
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/179288/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zhang, Yuxuan, Pullin, Rhys , Oelmann, Bengt and Bader, Sebastian 2025. On-device fault diagnosis with
augmented acoustic emission data: a case study on carbon fiber panels. IEEE Transactions on

Instrumentation and Measurement 74 , 2534912. 10.1109/TIM.2025.3577849

Publishers page: http://dx.doi.org/10.1109/TIM.2025.3577849

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

On-Device Fault Diagnosis with Augmented
Acoustic Emission Data: A Case Study on Carbon

Fiber Panels
Yuxuan Zhang, Graduate Student Member, IEEE, Rhys Pullin, Bengt Oelmann,

and Sebastian Bader, Senior Member, IEEE

Abstract—Acoustic Emission (AE)-based fault diagnosis in
Structural Health Monitoring (SHM) systems faces challenges
of data scarcity and model overfitting due to the complexity of
AE data acquisition and the high cost of labeling. To address
these issues, this study systematically explores various data
augmentation techniques for AE signal processing and evaluates
their impact on model robustness and accuracy. Furthermore,
given the complexity of traditional machine learning (ML)
models and their deployment challenges on resource-constrained
embedded devices, we investigate lightweight ML algorithms
and propose a Tiny Machine Learning (TinyML)-based fault
diagnosis approach. Experimental validation on a carbon fiber
panel fault diagnosis case demonstrates that the proposed method
significantly improves classification performance under data-
scarce conditions while enabling real-time fault diagnosis on
embedded systems. These findings underscore the potential of
integrating data augmentation, lightweight ML algorithms, and
TinyML to enhance both diagnostic accuracy and real-time
performance in SHM applications.

Index Terms—acoustic emission, fault diagnosis, TinyML, data
augmentation, non-destructive testing, structural health monitor-
ing, embedded devices, real-time measurement

I. INTRODUCTION

STRUCTURAL health monitoring (SHM) is a critical
technology for ensuring the safety and reliability of

engineering structures, including wind turbine blades, civil
infrastructure, and railway vehicles and track structures [1]. By
monitoring structural conditions, SHM systems can promptly
detect potential damages and predict performance degradation
trends, thereby mitigating safety risks and reducing economic
losses caused by sudden failures [2]. Typical SHM systems
involve sensor data acquisition, signal processing, feature
extraction, and state evaluation, and are widely applied in
structural safety assessment, health monitoring, and damage
detection [3].

Among the various tasks in SHM, fault diagnosis plays
a crucial role [4], [5]. It involves detecting, identifying, and
classifying structural damage using sensor data, such as acous-
tic, vibration, strain, and temperature signals [6]. Additionally,
fault diagnosis assesses damage severity and predicts its pro-
gression, offering valuable support for maintenance planning

Yuxuan Zhang, Bengt Oelmann and Sebastian Bader are with the De-
partment of Computer and Electrical Engineering, Mid Sweden University,
Sundsvall, SE-85170, Sweden. Rhys Pullin is with the School of Engineering,
Cardiff University, Cardiff, CF24 3AA, United Kingdom.

Corresponding author: Sebastian Bader (email: sebastian.bader@miun.se).
Manuscript received mm dd, yyyy.

and operational safety [7]. Traditional methods in fault di-
agnosis have relied heavily on signal processing techniques,
such as Fourier and wavelet transforms, to manually extract
features like amplitude, frequency, and energy [8], [9]. These
approaches are often praised for their physical interpretability
but face significant limitations when dealing with complex,
multidimensional damage modes. As a result, their applicabil-
ity in modern SHM, where materials and damage mechanisms
are increasingly complex, has been constrained.

In recent years, the advent of data-driven approaches has
revolutionized fault diagnosis in SHM [10]. Machine learning
(ML) and deep learning (DL) models, with their ability to
automatically extract features and identify patterns from large
datasets [11], have demonstrated remarkable success in fault
detection and classification tasks [12]. These methods, includ-
ing algorithms such as Artificial Neural Networks (ANNs),
Support Vector Machines (SVMs), Random Forests (RFs), and
Convolutional Neural Networks (CNNs), can uncover intricate
relationships in high-dimensional data that traditional tech-
niques often overlook [13]. For instance, CNN-based methods
have achieved over 99% accuracy in identifying damage in
structures such as bridges and concrete panels [14]. However,
these approaches come with notable challenges. Their reliance
on large amounts of labeled data, high computational complex-
ity, and poor real-time performance often limit their practical
deployment in SHM applications.

Acoustic Emission (AE) technology is a widely used, non-
destructive fault diagnosis method that excels in identifying
early-stage damage, such as micro-cracks, fiber breakage, or
interfacial separation, in composite materials [15]. AE signals,
generated by the release of high-frequency elastic waves dur-
ing the growth of structural defects, are particularly effective
for detecting subtle damage mechanisms that may not be
visible through traditional inspection methods [16]. AE-based
fault diagnosis methods, when integrated with ML algorithms,
have shown great potential for improving SHM accuracy [17].
For instance, researchers have combined AE with ML models
such as RF and CNNs to classify cracks in concrete and
additive manufacturing processes, achieving high classification
accuracy [18]. Despite these successes, AE data acquisition is
often expensive, time-consuming, and noisy, while the scarcity
of large-scale labeled datasets poses additional challenges for
training robust ML models.

To address these limitations, data augmentation has emerged
as a key technique to enhance the performance of data-

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2

driven models [19]. By applying transformations to original
data while retaining its labels, data augmentation effectively
increases the diversity of training samples, making ML mod-
els more robust and generalizable [20]. For example, noise
injection, time-warping, and signal transformation techniques
have been widely adopted in fields like image recognition and
audio classification to expand training datasets and improve
model performance [21]. In SHM, AE signals augmented with
methods such as Generative Adversarial Networks (GANs)
have been shown to boost damage classification accuracy
by up to 10% [22]. However, the use of data augmentation
for AE signals remains relatively unexplored, with limited
studies systematically comparing the effectiveness of different
techniques. Although the aforementioned study proposed a
novel GAN-based model and compared it with other GAN
variants, it did not include comparisons with traditional data
augmentation approaches, leaving a gap in understanding their
relative performance.

In addition to data challenges, the increasing demand for
real-time fault diagnosis poses further difficulties for SHM
systems. Traditional data-driven methods often rely on deep
and computationally intensive models, which are not suitable
for deployment on resource-constrained devices like micro-
controller units (MCUs) or edge devices [23]. Cloud-based
solutions, while offering the computational power needed for
complex models, are constrained by bandwidth limitations and
transmission latency, making them unsuitable for real-time
applications [24]. To overcome these issues, researchers are
turning to Tiny Machine Learning (TinyML), a paradigm that
enables the deployment of lightweight ML models on low-
power embedded devices [25]. TinyML not only eliminates
data transmission delays but also allows for on-device data
processing and immediate fault detection [26]. For example,
TinyML has been successfully applied in industrial machine
anomaly detection, enabling real-time diagnostics directly on
MCUs [27]. Despite its promise, current research in this area
often focuses on individual ML models and lacks comprehen-
sive comparisons of lightweight algorithms for SHM.

To tackle the above-mentioned challenges, this work pro-
poses an efficient on-device TinyML system-level solution
that is trained on an augmented AE dataset, thereby jointly
mitigating the problems of data scarcity and real-time fault
diagnosis. Using fault classification in carbon fiber panels as
a case study, the principal contributions are summarized as
follows:

1) Systematic investigation of AE data augmentation:
Multiple augmentation strategies, including noise in-
jection and signal transformations, are systematically
explored and compared. To the best of our knowledge,
this is the first comprehensive analysis of their impact on
small-scale AE datasets and model robustness, providing
new insights into improving data quality for AE-based
machine-learning models.

2) In-depth evaluation of lightweight classifiers:
Resource-constrained scenarios are addressed by
thoroughly assessing lightweight models (RFs, CNN
and SVM etc.) customized for embedded, AE-based
fault classification. The study elucidates the trade-offs

among model complexity, classification accuracy, and
real-time feasibility, offering practical guidance for
model selection in AE applications.

3) Real-time AE fault-diagnosis pipeline for embedded
devices: A complete real-time AE fault-classification
pipeline is developed and optimized for low-power
embedded hardware. Extensive experiments confirm its
accuracy, inference latency, and resource efficiency,
demonstrating deployability in industrial environments
and paving the way toward practical, real-time AE
monitoring systems.

The remainder of this paper is organized as follows: Section
2 introduces the AE dataset. Section 3 reviews ML algorithms
used, data augmentation methods, evaluation methods and
TinyML deployment toolchain. Section 4 presents experimen-
tal results and analysis. Finally, Section 5 concludes the paper
and suggests future research directions.

II. DATASET

In this study, acoustic emission data were obtained from a
previous study of carbon fiber panels in [3]. The subsequent
sections will elaborate on the following aspects: the prepara-
tion of the panels, the configuration of the acoustic emission
devices, the testing protocol, and the results derived from the
collected dataset.

A. Panel Preparation

A 500 mm × 500 mm carbon fiber reinforced polymer
(CFRP) panel was fabricated using unidirectional pre-preg
T800S carbon fiber, constituting 56.6% by volume, embedded
in an epoxy resin matrix (M21/35%/UD268/T800S, Hexcel
Corporation). The complete panel is depicted in Fig. 1a. The
final laminate structure comprised eight layers, arranged in
a [0/90]2s configuration, resulting in a total thickness of 2.2
mm, which aligns closely with the manufacturer’s specified
thickness of 2.1 mm. To facilitate matrix cracking within the
innermost 0° layers (3rd and 6th layers), a 25 mm crack was
introduced by incising the fibers with a knife. This procedure
ensured the alignment of the cracked layers, thereby enhancing
the probability of matrix cracks occurring in this region, as
illustrated in Fig. 1b.

The panel was cured in an autoclave following the manu-
facturer’s specifications and subsequently subjected to C-scan
inspection to confirm the absence of macroscopic defects or
curing failures. To accommodate tensile loading, two holes
were drilled into the panel and reinforced with aluminum
square tabs. These tabs were bonded using Araldite glue prior
to drilling, with a subsequent C-scan conducted to ensure that
no damage occurred during the process. The final geometry
of the panel is presented in Fig. 1c.

B. Acoustic Emission Setup

The AE setup utilized a Vallen AMSY-4 acquisition system
coupled with Physical Acoustics Corporation WD sensors and
Vallen AEP3 pre-amplifiers set to a gain of 34 dB. The entire
front-end is pre-configured by the manufacturer and is factory

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 3

Fig. 1. Test subject fabrication and preparation: (a) Entire CFRP panel, (b) cut plies schematic, (c) artificial crack panel after manufacturing [3].

Fig. 2. Experimental setup for dataset generation: (a) Panel fitting in the tensile machine, (b) panel with sensors and fitted in the testing machine, (c) C-scan
images of the panel before impact, (d) C-scan images of the panel after impact, (e) C-scan images of the panel end of test, (f) impact machine and panel
fitting [3].

tuned for high sensitivity in the 95-1000 kHz ultrasound band,
allowing reliable capture of high-fidelity AE signals without
any additional signal conditioning. This means that a 95-
1000 kHz hardware bandpass filter is built in to suppress
low-frequency mechanical noise and prevent aliasing. The
waveform is sampled at 5 MHz and has a recording length
of 4096 points, which corresponds to 819.2 µs. According to
AE theory, damaged materials release transient elastic waves
in the 100–1000 kHz range, which are recorded as AE events
[3], [28]. Low-frequency disturbances from testing machines,
motors, and hydraulic servo controllers (typically below 50
kHz), as well as structural modal vibrations (20–80 kHz), are
thus effectively excluded [29]. The acquisition threshold was
set to 44.9 dB. Finally, a two-resolution square-lattice net-
work was installed for Delta-T location calibration; however,
because this study does not focus on damage localisation, the
calibration procedure is not discussed in detail here.

C. Testing Plan

Following Delta-T calibration using the tensile machine (as
depicted in Fig. 2a), the panel was mounted in the load testing
machine (Fig. 2b) utilizing pins that passed through each
extension bar to secure the panel. The panel was then bolted
to the extension bars. The testing protocol consisted of fixed-
amplitude batches of 5000 cycles at a frequency of 1 Hz, with
C-scans conducted after each batch to monitor the progression
of damage. Load increments were applied based on AE data,
maintaining an R ratio (minimum load/maximum load) of 0.1
to prevent compressive loads and ensure sufficient preload.
After acquiring adequate AE signals from the artificially
introduced crack region, the panel was subjected to an impact
using an Instron Dynatup 9250HV impact machine, delivering
14J of energy at a location away from the crack (Fig. 2f).

This impact was designed to generate signals from both the
pre-existing crack and the resulting delamination. The panel
was subsequently retested, and C-scans were performed after
each load batch. The scan images, shown in Fig. 2c–e, clearly
indicate significant damage in the vicinity of sensor 5.

D. Dataset Content

For the purposes of classification reproducibility, only the
signals recorded by sensor 5 were considered, as detailed in
[3]. The collected AE data were categorized into two groups
based on signal characteristics such as amplitude, duration, rise
time, number of zero-crossings, energy, frequency center-of-
gravity, and peak frequency, utilizing self-organized mapping,
as well as energy and activity maps. The resulting labeled
dataset comprises a total of 207 AE signals, including 103
signals associated with matrix cracking and 104 signals related
to impact-induced in-plane delamination. Figure 3 provides
examples of the two types of waveforms, with each sample
consisting of 4096 data points.

III. METHODS

This section outlines the proposed methodology for on-
device carbon fiber panel fault classification, which includes
four key components: ML algorithm selection, data augmenta-
tion techniques, evaluation methods for robustness and accu-
racy, and deployment via the TinyML toolchain. The workflow
of the study is depicted in Fig. 4. The methodology begins with
training multiple ML algorithms using both the raw AE dataset
and augmented data. Data augmentation techniques, combin-
ing traditional signal transformations and deep learning-based
generative approaches, are employed to expand the dataset and
improve model robustness. The robustness and accuracy of the

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 4

Fig. 3. Examples for AE signals waveforms for (a) delamination faults and
(b) matrix cracking faults.

Raw AE data

207 samples

ML algorithm selection

from SVM, RF, LG etc.

AutoML (PyCaret)

Best algorithm: RF

Data augmentation techniques

(traditional: jittering, scaling etc.

+ DL: DCGAN)

2000 samples for

each technique

Robustness & accuracy

evaluation with different

SNR Gaussian no ise

CNN proposed

in [22]

RF &CNN

on­dev ice

dep loyment

Fig. 4. Proposed carbon fiber panels damage identification approach on MCU.

ML models are evaluated under varying conditions of signal-
to-noise ratio (SNR) to simulate real-world scenarios. Finally,
the best-performing models are deployed on an MCU using
the TinyML toolchain to enable real-time fault classification.

A. ML Algorithms Selection

In this study, we employed PyCaret1, an open-source Python
library for ML, to streamline the experimental workflow from
hypothesis formulation to insight generation. PyCaret enables
rapid and efficient execution of end-to-end ML experiments,
making it particularly suitable for classification damage types
in carbon fiber panels. A total of 12 ML algorithms were
evaluated in this study, including Random Forest Classifier,
Gradient Boosting Classifier (GBC), AdaBoost Classifier, Ex-
tra Trees Classifier, Decision Tree Classifier (DT), Linear
Discriminant Analysis (LDA), K-Neighbors Classifier, Naive
Bayes, Logistic Regression (LR), Ridge Classifier, Quadratic
Discriminant Analysis (QDA) and Support Vector Machine.
Cross-validation was conducted during training to assess the
performance of each estimator in the library, ensuring reliable

1https://github.com/pycaret/pycaret

TABLE I
OVERALL ARCHITECTURE OF THE 1D CNN MODEL PROPOSED IN [24].

Layer Hyperparameters Feature Maps Weights

1 Input 1000x1 1000x1 0
2 Conv1D-1 7x1 32@994x1 256
3 MaxPool-1 8x1 32@124x1 0
4 Conv1D-2 5x1 48@120x1 7,728
5 MaxPool-2 4x1 48@30x1 0
6 MaxPool-3 4x1 48@7x1 0
7 Flatten - 336x1 0
8 Dense-1 32 32x1 10,784
9 Dense-2 32 32x1 1,056

10 Output 2 2x1 66

Total Parameters 19,890

model evaluation. The hyperparameters of each algorithm were
automatically optimized using the PyCaret tool. After training,
we extracted the corresponding model’s optimal hyperparame-
ters and manually trained the model using Scikit-learn2, saving
it for further testing.

For the convolutional neural network (CNN) approach, we
utilized a lightweight 1-D CNN model adapted from the
architecture proposed in [24] for AE signal-based damage clas-
sification in concrete materials. The model processes raw AE
signals as input and outputs damage classifications. However,
while the original CNN was designed to classify three damage
types, our application focused on two damage types, neces-
sitating adjustments to the output layer’s hyperparameters to
reflect this difference. In addition, the raw AE signal samples
are downsampled to 1000x1 from 4096x1 to fit the input of
CNN.

The CNN architecture consists of two 1-dimensional con-
volutional layers for feature extraction, three max-pooling
layers for dimensionality reduction, and three fully connected
dense layers for classification. Sparse categorical cross-entropy
was used as the loss function, optimized using the Adam
optimizer with a learning rate of 0.0001. All ML and CNN
models were implemented and trained using TensorFlow3 on a
Windows platform, leveraging the CUDA framework for GPU
acceleration with a GeForce GTX 3090 GPU. The detailed
CNN architecture is outlined in Table I.

It is important to note that we deliberately refrain from
designing new algorithms in order to evaluate the general-
izability of the proposed data augmentation and quantization
deployment pipeline. By keeping the model architecture un-
changed, we isolate the experimental variables strictly at the
data processing level, thereby avoiding performance fluctu-
ations introduced by new models. This allows for a clearer
quantification of the contribution of data augmentation itself
and facilitates reproducibility and fair comparisons in future
studies.

2https://scikit-learn.org/stable/
3https://www.tensorflow.org

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 5

B. Data Augmentation Techniques

To address the challenges posed by the small size of
the original AE dataset, data augmentation techniques were
employed to generate additional samples, enhancing model
robustness and generalization. In this study, half of the original
dataset (103 samples) was set aside as the test dataset for
performance evaluation, while the remaining half (104 sam-
ples) was used as the base for augmentation. The augmented
dataset was then used to train and validate the best algorithm
in selection process and CNN model proposed in authors’
previous study.

This study explores seven traditional time-series signal
augmentation methods and one deep learning-based approach,
DCGAN. These techniques were applied directly to the raw
AE data to preserve its original characteristics while expanding
the dataset. Each augmentation technique was used to generate
2,000 samples (1,000 for each class), ensuring sufficient
data for model training and evaluation. These augmented
datasets were critical in avoiding overfitting, particularly for
the CNN model, while improving classification performance
and robustness. We intentionally rely only on established data
augmentation techniques, rather than introducing new ones, to
create a repeatable common baseline that enables like-for-like
comparisons across studies. The impact of each augmentation
method on model accuracy and robustness is discussed in
Section 4. The data augmentation techniques that have been
considered are:

Jittering: The jittering data augmentation technique can
be mathematically represented in (1). Where X denotes the
original data, X′

j represents the augmented data, and N (0, σ2)
is a Gaussian noise vector with mean 0 and variance σ2.
The parameter σ controls the standard deviation of the noise
distribution. In this work, we set σ to 0.0001 to introduce a
small but meaningful perturbation to the data.

X′
j = X+N (0, σ2) (1)

Scaling: The scaling data augmentation technique involves
multiplying each element of the input data X by a scaling
factor drawn from a Gaussian distribution. Specifically, the
scaling factor is a random variable following a normal distri-
bution with a mean of 1 and a variance of σ2. Mathematically,
this process can be expressed in (2). Where X′

s represents the
augmented data. By setting σ to 0.1, the scaling factors are
kept close to 1, introducing slight variations to the data without
significantly altering its original characteristics.

X′
s = X · (1 +N (0, σ2)) (2)

Magnitude Warping: Magnitude warping can be inter-
preted as adding smoothly varying noise to all data points
across the AE sample to simulate natural variations. The
process is divided into two parts - Generate Random Curves
and Magnitude Warping. The random curves are generated by
defining a set of knots and fitting a cubic spline to Gaussian-
distributed values at these knots. The process can be described
as in (3, 4, 5). By setting σ to 0.001, we ensure that the values
drawn from the Gaussian distribution are centered around 1
with very small deviations, leading to minor and controlled

perturbations of the original data. Where α are the knot
positions, β are the Gaussian-distributed values at these knots,
fCubicSpline is the cubic spline function and γx(t) is the cubic
spline function fitted to the knot positions and values.

α =

[
0,

N

k + 1
, 2 · N

k + 1
, . . . , N

]⊤
(3)

β = N (1, σ2, k + 2) (4)

γx(t) = fCubicSpline(α, β) (5)

Then the magnitude warping is applied by element-wise
multiplication of the input data with the generated random
curve as in (6). Where X is the original data, X′

m is the
warped data and γx(i) is the value of the random curve at
position i.

X′
m[i] = X[i] · γx(i) for i = 0, 1, . . . , N − 1 (6)

Time Warping: The time warping distorts the time steps
of the input data by generating random curves and interpo-
lating the data accordingly. There are three steps to achieve
it-Generate Random Curves, Distort Time Steps and Time
Warping. The first step is the same as in magnitude warping.
The second step uses the generated random curves as time
intervals, cumulates these intervals to create distorted time
steps, and scales them to match the original time range. The
mathematical representation is shown in (7).

τcum = Γ · N − 1

Γ[−1]
(7)

Where
Γ = fCumSum

(
γx
(
frange(N)

))
(8)

γx(t) is the same function as in (5), frange(N) represents
the range of indices from 0 to N − 1, and fCumSum is the
cumulative sum function. The resulting τcum represents the
distorted time steps, which are then used to warp the original
data shown in (9). X′

t is the augmentated data.

X′
t[i] = X(τcum[i]) for i = 0, 1, . . . , N − 1 (9)

Random Sampling: Random sampling is used to augment
time series data by selecting random timesteps for resam-
pling. Let N denote the length of the original time series
X = {Xt}N−1

t=0 , and M be the number of samples, where
M < N . Random indices {ti}M−1

i=0 are generated in (10, 11).

t0 = 0, tM−1 = N − 1, (10)

ti ∼ Uniform(1, N − 2), for i = 1, 2, . . . ,M − 2. (11)

The selected indices {ti} are sorted to maintain order, and
the resampled time series X′

r is obtained by interpolating the
original signal X at the uniformly spaced time points τk = k
for k = 0, 1, . . . , N −1 shown in (12). This method generates

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 6

variations by resampling the signal at random intervals while
preserving the overall structure of the data.

X′
r = X(ti) interpolated at τk. (12)

Permutation: Permutation is applied to augment time series
data by randomly reordering segments of the signal. Let N
denote the length of the original time series X = {Xt}N−1

t=0 ,
and nperm = 4 be the number of segments. The segment
boundaries {si}

nperm
i=0 are determined in (13, 14).

s0 = 0, snperm = N, (13)

si ∼ Uniform(minSegLength, N − minSegLength) (14)

subject to si being sorted and si+1 − si > minSegLength for
all i.

Once the segment boundaries are defined, the segments are
permuted according to a random permutation π shown in (15).
Where, X[sπ(i),sπ(i)+1) represents the i-th segment of the time
series, selected based on the random permutation π applied
to the indices {0, 1, . . . , nperm − 1}. This method introduces
variability by rearranging non-overlapping segments of the
time series, preserving local temporal patterns while altering
the global structure. The parameters used in this work are
nperm = 4 and minSegLength = 100, ensuring meaningful
segment sizes and sufficient variation in the augmented data.

X′
p =

nperm−1⋃
i=0

X[sπ(i),sπ(i)+1). (15)

Gaussian Noise: Gaussian noise is a very common tech-
nique for data augmentation. In this paper, Gaussian noise with
a signal-to-noise ratio (SNR) of 95 dB is used. Firstly, the av-
erage signal power is calculated in dB, then the required noise
power is calculated in Watts and finally the generated Gaussian
noise is added to the original signal. The mathematical process
can be represented as follows in (16, 17, 18).

dBSigAvg = 10 log10

(
1

N

N∑
i=1

avolts[i]
2

)
(16)

WNoiseAvg = 10

(
dBSigAvg−dBTargetSnr

10

)
(17)

X′
g = X+N

(
0,
√
WNoiseAvg

)
(18)

DCGAN: The DCGAN integrates the principles of CNNs
and GANs. Specifically, the generator employs a CNN archi-
tecture to map random vectors (typically noise) into image
space, producing image samples that closely resemble real im-
ages. The discriminator, also a convolutional neural network,
is tasked with distinguishing between the synthetic images
generated by the generator and the actual real images. The
primary objective of a GAN is to train the generator and
discriminator in a minimax game, which is governed by (19).

min
G

max
D

V (D,G) =Ex∼pdata [logD(x)]

+ Ez∼pz
[log(1−D(G(z)))].

(19)

Fig. 5. Block diagram of the DCGAN model generation.

where:
• x is a real sample from the training data.
• z is a noise vector sampled from a prior distribution pz(z)
• G(z) is the fake sample generated by the Generator from

noise z.
• D(x) is the Discriminator’s output probability that x is

real.
• D(G(z)) is the Discriminator’s output probability that

G(z) is real.
The standard DCGAN architecture, depicted in Fig. 5,

aims to maximize the discriminator’s ability to differentiate
between real and generated images. This framework can also
be adapted for data augmentation of one-dimensional sound
signals. During adversarial training, the generator attempts to
produce AE signals that are sufficiently realistic to deceive the
discriminator, while the discriminator endeavors to distinguish
between the fake AE signals generated by the generator and
the authentic AE signals. This competitive and adversarial
interaction drives the two networks to progressively enhance
their performance, ultimately enabling the generator to create
highly realistic AE signals.

The structure of the generator and discriminator is detailed
in Table II. The discriminator D comprises five convolutional
layers, each followed by a batch normalization layer and an
activation function layer. The convolutional layers are defined
by four key parameters: the number of filters, filter size, stride
length, and padding. In this configuration, the stride length is
set to 2 for all layers except the first, which uses a stride
length of 1. The choice of a stride length of 2 in most layers
is intended to retain more detailed features of the signal,
thereby enhancing the model’s performance. As the feature
map size is halved after each convolution with a stride of
2, the number of filters in each successive layer is doubled to
preserve the representational capacity. Zero padding is applied
to the input of each convolutional layer to prevent alterations
in the output size due to the convolution process. Larger filters
are used in the first layer to capture broader information,
while the last layer employs a sigmoid activation function
for binary classification (0 or 1). The generator G consists of
five transposed convolutional (inverse convolutional) layers,
each also followed by a batch normalization layer and an
activation function layer. Each transposed convolutional layer,
except for the final one, corresponds to a convolutional layer
in the discriminator. The rectified linear unit (ReLU) activation
function is applied to all layers in G except the output layer,

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 7

TABLE II
ARCHITECTURE OF DCGAN GENERATOR AND DISCRIMINATOR

Block Generator G Discriminator D

1 DeConv-BN-ReLU Conv-BN-LReLU
Filter: (512, 64, 1) Filter: (64, 4, 2)

2 DeConv-BN-ReLU Conv-BN-LReLU
Filter: (256, 4, 2) Filter: (128, 4, 2)

3 DeConv-BN-ReLU Conv-BN-LReLU
Filter: (128, 4, 2) Filter: (256, 4, 2)

4 DeConv-BN-ReLU Conv-BN-LReLU
Filter: (64, 4, 2) Filter: (512, 4, 2)

5 DeConv Conv-Sigmoid
Filter: (1, 4, 2) Filter: (1, 64, 1)

Fig. 6. Augmented AE data waveform examples using (a) jittering; (b)
scaling; (c) magnitude warping; (d) time warping; (e) permutation; (f) random
sampling; (g) Gaussian noise; (h) DCGAN.

as models incorporating ReLU are typically easier to optimize.
Conversely, the discriminator D uses the leaky ReLU activa-
tion function with a negative slope factor of 0.2 to prevent
dying ReLUs and to allow a small gradient when the unit is
not active. The training framework employed is TF, and the
model is optimized using the Adam optimizer, with a learning
rate set to 0.0002.

Figure 6 presents a graphical representation of the data
augmentation technique applied to AE signals, derived from
the carbon fiber panels used in this study. It is important
to note that the results of the permutation technique exhibit
significant deviations from the original signal due to the
random segmentation and cropping involved. Consequently,
this method has been excluded from further consideration in
subsequent analyses within this paper.

C. Robustness and Accuracy Evaluation

In terms of accuracy, the F1-score is a widely used metric
in classification tasks, particularly effective for imbalanced
datasets. It balances Precision and Recall, offering a single
measure that considers both false positives and false negatives.
Mathematically, the F1-score is defined in (20).

F1− score =
2 · Precision · Recall
Precision + Recall

, (20)

Where Precision and Recall are given by (21).

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (21)

Here, TP represents true positives, FP false positives, and
FN false negatives.

The F1-score uses the harmonic mean of Precision and
Recall, ensuring sensitivity to both metrics. This makes it

Fig. 7. TinyML deployment toolchain.

particularly suitable for scenarios where a balance between
identifying all relevant instances (high Recall) and minimizing
false positives (high Precision) is critical.

Regarding the impact of data augmentation, except the
permutation techniques, we applied seven different data aug-
mentation techniques to enhance the model’s generalization
ability and robustness. These techniques include jittering,
scaling, magnitude warping, time warping, random sampling,
adding Gaussian Noise and DCGAN. The primary objective
was to simulate real-world variations in input data, enabling
the model to adapt to diverse operational conditions.

Specifically, each data augmentation technique was applied
to half of the original dataset (104 samples) to generate 2000
augmented samples, with 1000 corresponding to delamination
and 1000 to matrix cracking. The augmented datasets were
then split into training (1600 samples) and validation (400
samples) subsets in an 80%–20% ratio. Subsequently, each
augmented dataset was used to train a CNN model and an
optimal model selected via AutoML. This process resulted
in the training of seven CNN models and seven AutoML-
optimized models under identical training conditions. A 10-
fold cross-validation approach was employed during training.
Upon completion of the training phase, all models were
evaluated on the remaining half of the original dataset (the
test dataset - 103 samples) ten times to assess their average
performance on non-augmented data.

For robustness evaluation, the trained models were further
tested under noisy environments. Gaussian noise with varying
signal-to-noise ratio (SNR) levels of 95 dB, 85 dB, 75 dB,
65 dB, 55 dB, 45 dB, 35 dB, 25 dB, and 15 dB was added
to the original test dataset. The models used for evaluation
were trained and validated on the datasets augmented with the
seven techniques. The objective of introducing Gaussian noise
was to assess the model’s recognition accuracy and resilience
under different noise levels, providing insights into its real-
world applicability. Additionally, to ensure evaluation reliabil-
ity, each model trained on augmented datasets underwent ten
independent test runs, and the results were averaged to obtain
representative performance metrics.

D. Tiny Machine Lerning

TinyML represents a critical intersection where embedded
ML applications, hardware infrastructure, software frame-
works, and advanced algorithms converge. This field enables
the deployment and execution of ML and DL models on
MCUs, digital signal processors (DSPs), and specialized ultra-
low-power processors. The toolchains for TinyML comprise
several key platforms, including Google’s TensorFlow Lite for

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 8

TABLE III
TECHNICAL SPECIFICATIONS OF MCU PLATFORM

Test board Arduino Nano 33 BLE

MCU nRF52840
CPU core Arm Cortex M4

CPU Frequency 64MHz
SRAM 256KB
Flash 1MB

Operating voltage 3.3V
Current consumption 52 µA/MHz

Microcontrollers4 (TFLM), STM32Cube.AI5, and the open-
source ML deployment tool MicroMLGen 6.

Figure 7 illustrates the toolchains utilized in this study. ML
model training was conducted using Scikit-learn, an open-
source Python machine learning library. The trained ML algo-
rithms were then deployed onto the MCU using MicroMLGen,
which converts trained ML algorithms into C-code. For CNN
models, the study employed the TFLM framework, specifically
designed to deploy DL models on MCUs with constrained
memory resources. Notably, TFLM operates without reliance
on an operating system, standard C/C++ libraries, or dynamic
memory allocation. The deployment process using TFLM
involves model training with TF, conversion to the TensorFlow
Lite (TFL) format, and the optimization technique used in this
study is post-training quantization. It converts a Float32 model
into an Int8 model, specifically, the weights, biases, inputs,
outputs, and activations of the model are quantized to Int8
to reduce memory footprint (about a quarter of the original),
inference time, and energy consumption.

The target deployment platform in this study is the Arduino
Nano 33 BLE, with the Arduino Integrated Development
Environment (IDE) serving as the primary development en-
vironment. Table III outlines the key technical specifications
of the Arduino Nano 33 BLE.

During deployment, the process is divided into two parts:
one for the CNN model and the other for the ML algorithm.
For both approaches, we used half of the original dataset
without data augmentation (103 samples) as the test dataset
to evaluate performance. The model inference was executed
solely on the MCU, where we recorded key metrics such as in-
ference time, power consumption, and memory usage. For the
CNN model, we validated the consistency of inference results
obtained from the TFLM framework on a PC and the results
of the model converted to C-code and deployed on the MCU
(comparing the probability values for two types of damage).
Since the consistency was confirmed, inference results were
collected using the TFLM framework on the test dataset. For
the ML model, we similarly verified the consistency between
the inference results of the C-code generated by MicroMLGen
running on the MCU and those obtained using Scikit-learn
on a PC. Therefore, performance data collection for RF was
conducted based on Scikit-learn inference on the PC.

4https://ai.google.dev/edge/litert/microcontrollers/overview
5https://stm32ai.st.com/stm32-cube-ai/
6https://github.com/eloquentarduino/micromlgen

IV. RESULTS AND DISSCUSSION

This section presents the results of the study and dis-
cusses their implications in the context of AE-based damage
classification for carbon fiber panels. The primary focus is
on evaluating the proposed methodology in terms of model
selection, the impact of data augmentation, and the feasibility
of deploying models on an resource-constrained MCU.

First, the selection of the optimal ML algorithm is discussed
by comparing the performance of 12 widely used classifiers.
This establishes the baseline for subsequent experiments and
highlights the best-suited algorithm for AE signal classifica-
tion. Second, the impact of various data augmentation tech-
niques, including both traditional signal transformations and
deep learning-based methods, is analyzed. The performance of
the models trained on augmented datasets is assessed in terms
of accuracy and robustness to noise. Finally, the on-device per-
formance of the selected models is evaluated, including their
deployment on an MCU. This involves analyzing key metrics
such as inference time, memory usage, energy consumption,
and classification accuracy to validate the practicality of the
proposed solution for real-time SHM.

A. ML Algorithm Performance

To identify the optimal machine learning (ML) algorithm
for AE-based damage classification, 12 widely used classifiers
were evaluated using cross-validation on the original dataset.
Table IV presents the performance metrics of the ML models
for the classification task. Among these models, the Random
Forest (RF), Gradient Boosting, AdaBoost, and Extra Trees
classifiers demonstrate strong performance across all metrics,
indicating that they are among the top-performing models
for classification. These models exhibit high accuracy, strong
recall, and a good balance between precision and recall.
The Random Forest model achieves the highest accuracy of
95.76% and the highest F1 score of 0.9613 among these four
methods. It also performs well in terms of recall (0.9857) and
precision (0.9450). While Gradient Boosting, AdaBoost, and
Extra Trees classifiers also achieve high accuracies of 93% to
94%, their overall performance is somewhat lower than that
of the Random Forest model.

The Decision Tree Classifier, Linear Discriminant Analysis,
K Neighbors Classifier, Naive Bayes, Logistic Regression,
and Ridge Classifier exhibit moderately good performance,
each demonstrating distinct advantages in specific metrics. For
example, the Ridge Classifier achieves the highest precision
at 0.9467. However, these models do not perform as well as
the first-tier classifiers, such as Random Forest, in terms of
accuracy. For instance, the Decision Tree Classifier, which
is the best among this group, achieves an accuracy of only
92.24%. Additionally, these models lag behind in other per-
formance metrics, indicating potential limitations in handling
complex relationships within the data or the need for further
optimization to improve their performance.

The third tier includes Quadratic Discriminant Analysis
and Support Vector Machine, all of which perform relatively
poorly. Although Quadratic Discriminant Analysis achieves
the highest recall score of 1.0, its other scores, such as

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 9

TABLE IV
PERFORMANCE AND HYPERPARAMETERS OF ML AND CNN MODELS (HYPERPARAMETERS NOT SHOWN ARE SET TO DEFAULT).

Model Hyperparameters Accuracy Recall Precision F1 Score

1 Random Forest n_estimators=100, min_samples_split=2,
min_samples_leaf=1, max_features=sqrt

0.9576 0.9857 0.9450 0.9613

2 Gradient Boosting n_estimators=100, learning_rate=0.1,
max_depth=3, subsample=1.0,
min_samples_split=2

0.9429 0.9714 0.9260 0.9455

3 Ada Boost n_estimators=50, learning_rate=1.0,
algorithm=SAMME.R, estimator=None

0.9362 0.9589 0.9307 0.9404

4 Extra Trees n_estimators=100, max_depth=None,
min_samples_split=2, max_features=sqrt

0.9362 0.9857 0.9146 0.9443

5 Decision Tree criterion=gini, max_depth=None,
min_samples_split=2, min_samples_leaf=1

0.9224 0.9304 0.9307 0.9237

6 Linear Discriminant solver=svd, covariance_estimator=None,
shrinkage=None, n_components=None

0.9081 0.9161 0.9289 0.9043

7 K Neighbors n_neighbors=5, weights=uniform, leaf_size=30,
algorithm=auto

0.8671 0.7911 0.9357 0.8516

8 Naive Bayes priors=None, var_smoothing=1e-09 0.7990 0.6536 0.9383 0.7542

9 Logistic Regression penalty=l2, C=1.0, intercept_scaling=1,
solver=lbfgs, max_iter=1000

0.7414 0.5250 0.9464 0.6565

10 Ridge Classifier alpha=1.0, class_weight=None, copy_X=True,
fit_intercept=True, solver=auto

0.7281 0.4857 0.9467 0.6335

11 Quadratic Discriminant reg_param=0.0, priors=None,
store_covariance=False, tol=0.0001

0.5000 1.0000 0.5000 0.6664

12 Support Vector Machine alpha=0.0001, kernel=Linear, max_iter=1000,
n_iter_no_change=5

0.4795 0.5304 0.2879 0.3730

13 CNN in [24] learning_rate=0.0001, optimizer=Adam,
loss=sparse_categorical_cross-entropy

Overfitting

accuracy, precision, and F1, are notably low. Meanwhile,
the Support Vector Machine fail to perform the classification
task effectively, struggling to balance accuracy and recall and
facing challenges in correctly identifying positive samples
while maintaining precision.

In summary, the results of AutoML indicate that the Ran-
dom Forest Classifier is the most suitable algorithm for the
AE dataset of carbon fiber panels. Conversely, the CNN
model suffers from overfitting due to the limited amount of
data, preventing effective training and making it unsuitable
for comparison at this stage. In the following sections, data
augmentation methods will be employed to enhance CNN
training, enabling performance comparisons.

B. Data Augmentation Impact

To address the limitations of the small AE dataset, various
data augmentation techniques were applied to enhance the
training data and improve model performance. These tech-
niques included seven traditional signal transformations—such
as jittering, scaling, and time-warping—and a deep learning-
based method using DCGAN. The augmented datasets were
used to train both RF and CNN model, and their performance
was compared to models trained on the original dataset.

Figures 8 and 9 illustrate the impact of the data aug-
mentation techniques on the robustness of the CNN and RF
algorithms, specifically in terms of accuracy. The line plots

100 95 85 75 65 55 45 35 25 15
Gaussian Noise SNR (dB)

50

60

70

80

90

100

Ac
cu

ra
cy

RF_O
RF_J
RF_S
RF_MW
RF_TW
RF_RS
RF_G
RF_DCGAN

Fig. 8. RF model accuracy as a function of SNR after data augmentation.

representing the RF algorithm show that it is capable of
maintaining an accuracy of 95.23% when utilizing the original
small dataset at SNR of 100, 95, and 85 dB. However, as
the noise level increases, the accuracy declines rapidly, nearly
eliminating the model’s classification ability. Conventional
time-series signal data augmentation techniques, such as jitter-
ing, magnitude warping, time warping, random sampling, and
Gaussian noise, enhance the robustness of the RF algorithm

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 10

100 95 85 75 65 55 45 35 25 15
Gaussian Noise SNR (dB)

50

60

70

80

90

100
Ac

cu
ra

cy

CNN_J
CNN_S
CNN_MW
CNN_TW
CNN_RS
CNN_G
CNN_DCGAN

Fig. 9. CNN model accuracy as a function of SNR after data augmentation.

to a certain extent. These techniques delay the model’s failure
from SNR=85 dB to a range of SNR=75, 65, and 55 dB.
However, their accuracy significantly decreases at an SNR of
55 dB. The scaling algorithm, due to its inherent random signal
scaling, maintains its noise immunity up to SNR=35 dB, but
the accuracy drops significantly beyond that point. Ultimately,
DCGAN, a widely used deep learning-based data augmen-
tation method, demonstrates its superiority in enhancing both
robustness and accuracy. Under low noise conditions, DCGAN
achieves an accuracy of 99.03%, surpassing the unaugmented
model’s accuracy of 95.23%. RF models trained on datasets
augmented by this method retain relatively high accuracy
even as the noise level increases. For instance, the model
maintains a 93% recognition accuracy as the SNR decreases
from 55 to 15 dB, indicating that DCGAN is highly effective
in maintaining accuracy under increasing noise levels and in
improving the performance of RF models.

For the CNN model, the use of data augmentation meth-
ods has proven to be a crucial solution to mitigate the
overfitting challenges inherent in smaller datasets. Each data
augmentation strategy effectively facilitates the training of
CNN networks, resulting in accuracy rates exceeding the 90%
threshold. Furthermore, the original structure of the CNN
model, tracing back to [24], highlights its strong generalization
potential, as evidenced by its successful application to the
carbon fiber panel AE dataset. This success underscores the
model’s adaptability for various AE-based material damage
identification applications. The integration of different data
augmentation methods with the CNN algorithm not only
ensures excellent accuracy but also enhances the robustness of
the recognition results. Techniques such as jittering, scaling,
magnitude warping, time warping, random sampling, and
Gaussian noise perform commendably, maintaining accuracy
between 93.25% and 96.25% until the SNR exceeds 55 dB.
However, as SNR decreases further, a rapid decline in accuracy
occurs, compromising the model’s effective classification abil-
ity. In contrast, reflecting its performance in the RF algorithm,
the DCGAN method’s accuracy drops from 99.03% to 93.42%
at SNR=35 dB and stabilizes around 93% thereafter. Notably,
DCGAN demonstrates a remarkable capacity to enhance the

TABLE V
DEPLOYMENT PERFORMANCE OF RF AND CNN MODELS ON MCU

Model Accuracy RAM Flash Time Energy
(%) (KB) (KB) (ms) per Inference(mJ)

RF 99.03 45.88 111 0.46± 0.01 0.0015
CNN(Q) 99.03 67.8 31.1 165± 0.31 0.548

model’s robustness compared to all other data augmentation
techniques used. This ability to maintain accuracy despite
decreasing signal-to-noise levels highlights DCGAN’s efficacy
in bolstering the CNN model’s resistance to noise-induced
interference.

In conclusion, after comparing the performance of various
data augmentation techniques in RF and CNN models, DC-
GAN emerges as a superior method compared to all tradi-
tional augmentation techniques. It significantly enhances the
resilience of both RF and CNN models while also improving
the accuracy of RF models before and after augmentation.
Furthermore, the application of data augmentation techniques
substantiates the substantial generalization ability of the CNN
model proposed in [24] for material damage recognition based
on AE techniques. Ultimately, both the CNN model and the
RF algorithm effectively address the classification problem.
However, the CNN model demonstrates greater robustness
compared to the RF algorithm.

C. On-device Performance

This section summarizes the results of RF and CNN models
on-device performance, as presented in Table V. The float32
precision CNN models cannot be deployed on the target MCU
due to the number of parameters, the memory footprint is too
large. Therefore the post training quantization is utilized to
the model with TFL support. This process converts the model
from a float32 format to an int8 format, thereby reducing
both RAM and flash memory consumption. The quantized
model requires only 31.1 KB of flash and 67.8 KB of RAM,
representing a 64% and 73% reduction from the pre-quantized
state, respectively.

Comparisons between the inference results from the TFL
interpreter on the development board and a PC indicate that the
CNN model produces identical outputs in both environments.
The quantized model was then tested for accuracy using
the TFL interpreter, achieving an accuracy of 99.03%. This
demonstrates that the quantization process did not impair the
model’s performance compared to the floating-point version.
The ten times average inference time on the MCU was
recorded at 165 ms with a 0.31 ms standard deviation. For
the RF model, since it was executed as a floating-point model,
its PC-based results were consistent with the MCU inference
results, also achieving 99.03% accuracy. According to the
Arduino IDE, the RF model utilized 45.88 KB of RAM and
111 KB of flash memory. However, its ten times average
inference time was only 0.46 ms with a 0.01 ms standard
deviation, which is significantly faster than that of the CNN
model.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 11

Based on the average inference times of 165 ms and 0.46
ms, the energy required for a single inference, with a clock
frequency of 64 MHz and MCU active current consumption of
52 µWMHz−1, is calculated to be 0.548mJ and 0.0015mJ,
respectively. Assuming the use of a coin cell battery with a
nominal capacity of 250 mAh and an output voltage of 3 V, the
battery can theoretically provide a total energy of 2,700 J. This
energy is sufficient to support the MCU in performing 4,927
cycles of CNN inference or 1,800,000 cycles of RF inference.

In the context of AE-based carbon fiber plate damage iden-
tification, both RF and CNN models are effective. However,
determining which method is superior is challenging. On one
hand, RF offers significant advantages due to its fast inference
speed and low energy consumption, making it ideal for time-
sensitive and energy-limited applications. On the other hand,
while CNN inference is slower, it outperforms RF in low
SNR environments, and quantized CNNs can be more easily
deployed on lower-cost MCUs due to their reduced RAM and
flash memory requirements. The choice of approach depends
on the specific needs and trade-offs of the particular industrial
sector.

V. CONCLUSIONS AND FUTURE WORK

This paper investigated the application of ML algorithms
and CNNs for AE-based non-destructive fault diagnosis in
carbon fiber panels. Thirteen common ML algorithms were
evaluated using an automated pipeline, with RF emerging
as the most suitable algorithm for this task. Addressing the
challenges of limited AE data, the study further explored
data augmentation techniques, including traditional time-series
methods and the deep learning-based DCGAN approach.
The results demonstrated that DCGAN significantly enhanced
model accuracy and robustness, outperforming traditional aug-
mentation methods.

Subsequently, RF and CNN models were deployed on
a low-power resource-constrained MCU using TinyML to
evaluate their on-device performance. Both models achieved
an impressive accuracy of 99.03%, while maintaining low
energy consumption per inference: 0.548mJ for the CNN and
0.0015mJ for the RF. Memory usage was similarly efficient,
with the CNN requiring 31.1 KB of RAM and 67.8 KB of
flash memory, and the RF using 45.88 KB of RAM and 111
KB of flash memory. These results highlight the feasibility
of deploying ML models on low-power, resource-constrained
devices for real-time SHM.

For AE-based non-destructive fault diagnosis in carbon
fiber composite panels, the integration of ML algorithms
and DCGAN-based data augmentation techniques offers a
robust and efficient solution. Deploying these models on low-
cost embedded systems enables continuous monitoring of
structural damage and provides timely alerts for repair or
replacement, supporting the proactive maintenance of critical
engineering structures. Achieving long-term, autonomous op-
eration of these systems will require the use of low-power
TinyML models powered by batteries or energy harvesting
technologies. This study represents an important step toward
this vision, demonstrating the potential for scalable and cost-
effective SHM solutions.

While the findings are promising, several avenues remain
for future research. First, a complete SHM solution would
require the integration of AE signal acquisition and real-time
communication of recognition results, which may increase
the overall system power consumption. Future work should
explore techniques to optimize power usage in such integrated
systems. Secondly, this study only considers the impact of
different data augmentation techniques on the robustness and
accuracy of CNN and RF algorithms. Future research should
explore their effects on all common ML algorithms to provide
a more comprehensive understanding of AE signal noise
resistance. Additionally, future studies should investigate the
applicability of the proposed approach to other composite
materials, as well as examine the potential impact of domain
shift and data drift on model performance. These efforts will
further refine the deployment of efficient, reliable, and scalable
SHM solutions.

ACKNOWLEDGMENT

This research was financially supported by the Knowledge
Foundation under grant NIIT 20180170 and 20240029-H-02
(TransTech2Horizon).

REFERENCES

[1] M. Norouzi and N. Masoumi, “Crasen: A phase variation passive sensor
node for metallic structural health monitoring,” IEEE Transactions on
Instrumentation and Measurement, vol. 72, pp. 1–11, 2023.

[2] P. Nagulapally, M. Shamsuddoha, G. Rajan, M. Mohan, and B. G. Prusty,
“Distributed fiber optic sensor-based strain monitoring of a riveted bridge
joint under fatigue loading,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–10, 2021.

[3] D. Crivelli, M. Guagliano, M. Eaton, M. Pearson, S. Al-Jumaili, K. Hol-
ford, and R. Pullin, “Localisation and identification of fatigue matrix
cracking and delamination in a carbon fibre panel by acoustic emission,”
Composites Part B: Engineering, vol. 74, pp. 1–12, Jun. 2015.

[4] S. Song, X. Zhang, Y. Chang, and Y. Shen, “An improved structural
health monitoring method utilizing sparse representation for acoustic
emission signals in rails,” IEEE Transactions on Instrumentation and
Measurement, vol. 72, pp. 1–11, 2023.

[5] X. Li, H. Yan, K. Cui, Z. Li, R. Liu, G. Lu, K. C. Hsieh, X. Liu, and
C. Hon, “A novel hybrid yolo approach for precise paper defect detection
with a dual-layer template and an attention mechanism,” IEEE Sensors
Journal, vol. 24, no. 7, pp. 11 651–11 669, 2024.

[6] Y. Zhang, L. S. Martinez-Rau, B. Oelmann, and S. Bader, “Enabling
autonomous structural inspections with tiny machine learning on uavs,”
in 2024 IEEE Sensors Applications Symposium (SAS), 2024, pp. 1–6.

[7] J. Cao, S. Tian, Z. Yang, G. Teng, H. Li, R. Jin, R. Yan, and
X. Chen, “Blade tip timing signal filtering method based on sampling
aliasing frequency map,” IEEE Transactions on Instrumentation and
Measurement, vol. 71, pp. 1–12, 2022.

[8] M. Chai, Z. Zhang, and Q. Duan, “A new qualitative acoustic emission
parameter based on Shannon’s entropy for damage monitoring,” Me-
chanical Systems and Signal Processing, vol. 100, pp. 617–629, Feb.
2018.

[9] R. Yan, Z. Shang, H. Xu, J. Wen, Z. Zhao, X. Chen, and R. X.
Gao, “Wavelet transform for rotary machine fault diagnosis:10 years
revisited,” Mechanical Systems and Signal Processing, vol. 200, p.
110545, Oct. 2023.

[10] Y. Qiao, H. Wang, J. Cao, and Y. Lei, “Sound-vibration spectrogram
fusion method for diagnosis of rv reducers in industrial robots,” Me-
chanical Systems and Signal Processing, vol. 214, p. 111411, 2024.

[11] X. Li, Y. Lin, W. He, R. Liu, A. L. Oliveira, T. Qian, J. Zheng, and
C. Hon, “Enhancing the interpretation of spirometry: Joint utilization of
n-order adaptive fourier decomposition and deep learning techniques,”
IEEE Transactions on Instrumentation and Measurement, vol. 74, pp.
1–14, 2025.

[12] I. Hoyer, O. Berg, L. Krupp, A. Utz, C. Wiede, and K. Seidl, “Hardware
accelerators for a convolutional neural network in condition monitoring
of cnc machines,” in 2023 IEEE SENSORS, 2023, pp. 1–4.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 12

[13] B. An, S. Wang, Z. Zhao, F. Qin, R. Yan, and X. Chen, “Interpretable
neural network via algorithm unrolling for mechanical fault diagnosis,”
IEEE Transactions on Instrumentation and Measurement, vol. 71, pp.
1–11, 2022.

[14] Y. Zhang, S. Bader, and B. Oelmann, “A Lightweight Convolutional
Neural Network Model for Concrete Damage Classification using
Acoustic Emissions,” in 2022 IEEE Sensors Applications Symposium
(SAS), Aug. 2022, pp. 1–6.

[15] J. Liu, Y. Xu, M. Cao, F. Gao, J. He, and J. Lin, “Fatigue crack size
evaluation using acoustic emission signals for wire and arc additive
manufactured material,” Mechanical Systems and Signal Processing, vol.
204, p. 110819, Dec. 2023.

[16] S. Ju, D. Li, and J. Jia, “Machine-learning-based methods for crack
classification using acoustic emission technique,” Mechanical Systems
and Signal Processing, vol. 178, p. 109253, Oct. 2022.

[17] S. Sengupta, A. K. Datta, and P. Topdar, “Structural damage localisation
by acoustic emission technique: A state of the art review,” Latin
American Journal of Solids and Structures, vol. 12, no. 8, pp. 1565–
1582, Aug. 2015.

[18] Y. Liu, M. Huo, Q. Li, H. Zhao, Y. Xue, J. Yang, and N. Qi,
“Imbalanced source-free adaptation diagnosis for rotating machinery,”
IEEE Transactions on Instrumentation and Measurement, vol. 73, pp.
1–11, 2024.

[19] F. Zakaryapour Sayyad, I. Shallari, S. J. Mousavirad, and M. O’Nils,
“Model Evaluation and Selection for Robust and Efficient Advertisement
Detection in Print Media,” in Advances in Computing and Data Sciences.
Cham: Springer Nature Switzerland, 2025, pp. 211–224.

[20] X. Li, W. Zhang, Q. Ding, and J.-Q. Sun, “Intelligent rotating machinery
fault diagnosis based on deep learning using data augmentation,” Journal
of Intelligent Manufacturing, vol. 31, no. 2, pp. 433–452, Feb. 2020.

[21] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche,
U. Fietzek, and D. Kulić, “Data augmentation of wearable sensor data
for parkinson’s disease monitoring using convolutional neural networks,”
in Proceedings of the 19th ACM International Conference on Multimodal
Interaction, ser. ICMI ’17. New York, NY, USA: Association for
Computing Machinery, Nov. 2017, pp. 216–220.

[22] W. Fu, R. Zhou, and Z. Guo, “Concrete acoustic emission signal
augmentation method based on generative adversarial networks,” Mea-
surement, vol. 231, p. 114574, 2024.

[23] U. Muthumala, Y. Zhang, L. S. Martinez-Rau, and S. Bader, “Compari-
son of tiny machine learning techniques for embedded acoustic emission
analysis,” in 2024 IEEE 10th World Forum on Internet of Things (WF-
IoT), 2024, pp. 444–449.

[24] Y. Zhang, V. Adin, S. Bader, and B. Oelmann, “Leveraging Acoustic
Emission and Machine Learning for Concrete Materials Damage Clas-
sification on Embedded Devices,” IEEE Transactions on Instrumentation
and Measurement, vol. 72, pp. 1–8, 2023.

[25] Y. Zhang, L. S. Martinez-Rau, Q. N. P. Vu, B. Oelmann, and S. Bader,
“Survey of quantization techniques for on-device vision-based crack
detection,” arXiv preprint arXiv:2502.02269, 2025.

[26] V. Adın, Y. Zhang, B. Oelmann, and S. Bader, “Tiny Machine Learn-
ing for Damage Classification in Concrete Using Acoustic Emission
Signals,” in 2023 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), May 2023, pp. 1–6.

[27] L. S. Martinez-Rau, Y. Zhang, B. Oelmann, and S. Bader, “Tinyml
anomaly detection for industrial machines with periodic duty cycles,”
in 2024 IEEE Sensors Applications Symposium (SAS), 2024, pp. 1–6.

[28] C. U. Grosse, H. W. Reinhardt, M. Motz, and B. Kroplin, “Signal
conditioning in acoustic emission analysis using wavelets,” NDT. net,
vol. 7, no. 9, pp. 1–9, 2002.

[29] R. Finlayson, “Acoustic emission testing,” Handbook of Nondestructive
Evaluation, C. Hellier, Ed. New York: McGraw-Hill, pp. 10–1, 2003.

Yuxuan Zhang (Graduate Student Member, IEEE)
received the MSc degree in Embedded Systems
Engineering from the University of Leeds, UK in
2019. Since 2021, he is a Ph.D. candidate of Elec-
tronics at the Department of Computer and Electrical
Engineering, Mid Sweden University, Sweden. His
research interests include machine learning & signal
processing on low-power resource-constrained em-
bedded devices and on-device learning.

Rhys Pullin was born in Newport, Wales in 1975.
He received the Ph.D. degree from Cardiff Univer-
sity in 2001. He is currently a Professor and the
Head of the Department of Mechanical and Medical
Engineering at Cardiff University working in the
area of nondestructive evaluation. His primary area
of research is structural health monitoring using
acoustic emission and acousto-ultrasonics in metallic
and composite aerospace components. Dr. Pullin has
completed research programs for Airbus, Boeing,
EDAS, the Ministry of defence, the Centre for De-

fence Enterprise, and SKF. Finally, He is a member of the National Committee
for the British Society of Strain Measurement and the Health Management
and Prognostics National Technical Committee.

Bengt Oelmann received the Doctor of Technology
degree in electronics from the Royal Institute of
Technology, Stockholm, Sweden, in 2000. He is cur-
rently a Full Professor in electronics system design
with Mid Sweden University, Sundsvall, Sweden.
His current research interests include low-energy
embedded system design, energy harvesting, and
embedded sensor technology.

Sebastian Bader (Senior Member, IEEE) received
the Ph.D. degree in electronics from Mid Sweden
University, Sundsvall, Sweden, in 2013, and the
Dipl.-Ing. degree from the University of Applied
Sciences, Wilhelmshaven, Germany. He is currently
an Associate Professor of embedded systems with
the Department of Electronics Design, Mid Sweden
University. His research interests focus on energy
aspects of embedded systems, including energy har-
vesting, low-power sensing systems, and machine
learning on resource-constrained devices.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3577849

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

