aggregation levels.
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Figure 4. Time series of contraceptive product stock distributed in selected sites for specific products (Jan 2016 – Dec 2019). To ensure
clarity and prevent overplotting, only five of the products are displayed. These serieswere selected randomly and represent characteristic
patterns at this level.

Figure 5. Trend strength and seasonality in the time series of stock distribution. Each point in the scatter plot represents one of the 1,360
time series analysed, with trend and seasonality strengths measured on a scale from 0 to 1 (0 indicating weak and 1 indicating strong).

data to ensure that the evaluation remained unbiased and
the methods were properly validated.

4.3.1. Probabilistic forecasting using bootstraping
To express the uncertainty of our forecasting methods’
estimates, we utilise probability distributions of poten-
tial future values. Several methods are available to esti-
mate prediction intervals, including analytical prediction

intervals, bootstrapping, quantile regression, Bayesian
modelling (using MCMC sampling), and conformal pre-
diction. In our study, we employ the bootstrapping
method to estimate these intervals (Gneiting and Katz-
fuss 2014).

Given that our study employs multiple forecast-
ing methods, bootstrapping provides a unified frame-
work that can be applied consistently without requiring
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additional parametric assumptions. Moreover, it allows
us to approximate the empirical distribution of forecast
errors without imposing strict distributional constraints,
making it particularly suitable for datasets with varying
demand patterns in the FPSC.

To account for uncertainty in predictions, we assume
that future errors will resemble past errors. We define the
error as the difference between the actual value and the
forecasted value:

et = yt − ŷt

where; et is the error at time t, yt is the actual value and
ŷt is the forecast value at time t.

We simulate different future predictions by sampling
from the collection of past errors and adding these to the
forecast estimates. Each bootstrap iteration produces a
different potential future path. By repeating this process,
we generate a distribution of possible outcomes. Based
on a chosen significance level, prediction intervals can
then be constructed from this distribution (Hyndman
and Athanasopoulos 2021).

To implement the bootstrapping process, we use the
fable package in R for time seriesmethods and the skfore-
cast package for ML methods (Amat Rodrigo and Esco-
bar Ortiz 2023). However, for the Bayesian methods, this
process is not necessary as it inherently provides prob-
abilistic forecasts as part of its output. Similarly, foun-
dational time series methods also deliver probabilistic
forecasts directly.

4.3.2. Forecast combination
Forecast combination is a promising approach to enhance
forecasting performance by aggregating multiple fore-
casts generated using different methods for a specific
time series. This technique eliminates the need to select
a single ‘best’ forecasting method, thus leveraging the
strengths of various methods (Wang et al. 2023). Known
as either forecast combination or forecast ensemble across
different fields, this method has been widely used and
extensively studied (Godahewa et al. 2021). The literature
provides substantial evidence that forecast combinations
consistently outperform individual forecasts (Ranjan and
Gneiting 2010), primarily by mitigating uncertainties
arising from data variability, parameter estimation, and
method selection (Wang et al. 2023).

Forecast combination methods can range from lin-
ear combinations, nonlinear combinations, and time-
varying weights, to more sophisticated approaches like
cross-learning, correlations among forecasts, or Bayesian
techniques (Wang et al. 2023). Among these, the most
widely adopted approach is the linear combination with
equal weights (Godahewa et al. 2021). This method is
not only straightforward to implement and interpret but

also provides robust and improved forecasting perfor-
mance (Godahewa et al. 2021; Ranjan andGneiting 2010;
Thompson, Qian, and Vasnev 2024). Consequently, in
our study, we applied a linear combination approach with
equal weights to generate combined forecasts.

4.4. Forecastingmethods

In our study, we employed a range of forecasting meth-
ods to address the volatile nature of the time series data.
For time series methods, we used sNAIVE,Moving Aver-
age (MA), Exponential Smoothing State Space (ETS),
ARIMA, and Syntetos-Boylan approximation (SBA). As
Bayesian methods, we implemented the Bayesian Struc-
tural Time Series (BSTS)methodwith regressors. ForML
methods, we applied Multiple Linear Regression (MLR),
Random Forest (RF), LightGBM (LGBM), and XGBoost
(XGB). These methods were selected due to their pop-
ularity, efficiency, and ease of implementation within
the forecasting domain (Makridakis, Spiliotis, and Assi-
makopoulos 2022). Furthermore, for the ML methods,
we developed each as a global method, where a single
method was trained to produce forecasts for all time
series simultaneously (Bandara et al. 2021).

Additionally, we explored foundational time series
approaches such as TimeGPT (Garza, Challu, and
Mergenthaler-Canseco 2024), Chronos (Ansari et al.
2024) and Lag Llama (Rasul et al. 2024), which are
gaining attention due to advancements in large lan-
guage models (LLMs) and also capable of producing
probabilistic forecasts. These methods offer zero-shot
forecasting capabilities, meaning they have been pre-
trained on vast amounts of time series data and can be
applied to new time series without the need for retrain-
ing or fine-tuning parameters (Carriero, Pettenuzzo, and
Shekhar 2024). This feature significantly reduces the
steps typically required in the forecasting process, such
as data preparation, model training, and model selection
(Garza, Challu, and Mergenthaler-Canseco 2024). How-
ever, these methodologies have yet to be tested within the
FPSC context.

To offer a more comprehensive comparison of fore-
castingmethods in contraceptive demand forecasting, we
incorporated a demographic forecasting method. This
method uses demographic data such as population size,
age distribution, and other family planning indicators to
estimate future contraceptive demand (Akhlaghi, Seru-
maga, and Smith 2013). Given that we did not have
access to the final forecasts generated at the site level
by demand planners, we assumed that the demographic-
based method serves as a proxy for expert-driven fore-
casts. This assumption is grounded in the fact that experts
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typically leverage their domain knowledge when deter-
mining key family planning indicators.

4.4.1. Time seriesmethods
sNAIVE: This method is a simple forecasting approach
where forecasts are generated using the most recent
observation from the corresponding period of the pre-
vious cycle. This method is often used as a benchmark
in time series forecasting (Hyndman and Athanasopou-
los 2021) and which can be shown as;

ŷt+h = yt+h−s

Where ŷt+h is the forecast for t+ h, and s is the sea-
sonality period. We implemented this method using the
SNAIVE() function in the fable package in R (O’Hara-
Wild et al. 2022).

MA: MAmethod is a simple forecasting approach that
generates predictions by averaging a fixed number of the
most recent observations. This method helps to smooth
out short-term fluctuations while emphasising longer-
term trends in the data. The method assumes that future
values can be reasonably estimated based on the mean
of past values over a specified window (Hyndman and
Athanasopoulos 2021). MA method can be represented
as:

ŷt+1 = 1
n

n−1∑
i=0

yt−i

where ŷt + 1 is the forecast for the next time period, n is
the number of past observations (the window size), and
yt − i are the actual values from previous periods.Due to
the simplicity nature of this method, it is often used in
the FPSC context. We implemented this method using
the MEAN() function in the fable package in R (O’Hara-
Wild et al. 2022)

ETS: ETS model accommodates trends, seasonal-
ity, and error terms within time series data through
various approaches, such as additive, multiplicative, or
mixed models within a state-space framework. The
model updates these components dynamically over time
using recursive equations. The ETS model is capable of
handling diverse time series patterns, including trends
and seasonal fluctuations (Hyndman and Athanasopou-
los 2021). Given the large number of series in our dataset,
we utilised the automated ETS model, which selects the
optimal model based on Akaike’s Information Criterion
(AIC) for each time series. We used the ETS() function
in the fable package in R (O’Hara-Wild et al. 2022) to
implement this model.

ARIMA: ARIMA model forecasts based on trends,
autocorrelation, and noise within time series data. It
is also flexible and can handle both non-seasonal and

seasonal data by incorporating seasonal components.
ARIMA parameters (p,d,q) denote the orders of the
auto-regressive (AR) component, differencing, and mov-
ing average (MA) component, respectively. ARIMA is
particularly effective for data with a pronounced tem-
poral structure (Hyndman and Athanasopoulos 2021).
Like with the ETS model, we employed an automated
approach to fit ARIMAmodels for each time series using
the ARIMA() function in the fable package in R, which
selects the best model using similar criteria (O’Hara-
Wild et al. 2022).

SBA: Since some time series exhibit an intermit-
tent demand nature, we also employed the SBA method
in our study, an enhancement of Croston’s original
method from 1972 (Syntetos and Boylan 2005). The SBA
approach methods intermittent demand as a binomial
process by separately estimating the demand intervals
and the demand sizes when they occur. This method
applies a correction factor to reduce the inherent positive
bias of the original Crostonmethod,making the forecasts
more accurate. We implemented this method using the
CROSTON(type = ‘sba’) function in the fable package
in R (O’Hara-Wild et al. 2022).

4.4.2. Bayesianmethods
BSTS: The BSTS method used in our study combines a
local linear trend and a seasonal component, incorporat-
ing additional covariates to fit the observed data (Kohns
and Bhattacharjee 2023). The local linear trend is a time-
varying method that captures the evolving pattern of the
time series over time. It consists of a level and a slope,
both of which are allowed to change dynamically. The
state equations for this are:

μt = μt−1 + βt−1 + ηt , ηt ∼ N(0, σ 2
η )

βt = βt−1 + ζt , ζt ∼ N(0, σ 2
ζ )

where; μt is the level at t, βt is the slope at t, ηt and ζt
are normally distributed errors with variances σ 2

η and σ 2
ζ

respectively.
The seasonal component captures regular patterns

that repeat over a fixed period and it is modelled as:

St = −
m−1∑
j=1

St−j + ωt , ωt ∼ N(0, σ 2
ω)

where; St is the seasonal effect at time t,m is the number
of seasons (in our case,m = 12 for monthly data) andwt
is the normally distributed error with variance σ 2

ω.
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The observed data (i.e. target variable) is modelled
as a linear combination of the local linear trend, sea-
sonal component, and additional regressors. This is rep-
resented by the observation equation:;

yt = μt + St + Xtβ + εt , εt ∼ N(0, σ 2
ε )

where; Xt are the regressors, β are the corresponding
coefficients and εt is the noise.

Posterior distributions for parameters are estimated
using Markov Chain Monte Carlo (MCMC) methods
(Kohns and Bhattacharjee 2023). The predicted future
values are obtained by simulating from these posterior
distributions and thus quantifying the uncertainty given
the Bayesian nature of the method (Martin et al. 2024).

4.4.3. MLmethods
MLR: MLR methods establish linear relationships
between the target variable and multiple predictor vari-
ables. The method estimates coefficients for each predic-
tor variable by minimising the residual sum of squares
between observed and predicted values. These methods
are particularly useful when demand is influenced by var-
ious factors (Hyndman and Athanasopoulos 2021). In
our study, we implemented this method using the Lin-
earRegression() function from the sklearn package in
Python (Pedregosa et al. 2011).

RF: RF is an ensemble learning method that con-
structs a collection of decision trees, each trained on a
bootstrap sample of the original data. The predictions of
these trees are aggregated to produce the final forecast
(Breiman 2001). We used the RandomForestRegressor()
function from the sklearn package in Python (Pedregosa
et al. 2011) to implement the RF method.

Gradient Boosted Regression Trees (LGBM and
XGB): These methods are known for their efficiency and
ease of implementation (Makridakis, Spiliotis, and Assi-
makopoulos 2022). These methods use an ensemble of
decision trees, where each new tree is added to correct
the residuals of the previous trees in an iterative manner
(Januschowski et al. 2022). Unlike Random Forest, which
builds trees independently, gradient boosting methods
focus on improving method performance iteratively. In
our study, we selected LightGBM (LGBM) and XGBoost
(XGB) for their ability to handle multiple predictor vari-
ables in various forms (binary, categorical, and numeric)
and their effectiveness in providing reliable and accu-
rate forecasts (Makridakis, Spiliotis, and Assimakopou-
los 2022). We used the LGBMRegressor() function from
the LightGBM package in Python (Microsoft Corpora-
tion 2022) and the XGBRegressor() function from the
XGBoost package in Python (xgboost Developers 2021).
Hyperparameter tuning for both LGBM and XGB was

performed using grid search, with the Poisson distribu-
tion chosen as the objective function due to the count
nature of the target variable.

4.4.4. Foundational time series methods
TimeGPT: TimeGPT is the first pre-trained foundational
method specifically designed for time series forecasting,
developed by Nixtla (Garza, Challu, and Mergenthaler-
Canseco 2024). It employs a transformer-based archi-
tecture with an encoder-decoder setup, but unlike other
methods, it is not derived from existing large language
methods (LLMs); rather, it is purpose-built to handle
time series data. TimeGPT was trained on over 100 bil-
lion data points, encompassing publicly available time
series from a variety of domains, including retail, health-
care, transportation, demographics, energy, banking, and
web traffic. Due to the diversity of these data sources and
the range of temporal patterns they exhibit, TimeGPT
can effectively handle awide variety of time series charac-
teristics. Additionally, the method can incorporate exter-
nal regressors into the forecasting process and is capa-
ble of producing quantile forecasts, allowing for robust
uncertainty estimation (see Ansari et al. 2024 for a
detailed overview).

Chronos: Chronos is a univariate probabilistic founda-
tional time series method developed by Amazon (Ansari
et al. 2024). Like TimeGPT, it is based on a transformer
architecture in an encoder-decoder configuration, but it
trains an existing LLM architecture using tokenised time
series via cross-entropy loss. Chronos was pre-trained
on a large publicly available time series dataset, as well
as on simulated data generated through Gaussian pro-
cesses. The method was trained on 28 datasets, com-
prising approximately 84 billion observations. Chronos is
based on the T5 family of methods, offering different ver-
sions with parameter sizes ranging from 20million to 710
million. The four pre-trained methods available for fore-
casting are: 1) Mini (20 million), 2) Small (46 million),
3) Base (200 million), and 4) Large (710 million) (see
Ansari et al. 2024 for a detailed overview). In our study,
we employed the Base Chronos T5method for its balance
between performance and computational efficiency.

Lag Llama: Lag Llama is another univariate proba-
bilistic foundational time series method, which is based
on the LLaMA architecture and utilises a decoder-only
structure (Rasul et al. 2024). The method tokenises
time series data using lags as covariates and applies z-
normalisation at the window level. This approach focuses
on learning time series behaviour from past observa-
tions. Lag Llamawas trained on 27 publicly available time
series datasets across six domains: nature, transporta-
tion, energy, economics, cloud operations, and air quality.
With 25 million parameters, this method is designed to
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handle diverse time series frequencies and features, mak-
ing it suitable for a wide range of forecasting tasks (see
Rasul et al. 2024 for a detailed overview).

4.4.5. Demographic forecastingmethod
In the FPSC context, the demographic forecasting
method is employed to estimate contraceptive needs for
a given population based on a set of family planning
indicators during the forecast period. This method is for-
mulated as a combination of these indicators and popu-
lation dynamics, as represented in the following equation
(Akhlaghi, Serumaga, and Smith 2013):

yi,t =
⎛
⎝ 50∑

j=15

(
mCPRt,j × WomenPopulationt,j

)⎞⎠

× MethodMixt,i × CYPt,i × BrandMixt,i
× SourceSharet

Where i represents the product, j is the age group,mCPR
is the modern contraceptive prevalence rate, and CY P
refers to couple-years of protection.

WomenPopulationt,j denotes the total population of
women in a selected location, typically within the age
range of 15–49 years, which is the standard range used
in census data or demographic health surveys. For our
study, we sourced this population data from WorldPop
(WorldPop 2024) and mapped it to each healthcare site
based on the latitude and longitude coordinates of those
sites.

mCPR stands for the percentage of women of repro-
ductive age using modern contraceptives, with data col-
lected from the PMA Data Lab (PMA 2024).

MethodMix represents the share of different contra-
ceptive methods being used, including injectables, IUDs,
implants, pills, and condoms. This data is also obtained
from the PMA Data Lab (PMA 2024).

CY P is a metric estimating the protection from preg-
nancy provided by a contraceptive method over one year.
For example, an implant can cover 3.8 years, so CYP
adjusts for such longer-actingmethods.We collected this
data from USAID (USAID 2024a).

BrandMix reflects the brand share percentage within
each contraceptive method. This was calculated using
historical data.

SourceShare refers to where women of reproductive
age, using a specific method and brand, obtain their
products. This mix typically includes public, private,
NGO/SMO (social marketing organisations), and other
small providers. Data was gathered through discussions
with USAID officials.

This equation provides yi,t , which is the total annual
point estimate of contraceptives required for product i
at time t. It is typically used at the national level on an
annual basis to inform procurement decisions (Akhlaghi,
Serumaga, and Smith 2013).

However, as our study focuses onmonthly estimates at
the healthcare site level, we revised the equation by intro-
ducing a weighting factor, wt , to distribute the annual
estimates across months. The revised equation is as
follows:

yi,t,s =
⎛
⎝ 50∑

j=15

(
mCPRt,j × WomenPopulationt,j,s

)⎞⎠

× MethodMixt,i × CYPt,i × BrandMixt,i
× SourceSharet × wt

Where wt represents the monthly weight, s is the health-
care site, and yi,t,s is the monthly point forecast for prod-
uct i at healthcare site s.

4.4.6. Overview of candidatemethods
In our study, we developed 20 candidate methods by
experimenting with different combinations of predictors
and by combining various forecasting methods. For the
MA method, we opted to use a three-month averag-
ing period, aligning with the current practice at the site
level in Côte d’Ivoire. Additionally, we developed two
model combinations using equal-weight linear averag-
ing: a combined statistical model and a combined ML
model.

To create hybrid probabilistic methods, we com-
bined point forecasts from the demographicmethodwith
the combined ML method, resulting in a hybrid com-
bined method. This hybrid method synthesises insights
from both the demographic point forecast and the
probabilistic algorithm-based forecast, aiming to cap-
ture expert knowledge alongside data-driven character-
istics of machine learning methods. This integration is
intended to enhance forecast accuracy by leveraging the
strengths of both approaches.

We developed two variations of the hybrid prob-
abilistic method based on our proposed methods. A
detailed overview of all 20 candidatemethods is provided
in Table 2. We also explored several other approaches
to develop different forecast method variations. These
included using demographic indicators as predictors,
different method combinations and applying hierarchi-
cal forecasting reconciliation to combine demographic-
based forecasts with algorithm-based forecasting meth-
ods. However, we decided not to include the results of
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Table 2. Proposed candidate methods in our study.

Type Method Predictor variables Remarks
Probabilistic
Forecasts

Time series sNaive Historical stock distributed data – Yes
Moving average Historical stock distributed data – Yes
ETS Historical stock distributed data – Yes
ARIMA Historical stock distributed data – Yes
Croston-SBA Historical stock distributed data – No

Bayesian BSTS reg Historical stock distributed data, lag values (for
1,2,3,4), lag rolling mean, 4 period rolling max, 4
period rolling zero percentage, Month and year,
region, district, site type, site code, product type
and product code

– Yes

BSTS demo Historical stock distributed data,womenpopula-
tion at each site, mCPR, method mix,CYP, brand
mix, source share

– Yes

ML MLR Historical stock distributed data, lag values (for
1,2,3,4), lag rolling mean, 4 period rolling max, 4
period rolling zero percentage, Month and year,
region, district, site type, site code, product type
and product code

– Yes

RF – Yes
LGBM – Yes
XGB – Yes

Demographic Demographic Women population at each site, mCPR, method
mix,CYP, brandmix, source share,weight for each
month

– No

Foundational TimeGPT Historical stock distributed data – Yes
TimeGPT reg Historical stock distributed data, lag values (for

1,2,3,4), lag rolling mean, 4 period rolling max, 4
period rolling zero percentage, Month and year,
region, district, site type, site code, product type
and product code

– Yes

Chronos Historical stock distributed data – Yes
Lag Llama Historical stock distributed data – Yes

Combination Statistical combined – Model combination using sNAVIE, MA, ETS,
ARIMA. We didn’t use Croston as it only produces
point forecats.

Yes

ML combined – Model combination using RF, LGBM, XGB. We
didn’t use MLR because it significantly reduces
combined forecast performance.

Yes

Hybrid Hybrid weighted average – Combination between demographic mdethod
andML combination using theweighted average
approach.

Yes

Hybrid bias adjustment – Combination between demographic method
andML combination using theweighted average
bias approach.

Yes

these methods, as they did not improve the performance
significantly.

4.5. Performance evaluation

To assess the performance of our forecasting methods,
we used both point forecast and probabilistic forecast
evaluation metrics. We evaluated point forecasts using
the MASE. MASE was chosen for two primary rea-
sons. First, it was the official evaluation metric used in
the USAID Intelligent Forecasting Competition, allow-
ing us to directly compare our model performance with
previous benchmark results. Second, MASE is a scale-
independent metric that provides robustness, and stabil-
ity (Kolassa, Rostami-Tabar, and Siemsen 2023).

The MASE formula is:

MASE = mean(|qt|),

where

qt = et
1

n − m

n∑
t=m+1

|yt − yt−m|
,

Here, et is the point forecast error for forecast period t,
m = 12 (to account for seasonality), yt is the observed
value, and n is the number of observations in the train-
ing set. The denominator is themean absolute error of the
seasonal naivemethod over the training sample, ensuring
the error is properly scaled. Smaller MASE values indi-
cate more accurate forecasts, and since it was the metric
used in the USAID competition, it allows us to compare
our results with the competition submissions.

To evaluate the accuracy of probabilistic forecasts, we
employed the CRPS, a widely usedmetric in probabilistic
forecasting that assesses the sharpness and calibration of
the forecast distribution.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 19

The CRPS is given by:

CRPS = mean(pj),

where

pt =
∫ ∞

−∞
(Gt(x) − Ft(x))2 dx,

where Gt(x) is the forecasted probability distribution
function for the period t, and Ft(x) is the true probability
distribution function for the same period.

CRPS is beneficial to our study as it measures the over-
all performance of the forecast distribution by reward-
ing sharpness and penalising miscalibration (Gneiting
and Katzfuss 2014). Calibration measures how well pre-
dicted probabilities match the true observations, while
sharpness focuses on the concentration of the forecast
distributions (Wang et al. 2023). Thus, CRPS provides a
single score by evaluating both calibration and sharpness,
making it easy to evaluate the performance of forecast-
ing methods. In this formula, Gt(x) is the forecasted
cumulative distribution function (CDF) for time t and
Ft(x) is the true CDF for the same time. The CRPS eval-
uates the difference between the predicted and actual
probability distributions, with lower values indicating
better performance (Ranjan and Gneiting 2010). It com-
bines aspects of both calibration (the alignment of pre-
dicted probabilities with actual outcomes) and sharpness
(the concentration of the forecast distribution), making
it a comprehensive measure of forecast quality (Wang
et al. 2023).

While CRPS provides a comprehensive evaluation of
the entire predictive distribution, there are cases where
accuracy at specific quantiles is of particular interest. For
example, in inventory management of family planning
health commodities, higher quantiles (e.g. the 95th per-
centile)might be important to ensure efficient stockman-
agement and maintain a high service level. By accurately
capturing demand at these upper quantiles, supply chain
planners can better mitigate stockouts and ensure the
consistent availability of essential health supplies. In such
scenarios, the quantile score (or pinball score) becomes a
more appropriate metric, as it directly evaluates forecast
accuracy at the chosen quantile, ensuring amore targeted
assessment of predictive performance.

5. Analysis and results

First, we evaluate the overall point forecast performance
of the forecasting methods, including the proposed
method, using the MASE. Additionally, we compare the
overall performance of our methods against the top 10
submissions from the USAID competition. Second, we

Table 3. Overall point forecast accuracy in mean MASE and
median MASE (CS refers to competition submission).

Method Mean MASE Median MASE

RF 0.743 0.376
Hybrid weighted averaging 0.775 0.426
LGBM 0.833 0.426
ML combined 0.847 0.460
XGB 0.859 0.433
CS 01 0.990 0.789
CS 02 0.995 0.798
CS 03 0.998 0.779
CS 04 1.004 0.790
CS 05 1.014 0.815
CS 06 1.035 0.785
CS 07 1.043 0.823
CS 08 1.051 0.819
CS 09 1.088 0.844
CS 10 1.103 0.861
TimeGPT reg 1.258 0.623
MLR 1.269 0.632
TimeGPT 1.292 0.669
Chronos 1.305 0.641
BSTS reg 1.327 0.732
SBA 1.331 0.689
Moving average 1.373 0.694
Statistical combined 1.378 0.731
ETS 1.379 0.683
ARIMA 1.386 0.689
Lag Llama 1.483 0.777
BSTS demo 1.521 0.859
sNaive 1.603 0.924
Hybrid bias adjustment 4.360 0.800
Demographic 16.072 1.847

assess the overall performance of the probabilistic fore-
casts of our methods using the CRPS. After completing
these evaluations, we conduct a Nemenyi test at the 5%
significance level to determine any significant differences
in performance between the methods.

Next, we evaluate both the point and probabilistic
forecast performances across forecast horizons, provid-
ing a clearer picture of multi-step errors in the methods.
Following this, we compare the forecast performances in
relation to computational time, highlighting the trade-
offs between accuracy and efficiency.

5.1. Overal performance evaluation of point and
probabilistic forecasts

The overall point forecast performance11 of eachmethod
is presented in Table 3, showing both mean and median
MASE values, and ordered by mean MASE. The table
clearly indicates that all time series methods underper-
formcompared toMLmethods. In fact, the top fivemeth-
ods areML-based. The top-performing method is the RF
method, with the lowest mean MASE of 0.743. Notably,
the Hybrid Weighted Average method is the second-best
performer, with a mean MASE of 0.775.

However, the Hybrid Bias Adjustment method per-
forms significantly worse compared to all other methods,
except for the Demographic method, which shows the
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poorest performance among all methods. Interestingly,
the SBA method outperforms all other time series meth-
ods, but neither the Statistical Combined method nor
theMLCombinedmethod surpass othermethods within
their respective categories as initially expected.Neverthe-
less, it is notable that both combined methods improve
their performance compared to the lowest-performing
methods within their category.

On the other hand, the BSTSmethod shows improved
performance when it incorporates time series-based pre-
dictors (e.g. lags, rolling statistics), categorical features
(e.g. region, district), and date features, compared to
when it uses demographic-based predictors (e.g. women
population, mCPR, women age group). Among the foun-
dational methods, TimeGPT with regressors outper-
forms all other foundational methods, whereas without
regressors, the performance of Chronos and TimeGPT
is quite similar. However, the performance of Lag Llama
differs notably frombothChronos andTimeGPT. Finally,
regarding the competition submissions, none of them
outperform the top five methods in our analysis.

However, we cannot draw concrete conclusions about
the point forecast performance of methods solely based
on meanMASE values. Therefore, we also conducted the
Nemenyi test at the 5% significance level onMASE values
for the forecasting methods. This test allowed us to cal-
culate the average ranks of the forecasting methods and
assess whether their performances are significantly dif-
ferent from one another. Figure 6 shows the results of the
Nemenyi test.

In brief, if there is no overlap in the confidence inter-
vals between two methods, it indicates that their per-
formances are significantly different. The grey area rep-
resents the 95% confidence interval for the top-ranking
method. Methods whose intervals do not overlap with
this grey area are considered significantly underperform-
ing compared to the best-performing method, and vice
versa.

Figure 6 demonstrates that the RF method is the
best-performing method confirming our previous find-
ing, and there is no significant difference between the
top three ranked methods, which include our pro-
posed Hybrid Weighted Average method and the LGBM
method. It is noteworthy that the average rank of the
Hybrid Bias Adjustment method has improved, suggest-
ing that it may perform adequately across a majority
of the time series. Additionally, it is significant that the
TimeGPT with Regressors method outperforms all other
foundational time series methods, which were trained as
univariate methods.

Next, we turn our attention to evaluating the per-
formance of probabilistic forecasts. Table 4 presents the
overall performance evaluations of probabilistic forecasts

Table 4. Overall probabilistic forecast accuracy inmeanCRPS and
median CRPS.

Method Mean CRPS Median CRPS

Hybrid weighted averaging 9.868 3.083
RF 9.997 2.754
LGBM 10.131 3.067
ML combined 10.286 3.377
XGB 10.560 3.164
MLR 12.611 4.512
Chronos 15.018 4.698
BSTS reg 15.342 5.275
ETS 15.397 5.632
TimeGPT reg 15.635 4.783
Moving average 15.701 5.480
ARIMA 15.703 5.602
TimeGPT 15.831 5.275
Lag Llama 15.840 5.919
Statistical combined 16.045 5.671
BSTS demo 17.064 6.526
sNaive 17.511 7.119
Hybrid bias adjustment 29.062 6.447

using both the mean and median CRPS values, ordered
by mean CRPS. The proposed Hybrid Weighted Averag-
ing method is the top performer, with a mean CRPS of
9.868. The RF method ranks second, with a mean CRPS
of 9.997. As in the point forecast analysis, all the top
five methods are ML based, and the time series methods
generally underperform in comparison.

In the BSTS method, we again observe improved per-
formance when time series-based, categorical, and date
features are included as regressors. The Statistical Com-
bined and ML Combined methods show performance
similar to what was seen in the point forecast analysis.

Notably, Chronos performs better than all time series,
Bayesian, and other foundational methods. Moreover,
ETS outperforms all time series methods but shows poor
performance compared toML basedmethods. Lastly, the
Hybrid Bias Adjustment method delivers the worst per-
formance among all forecasting methods, reinforcing the
trend observed in the point forecast evaluation.

Similar to the point forecast analysis, Figure 7
demonstrates that the top three ranked methods are
not significantly different, with RF as the top-ranked
method, although the proposed Hybrid Weighted Aver-
age method has the lowest mean CRPS. This may indi-
cate that RF performs comparably in minimising the
loss function across series, while the Hybrid Weighted
Average method may prioritise stable time series with-
out significant deviations (see Section 3). Additionally,
the top three ranked methods significantly outperform
all other forecasting methods in terms of probabilistic
forecasting.

Noticeably, the Hybrid Bias Adjustment method
shows a significant improvement in its average rank,
ranking seventh, right after theML andHybridWeighted
Averaging methods. The Chronos method is also ranked
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Figure 6. Average ranks of forecastingmethods with 95% confidence intervals based on the Nemenyi test for MASE values. Lower ranks
indicate better forecast performance.

higher than the time series, BSTS, and other foundational
methods. Time series methods remain clustered in the
lower rank range, while the BSTS reg method shows
an improvement in rank compared to the BSTS demo
method. Among the foundational methods, Lag Llama
has the lowest rank, further confirming its relatively weak
performance compared to other foundational and ML
based methods.

5.2. Point and probabilistic forecast performances
across forecast horizons

We also analyse the forecast performances over differ-
ent horizons to evaluate how the methods perform over
time. The forecast horizons range frommonth 1 tomonth
3, corresponding to the upcoming planning period used
by planners for decision-making. First, we examine the
error distribution across all methods. The RF method
consistently shows the highest point forecast accuracy
across all three horizons. Additionally, the top five meth-
ods, including the proposed hybrid weighted averaging

method, maintain consistent performance throughout
the forecast periods.

In terms of probabilistic forecast accuracy, similar pat-
terns are observed across different methods. While these
plots offer a high-level overview of error metric distribu-
tions (see Figure A1 in Appendix 1), they do not provide
detailed insights into the differences between the top- and
low-rankingmethods. To gain a clearer understanding of
the error metrics distribution, we plot density distribu-
tions, focussing on the top three and bottom three fore-
castingmethods for both point forecasts and probabilistic
forecasts.

Figures 8 and 9 demonstrate that both the point and
probabilistic forecast accuracy densities for the top three
methods exhibit a narrower spread compared to the bot-
tom threemethods. This indicates that the forecast errors
for these top methods are less variable and more consis-
tently close to the actual values across different time series
than those of the bottom three methods. The densities of
all othermethods, shown in grey, fall between those of the
top and bottom methods, offering broader comparative



22 H. C. HEWAGE ET AL.

Figure 7. Average ranks of forecasting methods with 95% confidence intervals based on the Nemenyi test for CRPS values. Lower ranks
indicate better forecast performance.

context. Moreover, the plots show that the top methods
maintain consistent performance across forecast hori-
zons. However, it is noteworthy that the right tail of the
density curves for RF and LGBM becomes more volatile
as forecast errors increase, particularly at forecast horizon
3. This volatility may suggest that, while these top two
methods often deliver consistently strong performance,
there remain some uncertainties with specific time series
that these methods are unable to capture effectively. In
contrast, the Hybrid Weighted Averaging method shows
a smoother tail, reflecting that it captures this variability
more effectively compared to RF and LGBM.

5.3. Forecast performance and computational
efficiency

Wenow focus on the computational efficiency of the fore-
castingmethods. In this study, computational efficiency is
defined as the total runtime required for one iteration on
the first rolling origin. The runtime was calculated based
on this definition, and each method was retrained dur-
ing each iteration. For this analysis, we focussed solely

on methods that generate both point and probabilistic
forecasts from our candidate methods.

We used two environments: an R Studio local imple-
mentation on a device with an 11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40 GHz and 8 GB RAM, as
well as Google Colab on both CPU and T4 GPU devices.
To compute the runtime for combined statistical and
ML methods, we averaged the runtime of the respective
underlying methods. For the proposed hybrid methods,
we added the runtime of the underlying methods to
the time taken by the proposed method to combine the
forecasts.

Table 5 shows that, although the RF is the best ranked
method in Nemenyi test, it requires significantly more
runtime compared to the other forecasting methods.
On the other hand, TimeGPT stands out as the fastest
method, outperforming all other methods in terms of
runtime while still providing reasonable forecast accu-
racy. This is a notable exception, as it balances perfor-
mance and computational efficiency well.

However, it is important to note thatMLmethodswere
trained using a normalCPUandone core due to technical
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Figure 8. The distribution of MASE values for the top three and bottom three forecastingmethods across the horizons is presented. The
methods are ranked based on their mean MASE values, with the top and bottommethods selected accordingly. Grey lines represent the
distribution of MASE values for all other methods, providing a comparative context.

challenges in the setup. With access to GPU devices or
CPUs with multiple cores, we could likely improve the
computational performance of these ML methods.

Figure 10 shows a clear relationship between runtime
and accuracy improvement. Most of the top-performing
methods fall into the moderate runtime category includ-
ing the Hybrid Weighted Average method, with RF (the
top ranked) being the slowest method. Interestingly, the
Hybrid Bias Adjustment method also falls into the mod-
erate runtime category but shows a relatively high accu-
racy error. However, the runtime of hybrid methods
largely depends on the underlying methods selected for
combination.

From a practical perspective, choosing the right
method should balance both performance and runtime.
It is a tradeoff between the extra computational cost
incurred by more sophisticated methods that can handle

uncertainties and the lower cost and simplicity of stan-
dard time series methods.

6. Discussion

6.1. Findings

Among the methods evaluated, the Hybrid Weighted
Averaging method stood out as a robust performer. In
terms of mean MASE, it ranked second, and it achieved
the top rank for mean CRPS, placing it on par with
the best performing methods. Notably, the Nemenyi test
revealed no significant performance differences between
the Hybrid Weighted Averaging method and the RF
method across both point and probabilistic forecast-
ing. This result demonstrates that the Hybrid Weighted
Averaging method is a reliable and accurate choice
for forecasting contraceptive demand in contexts where
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Figure 9. The distribution of CRPS values for the top three and bottom three forecasting methods across the horizons is presented. The
methods are ranked based on their mean CRPS values, with the top and bottommethods selected accordingly. Grey lines represent the
distribution of CRPS values for all other methods, providing a comparative context.

probabilistic accuracy and low variance in forecasts are
critical. Moreover, our analysis of forecast performance
across multiple time horizons found that the Hybrid
Weighted Averagingmethodmaintained stable accuracy,
which is crucial for demand planning.

One important limitation of the Hybrid Weighted
Averaging method, however, is that it becomes less suit-
able when the point forecast deviates significantly from
the central tendency of the probabilistic forecast. In such
cases, the Hybrid Bias Adjustment method, designed to
handle larger deviations, may be preferable. However, the
bias adjustment method produced higher errors overall.
In practice, this method can apply significant adjust-
ments to the probabilistic forecast; therefore, obtaining
expert opinion on its estimates would be beneficial for
evaluating its performance more effectively.

The performance evaluation of both point and prob-
abilistic forecasts across methods showed consistent

results. The MASE and CRPS analyses reveal that
top ML methods–RF, LGBM, XGB, and ML com-
bined–consistently outperform time series methods in
both point and probabilistic forecasting, with the RF
method ranking highest on both metrics among ML
methods. This suggests that ML methods generalise
well across diverse time series patterns (smooth, erratic,
lumpy, intermittent) within the FPSC context, effectively
handling the underlying complexity of the data. Exist-
ing literature supports these findings, indicating that ML
methods are better equipped to handle underlying uncer-
tainties compared to time series methods (Makridakis,
Spiliotis, and Assimakopoulos 2022). Moreover, the con-
sistent performance of ML methods underscores their
robustness in capturing data dynamics over time. How-
ever, the MLR method did not perform as well as other
ML methods. This discrepancy may stem from the lin-
earity assumption inherent in MLR, whereas real-world
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Table 5. Forecast performance and computational efficiency for
each forecast method are ordered based on the mean MASE.

Method
Mean
MASE

Mean
CRPS

Runtime
(Minutes) Runtime type

RF 0.743 9.997 312.50 CPU
Hybrid weighted averaging 0.775 9.868 205.90 CPU with 4 cores
LGBM 0.833 10.131 153.50 CPU
ML combined 0.847 10.286 202.83 CPU
XGB 0.859 10.56 142.50 CPU
TimeGPT reg 1.258 15.635 0.45 Colab T4 GPU
MLR 1.269 12.611 10.27 CPU
TimeGPT 1.292 15.831 0.23 Colab T4 GPU
Chronos 1.305 15.018 30.08 Colab T4 GPU
BSTS reg 1.327 15.342 47.23 CPU with 4 cores
SBA 1.331 – 18.23 CPU with 4 cores
Moving average 1.373 15.701 5.19 CPU with 4 cores
Statistical combined 1.378 16.045 19.99 CPU with 4 cores
ETS 1.379 15.397 29.89 CPU with 4 cores
ARIMA 1.386 15.703 27.32 CPU with 4 cores
Lag Llama 1.483 15.84 39.39 Colab T4 GPU
BSTS demo 1.521 17.064 55.73 CPU with 4 cores
sNaive 1.603 17.511 17.56 CPU with 4 cores
Hybrid bias adjustment 4.360 29.062 209.40 CPU with 4 cores

FPSC data likely exhibit more complex, non-linear pat-
terns, which MLR struggles to capture effectively.

Despite these results, time series methods should not
be entirely discounted. For example, the SBA method,
while outperformed by ML methods, surpassed many
other time series approaches in terms of MASE, sug-
gesting that it may be more suitable for site-level con-
traceptive demand data, which often exhibit low or zero
demand. Syntetos, Boylan, and Disney (2009) also high-
light the suitability of the SBAmethod for such scenarios,
though its limitation lies in its inability to provide fore-
cast distributions (Hyndman and Athanasopoulos 2021).
Additionally, it is notable that when BSTS methods were
provided with time series based predictors and cate-
gorical and date features as regressors, they performed
significantly better than when demographic predictors
were used. A potential reason for this could be the
annual granularity of demographic predictors, whereas
this study focuses on monthly data.

Interestingly, foundational methods did not outper-
form topML-basedmethods.When trained as univariate
methods in a zero-shot setting, they performed simi-
larly to time series methods, offering no clear advantage.
Although foundational methods are typically trained
on large time series datasets from various domains
(Ansari et al. 2024; Garza, Challu, and Mergenthaler-
Canseco 2024; Rasul et al. 2024), the time series data
observed in the FPSC context pose additional challenges
such as noise, inaccuracy, and incompleteness (Bearak
et al. 2020). This highlights the need for pretraining
these methods on time series data from the humanitar-
ian sector, which shares similar data challenges. Carriero,
Pettenuzzo, and Shekhar (2024) found that foundational
methods perform better with stationary time series, and

they emphasise the importance of incorporating external
factors such as expert knowledge. Our study corroborates
this by showing that the incorporation of external regres-
sors significantly improved the forecasting performance
of the TimeGPT method.

Furthermore, the current methods applied to con-
traceptive demand planning demonstrate that both the
moving average and demographic methods underper-
form, with the demographic method being the worst.
One possible reason for this is that family planning indi-
cators are often based on assumptions (Akhlaghi, Seru-
maga, and Smith 2013), and these indicators are calcu-
lated at the national or global level (New et al. 2017),
making them less reflective of local patterns. Addition-
ally, the demographic method provides estimates of total
need rather than consumption, which can lead to dis-
crepancies between estimates and actual consumption
(Akhlaghi, Serumaga, and Smith 2013). Additionally, our
analysis of forecast performance across multiple time
horizons revealed that method performance remained
stable over time. Notably, the USAID competition sub-
missions were not able to outperform the top five meth-
ods in our study.

Finally, we assessed the trade-off between compu-
tational efficiency and forecast accuracy. While RF
achieved the high accuracy, it also demanded greater
computational resources. The Hybrid Weighted Averag-
ing, LGBM, and XGB methods offered a balanced solu-
tion, delivering high accuracy with moderate computa-
tional demands. time series, Bayesian, and foundational
methods were computationally efficient but less accu-
rate. TimeGPT with external regressors, though not the
most accurate, achieved a balance between accuracy and
efficiency, making it suitable for resource-constrained
contexts where moderate accuracy is acceptable.

In practice, healthcare sites generate forecastsmonthly,
and thus, moderately efficient methods like LGBM are
often a suitable choice. LGBM’s track record in fore-
casting competitions like M5 (Makridakis, Spiliotis, and
Assimakopoulos 2022), as well as its strong performance
in this study, further support its practical applicability.
Accordingly, our proposed hybrid combination approach
could be employed to combine judgment forecasts with
probabilistic forecasts generated using LGBM.

6.2. Managerial implications

Demand forecasting for contraceptives in developing
countries is a critical managerial task, given the volatile
and unpredictable nature of demand. However, many
field-level staff still rely on basic methods like mov-
ing averages or demographic projections, which often
fall short in addressing these complexities. Our research
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Figure 10. Runtime vs. forecast performance (The X-axis shows the runtime speed for each method as fast, moderate, or slow).

underscores the need to transition to advanced proba-
bilistic forecasting approaches that provide a range of
potential outcomes rather than a single-point estimate.
This shift can enable field-level staff to better anticipate
demand variability and uncertainty. Thus, our proposed
model can support procurement strategies by providing
probabilistic forecasts that help optimise order quanti-
ties based on demand uncertainty. This enables field level
staff to reduce both overstocking and understocking risks
by quantifying the uncertainty. Additionally, the model
enhances FPSC resilience by allowing inventory levels to
be adjusted dynamically based on forecast distributions,
improving responsiveness to demand fluctuations while
ensuring consistent contraceptive availability.

Additionally, our findings highlight the importance
of integrating domain expertise with ML forecasts to
address the limitations of purely data-driven approaches.

The variability in ML performance, particularly in cap-
turing extreme demand patterns, points to the value of a
hybrid approach. By allowing expert judgement to refine
ML outputs, this method improves transparency and
ensures alignment with the specific goals of FPSC. Field-
level staff can therefore benefit from actionable insights
while avoiding the ‘black box’ nature of many advanced
forecasting methods.

To further aid field-level staff, we developed a prac-
tical guideline (see Table A1 in Appendix 2) that com-
pares various forecasting methods tested in our study.
This resource builds on prior frameworks, such as the
Contraceptive Forecasting Handbook by USAID (2000),
but goes further by incorporating advanced techniques
like Bayesian modelling and hybrid methods tailored for
uncertain demand environments. This guideline serves
as a roadmap for field-level staff to select the most
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suitable method for their operational context, improving
decision-making quality and efficiency.

Lastly, one of the broader implications of our study is
its potential for replication in other sectors. The adapt-
ability of our proposed method means that it can be
applied to other humanitarian or public health contexts
that deal with volatile demand patterns, such as food
aid distribution or medical supply chains. The ability to
generalise this approach across various sectors ensures
that field-level staff in different industries can also bene-
fit from improved forecasting practices, thereby increas-
ing the overall reliability and resilience of their supply
chains.

6.3. Limitations and future directions

While our study provides valuable insights into con-
traceptive demand forecasting using a variety of meth-
ods, certain limitations need to be acknowledged. First,
although we compared the point and probabilistic fore-
cast performance across different methods ranging from
statistical, Bayesian,ML, to foundational, we did not con-
duct a detailed diagnostic analysis of how each method
behaves in the presence of volatile time series, such
as those typical of contraceptive demand. Volatile time
series can exhibit erratic patterns, discontinuations, and
unexpected spikes, complicating the forecasting process.

There are twomain challenges in addressing this issue.
First, methods trained in a global setting (where one
method handles all series) allow for easier diagnostics.
However, methods trained in a local setting (where one
method is fitted per time series) make diagnostic pro-
cesses significantly more complicated due to the large
number of methods involved. Second, there is no stan-
dard diagnostic framework that applies across different
model families, making it difficult to compare models
with varied structures. Future research should explore
the development of a standardised diagnostic framework
for diverse forecasting models, particularly in the con-
text of contraceptive demand, as such a framework could
improve our understanding of howmodels behave under
real-world complexities.

Another limitation is that our linear equal-weighted
forecasts did not perform as well as expected. This may
be due to the assumption that all forecasts were well-
calibrated, and thus their combination would be too.
However, the combined forecasts may have beenmiscali-
brated, resulting in lower performance. This issue applies
to our proposed methods as well. While some research
on forecast calibration exists, such as the work by Ranjan
and Gneiting (2010), further investigation is needed to
improve post-calibration processes in our hybrid meth-
ods and linear pooling approaches. Improving calibration

could enhance both accuracy and reliability in demand
forecasting.

On the other hand, FPSC is often subject to uncer-
tainties arising from complex demand patterns, variable
lead times, and dependence on donor support (Mukasa
et al. 2017). For instance, demographic factors like the
age structure of a region can influence contraceptive
demand. Haakenstad et al. (2022) highlighted that young
women (ages 15–25) tend to prefer short-term con-
traceptive methods, while older, married women are
more likely to use long-term methods. However, even
these behaviours are heavily influenced by social and
cultural beliefs (Sedgh, Ashford, and Hussain 2016).
In some regions, such as India, long-term contracep-
tive methods are popular among younger women (Hell-
wig et al. 2022). Infrastructure variability also poses
challenges, particularly in rural and underserved areas,
where logistical constraints can affect the distribution
and accessibility of contraceptive products. Furthermore,
Karimi et al. (2021) highlight that rural facilities often
face difficulties such as poor road conditions, inade-
quate storage, and delivery delays, further complicat-
ing supply chain operations. While field-level health-
care staff rely on their contextual knowledge to adjust
forecasts, much of this information remains undocu-
mented, making it difficult to systematically incorporate
into forecasting models. Identifying and defining such
influencing factors and integrating them into forecasting
methods remains an important research area for future
exploration.

Another key issue in the FPSC is the presence of
censored demand due to stockouts, under-reporting,
or discontinuations. In our modelling process, we did
not account for these scenarios. Future research should
explore how to develop forecasting methods that can
handle stockout data, mitigate its impact on decision-
making. Moreover, addressing the challenges of cold
starts (multiple origin points) and cold ends (discontinu-
ations) in time series forecasting is crucial, as these are
prevalent in FPSC and should be considered in future
methods.

Additionally, we did not consider product switch-
ing or substitution in response to availability or acces-
sibility issues. Unlike other supply chains, contracep-
tive product substitution is challenging because each
product has unique attributes, such as effectiveness and
coverage period. Moreover, women’s preferences are
influenced by health concerns–many women are reluc-
tant to switch products they have used long-term due
to perceived health risks (Sedgh and Hussain 2014).
Younger women, for instance, may avoid long-term
contraceptives, fearing they could affect future fertility
(Hellwig et al. 2022). Investigating how to incorporate
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product-switching behaviours into the forecasting pro-
cess is an important area for future research.

Another limitation of our study is we did not conduct
an exploratory analysis of the sources of expert bias in
judgemental forecasting. However, understanding when
and why human forecasters introduce biases is crucial for
improving hybrid forecasting accuracy. Future research
could address this gap by systematically analysing the
conditions under which expert bias occurs, particu-
larly in the FPSC context. This could involve access to
detailed expert forecasts, identifying systematic biases,
and developing mechanisms to mitigate their impact.
Such insights would further refine hybrid intelligence
models by improving the integration of human intuition
and algorithmic precision.

Finally, forecast distributions are just one aspect of
logistics management in contraceptive demand forecast-
ing. Decision-makers need to understand how to use
forecast data for FPSC operations like inventory optimi-
sation, distribution, and procurement. As Raftery (2016)
suggests, forecasts may only need to provide prediction
intervals or quantiles in some cases to inform decisions.
Whether this approach applies to FPSC remains an open
question. Future research should explore how to effec-
tively communicate probabilistic forecasts and integrate
them with inventory management, assessing the prac-
tical benefits for FPSC decision-making and improving
planning and strategy formulation.

7. Conclusion

Effective forecasting and planning within the FPSC are
essential to ensure that contraceptives are consistently
and readily available to those who need them (Mukasa
et al. 2017). Accurate and reliable demand forecast-
ing is therefore critical within the FPSC, as it supports
informed decision-making to ensure access to safe and
effective contraceptives. This, in turn, empowers indi-
viduals and communities to make informed reproduc-
tive health choices and helps reduce the unmet need for
contraceptives (Ahmed et al. 2019).

Our study points out the need to improve contra-
ceptive demand forecasting by combining probabilistic
forecasting methods with expert knowledge, especially
within the FPSC. Current forecasting methods often use
simple methods, like moving averages or basic demo-
graphic approaches, which don’t fully capture the com-
plexities of contraceptive demand. These patterns are
influenced by various factors, including stockouts, prod-
uct switching, and socio-demographic variables. While
system-generated forecasts are good at showing past
trends, literature shows that expert input is vital for refin-
ing forecasts in real-world situations with incomplete

data and changing demand (Fildes and Goodwin 2007).
Therefore, we propose a new framework that enhances
contraceptive demand forecasting by merging proba-
bilistic methods with expert insights. This combined
approach offers a promising solution for dealing with the
uncertainties and complexities of contraceptive demand
in developing countries.

Our proposed hybrid method, which combines point
forecasts with probabilistic distributions, offers a promis-
ing way to improve forecasts by incorporating expert
knowledge. The hybrid weighted averaging method
strikes a good balance between accuracy and effi-
ciency,making it effective for adjusting probabilistic fore-
casts where the algorithm has already accounted for
most uncertainties. Although the hybrid bias adjustment
method showed higher error rates, it allows for important
adjustments to probabilistic forecasts using point fore-
casts, especially in situations with stockouts and incom-
plete data, offering greater flexibility to integrate expert
judgment.

Furthermore, we review various forecasting methods,
including time series, Bayesian, foundational time series,
and machine learning methods, along with our new
hybrid methods. We provide insights into the strengths
and weaknesses of these methods, their computational
efficiency, and their most appropriate use cases. This
makes our study a useful guide for forecasting contracep-
tive demand.

In summary, our study addresses a key gap in
probabilistic forecasting for contraceptive demand and
presents a combined approach that blends algorithmic
and human expertise. The findings from this study
improve forecasting methods within the FPSC and offer
practical recommendations for better contraceptive fore-
casting in developing countries.

Notes

1. Performance Monitoring and Accountability 2020 survey.
2. unmet demand is defined as the percentage of women of

reproductive age who currently have a need for family
planning but are either not using any contraceptive meth-
ods or whose partners are not using them (Haakenstad
et al. 2022).

3. Foundational Time Series Methods: A class of pre-trained
machine learning models designed specifically for time
series forecasting, leveraging large-scale datasets to gen-
eralise across different forecasting tasks. These models
require no or minimal tuning and can handle complex
temporal patterns efficiently.

4. CQRA: A statistical method that combines multiple quan-
tile regressionmodelswhile enforcing constraints to ensure
coherence and interpretability of predictions. It enhances
robustness by optimising weights assigned to different
models under quantile-specific constraints, improving
accuracy in heterogeneous data settings.
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5. The estimation of the percentage ofwomenusing amodern
contraceptive product (Ahmed et al. 2019).

6. In this table, the term global forecasting refers to a method
where a single model is developed to handle all time series,
while cross-validation refers to a technique where the fore-
casting origin is moved forward by a fixed number of steps,
producing multiple forecasts at different points in time.

7. See Perera et al. (2019) for a detailed review on human
factors in supply chain forecasting.

8. See Wang et al. (2023) for a comprehensive review.
9. Pinball Loss: A proper scoring rule used to evaluate quan-

tile forecasts, penalising deviations based on whether the
predicted quantile overestimates or underestimates the
observed value. It ensures a well-calibrated probabilistic
forecast by emphasising accuracy across different quantile
levels.

10. We assume that stock distributed serves as a reasonable
proxy for consumption data, as we eliminated stockout
cases due to limited access to direct consumption data from
users.

11. Overall performance refers to the mean and median fore-
cast performance of methods calculated on the test sets
at forecast horizons h = 1, 2, 3 months, with time series
cross-validation applied to the target variable.
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Appendices

Appendix 1

Figure A1. The first panel shows the distribution of MASE values for forecasting methods across different horizons. The boxplots are
arranged in order of the median MASE values. The second panel shows the distribution of CRPS values for forecasting methods across
different horizons. Similarly, the boxplots are arranged in order of the median CRPS values.
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Appendix 2

Table A1. Guidelines for method selection in contraceptive demand forecasting.

Method Strengths Limitations Computational efficiency Suitable contexts Key assumptions

sNAÏVE Simple to implement, useful as a
baseline forecast model

Limited accuracy for non-stationary
data, ignores trends and seasonality

Very High (minimal compu-
tational cost)

Benchmarking more advanced models,
suitable for stable, short-term forecast-
ing

Assumes future demand will be exactly
the same as the last observed period

Moving Average Smooths short-term fluctuations,
useful for capturing general level
trends

Ignores seasonality, struggles with
long-term trends, lags in response to
sudden changes

Very High (minimal compu-
tational cost)

Suitable for stable demand with no
major seasonality; underperforms in
volatile environments

Assumes future demand can be esti-
mated by averaging past values within
a chosen window

ETS Captures trend, seasonality, and
noise; relatively easy to interpret

Struggles with high volatility, assumes
constant trend and seasonality

High (fast computational
time)

Data with clear seasonality and trends,
underperforms with volatile or intermit-
tent demand data

Assumes trend and seasonality are sta-
ble over time and can bemodelled sep-
arately using smoothing

ARIMA Strong for univariate, stationary time
series, handles seasonality well

Requires stationarity, can struggle
with high volatility, requires careful
model tuning

High (fast computational
time)

Suitable for stationary or seasonally
adjusted data, poor in volatile or
intermittent demand data

Assumes data is stationary or can be
made stationary through transforma-
tions (e.g. differencing)

SBA Designed specifically for intermittent
demand

Not suitable for continuous demand
or high variability; does not handle
probabilistic forecasting

Very High (minimal compu-
tational cost)

Effective for intermittent demand, with
both frequent and infrequent zeroes,
and with predictable inter-demand
intervals

Assumes demand occurs sporadically
with zero demand periods, and uses
probability-based predictions for inter-
demand intervals

Multiple Linear Regression Easy to interpret, handles multiple
predictors, including external factors

Struggles with non-linearity, multi-
collinearity, and complex interactions

Moderate (depends on num-
ber of predictors)

Environments with clear, linear relation-
ships between target variable and pre-
dictors

Assumes linear relationships between
the dependent and independent vari-
ables

LightGBM High accuracy in large, complex
datasets, handles many types of
predictors, efficient for large datasets

Can overfit if not carefully tuned, sen-
sitive to noise

Moderate (more efficient
than RF and XGBoost)

High-dimensional data with complex,
non-linear relationships

Assumes non-linear and complex rela-
tionships that can be captured via gra-
dient boosting algorithms

XGBoost High accuracy, robust to overfitting,
handles complex interactions well

Requires extensive tuning, computa-
tionally expensive compared to sim-
pler models

Moderate (more expensive
than LightGBM)

High-dimensional data, especially with
complex relationships among predictors

Assumes relationships between vari-
ables can be learned through gradient
boosting with proper tuning

Random Forest High accuracy, handles non-
linear patterns, robust for
point/probabilistic forecasting

Computationally expensive, can over-
fit on small datasets, slow for large
datasets

Low (slow, especially for
large datasets)

High-dimensional datasets with com-
plex, non-linear relationships

Assumes patterns in the data are driven
by non-linear relationships learned via
decision trees

Demographic Method Simple, interpretable, incorporates
demographic factors, useful for fore-
casting in new product categories or
long-term planning

Poor handling of dynamic or volatile
data, limited to demographic vari-
ables, not suitable for short-term fore-
casting

Very High (minimal compu-
tational cost)

Situations driven by demographic fac-
tors (e.g. population, age) or new prod-
uct forecasting

Assumes demographic factors like pop-
ulation size and age are primary drivers
of demand

Bayesian Structural Time
Series

Captures seasonality, trends, and
structural breaks; effective for small
datasets

Slow for complex models with many
predictors; struggles in volatile envi-
ronments

Moderate (higher with more
predictors)

Data with clear seasonality, trends, or
structural breaks

Assumes seasonality, trends, and causal
relationships can be captured through
a Bayesian framework

TimeGPT (with Regressors) Highly computationally efficient,
integrates external variables well

Performance degrades without
external regressors, limited for
non-structured data

Very High (minimal compu-
tational cost)

Low-resource environments with strong
external drivers (e.g. economic factors)

Assumes external regressors are
strongly correlated with demand pat-
terns and that the time series follows
stable patterns

Lag Llama Captures lag effects in demand, sim-
ple to implement

Limited to contexts with strong
lagged relationships; underperforms
in complex scenarios

High (higher computational
cost)

Situations with significant lag effects
between past and future demand

Assumes demand is heavily influenced
by past values with strong lag effects,
and future demand can be predicted by
historical lags

(continued).
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Table A1. Continued.

Method Strengths Limitations Computational efficiency Suitable contexts Key assumptions

Amazon Chronos Provides a strong baseline,
simple to use

Underperforms against advanced
machine learning models; limited
handling of external variables

High (higher computational
cost)

Univariate time series forecasting with
stationary or transformed data

Assumes simple historical patterns canbe
extrapolated without requiring complex
features or relationships

Hybrid Weighted Aver-
aging Model

Combines strengths of mul-
tiple models, stable across
forecast horizons

Sensitive to weight assignment, per-
formance degrades with poor weight
selection

Moderate (depends on under-
lying models)

Suitable for volatile or dynamic demand;
can incorporate expert input for proba-
bilistic forecasting

Assumes that multiple models capture
different aspects of the demand pat-
terns and can be effectively weighted to
improve forecasting accuracy

Hybrid Bias Adjustment
Model

Corrects systematic biases in
statistical models, improves
forecast accuracy

Limited impact if biases are minimal,
requires good bias detection

Moderate (depends on under-
lying models)

Ideal when systematic biases exist in
forecast models; useful in dynamic or
volatile demand environments

Assumes that consistent, predictable
biases exist in the base models and
that they can be adjusted for better
forecasting


	1. Introduction
	2. Research background
	2.1. USAID intelligent forecasting competition
	2.2. Human judgment in contraceptive demand forecasting
	2.3. Literature limitations summary

	3. Proposed hybrid approach
	4. Experiment setup
	4.1. Data collection and preprocessing
	4.2. Data exploration
	4.3. Forecasting setup
	4.3.1. Probabilistic forecasting using bootstraping
	4.3.2. Forecast combination

	4.4. Forecasting methods
	4.4.1. Time series methods
	4.4.2. Bayesian methods
	4.4.3. ML methods
	4.4.4. Foundational time series methods
	4.4.5. Demographic forecasting method
	4.4.6. Overview of candidate methods

	4.5. Performance evaluation

	5. Analysis and results
	5.1. Overal performance evaluation of point and probabilistic forecasts
	5.2. Point and probabilistic forecast performances across forecast horizons
	5.3. Forecast performance and computational efficiency

	6. Discussion
	6.1. Findings
	6.2. Managerial implications
	6.3. Limitations and future directions

	7. Conclusion
	Notes
	Acknowledgements
	Disclosure statement
	Data availability statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


