
© 2025 The Authors. Published under a Creative Commons  
Attribution 4.0 International (CC BY 4.0) license.

Imaging Neuroscience, Volume 3, 2025
https://doi.org/10.1162/IMAG.a.61

Research Article

1.  INTRODUCTION

Making good decisions in dynamic and uncertain envi-

ronments requires the ability to discern whether and 

which further information may potentially reduce uncer-

tainty. Previous studies in young adults have shown that 

people form internal models (also known as beliefs) 

based on their experiences or the environmental statis-

tics to predict (anticipate) choice or action outcomes. 

These beliefs can be updated upon receiving new envi-
ronmental inputs, thereby adaptively assessing and rep-
resenting uncertainties in the task contexts (Behrens 
et  al., 2007; Itti & Baldi, 2009; Ma & Jazayeri, 2014; 
Nassar et  al., 2010; Payzan-LeNestour & Bossaerts, 
2011). Neural activity in the lateral frontoparietal regions 
has been shown to track such belief updating during var-
ious tasks (Gläscher et al., 2010; Kobayashi & Hsu, 2017; 
Nour et al., 2018; Tomov et al., 2018).
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Cognitive aging may compromise the ability to update 
statistical features in the context of a given decision task 
at hand, particularly under uncertainty (Hess, 2014; 
Samanez-Larkin & Knutson, 2015). Indeed, older adults 
often show performance deficits in tasks that require 
adaptive updating. They typically tend to use simpler and 
computationally less demanding strategies compared 
with younger adults (Bolenz et al., 2019; Eppinger et al., 
2015). For instance, older adults are more likely to employ 
simple heuristics, such as “win-stay-lose-shift,” that is 
based solely on the outcome of the previous trial (Worthy 
et al., 2012). Relatedly, during value-based learning, older 
adults perform comparably with younger adults when 
learning from immediate choice outcomes; however, they 
struggle with making use of information based on delayed 
outcomes which would require learning the complex 
transition structures of the task (Eppinger et  al., 2013, 
2015). Moreover, older adults are less flexible in adapting 
their decision-making strategies in situations when task 
structure changes (e.g., changing levels of environmental 
uncertainty), which has been interpreted as an impair-
ment in forming clear representations of volatile, uncer-
tain decision contexts (Bolenz et  al., 2019; Hämmerer 
et al., 2019; Nassar et al., 2016). Similarly, in a multidi-
mensional probabilistic learning paradigm that requires 
selective attention, older adults show higher reliance on 
simple deviation (error) of reward prediction, whereas 
younger adults use a more computationally demanding 
Bayesian approach to identify which dimensions of the 
environment are relevant for action outcomes (Daniel 
et al., 2020). Furthermore, when rare events occur, older 
adults tend to overweight these surprising outcomes 
more than younger adults (Koch et al., 2024).

From a neurocognitive perspective, the aforementioned 
behavioral differences in older relative to younger adults 
may result from age-related deteriorations of the frontopa-
rietal cortex (Kennedy et al., 2015; Raz et al., 2005). These 
regions have been shown to implicate the detection of 
environmental changes and the updating of existing men-
tal models (i.e., priors) based on new information (Gläscher 
et al., 2010; Tomov et al., 2018; Waskom et al., 2014). For 
instance, deficiencies in learning state transitions in 
choice–outcome associations during sequential decision 
making in older adults were associated with the under-
recruitment of several frontal regions, including the dorso-
lateral prefrontal cortex (DLPFC) (Eppinger et  al., 2015). 
Furthermore, other studies showed that aging is associ-
ated with a reduction in the selectivity of neural responses 
to different types of information (Koen & Rugg, 2019; Koen 
et al., 2020). Such neural dedifferentiation and less distinct 
representations of different environmental signals have 
been computationally linked to aging-related declines in 
neuromodulation (Eppinger et al., 2011; Li et al., 2001; see 

Li & Rieckmann, 2014 for review), which could further 
affect the processing of information about uncertainty 
during decision making.

Albeit the evidence reviewed above, most research on 
aging and value-based decision making has thus far 
focused on effects of outcome magnitudes or outcome 
probabilities. In these studies, updating of mental models 
about the decision contexts and the expected values of 
different choices would be mainly driven by the differ-
ences (e.g., reward prediction error) between expected 
and actual outcomes (Eppinger et al., 2013; Hämmerer 
et  al., 2011; Samanez-Larkin & Knutson, 2015). The 
questions about (i) whether older adults are sensitive to 
different types of information that may or may not be 
informative about the uncertainty of the decision con-
texts and (ii) how this ability may be distinguished from 
the ability to process deviations between expectations 
and actual outcomes (henceforth expectancy violation) 
have not been explicitly investigated.

In real life, not all situations involving expectancy vio-
lations are informative. Whereas probabilistic events give 
rise to certain degrees of uncertainty, different situations 
may involve different types of uncertainty (Ellsberg, 1961). 
In some circumstances, the probability of a given out-
come is known beforehand. Such situations are com-
monly viewed as risky and involve irreducible uncertainty, 
since there is a certain probability that the anticipated, 
preferred outcome may not happen, but further informa-
tion will not reduce this type of uncertainty (e.g., 
Fehr-Duda & Epper, 2012; Huettel et al., 2006). However, 
there are other circumstances in which the probability of 
anticipated outcomes is unknown, leaving the situation 
ambiguous (e.g., Tymula et al., 2012). In such cases, the 
uncertainty could be reduced through gaining further rel-
evant information about the decision context that may 
help making inferences about the probability of a poten-
tial outcome (e.g., Kobayashi & Hsu, 2017).

Previous studies indicated that younger adults are quite 
capable to adjust their value updating and belief updating 
processes depending on the types of uncertainty in the 
decision contexts. Specifically, they utilize new information 
differently based on whether it can reduce uncertainty or 
not (e.g., Kobayashi & Hsu, 2017; O’Reilly et  al., 2013; 
Peng et al., 2023; Schulreich & Schwabe, 2021). Using a 
gamble bidding paradigm that included scenarios for dis-
sociating processes of expectancy violation, belief updat-
ing, and value updating, neural correlates of these 
processes in frontoparietal regions were differentiated in 
younger adults. Specifically, an fMRI study by Kobayashi 
and Hsu (2017) found that during passive viewing of differ-
ent gamble scenarios, BOLD responses in the bilateral 
frontal (middle frontal gyrus/superior frontal sulcus) and 
parietal (intraparietal sulcus) regions correlated with belief 
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updating; activity in prefrontal regions (medial/ventrome-
dial prefrontal cortex) and the left inferior parietal lobule 
was associated with value updating, and activity in the 
bilateral anterior insula was correlated with expectancy 
violation. The fNIRS appears to be a promising tool to 
measure frontal activity during decision making under 
uncertainty (e.g., Li et al., 2019) and other tasks implicating 
frontoparietal activities of contextual expectations (e.g., 
Kang et al., 2022, 2024). A recent fNIRS study on younger 
adults further assessed the updating processes in an 
active variant of the gamble bidding task where hemody-
namic responses were assessed when the participants 
actively evaluated the values of gamble scenarios. 
Although the precise localizations differed between the 
studies, possibly due to differences in task details and 
measurement modalities (fMRI vs. fNIRS), this study iden-
tified oxyhemoglobin responses in different frontoparietal 
channels that were uniquely associated with each of these 
processes (Peng et  al., 2023). However, whether older 
adults are sensitive to uncertainty reduction and what may 
be the neural correlates of individual differences in this 
ability in older age remain unknown.

In the present study, we, therefore, aim to investigate 
whether older adults’ value updating behavior would be 
sensitive to the reducibility of uncertainty and the under-
lying neurocognitive processes. To this end, we acquired 
behavioral and hemodynamic responses in the frontopa-
rietal regions using fNIRS in a sample of older adults 
while they performed a modified gamble bidding task 
(Peng et al., 2023). Given prior findings of less distinctive 
task representations and the use of simpler strategies in 
older adults (e.g., Bolenz et  al., 2019; Eppinger et  al., 
2013; Hämmerer et  al., 2019; Nassar et  al., 2016), we 
hypothesized that older adults would show reduced sen-
sitivity to different types of uncertainty (reducible vs. non-
reducible) compared with younger adults. Their updating 
behavior was expected to be more associated with 
expectancy violation than updating beliefs about the sta-
tistical properties of the environment or values of the 
gambles. As for the neural processes, we expected that 
Bayesian model-based brain activities (cf. Kobayashi & 
Hsu, 2017) associated with expectancy violation, belief 
updating, and value updating to be less distinct in older 
adults. Since we hypothesized that older adults’ behavior 
may primarily be associated with the process of expec-
tancy violation, we expected brain–behavior relations 
mainly in regions showing expectancy violation-related 
fNIRS responses in older adults.

Moreover, logical reasoning, a key component of fluid 
intelligence, has been shown to correlate with optimal 
choice behavior (Eppinger et al., 2015) and updating per-
formance in young adults (Peng et  al., 2023). While the 
ability of logical reasoning typically declines during aging, 

there are also substantial individual differences in this abil-
ity among older adults (Harada et al., 2013). We thus also 
explored the relationship between logical reasoning and 
updating performance in older adults. Specifically, we 
expected that older adults with higher levels of reasoning 
ability would deviate less from Bayesian model predictions 
in their updating behavior. Furthermore, to directly exam-
ine age-related differences in subprocesses of updating 
behavior and associated brain correlates, we conducted 
secondary analyses incorporating data of younger adults 
from a previously published study using the exact same 
task and measurement procedure (Peng et al., 2023).

2.  METHOD

2.1.  Participants

Fifty right-handed older adults participated in this study. 
We focused on the healthy old adult population and 
screened participants for the following eligibility criteria: 
normal or corrected-to-normal vision, no history of neuro-
logical or psychiatric disorders, no history of substance 
abuse, no severe physical illness or disability, no medical 
scalp conditions that might affect fNIRS setup, and right 
handedness. The study was approved by the local ethics 
committee of Technische Universität Dresden (approval 
number: SR-EK-6012021) and was conducted in accor-
dance with the requirements of the local ethical commit-
tee. Before starting the experiment, the participants 
provided their informed consents. Data of four older adults 
were excluded from the final sample due to low quality or 
outlier of data (i.e., three due to poor fNIRS signal quality 
and one due to extreme β values in the fNIRS regression 
analyses; see Section  2.5.2 for details). Thus, the final 
sample consisted of 46 older adults (age ranged from 66 
to 83  years; mean age  ±  SD: 71.46  ±  3.54  years; 28 
females). Sample size was determined through power 
analysis using G*Power. Based on medium to large effects 
(f = 0.25; cf. Peng et al., 2023), α = 0.05, and statistical 
power of 0.90, our analysis indicated that 43 participants 
would be sufficient for detecting within-group effects in 
repeated-measures ANOVAs. We also conducted further 
power analyses for the secondary age comparisons, with 
α = 0.05, statistical power of 0.90, and small to medium 
effects (f = 0.15), which indicated that 41 participants per 
age group would be sufficient for detecting age-related 
effects in 3-way mixed-effect ANOVAs (with 1 between-
group factor with 2 levels and 2 within-subject factors with 
2 levels each, that is, age group × normativity × valence).

To characterize our healthy older adult sample and for 
the purpose of secondary analyses of age differences, we 
also assessed several cognitive covariates. Participants’ 
verbal knowledge was assessed using the Spot-the-Word 
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Test (Baddeley et al., 1993), while information processing 
speed was measured with the Identical-Pictures Test 
(Lindenberger & Baltes, 1997). The two measures are com-
monly used to describe sample characteristics in lifespan 
research (e.g., Li et  al., 2004). Furthermore, the Raven’s 
Progressive Matrices test (Raven et al., 1998) was admin-
istered to measure reasoning ability, because this measure 
has been shown to correlate with optimal choice behavior 
(Eppinger et al., 2015) and updating performance in young 
adults (Peng et al., 2023). Due to invalid Raven’s scores 
(multiple answer selections or excessive non-responses), 
two participants were excluded from correlational and 
covariational analyses involving this measure. These cog-
nitive measures were assessed after the gamble bidding 
task was completed and the fNIRS cap was removed.

For the purpose of direct age comparisons, we con-
ducted secondary analyses that combined data from the 
current older adult sample and a younger adult sample 
previously studied in Peng et  al. (2023). The younger 
adult sample consisted of 45 right-handed younger 
adults aged 18 to 30  years (mean age  ±  SD: 22.04  ± 
2.8 years; 27 females). Both younger and older partici-
pants were compensated with 10 Euros per hour for their 
participation and could receive an additional potential 
bonus of up to 10 Euros during the resolution draw after 
the gamble bidding task. Details about the sample char-
acteristics and performance in the cognitive covariate 
tasks of both age groups are presented in Table 1.

2.2.  The gamble bidding task

2.2.1.  Task design

The participants performed a modified version of the 
gamble bidding task (identical to Peng et  al., 2023; cf. 
also Kobayashi & Hsu, 2017; Schulreich & Schwabe, 

2021). The task was derived from the established Ells-
berg’s urn problem in economics (Ellsberg, 1961) and 
entailed two types of uncertainty, that is, risk (irreducible) 
and ambiguity (reducible). We presented participants 
with gambles that each showed an urn with two to four 
colored (red, blue, or yellow) balls inside. Each gamble 
consisted of (a) “risky” ball(s) that was (were) represented 
by a single color with a known quantity, and (an) “ambig-
uous” ball(s), depicted by two half-circles of different col-
ors, for which the total number of such balls was known 
but the distribution of the two colors was unknown (see 
Fig. 1A). To prevent color bias, specific color assignments 
for risky and ambiguous balls were randomized across 
participants (see Supplementary Text S1 for control anal-
ysis showing no effects of random assignment of partici-
pant to color schemes). The type of uncertainty (i.e., 
reducible or not) in the gambles was manipulated by the 
predetermined winning color for each gamble, which 
determined whether the winning probability is known 
(i.e., risky) or unknown (i.e., ambiguous). For example, in 
a gamble with two single blue “risky” balls and two 
mixed-colored red/yellow “ambiguous” balls, the winning 
probability would be fully known (i.e., 50%) if blue is 
specified as the winning color but would be ambiguous if 
yellow (or red) is predetermined as the winning color (e.g., 
in Fig. 1A).

Each gamble started with the presentation of the urn 
composition. The participants were asked to enter a value 
to indicate a price in Euro at which they would be willing to 
sell (WTS) the gamble. All WTS values throughout the 
experiment were entered as integers from 0 to 10 using a 
numeric keypad. The WTS value represents the minimum 
amount of money that a participant would accept to give 
up their right to potentially win this gamble in a lottery at 
the end of the task. This is a well-established measure in 

Table 1.  Sample characteristics and performance in the cognitive tests by younger and older adults.

YA
M (SD)

OA
M (SD)

YA vs. OA
t (p)

N 45 46 -
Age 22.04 (2.80) 71.46 (3.54) -73.92 (<0.001)
Gender 18M / 27F 18M / 28F 0.00a (1)
Raven Raw Score 53.07 (4.17) 44.61 (5.81) 7.87 (<0.001)
Identical-Pictures Test
  Score 34.51 (4.40) 22.63 (3.18) 14.46 (<0.001)
  RT [ms] 2051.37 (300.81) 3221.81 (494.95) -13.66 (<0.001)
Spot-the-Word Test
  Accuracy [%] 65.32 (10.33) 80.58 (6.54) -8.40 (<0.001)
  RT [ms] 4358.90 (1645.45) 5032.23 (1419.89) -2.09 (0.04)

Note. aχ2 value. OA, older adults; YA, younger adults (data of YA are based on a sample studied in Peng et al., 2023); M, mean; 
SD, standard deviation. Younger adults exhibited better logical reasoning (higher Raven Raw Score) and processing speed (better 
performance in Identical-Pictures Test Score), whereas older adults showed better verbal knowledge (better performance in Spot-the-
Word Test). These age differences aligned well with existing aging findings (Li et al., 2004).
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decision research for assessing subjective valuations 
(Novemsky & Kahneman, 2005). After the urn content pre-
sentation, the participants then observed three distinct 
scenarios, each representing a hypothetical situation in 
which one ball is drawn from the urn. Specifically, each 
scenario involved a draw of one ball, with each of the three 
colors (red, blue, or yellow) appearing once in a random 
order across the three scenarios of a gamble (see Supple-
mentary Text S2 for the control analysis showing no poten-
tial effects of the draw order). After each scenario 
presentation, participants again indicated their WTS value 
using the numerical keypad (see Fig. 1B). As shown in Fig-
ure 1C, we manipulated winning colors and corresponding 
draws to yield different types of information: (1) in ambigu-
ous gambles, scenarios with ambiguous color draws pro-

vided new and relevant information that reduces 
uncertainty about the winning probability of the gambles; 
(2) in risky gambles, scenarios with ambiguous color draws 
provided new but irrelevant information, since the winning 
probability was already known from the initial urn presen-
tation; (3) in both types of gambles, scenarios with risky 
color draws provided no new information. This task design 
thus allowed us to evaluate how participants adjusted their 
subjective valuation of the gamble in response to different 
types of information (new and relevant, new but irrelevant, 
or nothing new). Normatively speaking, the WTS values 
should only be updated if the information obtained from a 
given scenario is both new and relevant, that is, indicating 
further information about a potential increase or decrease 
in winning probability.

Fig. 1.  Experimental design and fNIRS montage. (A) Example of an ambiguous gamble with two risky balls (blue) 
and two ambiguous balls (red/yellow), where the winning color indicated by the color of the small rectangle on top is 
yellow (adapted from Kobayashi & Hsu, 2017). (B) The trial sequence of an example gamble (adapted from Schulreich 
& Schwabe, 2021). (C) Overview of trial categories and information types, illustrating process predictions for different 
combinations of winning colors and drawn colors in ambiguous and risky gambles. The overview is only shown here for 
describing the task and was not shown to the participants. (D) Configuration of the frontoparietal fNIRS montage based on 
the international 10-10 coordinate system, using two 8 × 8 NIRStar systems (40 channels total).
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Six urn compositions with varying numbers of risky 
and ambiguous balls were presented (see Supplemen-
tary Table S1 for an overview of all urn compositions). The 
task comprised 24 gambles that were evenly distributed 
among the 3 possible winning colors: 8 risky gambles 
and 16 ambiguous gambles (with 8 for each of the 2 
ambiguous colors). The order of the gambles was ran-
domized. Each participant provided 24 predraw and 72 
postdraw WTS values. To enhance the participants’ moti-
vation and subjective valuations of the gambles, we 
implemented a final lottery using the Becker–DeGroot–
Marschak method (BDM; Becker et al., 1964) for bonus 
payment. At the end of the experiment, the task program 
randomly selected one predraw or postdraw gamble sce-
nario for the final resolution draw. Under the BDM proce-
dure, if a participant’s WTS value for the selected scenario 
was lower than a randomly generated number (between 
0 and 10), they would receive this random number as a 
bonus. However, if the WTS value provided by the partic-
ipants was higher than the random number generated by 
the computer, they would play the gamble with a chance 
to win the maximum of 10 Euros. During the instruction 
phase, we provided participants with very detailed exam-
ples illustrating how different bidding situations under the 
BDM procedure would affect their potential payoffs, 
ensuring that older adults comprehended the procedure 
and could know the bidding situations to maximize their 
expected payoff (see procedure below, Supplementary 
Appendix for the details about our one-on-one interactive 
task instruction, and Supplementary Table  S2 for the 
short quiz used to ensure task comprehension).

2.2.2.  Task procedure

Each gamble started with the initial presentation of the 
urn content composition for 8 s (see Fig. 1B). Afterward, 
participants were required to enter their predraw bid 
value (WTSpre) within 10 s using the numpad of a standard 
computer keyboard. If no value was registered within 
10 s, the entire gamble was eliminated from the analyses, 
because in this case the reference value used to calcu-
late the value updating would be missing. Following this, 
the screen displayed the instruction “Waiting for a new 
scenario …” on a black background with an average 
duration of 11.5 s, jittering between 10 and 16 s. The first 
scenario was then presented for 4  s, followed by the 
instruction text “Please wait a moment to enter your 
value…” (the period was jittered between 4 and 10 s, with 
an average of 5.5  s). Next, participants entered their 
postdraw bid value (WTSpost) for the first scenario within 
10 s, followed by an inter-scenario interval (mean interval 
of 11.5 s, jittered between 10 and 16 s). If no value was 
registered within 10  s, the value updating of the given 

scenario could not be computed and was considered 
missing. The same procedure was applied for the second 
and third scenario of the gamble. Overall, only 0.5% of 
the trials across all participants were time-outs and 
excluded from the analyses.

2.3.  fNIRS data acquisition

The fNIRS data acquisition protocol was the same as in 
our previous study of younger adults (Peng et al., 2023). 
To cover the cortex to a larger extent, we employed two 
NIRSport continuous-wave fNIRS devices (NIRx Medical 
Technologies, LLC, USA). The two devices were operated 
in tandem mode using NIRStar acquisition software (ver-
sion 15.3). Each system was equipped with 8 sources 
and 8 detectors, with single-tipped optodes, emitting 
electromagnetic wavelengths of 760 and 850  nm, and 
sampled at a frequency of 3.472 Hz. The optodes were 
secured using standard ActiCap grommets (NIRx, Ger-
many), except in the thickly haired parietal regions where 
spring-loaded grommets (pressure level 2) were used to 
ensure good scalp contact. Our setup did not include 
short channels. We maintained a stable channel distance 
of 3 cm using stabilizing links (NIRx, Germany). The mon-
tage included 16 sources and 16 detectors in total, result-
ing in 40 active channels for data analysis using the 
placement of optodes based on our previously estab-
lished frontoparietal montage (as shown in Fig. 1D).

The design of this montage was guided by the fNIRS 
Optodes’ Location Decider (fOLD; Zimeo Morais et  al., 
2018), aligned with the international 10-10 system and 
specified by the AAL2 (Automated Anatomical Labeling, 
Rolls et  al., 2015) parcellation. This arrangement effec-
tively covered the bilateral superior frontal gyrus, middle 
frontal gyrus, superior parietal gyrus, and inferior parietal 
gyrus, which are areas identified as crucial for belief and 
value updating processes during the gamble bidding task 
in younger adults (Kobayashi & Hsu, 2017; for more 
details on this montage, refer to the previous study by 
Peng et al., 2023). Proper NIRScap placement was veri-
fied according to the international 10-10 location of Cz. 
An overcap was placed over the NIRScap to block exter-
nal light and eliminate measurement disturbance.

2.4.  Procedure

After granting their informed consent, the participants 
completed a demographic questionnaire and the Edin-
burgh Handedness Inventory (EHI; Oldfield, 1971). We 
then measured participants’ head size to select the appro-
priate fNIRS cap and set up the fNIRS optodes. The built-in 
calibration and diagnostics feature procedures of NIRStar 
were run to assess the signal quality of all channels. The 
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software tagged each channel using the labels “excellent,” 
“acceptable,” “critical,” and “lost.” Before starting the 
experiment, we repeatedly parted participants’ hair to 
improve light penetration and repositioned the optodes 
until at least 35 out of 40 channels displayed excellent sig-
nal quality and no “critical” or “lost” channels.

While optodes and caps were being set up, the partic-
ipants were provided with instructions for the gamble 
bidding task. To ensure their comprehension, a short quiz 
of eight separate questions covering three key aspects of 
the task (i.e., the two types of balls, the independence 
between scenarios, the bidding procedure, and the rule 
for winning or losing during the final resolution draw) was 
administered after the participants had gone through the 
one-on-one interactive instructions with the experimenter 
(see Supplementary Appendix for the instructions). If par-
ticipants answered any question incorrectly, the experi-
menter immediately provided clarification by referring 
back to the relevant instruction slide before proceeding. 
Of note, the average accuracy based on the participants’ 
initial answers for each of the questions in the quiz did 
not differ between older and younger adults (t89 = -0.73, 
p = 0.46; see Supplementary Table S2, which also shows 
results at the level of each single question). Participants 
then engaged in two practice rounds to familiarize them-
selves with the task before beginning the main experi-
ment: one round was guided step-by-step by the 
experimenter, and the other was performed inde-
pendently. The recording of fNIRS data commenced 30 s 
before the main task and continued until completion, with 
the task lasting approximately 38 min on average (rang-
ing from 36 to 42 min).

2.5.  Data analysis

Behavioral data were analyzed using R (R Development 
Core Team, 2021). The fNIRS data were analyzed using 
Matlab R2020b (MathWorks Inc, Natick, MA, USA). The 
main derived behavioral variables and models used for 
analyzing the behavioral and fNIRS data are described 
below.

2.5.1.  Behavioral data

In line with previous studies (Kobayashi & Hsu, 2017; Peng 
et  al., 2023; Schulreich & Schwabe, 2021), our primary 
dependent variable was participants’ value updating, 
which was quantified as the trial-wise difference between 
postdraw and predraw values of WTS (∆WTS = WTSpost – 
WTSpre). The ∆WTSs were categorized based on the nor-
mativity and valence of value updating as shown in 
Figure 1C. In normatively positive trials, an ambiguous 
color draw matches the winning color. In this case, the 

uncertainty about the gamble is reduced and an increase 
in winning probability can be inferred, which should nor-
matively result in an upward adjustment of the WTS val-
ues. The normatively negative trials feature an ambiguous 
color draw that does not match the winning color in ambig-
uous gambles. In this case, other than the basic negating 
feedback, it also suggests a lower probability of winning 
that should normatively result in a downward adjustment 
of the WTS values. In other trials, zero value updating was 
normatively expected because the winning probability 
remained unchanged even after obtaining further informa-
tion in the scenarios. However, non-normative value 
updating could still occur based on whether the color-
based feedback from a given draw matches (risky color 
draws in risky gambles) or mismatches (risky color draws 
in ambiguous gambles and ambiguous color draws in 
risky gambles) the winning color (Schulreich & Schwabe, 
2021). Such updating would rely on a simple negative (or 
positive) interpretation of the mismatch (or match) between 
the color drawn and the winning color, possibly driven by 
expectancy violation, rather than by using uncertainty-
reducing information to update the internal model (belief) 
about the statistical properties of a given gamble (i.e., 
belief updating).

To investigate to which extent older adults would be 
sensitive or insensitive to the reducibility of uncertainty in 
the different gamble scenarios, we analyzed their value 
updating in each of the aforementioned trial categories. 
Specifically, we conducted one-sample Wilcoxon signed 
rank tests (using the rstatix::wilcox_test function; 
Kassambara, 2021) to test whether the average ΔWTSs 
for each trial category differed significantly from zero. The 
hypothesis was that if older adults are sensitive to uncer-
tainty reduction as the normative Bayesian model pre-
dicts, their ΔWTSs should only be significantly above or 
below zero, respectively, in normatively positive or nega-
tive trial categories, but not in any of the three categories 
of non-normative trial categories.

Biases are often present in human decision-making 
processes. For instance, a valence-dependent asymme-
try in value updating was previously observed in younger 
adults in normative trials (i.e., information indicating a 
decrease in winning probability was overweighted rela-
tive to information indicating an increase; Peng et  al., 
2023). We thus also explored whether valence may affect 
value updating in older adults. To this end, we ran a linear 
mixed-effect modeling (LMM) analysis, using the 
lme4::lmer function (Bates et al., 2015). Valence, norma-
tivity, and their interaction were incorporated as fixed 
effects to predict the ΔWTSs, whereas the participants 
were treated as random effects. For a direct comparison, 
the ΔWTSs in negative trials were sign-flipped to ensure 
uniform interpretation of increases as greater value 
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updating. Furthermore, the ΔWTSs from the two non-
normative mismatch trial categories were merged and 
averaged before the analysis. The model was estimated 
using the Restricted Maximum Likelihood (ReML) proce-
dure, and post hoc pairwise comparisons were con-
ducted using the emmeans function (Lenth, 2022).

To gain deeper insights into the participants’ updating 
behavior and underlying processes, we utilized a Bayes-
ian model and compared observed updating behaviors 
with model predictions (cf. Kobayashi & Hsu, 2017; see 
Section 2.5.1.1 for details). Predictions of the model pro-
vided a quantitative benchmark, against which we evalu-
ated participants’ performance. For the non-normative 
trial categories, the predicted value updating is zero, 
which was already integrated in a first set of analysis 
described above. As for the two normative trial catego-
ries, we conducted two one-sample Wilcoxon signed 
rank tests to examine the deviations of older adults’  
ΔWTSs from Bayesian model predictions (i.e., deviation 
(DEV) = ΔWTSs – value updatingpredicted) against 0. The 
category-wise DEVs were averaged across trials of the 
same category for each participant. DEVs in normatively 
negative trials were again sign-flipped for ease of inter-
pretation. Thus, independent of valence, a DEV greater 
than 0 indicates that the participants’ value updating was 
larger than the model’s prediction (over-updating), while a 
negative DEV suggests an under-updating.

According to the Bayesian model, the value updating 
should be driven by updating beliefs about the winning 
probabilities associated with the gambles. Nevertheless, 
expectancy violations, which are inherent in any probabi-
listic outcomes, may also contribute to non-normative 
value updating. Here, we quantify this as the probability 
of a given color ball to be drawn (i.e., 1− Pdrawcolor). To 
examine the underlying processes of value updating in 
older adults, we fitted LMMs with predictors of these two 
distinct processes (i.e., belief updating and expectancy 
violation) to urn-wise ΔWTSs for each condition (see 
details of the model on Section 2.5.1.1). Given the sec-
ondary aim of also examining age-related differences and 
to facilitate interpretations, our model selection was 
guided by analyses conducted on a larger sample includ-
ing previously published younger adult data (Peng et al., 
2023). For the three trial categories with ambiguous 
draws, we specified an overall model that included age 
group, belief updating, expectancy violation, and all their 
interactions as predictors for the observed ΔWTSs. Par-
ticipants were included as random effects. The backward 
stepwise model selection process with the lmerTest::step 
function (Kuznetsova et al., 2017) was used for simplify-
ing fixed effects by sequentially testing and removing the 
least significant terms based on results of likelihood ratio 
tests. Upon identifying the best fitting model from the full 

sample (see Supplementary Table S3), we then adapted 
it to fit the older adults’ data. For the two trial categories 
with risky draws, the overall model included age group, 
expectancy violation, and their interaction as fixed 
effects, participants as random effects. The subsequent 
analysis steps for non-normative trial categories were the 
same as described here for normative trial categories.

To investigate the relationship between individual dif-
ferences in updating performance and reasoning ability, 
we conducted Spearman’s correlation between the abso-
lute deviations (|DEVs|) of value updating from Bayesian 
predictions and raw scores of the Raven’s test (Raven 
et al., 1998). Furthermore, as a statistical control, we also 
conducted covariate analysis in the LMMs to examine 
whether the processes of value updating in older adults 
would be associated with individual differences in rea-
soning ability. Specifically, we included Raven’s test 
scores for each participant as covariates in the models. 
The main findings remained similar to models without the 
covariate (see Supplementary Table S4).

For all LMMs, the F-test statistic and p-values were 
based on the Satterthwaite’s method (Kuznetsova et al., 
2017). Effect sizes of mixed-effect models (partial eta 
squared, ηp

2) were estimated using the effectsize::eta_
squared function (Ben-Shachar et  al., 2020), and inter-
preted as small (0.01), medium (0.06), and large (0.14) 
effects. Effect sizes of Wilcoxon tests (rank-biserial cor-
relation, rrb) were calculated using rstatix::wilcox_effsize 
function (Kassambara, 2021), and interpreted as small 
(0.1), medium (0.3), and large (0.5) according to the defi-
nition by Cohen (1988).

2.5.1.1.  Bayesian quantitative model.  We adopted a 
Bayesian model (Kobayashi & Hsu, 2017) to predict the 
updating behavior, which accounts for processes of 
belief formation and valuation. Formally, belief formation 
models the probability distribution reflecting the likeli-
hoods of the ball colors in later draws of a given gamble. 
After the initial urn content presentation, participants 
have the information about the total number of risky (nr) 
and ambiguous balls (na ) , but not about the exact distri-
bution of balls in the two ambiguous colors (i.e., na1 and 
na2). The probability of drawing a risky ball can be simply 
specified as Ppre (r ) = nr /(nr +na ). However, estimating the 
probability of drawing a ball in one of the two ambiguous 
color requires considering all possible urn contents, given 
that the na1 and na2 are unknown. Assuming a binomial 
distribution, the probability of na1 can be specified as 

Ppre (na1) = 
1
2na

 
na
na1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
. Consequently, the probability of 

drawing a ball in ambiguous color a1 can be estimated as 

Ppre (a1) =  na1=0

na∑ Ppre (na1) i na1/(nr +na ). During the subse-
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quent scenarios of drawing balls with different colors, 
when observing a draw in one of the two ambiguous col-
ors (e.g., color a1), the beliefs should be updated under 
the Bayesian rule, since ambiguity about the color distri-
bution is reduced. In case of a ball in color a1 is drawn, 
the probability of na1 would be updated to 

Ppost (na1) = 
1

2na−1
 

na −1
na1−1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
. In case of a ball in color a2  

is drawn, the probability of na1 is updated to 

Ppost (na1) = 
1

2na−1
 
na −1
na1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
. However, when a ball in the 

risky color is drawn, the probability of na1 remains the 
same as at predraw because such an event provides no 
new information about the urn’s content, leaving the 
degree of uncertainty unchanged. In the model, valuation 
accounts for the process of computing an expected value 
(EV) of a given gamble by multiplying the presumed (or 
beliefs about) probability of the winning color Pw  with the 
monetary reward of 10€, that is, EV = 10€ × Pw. Because 
the specific color of a ball being drawn from the urn at 
any given incidence is probabilistic, each draw can 
potentially violate expectations. Such expectancy viola-
tion at each draw can be quantified as 1− Pdrawcolor (see 
Fig. 1C for an overview of scenarios involving expectancy 
violation, belief updating, value updating, and their com-
binations as specified by different conditions of the 
experimental paradigm).

2.5.2.  fNIRS data of older adults

2.5.2.1.  Data quality check.  Before proceeding with 
data analyses, we evaluated fNIRS signal quality per 
channel for each participant with HOMER3 toolbox 
(Huppert et  al., 2009). First, the hmrR_PruneChannels 
function was applied to assess the raw light intensities. 
The settings, including a signal-to-noise ratio threshold 
of 6.67 and a data range (dRange) between 0.1 to 10, 
aligned with the ones used in the previous study of 
younger adults (Peng et al., 2023). Furthermore, we visu-
ally checked the power spectral density to identify the 
heartbeat frequency around 1 Hz. Although such physio-
logical activity is not the focus of our study, the presence 
of this pattern confirms coupling between the optodes 
and scalp during the measurement (Hocke et al., 2018; 
Tong et al., 2011). Channels failing either the automated 
checks or visual inspections were labeled as low-quality 
channels. Three participants with more than 13 low-
quality channels (over 33% of the 40 channels) were 
excluded from further analyses (see Supplementary 
Table S5 for an overview of the number of participants 
with good signal quality for each of the channels). For the 
remaining participants, no channels were removed; 

instead, we employed statistical models that downweigh 
noisy channels (see details in the next section). This is a 
conservative approach that may raise type-II error but 
not false positives (Huppert, 2016; Meidenbauer et  al., 
2021).

2.5.2.2.  Pre-processing pipeline.  The NIRS Brain Ana-
lyzIR Toolbox (Santosa et al., 2018) was used to process 
and analyze the fNIRS data. We applied a pre-processing 
pipeline that neither involved motion correction nor pre-
filtering, but instead used a robust statistical model that 
is less biased by fNIRS-specific artifacts (Santosa et al., 
2018, p. 29). The pre-processing comprised the follow-
ing steps: the raw data were transformed into optical 
density and then converted to oxygenated hemoglobin 
(HbO) and deoxygenated hemoglobin (HbR) by applying 
the modified Beer–Lambert law (Strangman et al., 2003) 
that used individual age-related partial pathlength factor 
(PPF). Specifically, we first calculated the differential 
path length factor (DPF) for each participant using  
the equation from Scholkmann and Wolf (2013): 
DPF (λ,A) = α+βA γ +δλ3 +ηλ2 +ζ λ, where λ is the wave
length and A is age. The other parameters used in the 
question were also obtained from their empirical data: 
α = 223.3, β = 0.05624, γ = 0.8493, δ = -5.723 × 10−7, 
η = 0.001245, and ζ = -0.9025. Next, the DPF was con-
verted into PPF (PPF = 1/60 × DPF).

2.5.2.3.  Modeling process-related activations.  For the 
individual level analysis, we employed an autoregressive 
iteratively reweighted least-squares (AR-IRLS) pre-
whitening approach (Barker et al., 2013). Our main model 
(Model-1) included a regressor with the onsets of the 72 
scenario presentations and the related parametric modu-
lators of belief updating, value updating, and expectancy 
violation of each scenario. Value updating was quantified 
as the participants’ ΔWTSs, while belief updating and 
expectancy violation were quantified by values of the 
Bayesian model’s predictions (see Section 2.5.1.1 above). 
All modulators were centered and normalized separately. 
Regressors of no interest included the time triggers for 
urn presentation and entering bidding values on the key-
pad at predraw and postdraws. Each regressor was 
modeled according to its specific duration, which corre-
sponds to either the presentation duration or the response 
times during the bidding phases. We used the canonical 
hemodynamic response function (also known as “double 
gamma function”) with default parameters (peak time 4 s 
and undershoot time 16 s; Santosa et al., 2018). Prior to 
the group analysis, we checked the distributions of the β 
values across all participants for each channel. One par-
ticipant was detected as an outlier (β values for 14 chan-
nels below 3 SD) and was thus not included in the final 
sample (n = 46).
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At the group level, we used LMMs to calculate the 
group mean for each regressor, where participants were 
treated as random effects and the other factors of inter-
est were fixed effects. The Student’s t-test was performed 
to calculate and compare the channel-wise regression 
coefficients. FDR corrections were applied for correc-
tions of multiple comparisons among all data types, 
channels, and effects of interests. Our rationales for 
focusing on analyses of HbO signals include their previ-
ously observed associations with updating processes 
(Peng et  al., 2023), higher signal-to-noise ratio, and 
greater sensitivity to task-induced, event-related cortical 
changes compared with HbR signals (Cheng et al., 2015; 
Hoge et al., 2005; Huppert et al., 2006; Jiang et al., 2015). 
Nevertheless, we also conducted analyses of HbR, which 
showed that no channels yielded significant activity 
related to any of the updating processes (all uncorrected 
p’s > 0.07). We visualized the group-level HbO results by 
converting t statistic values of channels for which the 
uncorrected p < 0.05 into *.img files using the nirs2img 
function (https://www​.alivelearn​.net​/​?p​=2230). These 
images were subsequently overlaid on the 3D brain 
model using Surf Ice (https://www​.nitrc​.org​/projects​
/surfice/).

Additional analyses were performed to assess the 
effects of trial category on the average activation during 
scenario presentations. To investigate the main effects 
and interactions of normativity and valence, we set up 
Model-2 which incorporated four regressors of the trial 
categories: normatively positive, normatively negative, 
non-normatively positive, and non-normatively negative 
(see Supplementary Table S6 for the results). To explore 
whether the valence-dependent HbO activation previ-
ously identified in normative trials in younger adults 
would also be observed in older adults, we set up Mod-
el-3, which merged the non-normatively positive and 
non-normatively negative trials into a single “normatively 
zero” category (see Supplementary Table  S7 for the 
results). All models incorporated regressors of no interest 
that were consistent with those in the main model (Model 
1) and the group-level model specification followed the 
same as the main model.

2.5.3.  Correlational analysis of value updating 
performance and HbO responses

We performed correlational analyses to explore the rela-
tionship between value updating performance and the 
HbO responses associated with processes of belief 
updating and expectancy violation, respectively. For each 
process, Spearman’s rho was calculated between the β 
values of channels showing significant process-related 
HbO activation and the absolute deviations (|DEV|) 

between the observed value updating and the Bayesian 
model prediction.

2.5.4.  Secondary analysis of age differences in 
value updating

For secondary analyses on adult age-related differences 
of value updating, we ran a LMM to account for individual 
and age-related differences in ΔWTSs that included age 
group (old vs. young), valence (positive vs. negative), nor-
mativity (normative vs. non-normative), and their interac-
tions as fixed effects, while participants were treated as 
random effects.

Since value updating was calculated by subtracting 
predraw values from postdraw in each trial, the ΔWTSs 
inherently account for individual differences in subjective 
values ascribed to the 24 gambles that differed in levels 
of risk or ambiguity. Nevertheless, it is not known whether 
there would be age-related differences in predraw values, 
and if so, whether such differences might potentially con-
tribute to age differences in value updating when com-
pared across studies and samples. To address this, we 
ran two additional LMMs. The first LMM examined 
whether predraw values differ between young and older 
adults and whether these differences differ between 
gamble types (risky and ambiguous). The model included 
age group, gamble type, and their interaction as fixed-
effect predictors. The averaged predraw WTSs for each 
participant and gamble type were the dependent vari-
able, with participants included as random effects. The 
second LMM included age group, gamble type, phase 
(predraw and postdraw), and their interactions as fixed-
effect predictors, with participants WTSs averaged sepa-
rately for each phase and gamble types as the dependent 
variable. Participants were treated as random effects. If 
the three-way (age group ×  gamble ×  phase) and two-
way (age group × phase) interactions are not significant, 
it would suggest that the age difference observed in value 
updating is not due to group differences of subjective val-
ues attributed to the gambles at the predraw phase. The 
models described above were estimated with the ReML 
approach, and post hoc comparisons were conducted 
using the emmeans function (Lenth, 2022), with p-values 
adjusted by the Holm method.

2.5.5.  Secondary analyses of age differences in 
process-related HbO responses

To explore age differences in underlying neural pro-
cesses, we combined fNIRS data from the current study 
of older adults and a previous study of younger adults in 
secondary analyses. To ensure direct comparability 
between age groups, younger adults’ fNIRS data were 

https://www.alivelearn.net/?p=2230
https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/surfice/
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pre-processed using the same pipeline as that used for 
older adults, including conversion of optical density val-
ues to hemoglobin concentrations using the modified 
Beer–Lambert law with individual age-related PPF. The 
individual-level analyses for young adults were performed 
following the identical procedure described above in 
Section 2.5.2 for older adults. We then conducted group-
level analyses using LMMs to model the interactions 
between processes (expectancy violation, belief updat-
ing, and value updating) and age groups (younger adults 
and older adults) on the process-related HbO responses.

3.  RESULTS

3.1.  Behavioral results

3.1.1.  Older adults showed both normative and 
non-normative behaviors of value updating

The one-sample Wilcoxon signed rank tests revealed that 
value updating (ΔWTSs) differed from 0 in all trial catego-
ries (i.e., all combinations of normative/non-normative 
and positive/negative updating, see Section  2.5.1 for 
detailed descriptions) in the current old-adult sample 
(see Fig. 2A). Specifically, the value updating was signifi-
cantly greater than 0 in both normatively positive [median 
(Mdn) = 0.79, p < 0.001, rrb = 0.55] and non-normatively 
positive trials (Mdn = 0.42, p = 0.003, rrb = 0.44). In con-
trast, it was significantly less than 0 in the normatively 
negative (Mdn = – 1.00, p < 0.001, rrb = 0.75) and non-
normatively negative trials, including risky color draws in 
ambiguous gambles (Mdn = -0.46, p = 0.003, rrb = 0.43) 
and ambiguous color draws in risky gambles (Mdn = -0.85, 
p < 0.001, rrb = 0.72). Significant deviations from 0 in nor-

mative trials indicate qualitatively normative updating 
performance, whereas such deviations in non-normative 
trials indicate non-normative behavior. For the direct 
comparison with data from younger adults assessed in a 
previous study (Peng et al., 2023), see results and plots 
(Fig. 4A) of secondary analysis in Section 3.4.

Furthermore, results of the LMM revealed a significant 
main effect of valence (F135 = 5.87, p = 0.02, ηp

2 = 0.04). 
Post hoc analysis suggested that value updating in posi-
tive trials was less than that in negative trials (estimate of 
difference in marginal means = -0.41, t = -2.42, p = 0.02). 
The main effect of normativity was marginally significant 
(F135 = 3.81, p = 0.053, ηp

2 = 0.03) and the interaction of 
valence  ×  normativity was not significant (F135  =  0.16, 
p = 0.69, ηp

2 = 0.002).

3.1.2.  Value updating of older adults deviated from 
model predictions in normative trials

Even though in normative trials older adults showed qual-
itatively normative updating performance (ΔWTSs devi-
ated from 0) as the analyses above revealed, their 
performance can still quantitatively deviate from Bayes-
ian predictions. To further evaluate how much older 
adults’ updating behaviors deviated from model predic-
tions in normative trials, we analyzed DEVs by taking the 
difference between observed behavior and model predic-
tion (i.e., DEV = ΔWTS – prediction) for each gamble type 
(the DEVs of the normatively negative trials were sign 
flipped for ease of interpretation). The DEVs of value 
updating were significantly below 0 (normatively positive, 
Mdn = -0.81, p < 0.001; normatively negative, Mdn = -0.60, 
p = 0.04; see Fig. 2B), showing that the extent of value 

Fig. 2.  Behavioral results. (A) Value updating in older adults. Trial categories are labeled on x-axis by winning colors (W) 
and drawn colors in scenarios (S), with “a” standing for ambiguous, “r” for risky, “=“ indicating a match, and “≠” indicating 
a mismatch between the winning color and drawn color. Error bars show the standard error of the mean. (B) Deviations 
from Bayesian model predictions in normative trials by valence. Boxplots show the median and quartiles of the data. (C) 
Correlation between reasoning ability and updating performance. The shaded areas represent the confidence interval of 
95%. ***p < 0.001, **p < 0.01, *p < 0.05.
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updating in older adults was less than what the model 
predicted, which may indicate that older adults under-
weight new information.

Note that we also observed that older adults’ predraw 
WTSs were significantly higher than the model’s predic-
tions in both risky and ambiguous gambles (all p’s < 0.001). 
The higher WTSs at predraw than model predictions indi-
cate that, prior to any new information given by observed 
draws, older adults tend to place higher values to both 
risky and ambiguous gambles than normatively predicted 
by the Bayesian model. However, the higher values older 
adults ascribed to the gambles at the predraw phase did 
not limit the potential range of values for adjustments at 
the postdraw phase (see Fig. 4 in the section of age com-
parisons). If such a restriction in range of value updating is 
present in the data, it would only affect the postdraw WTS 
in the positive, but not in the negative direction (for which 
we also observed underweighting of new information). 
Moreover, results from analyses comparing postdraw 
WTSs with the model’s predictions in different trial catego-
ries showed that the postdraw WTSs were generally still 
significantly greater than the model’s predictions 
(p’s < 0.001), suggesting an available range for increases 
above the model predictions, (see Supplementary Text S3 
for the details of these analyses).

Together, the results reported in these two sections 
show that older adults’ updating behaviors were only 
quasi-optimal in the normative trial categories: they did 
update the WTS values in these trials, but underweighted 
new information. Their updating behavior in the non-
normative categories deviated completely from the model 
prediction (i.e., no updating) and showed that they were 
not sensitive to whether new information can or cannot 
reduce uncertainty. We also observed that older adults’ 
value updating was affected by the valence of the new 
information in both normative and non-normative trials 
categories. The extent of value updating was larger in tri-
als with a mismatch between draw and winning color 
(negative trials) than in trials with a match between draw 
and winning color (positive trials). In addition, prior to any 
further information given by observed draws, relative to 
normative predictions, older adults gave the gambles 
higher values than the Bayesian model (see Section 3.4 
for age comparisons).

3.1.3.  Individuals with higher Raven’s scores 
deviate less from model predictions

We further examined the potential relationships between 
individual differences in basic cognitive abilities reflecting 
fluid intelligence and value updating performance. We 
observed a significant negative correlation between 
Raven’s raw scores and the overall deviations of value 

updating from Bayesian normative predictions (|DEV|). 
The result showed that older adults with higher reasoning 
ability performed better (i.e., deviated less from model 
predictions) in the gamble bidding task (Fig.  2C). This 
relationship remained significant even after controlling for 
individual differences in deviations of predraw values 
from the Bayesian predictions (semi-partial Spearman 
correlation r = -0.38, p = 0.01).

3.1.4.  Processes underlying value updating in older 
adults

As shown in Table 2, results from regression models pre-
dicting value updating (ΔWTS as dependent variable) with 
expectancy violation and belief updating as predictors 
showed that in normatively positive trials, expectancy vio-
lation yielded a significant positive weight in predicting 
value updating (β = 2.03, p = 0.036), while belief updating—
the process that would be expected to drive value updat-
ing from a Bayesian perspective—did not show a 
significant association. In normatively negative trials, only 
a statistical trend for belief updating being predictive of 
value updating in the negative direction (ascribing less val-
ues relative to predraw) was observed (β = -3.34, p = 0.083). 
In non-normatively positive trials, expectancy violation did 
not show an effect. In non-normatively negative trials, we 
found that updating toward more negative values was pre-
dicted by expectancy violation for both risky (β =  -2.90, 
p < 0.001) and ambiguous gambles (β = -6.26, p < 0.001). 
Interestingly, belief updating shows a significant negative 
weight in predicting value updating when observing 
ambiguous-color draws in risky gambles (β  =  -4.20, 
p = 0.029), for which no updating would be expected from 
a Bayesian perspective.

3.2.  Brain correlates of updating processes

The channel-wise parametric analyses of the fNIRS HbO 
signals revealed a significant positive correlation with 
belief updating (FDR q = 0.002) in the superior parietal 
gyrus (channel S14-D14; Fig. 3A). In contrast, HbO sig-
nals in the SPG (same channel) and in the left DLPFC 
(channel S11-D13) correlated negatively (FDR q’s < 0.05) 
with expectancy violation (Fig. 3B). No significant correla-
tions between value updating (ΔWTS) and HbO responses 
were observed (Fig.  3C). For specific statistics values, 
see Supplementary Table S8.

3.3.  Relationships between brain correlates of 
updating processes and updating behavior

We calculated Spearman correlations between the over-
all updating performance—quantified by the absolute 
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value of deviations from model prediction (|DEV|)—and 
the β values of the channel in the SPG that showed a 
significant positive correlation with belief updating 
(Fig. 3A), and the two channels in SPG and the left DLPFC 
showing significant negative correlations with expec-
tancy violation (see Fig. 3B). The results revealed that nei-
ther the belief updating-related HbO responses in the 
SPG nor the expectancy violation-related responses in 
the same channel (S14-D14) were related to updating 
performance (p’s  >  0.44). However, as shown in Fig-
ure  3D, older adults with higher expectancy violation-
related activation in the left DLPFC (channel S11-D13) 
showed worse overall performance (rs  =  0.35, uncor-
rected p  =  0.02, FDR q  <  0.05). This correlation also 
remained significant (rs = 0.32, p = 0.027) after controlling 
for predraw valuation performance and Raven’s scores.

Given that the channel in the left DLPFC (S11-D13) 
also exhibited some belief updating-related activation at 
a lenient threshold (t = 3.04, p = 0.003, FDR q = 0.10), we 
further explored the correlation between overall task per-
formance and the relative influence of belief updating and 
expectancy violation on HbO activity in this channel. The 
relative influence was quantified as the absolute stan-
dardized β value of expectancy violation divided by the 
sum of the absolute standardized β of both predictors, 
that is, |βexpVio| / (|βexpVio| + |βbeliefupd|). The range of this index 
is [0, 1], with values closer to 1 indicating a greater influ-
ence of expectancy violation on the HbO activation. We 
found that individuals with a larger relative contribution of 
expectancy violation in the left DLPFC tended to deviate 

more from the Bayesian predictions (rs = 0.28, p = 0.06; 
see Fig. 3E).

3.4.  Results from secondary analyses of adult age 
differences

To directly examine effects of aging on value updating, we 
analyzed an extended dataset that combined data from 
the current older adult sample with published data of 
younger adults from a previous study (Peng et al., 2023). 
We ran an LMM with age group, valence, normativity, and 
their interactions as predictor variables for predicting 
ΔWTSs. Other than modeling participants as random 
effects, the other predictors were modeled as fixed effects. 
Since Raven’s scores were correlated with value updating 
performance in both age groups, and the significantly 
lower scores in older adults compared with younger adults 
(p < 0.001, Table 1), we also included Raven’s scores in the 
LMM as a control variable. The model revealed no signifi-
cant main effects of age group (F1,86  =  1.45, p  =  0.23, 
ηp

2 = 0.07). However, there were significant main effect of 
valence (F1,261 = 24.25, p < 0.001, ηp

2 = 0.09), normativity 
(F1,267 = 45.03, p < 0.001, ηp

2 = 0.15), as well as a significant 
2-way interaction of age  ×  normativity (F1,261  =  12.47, 
p < 0.001, ηp

2 = 0.05). The other interactions were not sig-
nificant (all p’s  >  0.31), in particular there was also no 
age × valence interaction, indicating that although both old 
and young adults showed stronger value updating for (nor-
matively) negative compared with positive trials, there was 
no age-related change in this valence bias. As shown in 

Table 2.  Estimation of linear mixed-effect models on the underlying processes of value updating in different trial 
categories.

Coefficients (β s) SE DF 95% CI p-value

Normatively positive (ambiguous-color draws in ambiguous gambles—color matched)
  (Intercept) -1.06 0.81 255.09 [-2.65, 0.54] 0.193
  Belief updating 1.89 1.88 228.00 [-1.82, 5.59] 0.317
  Expectancy violation 2.03 0.96 228.00 [0.13, 3.93] 0.036

Normatively negative (ambiguous-color draws in ambiguous gambles—color mismatched)
  (Intercept) -0.71 0.36 246.43 [-1.43, 0.00] 0.051
  Belief updating -3.34 1.92 229.00 [-7.12, 0.45] 0.083

Non-normatively positive (risky-color draws in risky gambles)
  (Intercept) 0.02 0.33 270.68 [-0.64, 0.68] 0.959
  Expectancy violation 0.98 0.60 229.49 [-0.20, 2.17] 0.104

Non-normatively negative (risky-color draws in ambiguous gambles)
  (Intercept) 3.53 1.07 243.61 [1.42, 5.64] 0.001
  Expectancy violation -6.26 1.40 228.28 [-9.02, -3.50] < 0.001

Non-normatively negative (ambiguous-color draws in risky gambles)
  (Intercept) 1.59 0.43 273.00 [0.75, 2.44] < 0.001
  Expectancy violation -2.90 0.49 228.00 [-3.87, -1.93] < 0.001
  Belief updating -4.20 1.92 228.00 [-7.98, -0.41] 0.030

Note. Model specification determined by theoretical and empirical considerations (see Section 2.5.1 for details). Value updating  
(i.e., ∆WTS) in normatively/non-normatively negative trials was not sign-flipped here (i.e., negative coefficients indicate more negative 
value updating with higher expectancy violation/belief updating). Bold font indicates statistically significant result (p < 0.05).
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Figure 4A, post hoc tests on the effects of age group on 
normativity revealed that older adults did not differ from 
younger adults in the normative trials (OA vs. YA, esti-
mate of difference in marginal means = -0.14, t = -0.65, 
p  =  0.52), but showed greater non-normative value 
updating than younger adults in all three categories of 
non-normative trials (estimate = 0.60, t = 2.76, p = 0.007). 
This pattern of results indicates that, unlike younger 
adults, the updating behavior of older adults was not 
sensitive to whether new information in the gamble sce-
narios could or could not reduce uncertainty.

Furthermore, we also examined whether younger and 
older adults differ in the predraw values. We ran an LMM 
with age group, gamble type, and their interactions as 
fixed-effect predictors to predict predraw WTSs. Partici-
pants were included as random effects, and Raven’s 
scores were included as a control variable. The model 
revealed significant main effects of age group (F1,86 = 4.96, 
p  =  0.03, ηp

2  =  0.05), gamble type (F1,87  =  162.82, 
p < 0.001, ηp

2 = 0.65), and a significant 2-way interaction 
of age × gamble type (F1,87 = 11.67, p < 0.001, ηp

2 = 0.12). 

As shown in Figure 4B, post hoc tests on the effects of 
age group on gamble type revealed that older adults did 
not differ from younger adults in the predraw values of 
risky gambles (OA vs. YA, estimate  =  0.12, t  =  0.39, 
p = 0.69), but showed greater predraw values in ambigu-
ous gambles than younger adults (estimate  =  1.08, 
t = 3.55, p < 0.001).

To further examine whether the subjective values 
ascribed to gambles of varying risk and ambiguity at the 
predraw phase might contribute to the observed age dif-
ferences in value updating, we ran another LMM with age 
group, gamble type, experimental phase, and their inter-
actions as predictor variables to predict WTSs. Partici-
pants were treated as random effects, and Raven’s 
scores were included as a control variable. As shown in 
Figure 4B, the model revealed significant main effect of 
age (F1,86  =  4.53, p  =  0.04, ηp

2  =  0.05), gamble 
(F1,261  =  413.52, p  <  0.001, ηp

2  =  0.61), and phase 
(F1,261 = 17.19, p < 0.001, ηp

2 = 0.06). Although the 2-way 
interactions of age × gamble (F1,267 = 41.16, p < 0.001, 
ηp

2 = 0.14) were significant, neither the 2-way age × phase 

Fig. 3.  HbO activation in frontoparietal regions correlated with updating processes during observed draws and with task 
performance in older adults. Neural correlates of (A) belief updating, (B) expectancy violation, and (C) value updating. 
Activation of channels with uncorrected p < 0.05 is shown here. Channels that remain significant after FDR corrections 
(q < 0.05) are indicated with *. See Supplementary Table S8 for the values of the statistics. (D) Individuals with higher 
expectancy violation-related HbO activation in the left DLPFC (channel S11-D13) deviated more from the Bayesian 
model’s prediction. (E) Individuals with greater contribution of expectancy violation (relative to belief updating) in the same 
channel tend to show larger deviations from model predictions.
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(p = 0.21) nor the 3-way age × gamble × phase (p = 0.40) 
interactions were significant. Together this pattern of 
results further indicated that, although older adults sub-
jectively valued the ambiguous gambles more than 
younger adults at predraw, age group differences in value 
updating are not due to this effect.

We also conducted secondary analyses to compare 
age differences in model-based analyses of HbO 
responses that correlated with processes of expectation 
violation or updating. First, we conducted channel-of-
interest analyses by comparing age differences in chan-
nels for which model-based processes correlated with 
HbO responses in older adults. These analyses showed 
that in left DLPFC (i.e., channel S11-D13) and in left 
SPG (i.e., channel S14-D14) where significant negative 

correlations with expectation violation (i.e., lower values 
of expectation violation linked to greater HbO responses) 
were observed in older adults (see Fig. 3B above), the 
expectation violation-associated HbO activity was sta-
tistically significant in older adults, but not in younger 
adults (see Fig. 5A). In the left SPG (i.e., channel S14-
D14), the belief updating-associated HbO activity did 
not differ between young and older adults (p  =  0.11). 
Furthermore, we also explored age differences across 
all channels. With a more stringent significance criterion 
of FDR correction at q < 0.05, we found an effect in the 
left DLPFC (i.e., channel S12-D13) where a significant 
positive correlation with value updating (i.e., higher val-
ues of value updating relating to higher HbO responses) 
was observed in younger adults (see Peng et al., 2023). 

Fig. 4.  Adult age differences in value updating and subjective values. (A) Value updating in the normative and non-
normative trials by age groups (shown here are overall results and separately by valence; signs for negative-valence 
categories were flipped for comparison). The boxplots display quartiles, with the white horizontal line showing the mean 
and the black diamond indicating the median. (B) Observed versus Bayesian predicted values shown for predraw (left), 
postdraw (middle), and value updating (right), separated by ambiguous gambles (top) and risky (bottom) gambles. Each 
data point represents a specific urn composition. Values of negative-valence categories were not sign-flipped here. Error 
bars indicate the SE (some not visible due to small size).
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The value updating-associated HbO activity was con-
versely only significant in younger, but not in older adults 
(see Fig. 5B).

4.  DISCUSSION

Extending previous studies on adaptive updating in deci-
sion contexts with reducible and irreducible uncertainty, 
the present study investigated whether older adults’ 
value-updating behavior would be sensitive to uncer-
tainty reducibility and examined the underlying neuro-
cognitive processes. Using a modified gamble bidding 
task combined with measuring frontoparietal activities 
using fNIRS, we were able to dissociate processes of 
expectancy violation, belief updating, and value updating 
through formal modeling. Specifically, we tested three 
main hypotheses: (1) older adults would show reduced 
sensitivity to different types of uncertainty and their 
updating behavior would be primarily driven by expec-
tancy violation rather than the change of winning proba-
bility; (2) neural correlates of expectancy violation, belief 
updating, and value updating would be less distinctive in 
older adults; and (3) older adults with better logical rea-
soning ability would show updating performance that is 
more in line with Bayesian model predictions. Our find-
ings largely confirmed these hypotheses. First, older 
adults updated values after gaining new information, 
even when the information could not reduce uncertainty 
about the winning probability of the gambles (Fig.  2A), 
and their updating behavior was mainly driven by expec-
tancy violation (Table 2). Second, we observed overlap-
ping activity patterns for belief updating and expectancy 
violation in frontoparietal regions, particularly in the SPG 
and left DLPFC (Fig. 3; Supplementary Table S8), which 
suggests less distinct neural representations of these 
processes in older adults. Third, we found that older 
adults with better logical reasoning ability (as measured 
by Raven’s test scores) showed less deviation from the 

model predictions in value updating (Fig. 2C), suggesting 
that cognitive abilities continue to play an important role 
in optimal updating performance even in older age.

Moreover, results of our secondary analyses directly 
comparing model-associated HbO responses in older 
and younger adults (Peng et  al., 2023) revealed age-
related differences in the contributions of the subpro-
cesses of valuation and their neural correlates. The HbO 
responses in the frontoparietal channels (in the left 
DLPFC and left SPG) correlated negatively with the pro-
cess of expectation violation (see Fig. 3B) in older adults. 
Of note, those older adults with greater such expectation 
violation-related brain responses relative to those associ-
ated with belief updating showed greater deviations from 
the Bayesian model predictions in their updating behav-
ior (Fig. 3E). In contrast, valuation processes in younger 
adults were observed to be more associated with belief 
and value updating, instead of expectation violation 
(Peng et al., 2023). A direct comparison with data of older 
adults also showed that value-updating-related activity in 
the left DLFPC was only significant in younger but not in 
older adults (Fig.  5B). Together, these results revealed 
age differences in subprocesses of value-based deci-
sions under different types of uncertainty. Relative to 
younger adults, the behavior of older adults was primarily 
associated with expectation violation and its brain sub-
strate. These findings are partly in line with previous stud-
ies showing age-related differences in the frontoparietal 
functional architecture (e.g., Schlesinger et  al., 2017; 
Setton et al., 2023) as well as with age-related differences 
in the relative roles of model-free and model-based deci-
sion processes (e.g., see Eppinger et  al., 2025 for a 
review).

As expected, we observed that older adults updated 
their values based on whether a draw matched or mis-
matched the winning color of a gamble, but did not 
account for whether the draw indicated a change in win-
ning probability and thereby reduced uncertainty 

Fig. 5.  Age-related differences in HbO activation correlated with expectation violation- and updating-related processes. 
(A) Channel-of-interest analysis in channels for which updating processes significantly correlated with HbO responses in 
older adults. (B) Analysis over all channels. n.s., not significant.
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(Fig. 2A). Older adults showed significant value updat-
ing in all trial categories, irrespective of whether value 
updating would be normative or non-normative. Specif-
ically, based on the predictions of the Bayesian model, 
however, normative value updating is only expected in 
ambiguous gambles with ambiguous color draws where 
the uncertainty of the winning probability is reduced 
(i.e., two normative categories). Our results showed that 
in these trials, value updating is relatively preserved in 
old age. They did update in these trial types quasi-
normatively, deviating from model predictions only in 
the degree (less updating than expected), but not direc-
tion, of updating (Fig. 2B). In contrast, value updating in 
the remaining three categories is non-normative, since 
new information at a given draw could not reduce the 
uncertainty about the winning probability associated 
with a gamble. Older adults, nevertheless, showed non-
normative updating behavior and significantly update 
their subjective values of the gambles at the postdraw 
phase in all non-normative categories.

This non-normative updating behavior in older adults 
differed considerably from earlier findings observed in 
younger adults. Specifically, results from a secondary 
analysis that incorporated data from younger adults 
(Peng et al., 2023) showed that while there was no perfor-
mance difference between older and younger adults in 
normative trials, impairments in updating behavior in 
older adults were apparent in non-normative trial catego-
ries (Fig. 4). That is, younger adults did not update sub-
jective values in non-normative trials as predicted by the 
Bayesian model, whereas older adults updated their sub-
jective values even in situations where uncertainty could 
not be reduced by new information (see right panel of 
Fig.  4A for direct age comparison in value updating). 
Thus, the results indicate that older adults did not differ-
entiate between situations in which new information did 
or did not change the winning probability, reflecting 
insensitivity to the type of uncertainty.

What could be driving older adults’ updating behavior 
then? Results from fitting Bayesian quantitative predic-
tions to their performance shed light on this question. As 
shown in Table  2, older adults’ updating behavior was 
mainly associated with model-based estimates of expec-
tancy violation in the different trial categories. This stands 
in contrast to earlier findings showing that younger adults’ 
value updating is mainly driven by belief updating (Peng 
et al., 2023). It appears that in our task, older adults relied 
much more on rudimentary, low-level feedback about 
match or mismatch between draw and winning color, 
with the strength of positive and negative updating driven 
by expectancy violation, instead of forming and updating 
a mental model of the urn composition with new informa-
tion available in the observed draws. These results may 

suggest that older adults employ a simpler decision-
making strategy, characterized by a reliance on immedi-
ate, sensory salient signals, which is consistent with older 
adults’ increased reliance on intuitive versus deliberative 
processing (Mikels et al., 2013). Similarly, another study 
on age-related impairment in sequential decision making 
(Eppinger et al., 2013) also found that when value-based 
learning depended on delayed outcomes (i.e., cognitively 
more demanding model-based reinforcement learning), 
older adults still focused on the expectancy violation 
based on immediate outcomes (i.e., relying on the less 
demanding model-free reinforcement learning). In many 
theoretical frameworks of decision making, such as 
model-free reinforcement learning and the Pearce–Hall 
model, the extent to which new observations (or feed-
back) violate expectations is informative and is the key 
process in driving subjective value updating for actions 
or options in reward-based model-free learning (Pearce & 
Bouton, 2001; Pearce & Hall, 1980; Roesch et al., 2012; 
Sutton & Barto, 1998). However, in the natural environ-
ment, not all expectancy violations are informative. They 
might be important for sensory encoding (Tang et  al., 
2023) but not always systematically inform about the sta-
tistic properties of the environment (Kobayashi & Hsu, 
2017). Also, new information about the environment 
might not always resolve uncertainty. For instance, in the 
case of our gamble bidding task, while an observed draw 
of ambiguous colors in risky gambles could provide new 
information about the urn’s contents, it is irrelevant to the 
calculation of winning probabilities in such situations.

Results based on individual differences at the behav-
ioral and brain levels shed further light on this finding. 
Individuals with better logical reasoning ability (as mea-
sured by the Raven’s test scores) showed less devia-
tions from the model predictions in value updating 
(Fig. 2C). At the cortical level, we observed correlates of 
belief updating and expectancy violation in the SPG and 
the left DLPFC. In line with results from previous fMRI 
(Kobayashi & Hsu, 2017) and fNIRS (Peng et al., 2023) 
studies, cortical correlates of these two processes over-
lapped to a certain extent (Fig. 3A, B); note, however, 
these process-associated cortical activities correlated 
with updating performance in different directions, that 
is, positive for model-based coefficients of belief updat-
ing: (mostly) negative for expectancy violation. Impor-
tantly, participants with more positive expectancy 
violation-related HbO activation in the left DLPFC devi-
ated more from Bayesian predictions (Fig.  3D, E). Of 
note, while HbO activities in this left DLPFC channel 
was significantly related to expectancy violation, at a 
liberal threshold (uncorrected p < 0.05), this activity also 
reflected individual differences in belief updating. This 
differs from previous studies of younger adults which 
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show distinct activities in specific regions. For instance, 
the same SPG channel was uniquely associated with 
expectancy violation [β = 2.77, FDR q = 0.01] but not 
belief updating [β  =  -0.35, FDR q  =  0.76] in younger 
adults (Peng et al., 2023). These findings suggest dimin-
ished neural specialization for these processes in older 
adults, which is in line with the neural dedifferentiation 
theory (Koen & Rugg, 2019; Koen et al., 2020). Accord-
ing to this theory, as individuals age, distinct brain 
regions gradually lose their specialized functions, lead-
ing to decreased efficiency in processing specific types 
of cognitive information. This loss of specialization can 
significantly impact the brain’s ability to manage com-
plex tasks, leading to a general decline in the precision 
with which information is processed. It seems plausible 
that neural dedifferentiation in frontoparietal areas such 
as the DLPFC might be one of the neurobiological 
mechanisms associated with the diminished sensitivity 
to uncertainty reduction in older adults.

The DLPFC plays a crucial role in belief updating in 
younger adults following new evidence, as shown by 
neuroimaging (Kobayashi et al., 2021), but also by using 
brain stimulation to test for the causal role of the DLPFC 
in this process (e.g., Ambrus et al., 2020; Schulreich & 
Schwabe, 2021). A recent study found that after applying 
anodal tDCS over the DLPFC, younger adults showed 
increased non-normative value updating, potentially 
driven by expectancy violation (Schulreich & Schwabe, 
2021). This pattern is similar to the updating behavior of 
older adults in our study. Our finding of expectancy 
violation-related HbO activities in the DLPFC might sug-
gest that older participants interpret the low-level rudi-
mentary information of color match or mismatch without 
fully considering the statistical contexts of risky and 
ambiguous gambles as indicative of changes in the 
decision-making environment, leading to suboptimal 
updating performance. Consistent with this, we found 
that older adults with more pronounced expectancy vio-
lation HbO activities deviated more from Bayesian pre-
dictions (Fig. 3D, E).

Another interesting aspect of the results is that we 
observed valence-related asymmetry in value updating 
among older adults, where negative information led to 
greater value updating than positive information. Our 
secondary analysis showed that this valence asymmetry 
was observed both in older and younger adults without 
significant age differences. This finding is in line with 
some previous studies suggesting preserved valence 
effects during value updating across age groups (e.g., 
Spaniol & Wegier, 2012). However, other studies on aging 
and reward-related learning or decision making that 
used a range of different experimental paradigms 
showed mixed findings—some found reduced valence 

asymmetry effects in older adults (Hämmerer et  al., 
2011; Simon et  al., 2010), while some showed older 
adults learned more from loss (or negative feedbacks) 
compared with younger adults (e.g., Freund & Keil, 
2021). In our previously published study of younger 
adults, the valence asymmetry was only observed in nor-
mative but not in non-normative trials (Peng et al., 2023). 
The fact that the valence effect in older adults does not 
interact with the normativity of the contexts of updating 
may be due to their insensitivity to uncertainty reduction 
as discussed above, since older adults updated values 
both in normative and non-normative contexts, unlike 
younger adults. These mixed patterns of results in the 
literature underscore the complex nature of valence-
dependent processes in aging and suggest that task-
specific contexts may influence how valence effects 
manifest (Mata et al., 2011). The task we used is a gam-
bling/bidding task that did not have immediate feedback 
or reward directly associated with each decision (only in 
the final resolution). This allowed us to isolate the effects 
of valence asymmetry without the influence of reward 
amounts (e.g., in reinforcement learning tasks, negative 
and positive feedback are associated with losing or 
gaining rewards, respectively).

5.  LIMITATIONS AND FUTURE DIRECTIONS

The current study has advanced our understanding of 
age-related differences in adaptive behavior under uncer-
tainty. However, due to the limited measurement depth of 
fNIRS (Cui et al., 2011) and the specific brain areas cov-
ered by our montage, we were unable to assess other 
regions that are also crucial for updating processes. For 
instance, the striatum, known to encode model-based 
prediction error signals (Behrens et al., 2008; Daw et al., 
2011), aligns conceptually with the value updating 
observed in our study. We observed only weak HbO 
activities related to value updating in three prefrontal cor-
tex channels (uncorrected p < 0.05, Fig. 3C). It remains 
unclear whether older adults might employ other regions 
to encode value updating. To gain a more comprehensive 
understanding, future research could employ functional 
magnetic resonance imaging to better assess activities in 
the midbrain and other subcortical regions. Moreover, 
due to the temporal resolution limitations of fNIRS, our 
study could not explore the temporal dynamics of infor-
mation processing in older adults. Future studies should 
consider using electroencephalography or magnetoen-
cephalography, which offer higher temporal resolution to 
capture the rapid neural dynamics involved in processing 
expectancy violation and resolving uncertainty signals. 
Although valence asymmetry is not the main focus of this 
study, future studies on how aging may affect valence-
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dependent processing could extend our findings by 
incorporating additional elements, such as trust-based 
interactions, to examine how valence effects operate in 
more complex decision-making contexts. For example, 
studies investigating trust-based decisions have found 
that younger adults often show heightened sensitivity to 
negative information (Tzieropoulos, 2013), though similar 
research in older populations remains scarce (Fareri 
et al., 2022; Seaman et al., 2023).

6.  CONCLUSIONS

Our study shows that older adults’ updating performance 
was only relatively preserved when the received informa-
tion is new and indeed indicated changes in the winning 
probability of the gambles. However, they exhibit perfor-
mance impairments in non-normative trials where uncer-
tainty is irreducible or new information is irrelevant to the 
decision at hand. Their value updating was primarily 
driven by how much the draw violated their expectancy, 
which, in the context of our task, is not an informative 
signal. The individuals whose updating behavior deviates 
more from the Bayesian model predictions exhibited 
dedifferentiation of the neural correlates of belief updat-
ing and expectancy violation, with updating behavior 
driven more strongly by expectancy violation-related 
neural activity. Together, the current study advances our 
understanding of age-related changes in adaptive behav-
ior under uncertainty and underscores the potential 
impact of neural dedifferentiation.
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