Innovating Cultural Heritage: Modified Smartphone Multispectral Imaging for the Pigment Analysis of Roman Egyptian Soter Shrouds

Rachel Coderre, Sean Billups, Phil Parkes, Kenneth Griffin

INTRODUCTION

EIFFTAIDD

CARDIFF

UNIVERSITY

PRIFYSGO

This research focuses on a collection of 28 fragmentary funerary shrouds and two cartonnage pieces from Thebes, Egypt. These artifacts, known as the Soter shrouds, date to the 2nd century A.D. and represent a significant example of Roman Egyptian funerary practices. This study employed modified smartphone multispectral imaging techniques to explore the pigment compositions and workshop techniques utilized in these textiles, revealing previously unseen details and offering a deeper understanding of their production and cultural context.

Multispectral Imaging (MSI) is a powerful analytical tool used in cultural heritage conservation, though traditional setups are often prohibitively expensive and inaccessible to smaller institutions and conservators. The use of a MSI system based on a modified smartphone provides a cost-effective, portable alternative. This technology retains the capabilities of traditional MSI techniques while making advanced imaging more accessible.

This collaboration highlights the potential for innovative and accessible technologies to drive advancements in cultural heritage research. By expanding the use of MSI into under-explored areas, we aim to make previously inaccessible analytical tools more widely available. A smartphone-based imaging system presents an attractive option for institutions and private practices seeking to maximize impact with limited resources. Beyond advancing our understanding of Roman Egyptian funerary textiles, this work paves the way for future research, utilizing affordable, innovative techniques that push the boundaries of traditional research methods.

UV IR Cut for astronomy (400-700nm). The handheld lights were IR850: Andoer IR49S Mini IR from "3C High-tech Store" and UV light in a photo studio. The variable color was RCL01 RGB Video Light from "lewinner."

The imaging techniques employed for the shrouds are detailed in the table below.

MSI Technique, Filter, and Illumination Source Used					
MSI Technique	Filters	Light Source			
Reflected Ultraviolet (UVR)	UV 365nm bandpass filter	UV 365nm light			
Ultraviolet-Induced Visible	Visible bandpass filter	UV 365nm light			
Fluorescence (UVF)					
Visible light (VIS)	Visible bandpass BCF UV IR cut for	Studio lights			
	astronomy (400-700nm)				
Visible-Induced Infrared	IR850 filter	RCL01 RGB (2000mAh) LED, red			
Luminescence (VIL)		excitation			
Reflected Infrared (IRR)	IR 850 nm longpass filter	Andoer IR495 Mini IR 850 light			
Visible Induced Visible	Visible bandpass BCF UV IR Cut for	RCL01 RGB Video Light from			
Luminescence (VIVL)	astronomy (400-700nm) + Hoya O(g)	"Lewinner", green excitation			
	orange filter 58mm				
Multiband Reflectance	400-650nm visible bandpass filter +	Lewinner RCL01 RGB			
Subtraction (MBRS)	680mn longpass filer + additional image	(2000mAh) adjustable LED, red			
	using 735nm using a 365nm UV	excitation + additional image			
	bandpass filter	using 740nm IR light source			

Figure 4: shroud EC177 images of 1: red channel only VIVL, 2: UVF, 3: VIS, and 4: VIVL. For identification of madder lake pigments Visible-induced Visible Fluorescence was employed, with green light excitation and a combination of long and short-pass filters to capture a bandpass image around 650nm.

Figure 1: Table detailing MSI techniques used.

Figure 7: A similar pattern has been observed in EC5971 and EC171, supported by visual and multispectral imaging (MSI) results. These objects have been combined to illustrate the patterning parallels. Notably, under FCIR processing, a faint, irregularly shaped dotting pattern of Egyptian blue can be detected along the shroud's border—dots that are nearly invisible to the naked eye. This continuity suggests that these fragments may have originated from the same shroud or been produced by a similar workshop or artisans. However, certain differences challenge this hypothesis. For example, the curvature of the black wave pattern on EC5971 contrasts with the opposite curvature seen in EC171.

R850: Andoer IR49S Mini IR from "3C High-tech Store"

Modified smartphone (Pixel 3a) with Moment phone case and filt

RCL01 RGB Video Light from "lewinner"

UURIG PH-14 phone mount and remote trigger

Figure 2: Modified Pixel 3a smartphone and components used for the multispectral imaging of this study.

Multi-Spectral Imaging Techniques for Each Object					
Object	Description	MSI techniques			
EC38	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC115	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC116	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC117	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC118	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC119	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC120	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC121	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, VIVL			
EC131	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC163	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC165	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, VIVL			
EC166	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC167	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC169	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC170	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC171	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC172	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC173	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC174	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC175	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, VIVL			
EC176	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, VIVL			
EC177	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, VIVL			
EC185	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, VIVL			
EC5971	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
EC5972	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR			
W870	Cartonnage	VIS, UVF, UVR, VIL, IRR, FCIR			
W945	Cartonnage	VIS, UVF, UVR, VIL, IRR, FCIR			
W1027	Shroud	VIS, UVF, UVR, VIL, IRR, FCIR, MBRS			
W1039	Shroud	VIS, UVF, IRR, VIVL			

Figure 5: EC115 under 1: VIS, 2: FCIR, 3: UVF, and 4: IRR. The luminescence of Egyptian blue (square) and partial luminescence of 'secondary blue' (circle) can be seen under FCIR (top right). This suggests possible ancient reuse, overpainting, or mixing of Egyptian blue with other pigments. Egyptian blues have been found in mixtures to enhance the brightness of other pigments during the Roman period (Siddall, 2006).

Figure 8: Two shroud (EC170 and EC115) fragments digitally stitched depicting the lower part of a Soter style shroud (sandaled feet framed by black jackals). The Pb-based pink dots emit a pronounced glow under FCIR, an effect not observed in other shrouds with Pb-based pinks (notated in squares). This could indicate similar pigment mixtures for the blues and pinks used in both fragments, suggesting a common workshop or source for their production.

Museum	Object	Century	Methods	Colours	Pigments
Museum		1 at 2 and			Fignients
Museo Civico	MCABO EG 1974	1st-2nd	FTIR,	White, orange-	Egyptian blue, Egyptian
Archeologico		century	HPLC/MS,	red, red-	green, calcite white,
(2024)		C.E.	GC/MS, OM,	brown, dark	red lead, red ochre,
			SEM/EDS	red, pink,	madder, unknown
				yellow, blue,	organic yellow dye,
				black	carbon black
Fitzwilliam	E.GA.5.1943	200 CE -	Unspecified		Carbon black,
Museum,		300 CE	elemental		unidentified organic
Cambridge			analysis, OM		pink, red ochre, brown
(1992)					ochre, yellow ochre, Cu
					containing green
British	68950	Late 1 st	OM,	Black, pink,	Charcoal black, carbon
Museum		– early	microchemic	green, yellow,	black, lake pigment,
(1984)		2 nd	al testing,	brightest blue,	unidentified yellow,
		century	furfural test,	brick red, red	Egyptian blue, green
		C.E.	saponificatio		earth, red lead, red
			n		ochre
Egypt Centre	EC38, 115, 116,	2 nd	MSI, pXRF,	Black, red,	Carbon black, red lead,
(2024)	117, 118, 119,	century	PLM	blue, pink,	red ochre, Cu blue, Cu
	120, 121, 131,	C.E.		yellow,	green, madder lake,
	163, 165, 166,			orange, green,	calcium based white,
	167, 169, 170,			white <i>, brown,</i>	green earth, orpiment
	171, 172, 173,			grey/discolour	
	174, 175, 176,			ation, purple,	
	177, 185, 5971,			inpaint	
	5972, W870,				
	<i>W945,</i> W1027,				
	W1039				

Figure 6: W1027 under MRBS, VIS, FCIR and UVF imaging techniques. MRBS was explicitly utilized to rule out the presence of indigo. According to a study from Dyer and Newman (2020), indigo is known to appear as bright red under FCIR, and the bottom left image shows a partial red appearance (circle). This led to the use of MBRS, which ultimately did not point to the use of indigo. If indigo were present, it should have appeared as bright white (top left).

Figure 9: Additional analyses of the pigments noted in these studies could yield further comparative insights. This table intentionally focuses on shroud analysis rather than broader Soter group coffins, etc., to exclusively focus on shroud-specific information.

Figure 3: Table detailing MSI techniques used per object analyzed.

CONCLUSIONS

Subtle patterning and pigment application similarities across shroud fragments suggest standard production methods, possibly involving multiple workshops. Further investigation into the connections between fragments such as EC170, EC115 as well as EC5971, and EC171 could provide crucial insights into workshops associated with Roman Egyptian funerary textiles. The similarity between EC170 and EC115 could indicate similar pigment mixtures for the blues and pinks used, suggesting a common workshop or source for their production. The consistent pigment behavior and decorative features strongly suggest a connection between the fragments.

REFERENCES:

Bilson, T. (1992). The Conservation Of A Roman Egyptian Painted Shroud Fragment. The Conservator, 16(1), pp.3–11. doi:https://doi.org/10.1080/01400096.1992.9635620. / Dyer, J. & Newman, N. (2020). Multispectral Imaging Techniques Applied to the Study of Romano-Egyptian Funerary Portraits at the British Museum. Mummy Portraits of Roman Egypt: Emerging Research from the APPEAR Project, J. Paul Getty Trust. / Hillyer, L. (1984). The conservation of a group of painted mummy cloths from Roman Egypt. Studies in Conservation, 29(1), pp.1–9. doi:https://doi.org/10.1179/sic.1984.29.1.1. / Piccirillo, A., Buscaglia, P., Caliri, C., Francesco Paolo Romano, Danilo Paolo Pavone, Eva Luna Ravan, Botticelli, M., Conti, C., Catrambone, M., Costanza Miliani, Degano, I., Andreotti, A., Genta, R., Cardinali, M., Pozzi, F. and Picchi, D. (2024). Unraveling the mummy's shroud: A multi-analytical study of a rare painted textile from Roman Egypt. Journal of Cultural Heritage, 68, pp.107–121. doi:https://doi.org/10.1016/j.culher.2024.05.006. / Vandenbeusch, M. (2022). A Soter (re)connection. Five fragments of shrouds from Roman Egypt at the British Museum. Mitteilungen Des Deutschen Archäologischen Instituts Abteilung Kairo, 76/77.