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Abstract 
This paper presents a multi-layered garment animation generation method. Generating 

realistic dynamics in 3D garment animations is a challenging task due to the complex nature of 

multi-layered garments and the variety of outer forces involved. Existing data-driven approaches 

have mainly focused on the study of static draping deformation of multi-layer garments, with less 

consideration for the temporal deformation of garments, such as the time-varying motion 

behaviors of individual layers and their continuous interactions during motion. Additionally, these 

methods require a substantial amount of high-quality paired garment datasets for network training, 

leading to a costly data acquisition and annotation process. To address these challenges, we 

propose a multi-layered garment animation generation method that explicitly models different 

garment layers as separate meshes, and employs a combination of unsupervised and temporally 

supervised learning strategies to analyze and model the behavior of individual garment layers and 

their interactions. Our primary contribution lies in introducing a two-stage network architecture 

for layered garment processing, which decomposes multi-layer garment deformation prediction 

into single-layer garment generation and inter-layer garment interaction deformation. We focus 

more on generating two-layered clothing animations. Of course, our two-layered approach can be 

used iteratively to support more layers by using the current outer layer as the inner layer for the 

next iteration. This approach achieves dynamic simulation of multi-layer garments, and 

experimental results demonstrate that our method can generate realistic multi-layer garment 

deformation effects, outperforming existing methods both visually and in terms of evaluation 

metrics. 

KEYWORDS ： Multi-layer garments animation, Computer Graphics, Unsupervised 

Learning, Garment deformation, Transformer 

 

Introduction 

Animating 3D garments plays a significant role in various domains such as computer 

animation, gaming, and virtual reality. The quality of garment animations often profoundly 

impacts the visual experience of an entire animation scene. To achieve realistic garment animation 

effects, creators typically invest a substantial amount of time in performing physical simulations[1, 

2] and rendering garment animations using offline baking methods[3]. However, such methods 

are costly and not easily reusable. 

In recent years, data-driven approaches[4, 5] have gained widespread popularity in garment 

animation due to their speed and ability to generate visually appealing deformations[6]. Existing 



 

 

learning-based methods have primarily focused on single-layer garments driven by human body 

motion and struggle with the complexities of multi-layer garment simulations in typical scenarios. 

In the process of simulating deformations in multi-layer garments, the complex interactions 

between layers during motion need to be considered, and an increase in the number of garment 

layers leads to an increase in sample data sets and network computational costs. Existing multi-

layer garment deformation methods[7–9] have primarily concentrated on complex multi-layer 

garment hanging effects, neglecting the temporal aspect of garment deformations, making them 

unsuitable for handling multi-layer garment deformation animations. While Shao et al. [10] 

proposed a method that can handle dynamic deformations in multi-layer garments, it divides the 

garment model into a two-tier structure based on UV patches and converts them into particle 

representations for deformation simulation, reducing network computational load but sacrificing 

some garment fold details. 

It is highly challenging to predict and generate physically plausible garment deformations in 

the presence of complex interactions among multi-layer garments during motion when using 

learning-based approaches. Inspired by the independent layer calculations in physical simulations, 

we present a method for generating multi-layer garment animations, breaking down the prediction 

of multi-layer garment deformations into single-layer garment deformations and inter-layer 

garment deformation interactions. Through a combination of unsupervised learning based on layer 

interactions and temporally supervised training strategies, individual garment layers and 

interactions between different layers are separately analyzed and modeled, achieving dynamic 

simulation of multi-layer garments, while substantially reducing the demands for ground truth 

training data. Our two-layered approach can be used iteratively to support more layers, by using 

the current outer layer as the inner layer for the next iteration. A series of experiments demonstrate 

that our network outperforms state-of-the-art garment deformation methods, both qualitatively and 

quantitatively. Some examples of our method are presented in Fig. 1. 

 
FIGURE 1 3D garment deformation predicted by the proposed MGN following given body motions. Leveraging 

garment layer calculations, MGN is capable of realistically deforming multi-layer garment meshes. 



 

 

 

The main contributions of our work are as follows:  

(1) We introduce a two-stage network architecture for layered garment processing. This 

architecture can be based on unsupervised single-layer clothing generation methods, reducing 

dependency on clothing sample data and providing a data foundation for multi-layer clothing 

deformation. 

(2) We propose a new multi-layer garment deformation prediction network based on 

Transformer. This network integrates deformations generated by the unsupervised method and 

those of another garment layer,  learning the deformation patterns between multiple garment layers, 

suitable for multi-layer garment deformations under different postures and animation generation. 

 

Related Work 

Physics-based simulations 

As a conventional approach in garment deformation, physics-based simulation[11–14] has 

been an active research topic in the field of computer graphics due to its realistic and detailed 

simulation results. By establishing dynamic models[1, 15] and solving a large number of dynamic 

equations, it can achieve realistic and detailed garment simulation effects. 

Physics-based simulation constantly analyzes the forces acting on the garments[16, 17] to 

generate garment deformations. However, any change in the model's conditions necessitates the 

recalculation of the equation system, which incurs a significant time and computational cost. 

Learning-based models 

Learning-based methods have received increasing attention in recent years due to their fast 

computational speed and ability to generate visually appealing deformations[18–22]. They have 

found widespread application in garment animation. 

Xu et al.[23], by studying garment model instances and human motion characteristics, treated 

garment deformation as a function of body shape and pose. They adapted the learning methods 

from SMPL[24] to learn garment deformation functions. They proposed a garment animation 

synthesis method that, based on a given human pose and garment instance data, synthesizes 

garment deformations to create realistic garment animation effects. Patel et al.[6] introduced 

TailorNet, which decouples garment deformation into high-frequency and low-frequency 

components. By recombining these components, rich garment fold deformations can be 

synthesized. 

Most research works have only considered specific single garment deformations and are not 

suitable for handling complex multi-layer scenarios. Furthermore, they require a large dataset of 

garment deformations obtained through physical simulations to extract deformation patterns. 

Bertiche et al.[25] and Santesteban et al.[26] employed unsupervised or self-supervised training 

strategies to generate garment deformation effects without the need for constructing extensive 

garment sample datasets. However, these methods are limited to single-layer garment 

deformations. The PGN-Cloth method[27], NCS method[28] and HOOD methods[29] also 



 

 

encounter the same challenges. The DrapeNet method[30] and the GenSim method[31], while 

eliminating dependency on datasets by transforming physical constraints, can only generate static 

garment drape deformation.  

Bhatnagar et al.[32] can handle multiple garments, but there are very few overlapping areas 

among different pieces of clothing. Zhang et al.'s method[33] can generate multi-layer clothing 

animations iteratively but requires extensive preparation of clothing sample data in the initial 

stages. Santesteban et al.[7] were among the first to explore decoupling multi-layer garments, but 

their approach is limited to standard postures and requires learning for each garment in a 

preprocessing stage, making it challenging to apply in dynamic garments deformation. Li et al. 

[8]introduced ISP, which represents garment models using the UV map of 2D patches and 

implicitly represents garment shapes with 2D SDF (Signed Distance Function) values, addressing 

the hanging issue in multi-layer garments by avoiding the limitations of SDF on open 3D surfaces. 

Lee et al.[9] proposed MLU-Net, which maps garments of arbitrary topology onto the UV map of 

the human body, converting them into a uniform representation. They used a graph neural network 

(GNN) to simulate interactions between garments, appropriately deforming garments to prevent 

interpenetration and effectively simulating the hanging effects of complex multi-layer garments. 

However, the aforementioned methods do not consider the temporal aspect of garment 

deformation and are primarily suitable for generating single-frame multi-layer garment 

deformations. Bertiche et al.[34] employ Graph Neural Networks to animate garment. They 

supplement supervised learning with implicit constraints to handle collision penetration, 

generating dynamic garment deformation effects through a combination of ground truth and 

implicit constraints. However, their network training still requires a large amount of sample data. 

By utilizing the rotational invariance and additivity of physical systems, Shao et al.[10] captured 

and handled interactions between garment components, different garments and driver factors.  

The method transformed garment UV patches into particle representations for deformation 

simulation, reducing network computational load but sacrificing some garment fold details. 



 

 

 

FIGURE 2 Overview of the proposed MGN. Given a body pose sequence with 𝑇 frames θ1, θ2, … , θ𝑇, inner 

garment thickness 𝐻𝑖𝑛 and an inner garment mesh template 𝐺𝑇, the garment deformation is predicted by MGN. 

The unsupervised generation network primarily consists of MLP layers, which construct target constraint 

functions to constrain garment deformations to adhere to physical laws. The layer-interaction network is based 

on a Transformer encoder-decoder architecture and combines deformations generated through the unsupervised 

strategy for single-layer garments with outer layer garment deformation features. This fusion and training 

process allows the model to learn the deformation patterns between multiple garment layers. 

Method 

Overview 

This method is designed to predict and generate multi-layer garment deformations based on 

a given human motion sequence. An overview of our method is illustrated in Fig. 2. 

We employ a mesh representation to define the garment model, which includes the garment's 

vertices and their corresponding connectivity structure. This representation is specifically denoted 

as 𝑀 = (𝑉, 𝐹), where 𝑉 represents the set of garment mesh vertices, and 𝐹 represents the set of 

faces describing vertex connectivity relationships. We take a multi-layer approach and describe 

the whole garment as inner garment and outer garment, using meshes 𝑀𝑖𝑛 and 𝑀𝑜𝑢𝑡, respectively.  

We use an unsupervised single-layer garment generation network to generate inner layer garment 

mesh 𝑀𝑖𝑛 . We then propose a layer-interaction network to handle inter-layer interactions and 

generate outer layer garment mesh 𝑀𝑜𝑢𝑡. To produce a garment animation sequence, we take a 

pose sequence θ1, θ2, … , θ𝑇 as input, where the pose parameters θ𝑖 ∈ 𝑅𝟚𝟜×𝟛, and produce the inner 

and outer garment meshes 𝑀𝑖𝑛
(𝑡)

, 𝑀𝑜𝑢𝑡
(𝑡)

, where 𝑡 =  1, 2, … , 𝑇 is the frame index. (𝑡) is omitted 

for simplicity when it does not cause confusion. For meshes in the sequence, the connectivity 

remains unchanged and only vertex positions change over the frames. 

 



 

 

Single-layer Unsupervised Generative Network 

We use single-layer unsupervised network to predict the inner garment deformation, which 

reduces training data demands as the inner garment is directly influenced by the human body 

deformation. The following description in this subsection only applies to inner garment meshes.3D 

animated models are often constructed using skinning and/or blend shapes. We utilize a 

representation based on the parameterized human body model SMPL[24] to represent the garments, 

which allows us to use an unsupervised training strategy to generate clothing deformations. We 

decompose a tight-fitting garment model into pose-driven garment fold deformations and skin-

driven rigid deformations. The specific representation is as follows: 

 𝑀𝑖𝑛 = 𝑊(𝐺𝑇 + 𝐺𝜃, 𝜃, 𝑊𝐺) (1) 
Where 𝑊(⋅) is the skinning function, 𝐺𝑇 is the garment template in the standard pose, 𝐺θ 

represents the pose-driven garment fold deformations. 𝑊𝐺  is the garment skin weight generated 

based on the human body model. 

Our single-layer garment generation network primarily consists of MLP perception layers. 

The network takes the pose parameters θ𝑖 ∈ 𝑅𝟚𝟜×𝟛  as input and generates the pose feature 

representation 𝑋 through the MLP layers. 𝐺θ represents the garment fold deformations influenced 

by the pose features. It establishes a mapping relationship 𝑓(⋅): 𝑋 → 𝐺θ between the pose features 

and garment deformations through the 𝑃𝐷2𝐺  (Pose-to-Garment) transformation module. The 

specific representation is as follows: 

 𝐺𝜃 = 𝑓𝑀𝐿𝑃(𝜃) ⋅ 𝑃𝐷2𝐺 (2) 
Where 𝐺θ = {𝑑1, 𝑑2, … , 𝑑𝑛}, represents the garment fold deformations influenced by the pose 

features, which 𝑑𝑖 represents the offset of the 𝑖-th vertex under the influence of pose. After adding 

it to the garment template 𝐺𝑇 in the standard pose, the garment deformations are generated using 

the skinning function in Equation 1. 

To train our single-layer unsupervised generative network, we transform the kinematic 

equations complying with the laws of physics and the geometric constraints conforming to 

physical principles into optimization objectives for the network. The loss function is as follows: 

 𝐿 = 𝜆𝑒𝐿𝑒𝑑𝑔𝑒 + 𝜆𝑏𝐿𝑏𝑒𝑛𝑑 + 𝜆𝑐𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 + 𝜆𝑔𝐿𝑔𝑟𝑎𝑣𝑖𝑡𝑦 (3) 

Where 𝐿𝑒𝑑𝑔𝑒  is the edge error term, 𝐿𝑏𝑒𝑛𝑑  is the curvature error term, 𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  is the 

penetration loss term, and 𝐿𝑔𝑟𝑎𝑣𝑖𝑡𝑦  is the gravity error term. λ𝑒 , λ𝑏 , λ𝑐 , and λ𝑔  are the 

corresponding weights for these terms. 𝐿𝑒𝑑𝑔𝑒  and 𝐿𝑏𝑒𝑛𝑑  represent geometric loss constraints in 

accordance with physical principles. 𝐿𝑒𝑑𝑔𝑒 enforces constraints on edge lengths between garment 

vertices, while 𝐿𝑏𝑒𝑛𝑑  enforces constraints on the curvature of fabric patches. Their specific 

formulas are as follows: 

 𝐿𝑒𝑑𝑔𝑒 = ∑ (𝐸�̂� − 𝐸𝑗)
2𝑛𝐸

𝑗=1  (4) 

 𝐿𝑏𝑒𝑛𝑑 = ∑ ||
𝑛𝐹
𝑘=1 Δ(𝑁𝑘)||2, (5) 

Where 𝐸�̂� represents the 𝑗-th edge length of the garment template in the standard pose, 𝐸𝑗 

represents the length of the 𝑗-th edge generated by the prediction, 𝑛𝐸 is the number of edges. 



 

 

The 𝐿𝑒𝑑𝑔𝑒  loss function prevents excessive stretching of the garment mesh. Δ(⋅)  is the 

Laplace operator, and 𝑁𝑘 represents the normal vector of the 𝑘-th garment mesh face, and 𝑛𝐹 is 

the number of faces. 

The 𝐿𝑏𝑒𝑛𝑑  loss function constrains unnatural bending deformations of the garment mesh 

faces. 

The gravity loss constraint 𝐿𝑔𝑟𝑎𝑣𝑖𝑡𝑦  and the collision force loss 𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  are mechanical 

constraints designed to conform to physical laws. Their specific definitions are as follows: 

 𝐿𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝜆 ∑ ⋅ 𝑉𝑖
(𝑧)𝑛

𝑖=1  (6) 

 𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = ∑ min ((𝑉𝑔,𝑖 − 𝑉𝑏,𝑖′) ⋅ 𝑁𝑏,𝑖′ − 𝜀, 0)
2

𝑖  (7) 

Where λ = 𝑚 ⋅ 𝑔 is a preset fixed term in the gravity loss constraint. 𝑉𝑖
(𝑧)

 represents the 

height in the world space for the 𝑖-th vertex location and is used to calculate the gravitational 

potential energy of garment mesh points. In the collision force loss constraint, 𝑉𝑔,𝑖 stands for the 

𝑖-th vertex of the garment, 𝑉𝑏,𝑖′ represents the 𝑖′-th vertex of the nearest point on the human body 

mesh to the 𝑖-th garment vertex, 𝑁𝑏,𝑖′ represents the normal vector of the 𝑖′-th point on the human 

body, and ε is a predefined threshold representing the penetration tolerance term. 

 

Garment Deformation 

The inter-layer interaction network takes the given outer layer garment template and the inner 

layer garment predicted by the single-layer garment generation network as inputs. It is built on the 

Transformer architecture and is responsible for learning the deformation patterns of garments 

influenced by temporal features and inter-layer interaction features. It then predicts and generates 

the corresponding outer layer garment deformation. 

 𝑀𝑜𝑢𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(Θ|𝐻𝑖𝑛) (8) 

In detail, the inter-layer interaction network takes the motion pose parameters Θ =

{θ1, θ2, … , θ𝑇} as input and encodes them into pose vectors through an Embedding layer, where 𝑇 

is the number of frames. In the positional encoding layer, temporal information is combined with 

pose vectors to generate temporal pose vectors 𝐷θ. To generate multi-layered garment animations 

with different thickness combinations, we concatenate the inner garment thickness 𝐻𝑖𝑛 and the 

temporal pose vectors 𝐷θ to serve as the input for the Transformer encoder. This allows us to 

generate outer garment deformations under the influence of varying thicknesses. When predicting 

the outer layer garment deformation in the decoder, besides the temporal-pose features provided 

by the encoder, the inner layer garment deformations generated by the single-layer generation 

module are also used as input. This additional input data is essential for learning inter-layer 

interaction deformations. 

We utilize a temporally supervised training strategy to learn collision contact and temporal 

deformation features between multi-layer garments. The construction of the loss function is as 

follows: 

 𝐿𝑀𝐿 = 𝐿𝑐𝑙𝑜𝑡ℎ + 𝜆𝑙𝑎𝑝𝐿𝑙𝑎𝑝 + 𝜆𝑀𝐿𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 (9) 



 

 

Where 𝐿𝑐𝑙𝑜𝑡ℎ  is the garment prediction loss, measuring the deviation between predicted 

values and ground truth. 𝐿𝑙𝑎𝑝 is the Laplace loss, which prevents excessive offset deformations in 

generated garments. 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 is the loss related to the repulsive forces between different layers 

of garments. λ𝑙𝑎𝑝 and λ𝑀𝐿 are the corresponding weights. Their specific definitions are as follows: 

 𝐿𝑐𝑙𝑜𝑡ℎ = ∑ (𝑉𝑡 − 𝑉�̂�)
2𝑇

𝑡=1  (10) 

 𝐿𝑙𝑎𝑝 = ∑ ||𝑇
𝑡=1 Δ(𝑉𝑡) − Δ(𝑉�̂�)||2

2 (11) 

 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 = ∑ ∑ min ((𝑣𝑜𝑢𝑡,𝑡
𝑖′

− 𝑣𝑖𝑛,𝑡
𝑖 ) ⋅ 𝑁𝑖𝑛,𝑡

𝑖 , 0)(𝑖,𝑖′)∈ℳ𝓉
𝑇
𝑡=1  (12) 

Where 𝑉�̂� represents the ground truth outer garment vertices in the 𝐿𝑐𝑙𝑜𝑡ℎ loss term, while 𝑉𝑡 

represents the network-generated predictions.  Δ(⋅) in the 𝐿𝑙𝑎𝑝 loss term is the Laplace operator, 

which maintains local details as invariant as possible. In the 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒  loss term, (𝑖, 𝑖′) ∈ ℳ𝓉 

represents a matching vertex pair, where the 𝑖-th vertex of the inner garment mesh is matched to 

the 𝑖′-the vertex of the outer garment mesh. 𝑉𝑖𝑛,𝑡
𝑖  stands for the 𝑖-th vertex of the inner garment, 

and 𝑉𝑜𝑢𝑡,𝑡
𝑖′

 represents the position the nearest neighboring vertex (the 𝑖′-th vertex) of the outer 

garment.  𝑁𝑖𝑛,𝑡
𝑖  is the 𝑖-th vertex normal on the inner garment mesh. 

 

Experiment 

Garment Model Data. We used the Marvelous Designer software to model and generate our 

garment sample data. We have designed multiple garment combinations, taking a tight-fitting 

Chinese-style sleeveless shirt as the inner layer garment and a loose-fitting wide-sleeved shirt as 

the outer layer garment as an example, and using Marvelous Designer for modeling. Based on the 

AMASS[35] human motion data, we selected 8,100 frames of motion data from the AMASS 

dataset and divided them into 1,350 motion sequences, each with a length of 6 frames, for training 

and testing. 

Implementation Details. The generation network comprises 4 MLP layers, each with a 

dimension of 32, and the 𝑃𝐷2𝐺  transformation space dimension is set to [32, 𝑣𝑛𝑢𝑚, 3], Where 

𝑣𝑛𝑢𝑚 represents the number of vertices in the inner garment. In the inter-layer interaction network, 

the number of Transformer[36] sub-layers 𝑁 is 2, the number of attention heads is set to 4, and 

the dimensions of the feedforward networks in both encoder and decoder are set to [256,512,256], 

using ReLU activation functions. The model uses the Adam optimizer with a learning rate set to 

𝑙𝑟 = 1 × 10−3 and a batch size of 20. The loss function settings include a weight of λ𝑒 = 15 for 

the edge loss in the generation network, λ𝑏 = 5 × 105 for the curvature loss, and λ𝑐 = 25 for the 

penetration loss. In the inter-layer interaction network, the Laplace loss weight is set to λ𝑙𝑎𝑝 = 0.1, 

and the repulsive force loss weight is λ𝑀𝐿 = 0.9. 

Reconstruction Experiment 

To evaluate the network's deformation prediction capability, 150 frames of human motion 

data were randomly selected from the test set to drive garment deformation predictions. These 



 

 

predictions were then compared to the ground truth data. The experimental results are shown in 

Table 1, and the garment deformation effects can be seen in Figure 3. 

Table 1. Quantitative Comparison Results With Ground truth. 

Metrics STED Hausdorff RMSE 

Ours 2.16 2.49 3.25 

 
FIGURE 3 Examples of our MGN for garment deformation in different pose. The first column is the ground 

truth generated by physics-based simulation. The second column is the results obtained by MGN. Our method 

can produce natural and realistic clothing dynamics. The third column and the fourth column represent the vertex 

deviations from the front view and the side view, respectively. Colder colors indicate smaller errors. 

For quantitative analysis, this paper utilized evaluation metrics such as STED distance, 

Hausdorff distance, and RMSE. As seen from Table 1 and the garment deformation effects in 

Figure 3, the network's generated garment deformations exhibit relatively small error values in the 

metrics, and the model is capable of generating visually reasonable garment deformation effects. 

Comparison with Related Methods 

To verify the superiority of our method in terms of generated results compared to existing 

methods, the selected test data is used to drive garment deformation predictions. Our method is 

compared to the state-of-the-art DeePSD method[34] and the LayersNet method[10] for 

quantitative and qualitative analysis. We utilize evaluation metrics such as STED distance, 

Hausdorff distance, RMSE[37], L-Coll and H-Coll. L-Coll represents the degree of penetration 

between different garment layers, while H-Coll represents the degree of penetration between 

garments and the human body model. 



 

 

The evaluation metrics L-Coll and H-Coll[10] are shown in Table 2. The qualitative 

comparison results among DeePSD, LayersNet, and our method are shown in Fig. 4. 

From Table 2, it is evident that our method outperforms DeePSD in all the evaluation metrics, 

including the error between predictions and ground truth, penetration between multiple garment 

layers, and penetration loss between garments and the human body model. Our method 

demonstrates superiority in the metrics compared to the LayersNet method. This is further 

supported by the visual error plot in Fig. 4, where our method exhibits smaller prediction errors. 

In the comparison images of garment deformation effects, it can be observed that DeePSD exhibits 

unnatural wrinkles and penetrations between garments and the human body model. In contrast, the 

Laplacian smoothing loss and curvature loss terms in our method effectively constrain the 

curvature between fabric patches, preventing unnatural bending deformations of garment mesh 

faces. The penetration loss and inter-layer garment repulsive force loss also reduce penetration 

between inner layer garments and the human body model, as well as penetration between different 

garment layers. The LayersNet method induces increased errors through UV patch-constrained 

garment deformation, and in contrast our approach utilizes vertex deformation constraints, 

resulting in more accurate predictions. 

FIGURE 4 Qualitative comparison of 3D garment deformation methods for different types of garments, 

including  LayersNet, DeePSD and Our MGN. With the loss constraints constructed by the inter-layer interaction 

network, our method is capable of producing smoother and more accurate garment deformations, with fewer 

instances of garment penetrations. The last three columns visualize the error distributions DeePSD view and 

Ours view display the error quantities between the predicted garment and the ground truth for DeePSD, 

LayersNet, and our method. Colder colors indicate smaller errors. 



 

 

Table 2. Quantitative Comparison Results. 

Metrics STED ↓ Hausdorff↓ RMSE↓ L-Coll ↓ H-Coll ↓ 

DeePSD 10.68 7.41 11.65 2.43 6.33 

LayersNet 1.25 4.31 5.66 1.23 4.91 

Ours 2.38 1.68 3.42 1.08 0.12 

Different Combinations of Multi-layer Garments 

Our method proposed in this paper is applicable for predicting multi-layer garment 

deformations and generating animations. We selected various combinations of multi-layer 

garments and used the method described in this paper for deformation simulation and animation 

generation. The results, as shown in Fig. 5, depict animations of virtual characters in different pose 

sequences. 

To validate the applicability of our method for different garment combinations, we conducted 

corresponding quantitative experiments. We used STED, Hausdorff, and RMSE to evaluate the 

garment reconstruction effects, and L-coll and H-coll to assess the degree of garment penetration. 

The results in Table 3 show that our method is capable of handling multi-layer garment 

deformations for various combinations, generating stable deformations that satisfy visual 

requirements. 

FIGURE 5 The deformation effects of different types of multi-layer garment combinations. 



 

 

Table 3. Quantitative Comparison Results With Different garment. 

Metrics STED ↓ Hausdorff↓ RMSE↓ L-Coll ↓ H-Coll ↓ 

Garment 1 2.38 1.68 3.42 1.08 0.12 

Garment 2 2.22 1.58 2.15 1.01 0.05 

Garment 3 2.23 1.88 3.09 0.07 0.01 

 

Generalizability Experiments 

Although our method requires retraining the network for different styles of multi-layer 

garment combinations, it enables us to generate deformations of multi-layer garments with varying 

thickness combinations for the same garment style. 

We assessed the generalization of the model based on the repulsive force loss between multi-

layer garments. We randomly selected 200 frames of human motion data from the test dataset and 

six variations in clothing thickness [2.5,5,7.5,10,12.5,15] for testing. Using the network proposed 

in this paper, we predicted and generated the deformation of the outer garment under the influence 

of randomly selected inner garments of different thicknesses. 

The results in Table 4 demonstrate that the proposed model shows consistent performance 

across different inner garment thicknesses, providing accurate predictions and effectively 

mitigating garment penetration issues. 

Inner 

Garment 

Thickness 

STED 

Distortion 

(𝟏𝟎−𝟐) 

Hausdorff 

dist 

(𝟏𝟎−𝟐) 

RMSE L-Coll 

(%) 

H-Coll 

(%) 

2.5 3.42 4.32 5.81 2.52 1.77 

5 3.01 4.17 2.11 1.79 1.41 

10 3.41 3.96 3.76 1.26 0.87 

15 2.84 2.92 2.87 0.74 0.67 

7.5 2.82 4.35 5.46 2.62 1.81 

12.5 2.63 3.36 5.09 1.75 1.43 

The qualitative results in Fig. 6 further support the model's ability to generate realistic multi-

layer garment deformations under varying conditions. The visual results presented in Fig. 6 

demonstrate the multi-layer garment deformations for different combinations of inner garment 

thicknesses ([2.5,5,7.5,10,12.5,15]). The two rows represent the deformations of inner and outer 

garments under different thicknesses, and each column shows the deformations for the same 

thickness of both inner and outer garments. Both Table 4 and Fig. 6 confirm that the proposed 

method is capable of generating garment deformations with small errors and realistic visual effects 

for various combinations of multi-layer garments. 



 

 

 
FIGURE 6 The result of garment deformation under different thickness combinations. 

In Fig. 7, we present the garment deformation effects under motion postures, observing how 

changes in inner layer thickness from different views influence the deformation of the outer layer. 

On the left side of Fig. 7, we show the garment deformation effects from a side view, while on the 

right side, we depict the effects from a front view. Our method demonstrates the capability to 

generate corresponding outer layer garment deformations in response to varying thicknesses of the 

inner layer. As the thickness of the inner layer increases, we observe a more pronounced expansion 

effect in the outer layer garment. 

 
FIGURE 7 Results of thickness variation from different views under motion pose. 

The detailed comparison results presented in Fig. 8 show close-up views of the inner and 

outer garments for the same thickness (each row) and different thicknesses (each column) under 

the same pose. It is evident that our method is capable of generating outer garment deformations 



 

 

corresponding to changes in inner garment thickness (including unseen cases), making it suitable 

for multi-layer garment animation generation for various combinations. 

 
FIGURE 8 Results of Detailed Comparisons 

 

Ablation Study 

To validate the effectiveness of the inter-layer garment repulsive force loss between multiple 

garment layers, ablation experiments were conducted, and quantitative and qualitative analyses 

were performed. 

Table 4. Quantitative results for different thicknesses. 

Metrics STED ↓ L-Coll ↓ H-Coll ↓ 

w/o 𝐿𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 9.96 3.08 1.33 

ours 3.25 1.56 0.14 

 

The comparative results depicted in Table 5 and Fig. 10 reveal that the inclusion of the 

repulsive force loss term effectively mitigates unrealistic garment deformations. This results in a 

decrease in errors between the network model's predictions and the ground truth. Furthermore, 

there are notable enhancements in terms of L-Coll (garment layer penetration) and H-Coll 

(penetration between garments and the human body model). 

In Fig. 10, the left side shows the results without the repulsion loss term, while the right side 

shows the results with the repulsion loss term added. From the figure, we can see that the repulsion 

loss term, by constraining the vector distance between adjacent layer vertices, significantly reduces 

the penetration loss and garment penetration rate between garment layers. From the magnified 

details in the figure, we can also observe that our method generates stable deformations that satisfy 

visual requirements for garment. 

 

 



 

 

FIGURE 9 Examples of our MGN for dynamic garment deformation in motion. 



 

 

 
FIGURE 10 Deformation results of the ablation study for garment deformation. The leftmost column presents 

the garment generation results without the inter-layer garment repulsive force loss, and the second column shows 

the garment generation results with the repulsive force loss added. 

Sample dress animation 

The method presented in this paper is well-suited for predicting multi-layer garment 

deformation and generating animations. We have selected various types of human motion postures 

and used the method described in this paper for deformation simulation and animation generation. 

The results are demonstrated in Fig. 9, which displays animations of virtual characters dressed in 

different pose sequences. Please refer to the supplementary video for visual comparisons of 

dynamic deformation results. 

After generating the garment deformation sequences using our method, the results can be 

imported into professional software like Blender for texture adjustments, producing more visually 

appealing garment animations. 

 
FIGURE 11 Garment animation with textures added using Blender. 

As shown in Fig. 11, the garment deformations generated by our method are compatible with 

the existing animation production pipeline in Blender for rendering. From the figure, it can be seen 

that the garments with added textures offer a more visually appealing experience. 

 



 

 

Conclusions 

This paper conducts research on the generation of multi-layer garment animations by 

decomposing the prediction of multi-layer garment deformations into single-layer garment 

deformations and inter-layer garment interactions. Through an unsupervised training strategy, it 

formulates target loss functions for the network modules based on kinematic equations in 

accordance with physical laws and geometric constraints, thereby reducing the preparation time 

for garment deformation data. By employing a temporally supervised training strategy, the model 

learns collision contacts and temporal deformation features between multi-layer garments, fusing 

unsupervised single-layer garment deformations and outer garment deformation features for 

training, leading to the learning of deformation patterns among multi-layer garments. 

As a result, the model generates multi-layer garment animations that satisfy temporal pose 

constraints. The experiments conducted in the paper validate the effectiveness of the proposed 

method and showcase its superiority in terms of garment animation quality, penetration loss, and 

other aspects when compared to other existing state-of-the-art methods. 

Limitations: Our Transformer-based two-stage network can rely on our unsupervised single-

layer generation module or be compatible with existing single-layer clothing works to reduce data 

dependency, but it still cannot completely eliminate the need for clothing sample data. Exploring 

a self-supervised multi-layer clothing animation generation method to completely eliminate 

dependency on clothing deformation datasets is part of our future work plan. 
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