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Controlling dephasing of coupled qubits via shared bath coherence
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The interaction of a quantum system with its environment limits its coherence time. This, in particular, restricts
the utility of qubits in quantum information processing applications. In this paper, we show that the decoherence
of a coupled qubit system can be minimized, or even eliminated, by exploiting the quantum coherence of the bath
itself. We investigate the dephasing in a system of two spatially separated, electronically decoupled qubits, with
direct or mediated coupling, interacting with a shared bath. For illustration, we treat Forster or cavity-mediated
coupling between semiconductor quantum dots interacting with acoustic phonons. Using the rigorous method of
Trotter’s decomposition with cumulant expansion, we demonstrate a reduction in the dephasing rates at specific
distances between the dots. The control of dephasing with distance is a coherent effect of the shared bath and is
absent for independent baths. It can be understood in terms of phonon-assisted transitions between the entangled

qubit states of the coupled system.
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I. INTRODUCTION

A quantum bit, or qubit, is a two-level quantum-
mechanical system. While in many ways, the qubit is
analogous to the classical binary bit, quantum computing in-
frastructure is unique in its reliance on coherent superposition
of one or more qubits. Two-qubit logic gates, in particular,
are a fundamental building block in any quantum computing
architecture [1,2]. Such gates require a controlled long-range
interaction between isolated qubits, which can be mediated
by their strong coupling to a photonic cavity [3]. The lifetime
of this interaction, known as the coherence time, dictates
the complexity of calculations that can be achieved and the
accuracy of the calculated results. Inevitably, the coupling of
the qubits to their environment, often treated as a thermal
bath, limits coherence times and hence restricts the practical
application of multiqubit logic gates [4,5].

Historically, the dominating source of decoherence in a
multiqubit system inside a cavity was due to the leakage
of photons from the cavity due to its low quality factor,
causing coupling with the continuum of external photonic
modes. Therefore, previous works have focused on exploiting
the photonic bath coherent properties to reduce dephasing,
such as decoherence-free subspaces of subradiant quantum
superpositions [6,7]. Specifically, the introduction of a second
qubit coupled to the same cavity gives rise to a subradiant
superposition state that is decoupled from the lossy cavity.
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Although the quality factor of optical cavities dramatically in-
creased over the past decade, coherence times remain limited
due to other facets of the environment, the details of which are
specific to the physical implementation of the qubit system.

While there are many possible physical implementations
of a qubit, we will focus here on semiconductor quantum
dots (QDs), often referred to as “artificial atoms.” They are
a promising qubit candidate, since quantum interference of
single photons emitted by spatially separated GaAs QDs has
been experimentally demonstrated [8—10]. Coupling these
QDs to optical cavities further enhances this effect [11] and
maintaining this coherence is of great importance for appli-
cations in quantum computing. However, in semiconductor
QDs, acoustic phonons present the major intrinsic source of
decoherence. Even at low temperatures, acoustic phonons
induce a rapid non-Markovian decay of the QD coherence
[12,13], also known as a phonon broad band (BB) in the QD
spectrum, followed by a nearly Markovian long-time decay
of the zero-phonon line (ZPL) due to real or virtual phonon-
assisted transitions to other QD levels [14,15].

The QD interaction with a phonon bath fundamentally
differs from the bilinear QD-cavity coupling, so that the
aforementioned idea of decoherence-free subspaces of qubit
states is not directly applicable here. Nevertheless, progress
has been made to reduce the effect of QD decoherence in
qubit control. In particular, using a controlled off-resonant
optical pulse with the laser pulse frequency tuned to the
BB allows one to prepare almost pure qubit states by using
phonon-assisted transitions [16,17]. Notably, this only applies
in the low temperature regime, where phonon absorption can
be reasonably neglected. The idea has been generalized to
a phonon-assisted two-photon excitation scheme to create
indistinguishable entangled photon pairs from remote QDs
[18]. The Purcell effect helps to reduce the phonon-induced
decoherence by a resonant weak coupling of a QD exciton
to a cavity mode that results in reduction of the relative
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weight of the BB and enhancement of the ZPL emission [19].
Moreover, in the QD-cavity strong-coupling regime, the BB
is almost entirely eliminated in the cavity excitation scheme
[20,21]. However, the ZPL gains an additional dephasing [22]
which can be understood and quantified in terms of phonon-
assisted transitions between the polariton states of the system
[23]. Such a ZPL dephasing can be enhanced in coupled
qubits where all parts of the system are interacting with the
bath.

In this paper, we demonstrate a reduction, or even a com-
plete elimination, of the ZPL dephasing in a system of two QD
qubits coupled to each other directly or via an optical cavity
and interacting with a bath of acoustic phonons. We show that,
while the interaction of the hybridized qubits with a shared
environment usually causes dephasing of qubit states, the
coherent properties of the bath can reduce this decoherence.

To enable an accurate treatment, we generalize the Trot-
ter’s decomposition with linked cluster expansion technique
[23], which provides an asymptotically exact solution for
the dynamics of spatially separated QD systems, capturing
bath memory effects and non-Markovian behavior. This ap-
proach is compared with the approximate Fermi’s golden rule
calculations commonly used in earlier works, establishing
the validity range of such an approximation. We consider a
purely diagonal electron-phonon coupling, which produces
no ZPL broadening within individual QDs. Our full cal-
culation reveals ZPL broadening which can be understood
in terms phonon-assisted transitions between the hybridized
qubit states of the coupled QD system. We demonstrate, using
the asymptotically exact calculation, a reduction of the ZPL
dephasing in a system of two QD qubits coupled to each other
directly or via an optical cavity and interacting with a three-
dimensional (3D) bath of acoustic phonons. This suppression
results from the collective coupling of the QD qubits to shared
phonon modes [24], enabled by the extended coherence length
of the bath states. In particular, when the QD separation is an
integer multiple of the phonon wavelength, selected by the
energy splitting of the coupled states, there is a reduction in
the decoherence. We show that a near-vanishing dephasing
rate, which can be referred to as a 1D regime, can be achieved
by utilizing strong QD-cavity coupling strengths. We quantify
the QD separations at which the 1D regime persists before
transitioning to the expected 3D behavior, providing insights
which are not present in earlier works. A distance-independent
direct coupling is used as an illustration to be compared with
results for cavity-mediated coupling which is a more realistic
model for constant coupling strength across the considered
separation range.

II. SYSTEM HAMILTONIAN

As a practical example, we consider the decoherence of
electronically decoupled qubits separated by a distance d and
interacting with a shared bath. The coupling of the qubits is
taken as either direct through dipolar Forster-type coupling
[25-28], indirectly via cavity-mediation [29-31], or both.
As qubit and bath realization we use semiconductor QDs
interacting with a bath of 3D acoustic phonons, widely studied
in the literature [12-15,32].

FIG. 1. Schematic of the system with a pair of dipole-coupled
qubits separated by a distance vector d, coupled to an optical cavity,
and interacting with three-dimensional acoustic phonons described
by a wave vector q and angle 6.

The system Hamiltonian can be written as a sum of two
exactly solvable parts,

H = Hy + Hig, ()

where Hj describes the coupling between the qubits and
the cavity and Hig is a generalized independent boson (IB)
model Hamiltonian describing the coupling of the qubits to
the shared environment. For the system of two remote QDs
coupled to an optical cavity, illustrated in Fig. 1, Hy takes the
form (with i = 1)

Hy= Qdd\ + Qdjdy + Qca'a + g(d]dy + didy)
+gi(d{a+a'd)) + g(dja+d'dy), )

where d]T is the fermionic exciton creation operator in QD j
(j = 1,2), a' is the cavity photon creation operator, i (RQ¢)
is the exciton (cavity photon) frequency, g is the coupling
strength between the QD excitons, and g; is the coupling
between the exciton in QD j and the cavity photon. The
IB model Hamiltonian describes the interaction of the QD
excitons with a shared acoustic-phonon bath,

Hip = Hyy + d{d\V) + djdo Vs, 3)
where
Hpw =Y wgbiby and V; =Y iqilbg+by) (4
q q

are, respectively, the free phonon bath Hamiltonian and the
QD coupling to the bath, where b:fl is the bosonic creation
operator of a bulk phonon mode with the momentum q and
frequency w, (denoting g = |q|). The coupling of the exciton
in QD j to the phonon mode q is given by the matrix element
Aq,j» Which depends on the material parameters, exciton wave
function, and position of the QD. Their explicit form for
isotropic and anisotropic QDs is provided in Appendix A.
For identical QD qubits separated by a distance vector d, the
matrix elements satisfy the relation

Aq2 = €91 3)

III. ASYMPTOTICALLY EXACT SOLUTION

In the following, we focus on the linear optical response,
which we call the linear polarization below, allowing us to
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study the coherence of the system as a function of the dis-
tance between the qubits. The linear polarization of qubit j is
defined as Pj(t) = Tr{p(t)d;}, where p(t) is the full density
matrix. We assume that starting from the system ground state
the qubit with index k is instantaneously excited at time ¢ = 0.
As has been derived in Ref. [23], the linear polarization can
written as

Pi(t) = (1 U(t) k))ph, (©6)

where U (1) = ¢/ ¢~ is the time evolution operator and
(...)pn denotes the expectation value over all phonon degrees
of freedom in thermal equilibrium. Here and below we use the
basis states

j)=dl10) and |C)=a'|0), ™

where |0) represents the vacuum state of the QD-cavity sub-
system and j = 1, 2.

Taking advantage of the two exactly solvable parts of the
Hamiltonian Eq. (1), we apply the method of Trotter’s de-
composition with cumulant expansion [23] summarized in the
following section, allowing to take into account the effect of
the phonon environment exactly.

A. Trotter’s decomposition

The method of Trotter’s decomposition with linked cluster
expansion developed in Ref. [23] for exact calculation of the
linear polarization of a single QD simultaneously coupled to
a cavity and a phonon bath is applied here to the more general
case of cavity-mediated coupling between the QDs (with the
coupling constants g; and g) and their direct dipolar coupling
(with the coupling constant g), as described by Eq. (2). We
commence by splitting the time interval [0, 7], where ¢ is the
observation time, into N equal steps of duration At =¢/N =
t, — t,—1, where t, = n/At represents the time at the n-th step.
Trotter’s theorem is then used to separate the time evolution of
the two noncommuting operators, Hy and Hg. For sufficiently
small A, we can assume independent evolution of the two
exactly solvable components within each time step. In fact,
applying Trotter’s decomposition theorem, the time evolution
operator U (t) can be written as

0(t) — nglgo einhl (e—iHIBt/Ne—iHUZ/N )N‘ (8)

We now introduce two operators M and W, which describe
the dynamics due to Hy and Hig, respectively, each being
analytically solvable. Using these operators, the QD-cavity
dynamics over a single time step is described by

Mty — ty1) = M(Ar) = e 04 C))
and the exciton-phonon dynamics is given by
W(tn, tnfl) — einhI‘”e—iHm Ate—inht,,,] . (10)

Exploiting the commutativity of Hy and Hpy, one can write the
time evolution operator Eq. (8) as

N
O@) =T [[Wt ta- Mty = t,1), (1)

n=1

where 7 is the time-ordering operator. W and M are both
3 x 3 matrices in the |1), |2), |C) basis, and, due to the

diagonal form of the exciton-phonon interaction, W is diag-
onal. Its diagonal matrix elements can be written as

t
W, (tn, ta1) = T exp {—i/

-1

\7,-"(r)dt}, (12)

where

Vi (1) = &,Vi (1) + 13, Va (1) 13)

for T within the time interval ¢, | <t <t,, with & and
n; being the components of the vectors g? =(1,0,0) and
ii = (0, 1, 0), respectively, and V;(t) = 7 Ve Hm™ ig the
exciton-phonon coupling in the interaction representation,
with V; defined in Eq. (4). We use the indices i, to indicate
which state the system takes at a given time step n, being
either |1), |2), or |C), with i, taking the values 1, 2, or C,
respectively. The elements of £ and 7j selected by i, determine
the exciton-phonon coupling used during the n-th time step.
For example, if the system is in the first QD exciton state
during the n-th time step, then i, = 1, and the exciton-phonon
interaction V; occurs.

To find the polarization, we use Eq. (11) to substitute U@)
in Eq. (6) and write the matrix products explicitly, yielding

Pik(t) = Z te Z MiNiN—l e ~Mi1i0
in-1=1,2,C i1=1,2,C
X (‘/ViN(tathl)'"‘/Vil(tlso))phv (14)

where iy = k and iy = j denote, respectively, the excitation
channel k at + = 0 and measurement channel j at the final
time step ty = ¢, and M, ; = M (At1)];,i,- The W;, operators
include the phonon contributions, and therefore we sepa-
rate this product from the rest of the expression in order
to take the expectation value and apply the linked cluster
theorem [14,15,33].

Im

B. Linked cluster expansion

To calculate the expectation value of the products of the
exciton-phonon interaction operators in Eq. (14), we apply the
linked cluster theorem. It allows us to write this expectation
value as an exponential with a double sum over all possible
second-order cumulants in the exponent [23,33],

<W/i]v(t9 tN—])‘ . 'W/i] (t]7 0)>ph

N N
— exp <22Ki,lim<|n—m|>> (1s)

n=1 m=1
with the cumulants in Eq. (15) given by
1 [ m - _
Kiia®) = = / dr / do(TV, )V, (@), (16)
It bn—1

m

where s = |n — m|. Using Eq. (13), this cumulant can be ex-
pressed as

Ki,i, () = & &, Ki1(s) + 0, i, K2 (s)
+ & mi, + 1,6, K12(5), (17

where we have introduced the cumulant elements

1 In Im
ij/(S) = —Ef d‘L’l f deDjjf('L’] - ‘L'z), (18)
(o8] Ln—1
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having the symmetry Kj;(s) = K;;(s). Here we use the
phonon Green’s function

(o]
Djj’(t) = / dw Jjj/(a))D(a),f), (19)
0
in which

q

is the phonon spectral density and
D(w,1) = [N,, + 1]e”" + N, " 21

is the phonon propagator, where A, = [e®/T — 1]7! is the
Bose distribution function and T is the temperature (using
units with the Boltzmann constant kz = 1). The explicit an-
alytical forms of the spectral density J;; () for isotropic and
anisotropic QDs are derived in Appendix A. The cumulant
elements Eq. (18) can be conveniently expressed as linear
combinations of the values on the time grid of the cumulant
function

1 t t
Cij(t) = —E/O dn/O dn, Dy (11 — n), (22)

as detailed in Appendix B.

The linear polarization then takes the form given by
Egs. (14), (15), and (17). Note that a particular realization
or a path of the system evolution is indicated by the indices
i1, 02, ...iy—1 in Eq. (14). However, to obtain the full quan-
tum dynamics of the system, all possible realizations are to
be summed over, in line with the path integral formalism.
Technically this means a summation over all of the indices,
which is done in Eq. (14).

C. The L-neighbor (LN) approach

For a finite bath memory time, it is sufficient to consider
only a portion of the grid at least up to the memory time,
which is referred to as the number of neighbors L, defined
as the maximum value of |n — m| taken into account in the
calculation. The LN approach is used to describe the temporal
correlations between all considered steps within the memory
kernel. We first define a quantity FZZ") , which is generated via
the recursive relation

(n+1) __ (n)
FiL...il = Z giL...illFiL,l...illv (23)
1=1,2,C

i

using Flil)” =
tation channel and M is given by Eq. (9). G is known as the
propagator and is given by

giL...ill — Mi]lelcll(o)+2)ci]l(l)+2K:,’21(2)+"~+2)CiL1(L) (24)

i,k as the initial value, where k is the exci-

with a more explicit form provided in Appendix B. The
propagator G is a memory kernel containing the information
required to propagate the system over a single time step. It
includes the path segments connecting the current time inter-
val with the L-nearest intervals and to itself which are shown
by the L-shaped black outlined in Fig. 2. Each element of the
tensor corresponds to a particular path of the system evolution
within its memory. The linear polarization is then given by

Pir(t) = & OFN (25)

r===="
- .
A 1 1
top | ' i
* i
eKi4i5 ieKisis
T T e B N D 1
Kiop | Kii | K !
Bl e lyly 1514 :
1 1
t3 ———— ———
1
T . ...
2 e Lzl3=e B33 | o 1413
1
t R
2' ] Ki:
: eKiliz : e 212 eKl3lz
! 1
t] L
1
Ki. i Ki,i
Ee ISR e %251 At
—————————— t
& ty t3 ty Lobs D
T

FIG. 2. A portion of the time grid used in the LN approach with
L = 2, showing the self-interaction (yellow squares), the nearest,
(blue squares) and next-nearest-neighbor interactions (red squares).

where j is the measurement state. The indices being placed
in the cavity (C) state have the result of removing the excess
contributions from the G tensor after the observation time ¢
(see Fig. 2), as being in the cavity state reduces the cuamulant at
the corresponding times steps to zero. Equation (25) provides
an asymptotically (L — oo) exact solution for the linear po-
larization. In practice, we calculate the linear polarization for a
set of finite but sufficiently large L, up to L = 30 in this work,
and extrapolate the result to L — oo (see Appendix G for
details on the extrapolation), in this way approaching the exact
solution. This method can be generalized to other elements of
the density matrix, such as the four-wave mixing polarization
[21] and the population [34].

D. Independent phonon baths

The case of independent phonon baths can be considered
as a simplification to the system, described by Eqgs. (1)—(4)
where the relevant modifications to the system Hamiltonian
are applied to the Hg term,

HIB = th,l —+ th,2 + di‘hd]vl + d;dZVZa (26)

which now describes the interaction of each exciton with
its own independent phonon bath, given in a similar way to

Eq. (4) by

Hpj = qu, by e V= Z,\q, j(bqj+ b’ﬁq’ - @D
q q

Initially this may seem like a complication due to the extra
terms. However, the resulting cumulant C; ; in Eq. (15) is
nonvanishing only when i, =i,, i.e., the phonon Green’s
functions Dy, and D;; corresponding to the cross terms
vanish,

(TVi(@)Va(2)) = (TVa(z)Vi(r2)) = 0. (28)
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This is because the phonon operators in V; commute with
those in V,. The result is that the cumulant contains only the
diagonal elements K;;(s), giving

‘i:,'iKll(S) + 7][2“K22(S) Iy = Iy

0 Iy % iy 29

Kii, (8) = {

where s = |n — m|. The linear polarization in this case is
calculated using Eqgs. (23)-(25) with the modified cumulant
elements Eq. (29).

IV. CONTROL OF DECOHERENCE

For illustration, we consider two cases: Case A, where the
two qubits are directly coupled with strength g but do not
interact with the cavity (g; = g» = 0), and Case B, where
the qubits have no direct coupling (g = 0) but interact indi-
rectly through the cavity, mediated by g; and g,. To elucidate
the effect of the shared environment on system coherence
and its dependence on the interqubit distance d = |d|, we
assume that the coupling constants g, g», and g are distance
independent. In a realistic system, Case A would exhibit
a distance-dependent interaction between the QDs, such as
Forster or tunnel coupling. However, we adopt a distance-
independent coupling here to aid understanding Case B, where
the cavity mediates the interaction between the QDs, provid-
ing a practical way to achieve coupling which is maintained
for separations on the optical wavelength scale of a few
100 nm.

We assume without loss of generality that the first QD is
instantaneously excited (e.g., by an ultrashort optical pulse),
creating an excitonic polarization with Pjz(0) = 846y, where
3 is the Kronecker delta.

A. Directly coupled QD qubits
1. Linear polarization and dephasing rates

In Case A, the time evolution of Pj;(¢) for a system of
two dipolar-coupled (g = 0.5 meV) identical isotropic QDs
of confinement length / = 5.6 nm separated by the center-
to-center distance d = 5 nm is shown in Fig. 3(a) by a blue
dotted line, exhibiting decay and oscillations. The phonon
bath parameters are taken as D, — D, = —6.5 eV, where D,
(D,) is the conduction (valence) band deformation potential,
vy = 4.6 x 10° m/s is sound velocity, p,, = 5.65 g/cm? is the
mass density [14,15], and the temperature is 7 = 20 K.

The behavior in Fig. 3(a) is qualitatively explained by the
energy level diagram in the right inset, showing hybridized
states |£) = (|1) £12))/ V2 of the two-qubit coupled system
at zero detuning (2; = €2,), where [1) and |2) are the in-
dividual QD excited states. The energy levels are separated
by the Rabi splitting 2g determining the beat frequency in
|P11(¢)| which physically expresses the quantum information
exchange between the qubits. The temporal decay of the lin-
ear polarization expresses the decoherence in this two-qubit
system as a consequence of the interaction of the qubits with
the bath. For these QD qubits, the decoherence is due to
phonon-assisted transitions between the hybridized states.

@) — I +12)
7z

[P11(D)]

40 (b) N

10 A == FGR
,,,,,,,,,, indep. bath
. T

30 40 50

dephasing rate, I (ueV)
o
=)
N
o

0 10 20 30 40 50
distance between qubits, d (nm)

FIG. 3. (a) Linear optical polarization P;;(¢) (blue dots) and
its complex biexponential fit (red lines) for dipolar coupled (g =
0.5 meV) isotropic QD qubits (left inset) at zero detuning, separated
by the distance d = 5 nm, with excitation and measurement in QD
1. Right inset: Energy level diagram for the hybridized qubit states,
with real phonon-assisted transitions (red and blue arrows). [(b) and
(c)] Dephasing rates 'y of the hybridized states |+) as a function
of d, calculated exactly (solid lines) and via FGR (dashed lines)
for (b) isotropic QDs with a confinement length of / = 5.6 nm and
(c) anisotropic QDs with / = 7.5 nm across and /; = 2.5 nm along
the separation (see Appendixes A 1 and A2 for details of isotropic
and anisotropic QD models, respectively). The rates for independent
phonon baths are shown by thin dashed horizontal lines. The phonon
bath parameters are given in the main text.

With this picture in mind, we have applied to the long-time
dynamics of Pj;(¢) a biexponential fit of the form

Pfi(t) =Y _Cje™", (30)
J

extracting the complex amplitudes C;, energies Re w;, and de-
phasing rates I'; = —Im w; of the phonon-dressed hybridized
states. The fit, applied after the phonon-memory cutoff [intro-
duced in Appendix C by analyzing the cumulant functions and
shown in Fig. 3(a) by the vertical dashed green line], demon-
strates a remarkable agreement with the full calculation with a
relative error below 10719, At earlier times the deviation is due
to the formation of a polaron cloud around the optically ex-
cited QD, which is responsible for non-Markovian dephasing
and the BB [13,21,23]. The dephasing rates I"; extracted from
the fit as functions of the QD separation d are shown by solid
lines in Fig. 3(b) for isotropic and in Fig. 3(c) for anisotropic
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QDs. They are the dephasing rates of the states |4), denoted
by I'1, and can be understood as being due to phonon-assisted
transitions between the states. At short distances we observe
a dramatic increase of the dephasing rates from zero at zero
distance (which cannot be practically realized due to the finite
extension of the QDs), followed by an oscillatory behavior at
larger distances. Importantly, the minima of these dephasing
rates are lower than the rates for independent baths (thin
horizontal lines), due to collective coupling of the QD qubits
to the same phonon modes, for distances less than the phonon
coherence length.

2. Phonon-assisted transitions between hybridized qubit states

To understand the dependence on the distance between the
qubits, we introduce the fermionic operators

Pl = D3d| £ D.dj, (31)
creating excitations of the hybridized QD qubit states

|&£) = D+|1) = D+|2), (32)
where

D. =1+ A/R)/2, (33)
with

A=Q,—Q and R=.A%2+44g (34)

being, respectively, the detuning and the Rabi splitting. In the
absence of the bath, these operators diagonalize the system
Hamiltonian Eq. (2) exactly:

Hy = Quplps+Q_plp_, (35)
where
Q QR
Q. = % (36)

are the energies of the hybrid states |+).
Now applying this canonical transformation to the total
Hamiltonian Eq. (1) we obtain

H=(Q+V)plps +(Q_+Vo)p p_
+V(pip_+ plpi)+ Hp, (37

where V. =DV, 4+ D1V, and V = D,D_(V; —V;). The
major outcome of this transformation is that the formerly
diagonal interaction with the bath Hig, given by Eq. (3), now
develops the off-diagonal elements V(p'ﬁr p-+ pi p+) which
enable phonon-assisted transitions between the hybridized
qubit states. The transition rates can be evaluated via Fermi’s
golden rule (FGR) [15,23]:

I =NglTpn, Tp=Wr+ 1D, (38)

where A is the Bose function taken at the Rabi splitting R
and

Toh =7 Y |DyD_(hq1 — 2q2)*8(vsg —R), (39
q

according to the off-diagonal coupling in Eq. (37). Here
the delta function expresses the energy conservation in real
transitions, indicating that the energy difference between the

hybridized states should exactly match the energy of an emit-
ted or absorbed phonon w, = v,q. The rate I'y, is evaluated in
Appendix D, providing for an isotropic model of the QDs the
explicit analytical result:

(40)

r,— 1"()(1 3 sin(Rd/vs))
ph = s

Rd /v,

where Ty = D2 D2 R* (D, — D,)*/(27 ppv’)e "F/%  The
corresponding FGR calculation for an anisotropic model of
the QDs is provided in Appendix D 2.

The FGR dephasing rates Eq. (40) are shown in Fig. 3(b)
as dashed lines, reproducing the main features of the exact
calculation but showing discrepancies (within 5%) due to mul-
tiphonon processes not present in FGR. The single-phonon
transitions dominate at short distances as it is clear from the
excellent agreement between the two results.

3. Physical interpretation of decoherence reduction

The initial quadratic growth with distance, the oscilla-
tions, and the reduction of I'y at certain distances, seen in
Fig. 3(b), are all caused by the coherent properties of the
phonon bath. This coherence may be affected, for example,
by higher-order phonon interactions (e.g., cubic interactions
in Ref. [35]) which result in a finite phonon coherence time
and thus a finite coherence length. While we do not consider
this explicitly, we can distinguish two regimes: (i) The dot
separation is less than the phonon coherence length, and thus
the QDs can experience the same coherent phonon field and
the collective coupling to the bath leads to the oscillations in
our plots. (ii) The QD separation is larger than the coherence
length, in which case the QDs do not interact with the same
phonon modes, similarly to the independent bath calculation.

According to Eq. (37), the phonon-assisted coupling be-
tween the hybridized qubit states is given by V; — V, which
is proportional to 1 — /94 [see Eq. (5)] and is vanishing at
q-d =2mn, where n is an integer. This does not lead to a
vanishing dephasing though, apart from d = 0, owing to the
3D nature of the phonon momentum q of the bath modes.
However, as we show in Appendix D, in a 1D model of
phonons with the same dispersion and same coupling, the
dephasing rate Eq. (40) would modify to just

2
Vg . Rd
Iph = Fo(ﬁ) sin® (sz), 41

strictly vanishing at Rd /vy, = 2mrn for all n. To understand this
phenomenon in 1D, let us take the two-qubit state just before
the event of phonon emission or absorption as a superposition
a|l) 4+ B]2) with some complex amplitudes o and 8. Since
the qubits are in a hybridized state, they coherently emit or
absorb the same phonon. This changes their phases (which
is the source of pure dephasing) by ¢; and ¢,, respectively, so
that the two-qubit wave function becomes ae™' |1) + Be'?|2),
with ¢, — ¢ = %qd, according to Eq. (5) and energy conser-
vation requiring R = v,q. Notably, if the separation d between
the qubits is such that the phase difference is a multiple of 27,
i.e., Rd/vs = 2mn for an integer n, then the resulting wave
function only acquires a common phase factor ¢!, which is
not changing the state. However, in order for the transition to
occur between the initial and final states [e.g., between [+)
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and |—), see the inset in Fig. 3(a)], which would result in a
phonon-induced dephasing, a change of the two-qubit state
is required, meaning that the interaction with a phonon must
induce a relative phase shift, i.e., Rd /v; # 2mn.

Early papers revealed similar oscillatory behavior of the
transition rates with distance in systems of spatially separated
tunnel coupled QDs [24,36]. However, these are calculated
approximately, using off-diagonal coupling between elec-
tronic states within the same QD, which is known to lead
to long-time decoherence [14]. Reference [37] showed spa-
tial correlations strongly influenced the quantum coherent
transfer of excitations between biomolecular chromophores;
however, the model is using distance-independent dipolar
coupling and did not focus on the oscillatory behavior of
the dephasing rates with distance. When considering more
realistic couplings which decrease rapidly with distance, e.g.,
Forster coupled QDs in Ref. [27], or the tunnel coupling in
Ref. [38], the oscillations disappear. There are also further
studies which look at the distance dependence of exciton and
spin QD qubits that reveal no oscillations [39]. Our work uses
a distance-independent direct coupling as a simple illustration
but further introduces a cavity-mediated coupled system as a
more realistic model to facilitate distance-independent strong
coupling.

Note that in the case of, e.g., nanowire-based QDs [40] or
QDs in carbon nanotubes [41,42], the phonon dispersion and
coupling are altered when the dimensionality is reduced from
a bulk system. Several branches of phonon modes arise due
to the reduced dimensionality and phonon quantization which
are not present in 3D systems. This leads to changes in the
phonon dispersion and coupling matrix elements. As a result,
there is a finite zero-phonon linewidth which is not observed
in QDs coupled to bulk phonons, where the linewidth remains
zero in the ideal case. Here the ideal case corresponds to the
condition gd = 2mn, for which no broadening of the ZPL
is observed, due to the phonon interactions not facilitating a
change of state, making the system effectively equivalent to
the independent boson model [33] in which there is no ZPL
broadening.

4. Anisotropic QD qubits

For 3D phonons and spherical QDs, the dephasing is ab-
sent only at d = 0 and according to Eq. (40) and Fig. 3(b)
has minima around Rd /vy =2nn+n/2(n=1,2,...). The
/2 phase shift compared to the 1D case and nonvanish-
ing dephasing at the minima are due to phonons of energy
R that are absorbed or emitted at different angles 6 to the
QD separation vector d (Fig. 1), resulting in a variation of
their phase difference ¢, — ¢; between the QDs. However,
the reduction of decoherence is enhanced in anisotropic QDs,
playing the role of directional phonon emitters or absorbers
[43]. In fact, in oblate QDs separated along their short axis
[Fig. 3(c)], directional coupling of phonons along the short
axis effectively makes the system 1D under certain conditions.

Notably, in earlier studies, e.g., Refs. [24,36], the influence
of the 3D bath is not obvious because the models are using
a very strong anisotropy. Consequently, the studies are in
a 1D-like regime, with little insight into the transition be-
tween 1D and 3D regimes. A follow-up work of Ref. [24]
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FIG. 4. As Fig. 3(c) but for g =2 meV and FGR only (solid
lines). Inset: Amplitude of the oscillations in the dephasing rates
versus distance.

discussed the loss of the 1D regime by changing the effective
mass in their system [44], which is reducing the confinement
length in the in-plane parabolic confining potentials for
electrons. Similarly, models with spherical QDs or weaker
anisotropy yield finite dephasing rates across all separations,
as seen from our calculation in Fig. 3, reflecting the influence
of the 3D bath.

The dephasing rates for anisotropic QDs, calculated via
FGR in Appendix D have a compact analytical expression
Eq. (D9) in terms of the Faddeeva function, reproduce the
main features of the exact calculation (with a relative differ-
ence below 7%), as seen in Fig. 3(c). In this case [ > [},
where / and [, are, respectively, the in-plane and perpendic-
ular (along d) exciton localization lengths, so that for d <«
21%q, where g = R/v;, the dephasing rates vanish at gd =
2mn, as it is clear from Eq. (A30) in Appendix A 3. If addi-
tionally g/ > 1, meaning that the relevant phonon wavelength
is small enough to create a directional emission, then the FGR
dephasing rates reduce to Eq. (41). Under these conditions,
the 3D system behaves as a 1D system, however, as the dot
separation is increased, the 3D nature gradually returns. Fur-
thermore, the 1D regime can be extended by increasing the
anisotropy or increasing the energy R of the dominant phonon
modes which couple to the system.

In fact, the analogy with pure 1D phonons becomes striking
for stronger coupled QDs (g = 2 meV) as shown in Fig. 4,
where the shorter phonon wavelength involved in transitions
provides fast oscillations versus d, allowing for minima at
short distances with near-vanishing dephasing. With such
coupling strengths, the aforementioned condition g/ > 1 is
met, having a value g/ = 10. The scaling of the oscillation
amplitude with distance, given in the inset, demonstrates the
quasi-1D behavior (shown by constant amplitude) for d <
212 ~ 148 nm. This is consistent with the first few minima
in the main plot having visually very small dephasing rates
before gradually returning to the 3D regime as the dot sep-
aration increases. For this directional emission of phonons,
the phonon Rayleigh length, given by dg = [*q/2 ~ 37 nm,
estimates how far the phonons can propagate as a collimated
Gaussian beam, maintaining 1D-like behavior. Beyond this
distance, the system gradually transitions back to 3D. For 1D
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FIG. 5. Dephasing rates I'y 1 and I'_ of the hybridized states as
a function of d. Calculated exactly (solid lines) and via FGR (dashed
lines) for cavity-mediated coupled anisotropic qubits (left inset) with
interaction strength g; = g, = g = 0.5 meV, and zero detuning. The
dephasing rates for independent phonon baths are shown by thin
dashed horizontal lines. Right inset: Energy level diagram for the
hybridized qubit-cavity states |+, =) = (|1) + |2))/2 &+ |C)/ﬁ and
=) = (|1) — |2))/+/2, with real phonon-assisted transitions (red,
blue and green arrows). Other parameters as in Fig. 3(c).

behavior to persist, the condition on the qubit separation then
becomes d <« 4dg, where dg serves as an approximate upper
limit for ensuring the system remains in the 1D regime.

B. Cavity-mediated coupled QD qubits

In Case B of QDs indirectly coupled via a cavity, the
dephasing is also controlled by collective coupling to the
shared bath, though in a more complex scenario. For zero
detuning (2] = 2, = Q¢) and equal QD-cavity couplings
(g1 = g» = 2), the resulting three coupled states, |+, ) =
(1) +12))/2 £ |C)/v/2 and |—) = (|1) — [2))/+/2, require a
triexponential fit of Py;(z) to extract the dephasing rates I'; =
—Im w;, which are shown in Fig. 5 across a range of distances;
see Appendix F for details of the fit. We observe oscillations
versus distance d, different from those of directly coupled
QDs (Fig. 3) since there are two periods contributing to the
dephasing rates I'y 1 of the states |+, &£). This is due to the
involvement of transitions at two distinct frequencies, as seen
in the right inset, with one twice the other (the general case of
a nonzero detuning with three different frequencies involved
is considered in Appendix E). Since the dephasing rate I'_
of the state |—) involves transitions to the two other levels
with equal Rabi splitting and thus the interacting phonons
have almost the same energy, only one period is observed in
the oscillations of I'_, analogously to Case A, with vanishing
dephasing rate at d = 0. In general, 'y ; (consisting of two
downwards transitions) will always be greater than I'; _ (two
upwards transitions), simply because of spontaneous phonon
emission. Furthermore, whether I'_ or I'y ; is the largest on
average depends on the coupling strength chosen. If the Rabi
splitting (+/23) for the transitions contributing to I'_ is closer
to the peak in the phonon spectral density than the energy
(Zﬁg) of the distant-level transitions included in I'; _, then
I'_ is the largest dephasing rate.

Due to the nature of the hybridized QD-cavity states, the
exciton-phonon matrix elements contributing to FGR are now
proportional to V| £ V,, with 4 (—) corresponding to the tran-
sitions between distant (neighboring) levels; see Appendix E
for details. Since transitions between distant levels contribute
to I'y 1+ and thus involve V| + V,, there is a nonvanishing
contribution even at d = 0. This is because the states in-
volved in such transitions both have a cavity contribution,
and as cavity does not couple to phonons, the reduction of
the dephasing rate to zero is not observed. However, these
transition have typically lower impact on decoherence due to
the larger phonon energy involved, as discussed in more detail
in Appendix E.

V. CONCLUSION

In conclusion, we have presented an asymptotically exact
solution for the linear optical response of a system of two
coupled qubits interacting with a shared bath, using semi-
conductor quantum dots coupled to 3D acoustic phonons as
illustration. While coupling to the bath causes decoherence,
we have shown that the coherence of the bath itself can
be exploited to reduce such decoherence. By controlling the
distance between the qubits in relation to the wavelength of
the interacting bath modes, it is possible to minimize deco-
herence. This effect is due to all qubits coupled to the same
phonon modes and is, a consequence of the coherent proper-
ties of the bath. We find that for a 1D bath, decoherence can
be eliminated entirely, a case which can also be approached
for anisotropic qubits in a 3D bath. This concept can be
generalized to multiple-qubit systems.
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APPENDIX A: EXCITON-PHONON COUPLING
ELEMENTS AND PHONON SPECTRAL DENSITY

Throughout this work, we consider semiconductor QDs
as candidates for qubits, using typical InGaAs parameters
outlined in Refs, [14,15]. At low temperatures, the exciton-
phonon interaction is primarily governed by the deformation
potential coupling with longitudinal acoustic phonons. As-
suming that the phonon parameters within the QDs closely
resemble those of the surrounding material, and further as-
suming that the acoustic phonons exhibit linear dispersion,
wy = v,q, where g = |q| and v, is the sound velocity in the
material, the exciton-phonon coupling matrix element for an
exciton in qubit j = 1, 2 is given by

/AP,
Y 20m0 Y’

where p,, is the mass density of the material, V is the sample
volume, and

A (AD)

IM®=/ﬁnfﬁWHﬂumW@£“—DM”)
(A2)
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is the coupling form factor [14,15], with D¢, being the
deformation potential of the conduction (valence) band. As-
suming a factorizable form of the exciton wave functions,
\I’[X,j(rev r;) = we,j(re)l/fh,j(rh)’ where we(h),j(r) is the con-
fined electron (hole) ground-state wave function in QD j, the
form factor simplifies to

Dj(q) = / dr[De| Y, ;(0)]* — Dyl ()17, (A3)

1. Isotropic quantum dots

Choosing spherically symmetric parabolic confinement po-
tentials, the ground-state wave functions of the carriers take
Gaussian form, which in the simpler case of equal electron
and hole confinement lengths, I, ; = I, ; = [}, is given by

1 (r—d;)?
I/fj(l') = JTSTI?/Z exXp <_2—l,/2>7 (A4)

where d; is the coordinate of the center of QD j. Substituting
Eq. (A4) into Eq. (A3), performing the integration over the
whole space and substituting the result into Eq. (Al), we
obtain

hq.j = Jaroexp (—13¢*/4)e MY, (A5)
where
Ao = DDy (A6)
V2pmvV

Choosing the first QD located at the origin (d; = 0) we have
d, = d, where d is the distance vector between the QDs.
Converting the summation over q to an integration, Zq —

% [ dq, and using spherical coordinates, the spectral den-
sity J;j(w) defined by Eq. (20) takes the form

JOU? * 3 2.2
Jij(w) = - dqq’ exp{—q 1"}6(w — vsq)
0

n 1 i=J
X / d6 sin 0 { exp{igd cos 6} j<j, (A7
0 exp{—igdcosb} j>j
where
(Dc - Dv)2
Jo=——-—, A8
L g (A8)

d =|d|,and > = (ljg + ljz, )/4 (for brevity omitting the indices
j and j' in the new length [ introduced). Performing the
integration over the polar angle 6, we arrive at

Jii(@) = Jo o il ! I=7 (a9
ji (@) =Jow” exp 7 [ X sinc(24) j £ j° (A9)
s Vs

where sinc(x) = sin(x)/x.

2. Anisotropic QDs

For anisotropic QDs with in-plane confinement length
[; and perpendicular confinement length /; |, the Gaussian

ground-state wave functions Eq. (A4) are modified to

_ 1 (x —dy j)* + (y — dy;)*
‘Pj(x,)’aZ)— 77,’3/4ljli/j eXp{ 2112
—d. )?
x exp{——(Z 212”) } (A10)
L.Jj

where we have again taken the case of identical electron and
hole localization lengths, [, ; = j =1; and I . j =11 ; =
[1,j, and used the components (d, j, d, ;,d; ;) of the vector
d;. Following the same procedure as for isotropic qubits, we
obtain

haj = Varoexp | — (g + q}) /4 — 17,42 /4} 4%,

(A1)

The above equation is assuming that both QDs have the same

anisotropy axis (along z). Assuming further that the centers of

the QDs lie on the z axis, sothatd, ; = d, ; =0andd, ; = d;,
we find in spherical coordinates

Aq,j = +/q o €Xp ( T (l]2 sin? 6 + lij cos? 6)/4

+ igd; cos ), (A12)

using g, = gsinf cos ¢, g, = gsiné@sin¢, and g, = gcos 0.
The spectral density is then given by

4
J()US

Jjj (@) = / dq q’*8(w — v,q)
0

b
X / do sin 0 exp{—g*[* sin® 6 — qzli cos® 0}
0

1 i=J
x { exp{igd cos 6} i<y, (A13)
exp{—igdcos6} j>j

where [* = (17 +[3)/4 and [ = (I} ; 4[] ;;)/4. Performing
the integration over the polar angle 6, we obtain

F(0,q,/1> —1?)

j=J
Jii(w) =Jo e x

(A14)
with ¢ = w/vy, where
F(a,B) = f—g[e”“ﬂw(a —ip) — e Pw(a +ip)],

(A15)

and w(z) is the Faddeeva function. Note that Eq. (A14) is valid
for both /; > [ and [; < I, and in the isotropic case [} =1
simplifies to Eq. (A9), as shown in Sec. A 3 below.

3. Faddeeva function and some properties of F («, )

The Faddeeva function w(z) is defined as

w(z) = 2 /OO e gt
77

for any complex number z. Physically, it has the meaning of
a convolution of Gaussian and complex Lorentzian functions.

(A16)
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In fact, for Im z > 0, Eq. (A16) is equivalent to

i [ e
w(z) = ;/,Ooz—tdt' (A17)
The Faddeeva function has the properties
w(—z) =2¢% —w(z) and [w@)]* = w(-z"), (Al8)
and is linked to the error function erf(z) by
w(z) = e < [1 + erf(iz)], (A19)
where
erf(z) = 2 f "o, (A20)
Ve

It can also be expressed in terms of the Dawson function
D(z) as

2 2i
w(@)=e" +—=D(),

== (A21)

where

o0 Z
D(z) = / e sinQzt)dt = e / ldr. (A22)
0 0

Clearly, all three functions, w(z), erf(iz), and D(z), are equiv-
alent in the sense that they can be expressed by each other.
Analytically, the error function has an advantage that it is an
entire function, so that [erf(z)]* = erf(z*), in addition to being
an odd function, erf(—z) = —erf(z). However, numerically,
the Faddeeva function (as well the Dawson function) is gen-
erally more accurate and stable, since the error function erf(z)
diverges at large imaginary values of z, but the Faddeeva and
Dawson functions do not.

The function F («, B), introduced in Eq. (A15) can also be
written as

1! .
Fle.p)= 5 / P (1= gliepx gy (A23)
-1

reflecting the integration over the polar angle in Eq. (A13). It
has the properties

F(a, B) = F(—a, B) = F(a, —=p),

which are easy to see by using the definition Eq. (A23) but
can be obtained also from the analytic form Eq. (A15) and the
properties of the Faddeeva function, Eq. (A18).

For o = 0, corresponding to d = 0 in Eq. (A14), one has

VT )~ uih) _ YT o)

B 2

(A25)

and in the limit 8 — 0, corresponding to isotropic dots (I, =
[) or zero-frequency (g = 0),

%%F(O,ﬁ)z 1,

(A24)

F(,p) =

(A26)

so that Eq. (A14) simplifies to Eq. (A9).
In the isotropic limit (I} =1),8 — Oanda = gd/(28) —
00, and we obtain from Eq. (A15)

lim F(— ,B) ﬁ(eiqd e~i1d)y hm ! w(qd>
0" \28’ 4 =08 \28
= sinc (¢d), (A27)

using
o Z/2 i
. 1 iz _ ;o
tim cwo = tim = [ & o =T = -

(A28)

with 7'/z being real, as it follows from the definition
Eq. (A16), again, in agreement with Eq. (A9).

Let us finally consider the limit of a strong anisotropy, [ >
[, which is used at the end of Sec. D 2 below. In this limit,

and B=gq\/2 —12~iql,

(A29)

d —id
0= " —

o /- 2

with 2a8 = gd. Under the condition that |¢| < |B] (equiva-
lentto d <« 2/ 2q) one can then obtain from Eq. (A15)

F(, ) = F(a, B)

~ = YT e yu(—gl) - (1 — e yu(gh)
4igl
4;/_1[4w(ql)sm (1—eiqd)e—‘f’2], (A30)
using Eq. (Al8). Clearly, this function vanishes if

sin(gd/2) = 0. In the case of gl > 1 this simplifies to
just

d 1 d
F, ) — F(a, B) ~ “,/T—w(ql)sm2 q2 e sin’ %,
(A31)
using the limit Eq. (A28).

APPENDIX B: EXPLICIT FORM OF THE MEMORY
KERNEL AND THE CUMULANT ELEMENTS

Using the cumulant element K;;(s) and Eq. (17) allows
us to provide an explicit expression for the memory kernel
Eq. (24):

Gi,..it = M, exp{&:§,K11(0) + 1,1, K22(0)

+ 2[&,& K11 (1) + ni,niKan (1)
+ Eiym + ni, 8K (D] +
+ 2[&;, & K11 (L) + ny, miKan (L)

+ &+ ni EDK(D)]}- (BI)

The above expression is valid for the shared bath. For inde-
pendent baths, the relevant modification of the tensor G;, ;;
consists of setting in Eq. (B1) all the mixed terms to zero,
since K, (s) = 0 according to Eq. (29).

To calculate the cumulant elements Eq. (18), we use the
fact that K (|n — m|) depends on the difference [n — m/| only
and not on both time steps n and m individually. We therefore
can find them recursively using the values of the cumulant
functions Eq. (22) on the time grid, starting from

K (0)

= Cj(At). (B2)
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The remaining s > 0 cumulant elements are found recursively
via

1
Kjj(s) =5 |:ij/((s + DA — (s + DK;;(0)

s—1
—2) (s+1-— h)KJ-J-/(h):|. (B3)

h=1

APPENDIX C: CHOOSING THE TIME STEP
IN THE TROTTER DECOMPOSITION APPROACH

The energy separation R between the hybridized states
determines the timescale

2

To = R’

which is the period of the corresponding Rabi rotations. In the
discretization used in the LN approach described in Sec. III C,
this timescale should be much larger than the time step Az
of discretization, At <« 1p. In the cavity-coupled two-qubit
system, R can take three different values, and the above con-
dition should be fulfilled for all of them. For example, at zero
detuning (2] = 2, = Q¢), the same coupling to the cavity
(g1 = g2 = &), and no dipolar coupling (g = 0), the largest
energy separation is evaluated as R = 2+/2%; see the inset
in Fig. 5. In the case of the dipolar coupled QDs without
a cavity, there are only two hybridized states and therefore
only one Rabi splitting, evaluated to R = 2g at zero detuning
(2] = Q). At the same time, the polaron timescale tjg is

given by [23]
TP+ 13

Vg

(CH

B A (C2)
for anisotropic QDs with in-plane (/) and perpendicular ()
Gaussian lengths. The polaron timescale characterizes the
time to form or disperse a polaron cloud following the creation
or destruction of an exciton in a QD. The selected time step At
must be large enough such that for a given number of L + 1
time steps within the memory kernel, the resulting memory
time of (L + 1)At is larger than tjg. Specifically, the total time
considered via the time steps must cover the dynamics of the
cumulant KC; ; given by Eq. (17), which is dependent on the
cumulant functions Cy;, C}2, and Cy,, defined in Eq. (22).
Focusing on the cumulant function Cj;(t), we see from
Fig. 6 that (L + 1)Atr > tp is in fact sufficient to fully cover
the dynamics due to Cj;(¢). In practice, however, one should
perform a convergence test for the chosen parameters, to en-
sure the full memory time is taken into account. In the case
of identical QDs, C};(t) = Cy(t); otherwise, the larger tig of
the two QDs should be used. However since both QD excitons
couple to the same phonons, there are extra cumulant elements
Kj2(s) which depend on the distance d separating the QDs.
The effect of this distance dependence is the introduction
of a delay time before Ci,(¢) starts to change, this can be
seen in the inset of Fig. 7. Physically this delay time is due
to the time it takes a phonon to travel between the QDs,
which is approximately d/v,. For consistency, we define in
the calculations the delay time 5 to be the time at which the
change of Cy,(t) is equal to a half of its minimum value, i.e.,

0.00 A1

—0.02 A

—0.04 A

—0.06 A

C11(t)

—0.08 A

—0.10 A

-0.12 4
0 1 2 3 4 5 6 7
time (ps)

FIG. 6. Temporal evolution of Cy;(¢) (blue line) and the phonon
memory time tp (vertical red dashed line). The parameters are as in
Fig. 3(c) resulting in 7j5 = 5.39 ps.

Ci2(tp) = C12(00)/2. The values of ¢ are shown in Fig. 7 (red
curve) as a function of the interdot distance, along with its
rough estimate d/v; (red dashed line) working well at large
distances.

The presence of the delay time 75 in the cumulant function
Ci2(¢) implies that the time step in discretization must be
increased to cover the full memory time of Cj,(¢), so the con-
dition At = 7 /(L + 1) suitable for a QD-cavity system [23]
is no longer sufficient for distant coupled QDs with increasing
QD separation d. We therefore modify this condition to

_tpt+Tm

At = ———,

L+1 ©3)

which takes the delay time into account, thus covering the
memory time for all cumulant elements. The green vertical
dashed line in the inset of Fig. 7 demonstrates that all changes

107" 4
m
e
— S
8 9
= £
(@) +—
- >
©
S

10—2 ]

10! 10° 10! 102
distance between qubits, d (nm)

FIG. 7. The asymptotic value of |Cj, ()| (blue line, left axis) and
the delay time #p, (red line, right axis) as functions of the interdot dis-
tance d, with the red dashed line being the estimate d /v, of the time
taken for a phonon to travel between the QDs. The inset shows the
temporal evolution of |Ci,(t)| at d = 20 nm, demonstrating the delay
time, decay, and saturation at a minimum value. The green vertical
dashed line in the inset shows the full memory time considered. The
parameters used are the same as in Fig. 6.

045303-11



L. M. J. HALL et al.

PHYSICAL REVIEW B 112, 045303 (2025)

FIG. 8. (a) Schematic of the system of a pair of dipole-dipole
coupled anisotropic QDs separated by distance d and a phonon with
the wave vector q emitted or absorbed at an angle 6 (for clarity the
dipole-dipole interaction is shown only for the left QD acting on
the right QD). (b) Nonzero-detuning energy level diagram for the
hybridized states |£) composed from the basis states |1) and |2) of
isolated QDs. Red and blue arrows show phonon-assisted transitions
between the hybridized states, resulting in the line broadening I'_
and I'; of the lower and upper states, respectively.

of the cumulant functions, C;;(¢), are covered over the mem-
ory time At(L + 1).

As the memory time increases due to the increase in delay
time with increasing d, the accuracy of the calculation de-
creases for a given L due to the increase in time step. As seen
from the inset, C,(¢) saturates at a minimum value Cy,(00),
and the blue line in Fig. 7 shows the decrease of |Ci,(c0)| as
d increases, implying that Cj,(¢) — 0 as d — oo. This means
in the limit of d — 00, the full shared phonon bath calculation
becomes equivalent to the independent bath case, which is
naturally expected, whereby the result is now independent of
the distance between the QDs.

APPENDIX D: FERMI’S GOLDEN RULE—DIPOLAR
COUPLED QUBITS

In this Appendix, we apply instead of the canonical
transformation Eq. (31) used in the main text a unitary trans-
formation to the full Hamiltonian Eq. (1) of the system in
Case A, considering two directly coupled QDs without cavity.
Following this transformation, we use FGR to calculate the
phonon-assisted transition rates between the hybrid QD states,
as illustrated in Fig. 8, and consequently the dephasing rates
of the linear polarization.

Let us consider the full Hamiltonian H = H, + Hig, de-
fined in Eqgs. (2) and (3) with the cavity coupling g = g, = 0.
In the basis of pure QD states, |1) and |2), Hj has the following

matrix form:
Qg
H, = .
’ (g 92)

This matrix can be diagonalized by a unitary transformation
STHyS = A, where

(D)

S=51=5"= (& _Dg), (D2)
with D4 given by Eq. (33) and
Q 0
A= < 0+ Q_) (D3)

being a diagonal matrix of the eigenvalues Eq. (36).

Applying this transformation to the full Hamiltonian, we
obtain

H=SHS = (m 0 )

0 Q.
D. D, \(Vi 0\(D_- D,
(o ) B0, )
[ +Vy 1%
_( SRS +V_)+thn, (D4)

with V4. defined in the main text and 1 being the 2 x 2 identity
matrix. The main outcome of this transformation is the off-
diagonal coupling to phonons given by V.= D, D_(V| — ;).
This coupling is responsible for the phonon-assisted transi-
tions between the hybridized states and ultimately for the
long-time dephasing of the optical polarization.

1. Isotropic QDs

Here we evaluate the rate I'p, in FGR Eq. (38) for isotropic
QDs, substituting Eq. (A5) into Eq. (39), converting the sum-
mation over q to an integration and further expressing the
integration in spherical coordinates, we find

2 N2 _ 2 00
th — D+D—(Dc Dv) f dq q3€7q212
8w Pm Vs 0

x / do sin9(2 _ eiqdcos@ _ €7iqd0050)8(vxq —R),
0
(D5)

where [2 = (ll2 + 122)/4 (for identical QDs [; = I, = [+/2). In-
tegrating over 6, we obtain

D2D>(D. —D,)* , _&P2 Rd
Ipp = — —(Dc — Dy) Rl¢ % |1 —sinc| — | |. (D6)
27 P V3 Vs

In the case of zero detuning, R =2gand D, =D_ =1/ V2.
In the limit of d — 00, sinc(Rd /vs) — 0, so that I, becomes
independent of d. In the limit of d — 0, sinc(x) ~ 1 — x?/6,
leading to a d* dependence at small distances and vanishing
dephasing rates at d = 0.

Let us note also that for a 1D phonon bath which is for
example the case of a QD embedded in a quantum wire, the
latter providing a 2D quantum confinement of phonon modes,
Eq. (39) would give instead, for the same coupling matrix
element Egs. (A1) and (A2) and the linear phonon dispersion
o = v,q, the following dependence on the Rabi splitting R and
interdot distance d:

_®1  ,(Rd
Iph X Re ¥ sin

vy ) ’ 7

where [, is the Gaussian length of the electron and hole
confinement in the direction of the phonon propagation.

2. Anisotropic QDs

Performing a similar calculation for anisotropic QDs, we
find, after substituting the exciton-phonon coupling element
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Eq. (A12) into Eq. (39):

D2D2 D.—D 2 oo
Tpp = —F —(De =~ Dv) / dqq’
8T P Vs 0

k4
. 2126020 212 cod?
% / 4O sinfe -1~ sin (-)e q°l{ cos” 6
0

iqd cos 6

x 2—e — e 180§ (yg — R), (D8)

where [2 = (ll2 + 122)/4 and lf_ = (li1 + liz)/4 (for identical

QDs I, =l =1y/2and [, | = I, , = [,+/2). Performing the
integration, we obtain

D2 D?* (D, — D,)?
A 5j(Tp - v) R3e‘q“i|:F(0,q 12 — 12)
21/12

where g = R/vy; and the function F(«, ) is given by
Eq. (A15).

For strongly anisotropic QDs with I > [, Rl/v; > 1
(small phonon wavelength) and d < 2I%q (Ja| < |B]), we
find using Eq. (A31)

D D> (D.— D, R _¥1 (Rd
sin

D9)

F h = — e 1'32
P 27 P V3 2

) , (D10
which has the same dependence on the distance d and the Rabi
splitting R as in the model of 1D phonons Eq. (D7).

APPENDIX E: FERMI’S GOLDEN
RULE—CAVITY-MEDIATED COUPLED QUBITS

Let us now focus on the other special case (Case B) of
no direct dipolar coupling of two QD qubits, i.e., g =0,
but an indirect coupling mediated by their interaction with a
common cavity mode with the coupling constants g; and g».
Reducing the full basis to pure QD states, |1) and |2), and the
single-photon cavity state |C), which is sufficient for the linear
polarization, the Hamiltonian of the cavity-mediated system
takes the form

H =Hy+ Vi 1) (11 + V2 12) (2| + Hpn, (ED)
where
Hy = Qi |1) (1] + €2 12) (2| + Q¢ |C) (C|
+ &1 (1) (CI+[C) (1) + £2(12) (CI + |C) (2),  (E2)

and Hyy, and V; are given by Eq. (4). We apply a transforma-
tion diagonalizing Hy as STHyS = A, so the full Hamiltonian
transforms to

Q 0 g
H=SHS=1Hsp+S| 0 @ g |S
&1 & L
Vi 0 0
+510o v o}s, (E3)
0 0 0

where 1 is the 3 x 3 identity matrix. In general, Hy is
diagonalized numerically, providing the hybridized state

(a) (b) I+ +)
. Ir+6
- - 2
r—=§4
+.-) I 2

FIG. 9. (a) Schematic of the system of a pair of anisotropic
QDs separated by distance d, each interacting independently with
the cavity mode and a phonon with the wave vector q emitted or
absorbed at an angle 8. (b) The g; = g, = g and nonzero-detuning
(8 # 0) energy level diagram for the hybridized states |+, &) and
|—). These hybridized states are composed from the basis states |1),
|2), and |C) of the isolated QDs and the cavity with a single photon.
The transitions indicated by the red, blue and green arrows result in
the line broadening (dephasing rates) of the central, upper, and lower
states, denoted by I'_, I' , and I", _, respectively.

energy eigenvalues A ;. The transformation of the exciton-
phonon coupling generates off-diagonal elements responsible
for phonon-assisted transition between hybridized QD-cavity
states which we account for below using FGR.

Focusing on the analytically solvable case of zero detuning
between the QD qubit states, 2; = Q, = 2 (e.g., for identical
qubits), and the same coupling of both qubits to the cavity,
g1 = & = &, the transformation matrix has the following ex-
plicit form:

1
d_ 7 dy
s=| d_ —% d, |, (E4)
V2d. 0 —/2d_
where
1 8
dy = -1+ - (ES)
r
with

=/82+822 and §=Qc-—Q, (E6)

the latter being the cavity-QD detuning. The Hamiltonian
Eq. (E1) then transforms to

H=S'HS = 1Hy,

Q+ 4 +Ud? % Usd.od_
U_d_ U, U_d,
+ 7 @t 7 ,
Usd d_ 5 Q+ S +ULd

(E7)

where Uy = V| £ V,. By applying this transformation, we go
from the [1), |2), |C) basis to the hybridized state basis

I+, &) = d+(]1) + [2)) = v/2d+ |C) .
=) = (1) — 12))/v/2, (E8)

analogous to that in the polariton transformation of a qubit-
cavity system outlined in Ref. [23]. Figure 9 illustrates the
level structure of the hybridized states for nonzero detuning
(86 #0) and the phonon-assisted transitions due to the off-
diagonal elements in Eq. (E7). The rates of these transitions
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are estimated below via FGR, similarly to Sec. IV A 2:
I+ = NRth,i and T'j 4 = (Ng + DI ph,+, (E9)

respectively, for the upwards and downwards transitions,
where

Tohe =7 Y [co(hq1 % Aq2)*8(w — R).
q

(E10)

There are six possible transitions corresponding to the six
off-diagonal matrix elements in Eq. (E7). Ny is the Bose
distribution function taken at the energy R, which is the
separation of the energy levels of the hybridized states in-
volved in the transition and c¢( is the corresponding factor.
These energy levels are given by Ay + = Q+ (6§ £r)/2 and
A_ = Q, according to Eq. (E7). In particular, for |+, —) <
|—) transitions, R = (r — 8)/2 and co = d/~/2; for |—) <
|4+, +) transitions, R = (r + 8)/2 and ¢y = d_/+/2; finally,
for |+, —) < [+, +) transitions, R=r and ¢y =d.d_.
Note that for the phonon-assisted transitions between the
neighboring levels (|4, —) <> |—) and |—) < |+, +)), the
exciton-phonon coupling matrix elements A4 ; contribute to
Eq. (E10) as a difference due to U_, thus giving I'pp, —, and for
transitions between the distant levels (|[+, —) <> |+, +)) as a
sum due to U, thus giving I'py 4; see Eq. (E7).

Using the same procedure as in Appendix D, we evalu-
ate the transition rates Eq. (E10) for identical isotropic and
anisotropic QD qubits. For isotropic dots, Eq. (E10) yields

cA(D. — D,)* e Rd
0T TV Rie |:1j:sinc(—)i|, (E11)
s

27 Py V3

where the difference to Eq. (D6) are the constant factors, the
energy distance R, and most importantly the presence of the +
sign before the sinc function, differentiating the neighboring
(=) and the distant (4) level transitions. Note that the con-
tribution of the distant level transitions to the decoherence is
typically less significant due to the factor e ®"”*/% in which R2
is four times larger (for zero detuning) than for the neighbor-
ing level transitions. Similarly, for anisotropic QDs we find

2 2
C(D.—D) 272

Tpht = R 0| F(0,¢,/13 — 12

ph,+ 27 pmv3 € ( AV )

,q\/lz

Cpp,+ =

(E12)

4‘/l2
with g = R/v;.

Using Eq. (E11) or Eq. (E12) in combination with Eq. (E9),
the contribution to the line broadening for a specific phonon-
assisted transition can be found. The line broadening I" 1 and
I"_ of the hybridized states is the sum of the broadening by the
two available transitions.

APPENDIX F: TRIEXPONENTIAL FIT OF THE
POLARIZATION FOR CAVITY-MEDIATED
COUPLED QD QUBITS

We show in Fig. 10 the optical linear polarization |Py;(z)|
for Case B in the main text. The linear polarization (blue dots)
for cavity-coupled QD qubits again starts from unity due to the

[P11(D)]

0 5 10 15 20 25
time (ps)

FIG. 10. Linear optical polarization |P;;(z)| (blue dots) and its
complex triexponential fit (red lines) for cavity-mediated coupled
anisotropic QD qubits at zero detuning, separated by a distance d =
5 nm, with excitation and measurement in QD 1. The parameters are
as in Fig. 5.

excitation and measurement of the same QD state and has the
temporal oscillations now at three frequencies due to addition
of a cavity mode. We apply a complex triexponential fit (red
curve) of the form ) ;C je~ it extracting the complex ampli-
tudes C;, energies Re w;, and dephasing rates I'; = —Im o,
of the phonon-dressed hybridized states. The fit is applied
after the phonon-memory cutoff (dashed green vertical line),

13.5 fm-mmmmmmeesmsmssesesesoseseoooooooooooooooooooooos
13.4 1
13.3 A
13.2 4 —— power law fit
< x T(L
2 13.14 )
T Y AT e extrapolated N(«)
~13.0 A
-
0 12.9
J(E; T T T T
= 20 40 60 80 100
(@)
e
Y 7.4
e
o
()
T 7.3
7.2 1
7.1 1
20 40 60 80 100
neighbors, L

FIG. 11. Power-law fit applied to the I'; (L) [I"_(L)] values
across a range of neighbors, L, for d = 5 nm is shown in the upper
(lower) figure. The blue crosses are the extracted I'(L) values, the
red curve is the power-law model with 8 = 2, and the red horizontal
dashed line is the estimated value of I'(co). The parameters are as in
Fig. 3(b).

045303-14



CONTROLLING DEPHASING OF COUPLED QUBITS VIA ...

PHYSICAL REVIEW B 112, 045303 (2025)

beyond the polaron cloud formation time. The dephasing rates
are then extracted across a range of distances, providing Fig. 5
of the main text.

APPENDIX G: EXTRAPOLATION OF FIT PARAMETERS

As detailed in the main text, Figs. 3 and 5 are created by
calculating the linear optical polarization for a given number
of neighbors (L), then applying a fit to the long-time data and
extracting the fit parameters. The parameters corresponding
to the line broadening, I'(L), are extracted across a range of

neighbors, and the convergence of I'(L) to the exact (L = o0)
value is assumed to follow a power-law model, given by:

I'(L) = I'(c0) + CL7P. (G1)

Figure 11 shows the I'(L) calculated values (blue crosses)
for directly coupled QD qubits treated in Case A, with the
power-law model applied (red curve), and the extrapolated
I'(c0) is shown as a red dashed line. The value of I'(0c0) is
estimated for the eight values of I'(L) shown in Fig. 11, by
minimizing the root-mean-square deviation from the power
law Eq. (G1) for g = 2.
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