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Abstract
Remote sensed precipitation products (RSPPs) can provide reliable data for drought monitoring. However, using numerous 
RSPPs can introduce significant uncertainties due to their discrepancies. This study focuses on the Huang-Huai-Hai Plain in 
China, a key agricultural region sensitive to meteorological drought. Using grid precipitation interpolated by observed data 
from the China Meteorological Administration (CMA), we evaluated the performance of three long-term series (> 30 years) 
RSPPs (PERSIANN-CDR, CHIRPS, and MSWEP) in capturing the spatial and temporal characteristics of meteorological 
drought events. We found that (1) three RSPPs can generally reproduce the pattern of annual precipitation, but they are 
difficult to accurately capture the trend of CMA. (2) MSWEP performs better than the other two products in identifying 
drought variation and area proportions at various spatiotemporal scales, with the one-month scale (SPI1) being the optimal 
timescale for RSPPs to identify meteorological drought. (3) All RSPPs can reproduce the pattern of drought categories and 
characteristics, with their performance order of MSWEP > CHIRPS > PERSIANN-CDR. This indicates considerable room 
for improvement in depicting the drought characteristics. Our results can guide the selection of the RSPPs for meteorological 
drought monitoring and disaster avoidance.
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Introduction

Drought is one of the most catastrophic natural disasters 
(Gimeno-Sotelo et al. 2024). It is typically caused by pro-
longed water shortage due to insufficient precipitation, and 
it can lead to significant losses to agricultural production, 
domestic water supply, ecosystem stability, and socioeco-
nomic development (Yuan et al. 2023; Zhang et al. 2023; Xie 
et al. 2024). In 2022, an unprecedented drought caused by 
a prolonged precipitation deficit affected the Yangtze River 
Basin, leading to severe electric power shortages, reduced 
production on 4.08 million hectares of farmland, and a lack 
of fresh water for 4.3 million people and 0.35 million live-
stock (Ma and Yuan 2023). Therefore, monitoring droughts 
caused by precipitation shortage is crucial for drought early 
warning, prevention, and disaster reduction.

Drought indicators are crucial tools for monitoring 
drought, and many of them have been widely used in prac-
tical applications. Examples include the Palmer Drought 
Severity Index (PDSI), Rainfall Deciles (RD), Surface 
Water and Supply Index (SWSI), Standardized Precipitation 
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Index (SPI), etc. (Zargar et al. 2011). Among these indica-
tors, the calculation of SPI is based on the assumption that 
precipitation plays a decisive role in drought. Since it only 
requires precipitation as an input, it can effectively reduce 
the uncertainties caused by multiple data inputs and repre-
sent the deficit and surplus of precipitation (McKee et al. 
1993). Furthermore, SPI has the advantages of simple cal-
culation and a flexible time scale. Nowadays, SPI has been 
frequently applied for monitoring meteorological droughts 
and early warnings at different spatial and temporal scales 
(Brito et al. 2021; Su et al. 2018; Li et al. 2022b; Gimeno-
Sotelo et al. 2024).

When using SPI to monitor drought, the accuracy of input 
precipitation largely determines the reliability of drought 
characteristics (Guo et al. 2022). Various precipitation data 
can be used to calculate SPI, such as gauge-based observa-
tion, radar-based observation, and remote sensing-based pre-
cipitation products (RSPPs). Scientific communities argue 
that the gauge-based values can be considered the actual 
value of precipitation. However, gauge observation is easily 
affected by complex terrain and other factors, and the obser-
vation stations are sparse and uneven, especially in remote 
and inaccessible areas. Accurately capturing precipitation 
patterns using limited data is difficult. In contrast, RSPPs 
have numerous advantages, such as quasi-global coverage, 
near-real-time, and high spatiotemporal resolution (Li et al. 
2024; Sreeparvathy and Srinivas 2022), providing highly 
accurate precipitation estimates. However, there are cur-
rently dozens of popular RSPPs available (Sun et al. 2018), 
such as the Precipitation Estimation from Remotely Sensed 
Information Using Artificial Neural Networks-Climate Data 
Record (PERSIANN-CDR) products (Ashouri et al. 2015), 
Climate Hazards Group Infrared Precipitation with Sta-
tions (CHIRPS) products (Funk et al. 2015), Multi-Source 
Weighted-Ensemble Precipitation (MSWEP) products (Beck 
et al. 2019), Climate Prediction Center morphing technique 
(CMORPH) products (Joyce et al. 2004), and the Integrated 
Multi-satellite Retrievals for GPM (IMERG) products (Huff-
man et al. 2015), etc. These RSPPs have been widely used 
in meteorological drought detection (AghaKouchak et al. 
2015).

Many researchers have conducted a series of compari-
sons to assess the skill of multi-source RSPPs in drought 
detection. For example, Guo et  al. (2017) found that 
CHIRPS has excelled in capturing drought evaluation in 
the Mekong River, particularly skillful at the 3-month 
time scale. In comparison, Li et al. (2022a) found that 
MSWEP effectively depicts drought characteristics in typi-
cal watersheds in Central Asia; Zhong et al. (2019) found 
that among PERSIANN-CDR, CHIRPS, and TMPA3B42, 
TMPA3B42 has the best drought monitoring performance 
in China; Liu et al. (2019) evaluated CHIRPS and MSWEP 
in the Tibetan Plateau region, finding CHIRPS is more 

suitable for more minor spatial scales due to its high spa-
tial resolution and effective characterization of detailed 
features. These RSPPs exhibit varying skills in captur-
ing the drought characteristics across different regions, 
making it necessary to evaluate their applicability before 
employing them in drought monitoring.

In addition to the performance discrepancies between dif-
ferent RSPPs, their data lengths also vary. Generally, most 
RSPPs have short time series (< 20 years). However, the 
World Meteorological Organization (WMO) recommends a 
time series of at least 30 years or more for drought monitor-
ing, limiting the widespread use of shorter time series. To 
our knowledge, three typical RSPPs have time series span-
ning more than 30 years, including MSWEP, PERSIANN-
CDR, and CHIRPS. However, their performance requires 
further verification.

Moreover, the drought monitoring performance of RSPPs 
is relatively weak in climate change-sensitive and major 
grain-producing areas. The Huang-Huai-Hai Plain is a cru-
cial grain production region in China, and the main eco-
nomic crops include corn, wheat, soybeans, peanuts, etc. 
(Liu et al. 2010). Frequent drought occurrences have sig-
nificantly reduced crop yield (Tuan et al. 2011). Therefore, 
using observational gridded precipitation data (CMA) from 
1983 to 2019 as a reference, we evaluate the performance of 
three long-term series (> 30a) of RSPPs (PERSIANN-CDR, 
CHIRPS, and MSWEP) in monitoring drought events in 
the Huang-Huai-Hai Plain. Our study aims to answer three 
scientific questions: (1) Can the three long-term RSPPs 
capture the spatiotemporal precipitation pattern of CMA 
in the Huang-Huai-Hai Plain of China? (2) How do the 
three RSPPS reproduce the SPI at different time scales? (3) 
What are the differences among the three RSPPs in assess-
ing drought categories and characteristics? The answers to 
these questions will provide great guidance for selecting and 
improving the RSPPs for meteorological drought monitoring 
in the Huang-Huai-Hai Plain, and provide scientific refer-
ence for agricultural drought preparation and mitigation.

Study area and datasets

Study area

The Huang-Huai-Hai Plain is located in central and east-
ern China (30°–42° N, 110°–125° E), including Beijing, 
Tianjin, Hebei Province, Henan Province, and Shan-
dong Province (Fig. 1). This region is one of China’s nine 
major grain production areas. The multi-year average tem-
perature ranges from 10 to 15 °C, with annual precipita-
tion of 500–1000 mm. The average annual evaporation is 
897–913 mm, resulting in intense evaporation in the field.
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Precipitation datasets

Observational precipitation

The daily precipitation data from 395 meteorological sta-
tions were obtained from the National Meteorological 
Information Center. These observation data have under-
gone strict quality control, including checks for climate, 
stations, and region outliers, as well as internal, temporal, 
and spatial consistency, covering the period from 1960 
to 2022. For the performance evaluation, stations were 
selected based on the following criteria: the missing data 
does not exceed 0.5% and 5% for the whole study period 
and any given year. The results show that 345 stations 
met these requirements, and their spatial distribution pat-
tern is depicted in Fig. 1. Missing records were replaced 
by climatological averages for the same calendar day at a 
given station. We applied the professional spatial inter-
polation software Anusplin, which utilizes thin-plate 
spline functions to construct interpolation surfaces. By 
minimizing the overall curvature of the interpolation 
function, Anusplin can effectively smooth precipitation 
or temperature data across complex terrains, such as areas 
with significant topographical variation (Hutchinson and 
Xu 2004). The daily precipitation data were interpolated 
to a 0.05° × 0.05° grid, and the monthly precipitation was 
derived by aggregating the daily averages.

Remote sensed precipitation products (RSPPs)

Three long-term remote sensed precipitation products 
(RSPPs) were selected for our study, including PER-
SIANN-CDR, CHIRPS v2.0, and MSWEP v2.0, which 
will be shortened for PERSIANN-CDR, CHIRPS, and 
MSWEP. Specifically, PERSIANN-CDR is a precipi-
tation dataset with the advantages of a long time series 
and global coverage. It has been widely used to investi-
gate precipitation fluctuations caused by climate change, 
particularly extreme events (Ashouri et al. 2015), with 
a time span from 1983 to the present. CHIRPS couples 
high-resolution remote sensing information with ground 
observation data, offering advantages of short delay, high 
spatiotemporal resolution, slight bias, and long time series. 
This dataset has been widely applied in climate change 
analysis, extreme drought early warning and monitoring, 
and flood simulation (Funk et al. 2015). MSWEP com-
bines the strengths of ground observations, remote sens-
ing information, and reanalysis datasets to provide a near-
true estimate of global precipitation (Beck et al. 2019). 
These three products were selected for comparison mainly 
to investigate the performance of RSPPs with different 
spatial resolutions, remote sensing sensors, and retrieval 
methods in capturing meteorological drought. The time 
span was unified from 1983 to 2019. To keep spatiotempo-
ral consistency of all RSPPs, the spatial resolution of the 

Fig. 1  Location of the Huang-
Huai-Hai Plain
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three RSPPs was resampled to a 0.05º × 0.05º grid using 
the bilinear interpolation method (Table 1).

Methodology

Basic statistical metrics

To comprehensively assess the skill of three typical RSPPs 
in capturing meteorological drought in the Huang-Huai-Hai 
plain, we selected four statistical metrics, including relative 
bias (rBIAS), root mean square error (fRMSE), and correla-
tion coefficient (r) and Kling-Gupta coefficient (KGE). The 
equations are shown as follows.

where Gi and Ri represent the observational and remote 
sensing-based precipitation estimates, respectively. �G and 
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�G are the average and standard error of the observational 
precipitation, respectively. �R and �R are the mean and stand-
ard error of precipitation estimated by RSPPs, respectively.

Meteorological drought index of SPI 
and classification

SPI is used to characterize the probability of precipitation 
events occurring over a specific time period, and it can 
describe and compare drought phenomena across differ-
ent climate regions (Sternberg et al. 2011). Since SPI uses 
precipitation as the sole input, it can reduce uncertainties 
caused by other factors, such as temperature and wind. This 
indicator allows us to focus on the performance of precipi-
tation in reproducing the meteorology drought. Drought is 
classified into four classifications using the SPI values, as 
shown in Table 2.

Categorical probability skill

We selected three statistical indicators to quantify the capa-
bility of RSPPs in detecting drought categories: probability 
of detection (POD), critical success index (CSI), and Heidke 
skill score (HSS). Specifically, POD measures the probabil-
ity of correctly detecting drought events, representing the 
rate of successful detection (Ebert et al. 2007). CSI refers to 
the probability of successful drought monitoring (Schaefer-
forecasting 1990). HSS is a standard performance metric 
for assessing classification skills (Wilks 2011), depicting 
the percentage of months RSPPs correctly capture drought 
category events as of all drought months. In our study, an 
SPI value of < -1 was the threshold value for identifying a 
drought event for calculating POD and CSI. HSS used – 1, 

Table 1  Summary of the three long-term RSPPs and CMA used in the study

Name Temporal

Range

Temporal

Resolution

Spatial

Cover age

Spatial Resolution

PERSIANN - CDR 1983 - Now Daily 60°N ~ 60°S 0.25

CHIRPS v2.0 1981 - Now Daily 50°N ~ 50°S 0.05

MSWEP v2.0 1979 - Now 3 h Global 0.1

Table 2  SPI classification

Drought classification SPI value

Near normal (– 1, 0)
Moderate drought (– 1.5, – 1.0]
Severe drought (– 2.0, – 1.5]
Extreme drought (– ∞, – 2]
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– 1.5, and – 2 of SPI to define moderate drought, severe 
drought, and extreme drought, respectively. The higher the 
POD, CSI, and HSS values, the better the products' capabil-
ity to detect drought characteristics.

Ri = 1 ( Ri = 0) and Gi = 1 ( Gi = 0) represent the number 
of drought events in the month i correctly (or incorrectly) 
detected by RSPPs and CMA, respectively. Ei represents the 
expected number of classified drought events in the month i 
that are correctly detected by chance.

Run theory and drought event characteristics

The run theory is applied to detect drought events in our 
study. If the SPI of certain months is below the threshold, 
these months are classified as drought months (Fleig et al. 
2006; Li et al. 2022b). This study defines a drought event 
primarily as SPI ≤ – 0.5 lasting more than two months. How-
ever, an exception is made for high-intensity short-term 
droughts: if a drought event lasts only one month but has a 
severity of SPI ≤ – 1.5, it is also considered a valid drought 
event. This adjustment ensures that extremely intense but 
short-lived droughts are not overlooked in the analysis. We 
employ three indices to test the capability of the three long-
term RSPPs in detecting drought events. They are mean 
drought event duration (MDD), mean drought event sever-
ity (MDS), mean drought event intensity (MDI), and mean 
drought event peak. (MDP). The calculation formulas are 
as follows.
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where DD, DS, DI, and DP are the duration period, cumu-
lative value, intensity value, and peak value of SPI for a 
drought event, respectively. The i is the ith drought event, 
and j is the index of the drought month in a specific drought 
event.

Results

Basic skill of RSPPs

Mean and trend patterns of precipitation

Figure 2 presents the spatial distribution of mean annual 
precipitation and trends of CMA and three RSPPs dur-
ing 1983–2019. The mean annual precipitation presents a 
gradually decreasing distribution from southeast to north-
west in our study area (Fig. 2a). Three RSPPs generally 
captured the spatial pattern of the mean annual precipi-
tation. However, they all slightly overestimated the true 
values of CMA. PERSIANN-CDR, CHIRPS, and MSWEP 
overestimated the mean annual precipitation by 6.0%, 
3.6%, and 3.6%, respectively. Compared with the other two 
products, the PERSIANN-CDR shows a smoother spatial 
distribution pattern, but it has obvious shortcomings in 
accurately capturing the local precipitation pattern. For 
example, it significantly overestimates the low precipita-
tion information in the mountainous areas in the northwest 
region (Fig. 2b).

For the spatial distribution of multi-year precipita-
tion trends, 53.3% of the area showed a decreasing trend, 
reaching – 0.09 mm/a2 (Fig. 2e). It is difficult for the three 
RSPPs to accurately capture the trend of CMA, with sig-
nificant spatial discrepancies in their performance. For 
example, compared to CMA, the trend is significantly 
underestimated by MSWEP in most areas of Henan and 
Shandong provinces (Fig. 2h). The bias in MSWEP led to 
a severe underestimate of the annual precipitation trend 
by 1.85 mm/a2. CHIRPS significantly over-estimates the 
precipitation trend by 2.44 mm/a2, especially in central 
and western Shandong province (Fig. 2g). PERSIANN-
CDR overestimates the precipitation trend in the study 
area as a whole, reaching 0.44 mm/a2 (Fig. 2f). Overall, 
while all three RSPPs can reasonably reproduce the spatial 
pattern of multi-year mean precipitation, but none of them 
can accurately capture the pattern of precipitation trends.
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N
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Basic statistical performance

Figure 3 presents the spatial distribution of the basic sta-
tistical performance of different RSPPs. For rBIAS, the 
three RSPPs overestimated the observational values of 
CMA, with the overestimation by 5.93%, 3.45%, and 3.98% 
(Fig. 3a–c). The performance of CHIRPS and MSWEP is 
acceptable, while PERSIANN-CDR is poor due to a con-
siderable overestimation of CMA, particularly in southern 
Hebei and northern Henan. For fRMSE, all RSPPs present 
similar spatial patterns in mean values, but with significant 
discrepancies over specific regions (Fig. 3d–f). For exam-
ple, the southern Henan province has the smallest fRMSE 
(< 0.42) in MSWEP, but the northern Hebei province has the 
smallest ones in PERSIANN-CDR.

For the study area, the r value between the three RSPPs 
and CMA is 0.93, and all three RSPPs show statistically 
significant correlations with CMA across the entire region 
(p < 0.05), indicating that they can capture the variation 
of CMA well. However, large spatial discrepancies were 
found for the three datasets. PERSIANN-CDR and CHIRPS 
perform better in the northern region (r > 0.95) than in 
the south (r < 0.86), while the performance of MSWEP 
shows the opposite pattern. KGE of CHIRPS and MSWEP 

(KGE = 0.88) perform better than PERSIANN-CDR 
(KGE = 0.86). The optimal skills in the northern, central, 
and southern of the Huang-Huai-Hai Plain are PERSIANN-
CDR, CHIRPS, and MSWEP, respectively. Overall, the three 
RSPPs can well reproduce the spatial pattern of CMA, but 
there are large spatial discrepancies. Overall, it is difficult 
to find one product that has better performance than other 
products in all areas and for all metrics.

Performance of RSPPs in capturing spatiotemporal 
variations of SPI

SPI in different time scales

Figure 4 shows the spatial distribution of r value between 
the three long-term RSPPs and that calculated by CMA. 
The correlation coefficients between the three long-term 
RSPPs and CMA also passed the significance test across 
most regions (p < 0.05). The larger values of r indicate the 
better the performance of RSPPs in capturing SPI variation. 
Over most areas of the Huang-Huai-Hai Plain, the spatial 
patterns of r of the three RSPPs at different time scales are 
similar with good correlation (r > 0.8), but some spatial dis-
crepancies are also found in some regions.

Fig. 2  The spatial distribution of mean and trend values of CMA and three RSPPs during 1983–2019
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For example, in southern Hebei Province, the CHIRPS 
has poor performance for SPI6 (r < 0.75) and SPI12 (r < 0.68) 
(Fig. 4g and h), while in the north of Tianjin, MSWEP has 
poor skill for SPI6 (r < 0.70) and SPI12 (r < 0.63) (Fig. 4k 
and l). Overall, among the three RSPPs, MSWEP has the 
best estimates of SPI with the closest values to CMA’s SPI, 
followed by PERSIANN-CDR and CHIRPS. For different 
time scales, r of RSPPs generally decreases with the increase 
of the time scale. For example, for PERSIANN-CDR, the 
SPI decreased from 0.84 in SPI1 to 0.80 in SPI12, which 
indicates that relatively short time scales are the optimistic 
scale for meteorological studies (Gimeno-Sotelo et al. 2024). 
Therefore, SPI1 is selected for drought event detection and 
further analysis in our research.

Drought trend and affected area

The interannual fluctuations and affected areas of SPI1 
for CMA and RSPPs in the Huang-Huai-Hai Plain are 
presented in Fig. 5. The SPI1 estimated from RSPPs is 
highly consistent with that of CMA (r > 0.95, p < 0.05). 

They can generally detect the historical extreme drought 
events from 1983 to 2019 (Fig. 5a). The four most severe 
drought events captured by the CMA occurred in Novem-
ber 1988, September 1998, February 1999, and May 2001 
respectively (shown in Fig. 5a with a shaded area). For the 
whole region, PERSIANN-CDR performs superior skill 
in capturing the interannual fluctuations of observational 
CMA, followed by CHIRPS.

From 1983 to 2019, the fluctuations in the proportion 
of drought-affected areas detected by RSPPs were consist-
ent with that of CMA (Fig. 5b). The maximum drought-
affected area was detected by CMA with a value of 97.6% 
(November 1988), and the multi-year average area pro-
portion was 16.5%. The three RSPPs underestimated the 
drought-affected area. Among them, the multi-year aver-
age drought area captured by PERSIANN-CDR was 14.9%, 
but the extreme drought was overestimated in the 1990s; 
the affected area estimated by CHIRPS was 15.8%, but the 
extreme drought-affected area was greatly overestimated 
after 2000. The MSWEP performs superior to the other two 
products, with the closest value (16.0%) to CMA.

Fig. 3  The spatial distribution of basic metrics for the three long-term RSPPs
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Performance of RSPPs in capturing drought events 
characteristics

Skill in capturing drought categories

The spatial distribution of the performance of three RSPPs 
in capturing drought category metrics (POD, CSI, and HSS) 
is presented in Fig. 6. For POD, the overall performance of 
the three products in the southern region is better than that 
in the northern region. Among them, MSWEP has the best 
overall performance (POD = 71.5), followed by PERSIANN-
CDR (POD = 59.9) and CHIRPS (POD = 59.6) (Fig. 6d and 
h). The CSI of MSWEP reached 57.4, especially in eastern 
Henan Province, eastern and southern Shandong Province 
(Fig. 6i). At the same time, the CSI performance of PER-
SIANN-CDR and CHIRPS needs to be improved, with val-
ues of 45.9 and 44, respectively (Fig. 6b and e). The HSS 

value of MSWEP reaches 14.4, especially in the south-
eastern region of Henan Province, which performs best, 
where the HSS can reach more than 40 (Fig. 6j), while the 
PERSIANN-CDR and CHIRPS are only – 4.10 and – 4.58 
respectively (Fig. 6c and f).

Overall, regarding the characterization of drought levels, 
the three metrics of MSWEP are significantly better than 
those of the other two products, especially HSS and POD. 
This indicates that among the three RSPPs, MSWEP is the 
most suitable product for evaluating the drought categories 
in the Huang-Huai-Hai Plain, and this product is greatly 
recommended for future studies.

Skill in capturing drought event characteristics

Figure 7 shows the performance of CMA and three RSPPs 
in capturing drought event characteristics (MDD, MDS, 

Fig. 4  Spatial pattern of correlation coefficient of SPI calculated by CMA and RSPPs during 1983–2019
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MDI, MDP). For the MDD of CMA, 1.55 months was 
found in the Huang-Huai-Hai Plain from 1983 to 2019. 
MDD values below 2 months can be attributed to the 
inclusion of high-intensity one-month drought events 
(SPI ≤ – 1.5), which are not ignored in our analysis. Areas 
with shorter duration of drought events are found in the 
northwest of Shandong Province and southeastern Hebei 
Province (MDD < 1.5). In contrast, events with a longer 
duration are distributed in the central and southern parts 
of the region (MDD > 1.9) (Fig. 7a). The three RSPPs 
generally overestimate MDD, among which PERSIANN-
CDR overestimates the most seriously (up to 47.7%). 
MSWEP is the closest to CMA, but they all have severe 

underestimates in the northern part of Hebei Province 
(Fig. 7b and d).

The observed MDS is – 1.90, with larger values mainly 
located in the central and southern regions and low values 
primarily distributed in the central and northern regions. 
The mean values of the three RSPPs are generally close 
to CMA, but they all overestimate in the central part and 
underestimate in the north and south. In particular, PER-
SIANN-CDR and MSWEP underestimate drought severity 
by more than 30% in the north (Fig. 7f–h). The MDI of 
CMA is – 1.75. All three RSPPs slightly underestimate the 
drought intensity, which is especially serious in the south-
ern part of the region. However, CHIRPS and MSWEP are 

Fig. 5  Drought variation and affected area estimated from CMA and RSPPs during 1983–2019. b–e are zoomed-in views of the shaded regions 
in a, showing the four most severe drought events captured by CMA
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better than PERSIANN-CDR in other regions (Fig. 7lk–l). 
The average MDP of MSWEP is approximately equivalent 
to that of CMA (MDP = – 1.86), while PERSIANN-CDR 
and CHIRPS underestimate the extreme values of drought 
events, especially severe in the southern region. PER-
SIANN-CDR and MSWEP perform superiorly in capturing 
the spatial distribution pattern, but CHIRPS perform poorly 
(Fig. 7n–p). In summary, it can be seen that among the four 

drought indicators, the performance of the three RSPPs fol-
lows the order of MSWEP > CHIRPS > PERSIANN-CDR.

Performance of RSPPs in capturing specific extreme 
drought events

We first selected the extreme drought months based on the 
CMA drought sequence to further assess the three RSPPs' 

Fig. 6  Spatial distribution of drought categories for three RSPPs
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ability to capture typical extreme drought events in the 
Huang-Huai-Hai Plain region. Extreme drought months are 
found in November 1988, September 1998, February 1999, 
and May 2001, respectively (Fig. 5a). These selected months 
are used to evaluate the performance of RSPPs in repro-
ducing the spatial distribution of specific extreme drought 
events. We define SPI = – 1, – 1.5, and – 2 as moderate, 
severe, and extreme drought.

Although all three RSPPs can identify the drought pattern 
in November 1988, PERESIANN and CHIRPS underesti-
mated the severity of the drought, especially for CHIRPS 
(underestimated by 28.7%), while MSWEP slightly over-
estimated the drought severity, and it can well capture the 

specific extreme drought events (Fig. 8a–d). For the extreme 
drought event around September 1998, CMA showed that 
the extreme drought was generally located in the region's 
northeast, central, and southeast. Among the three RSPPs, 
only MSWEP could well capture such a spatial pattern, 
although it slightly underestimated the severity (Fig. 8e–h). 
For the third extreme drought event (February 1999), all 
three RSPPs underestimated the severity of the drought, with 
PERSIANN-CDR, CHIRPS, and MSWEP underestimating 
it by 17.9%, 45.7%, and 13.6%, respectively.

The drought event around May 2001 was the most seri-
ous, with an average value of – 1.92. Extreme droughts 
were primarily located in the central and southern areas 

Fig. 7  Spatial distribution of drought events characteristics. Droughts duration, severity, intensity, and peak values are presented in columns 1–4
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(accounting for 46.9%). Severe droughts and moderate 
droughts areas accounted for 31.8% and 14.8%, respec-
tively (Fig. 8m). The regional average of PERSIANN-CDR 
is – 2.59, overestimating the extent of this drought event 
(34.9%), of which the extreme drought overestimated by 
71.6%. In contrast, CHIRPS underestimates the drought 

severity by 8.9%, and the extreme drought area is underesti-
mated by 30.6%. Although MSWEP slightly overestimated 
the severity (4.2%), its mean value was the closest to CMA 
and had the best skill in capturing the spatial pattern of spe-
cific extreme drought (Fig. 8p).

Fig. 8  Spatial distribution of specific extreme drought events calculated from CMA and RSPPs. These extreme events are the most severe 
drought, as shown in Fig. 5
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Discussion and uncertainties

Potential factors affecting RSPPs’ performance

This study found that MSWEP showed superior perfor-
mance in terms of basic statistical performance and ability 
to capture drought event characteristics (Figs. 6, 7, 8). This 
finding is consistent with previous research (Guo et al. 
2022; Li et al. 2022b, 2024; Xu et al. 2019). MSWEP’s 
superior capability stems from its use of the complemen-
tary advantages of observation data, microwave remote 
sensing information, and reanalysis data. Additionally, it 
conducts bias correction on precipitation on a daily scale, 
providing relatively reliable precipitation estimates (Beck 
et al. 2019). CHIPRS and PERSIANN-CDR are slightly 
inferior to MSWEP in reproducing drought characteristics, 
mainly because they lack microwave information. Moreo-
ver, the CHIRPS is based on the daily scale, which makes 
it prone to local estimation biases in regions with com-
plex topography, frequent convective precipitation, and 
sparse observation stations or remote sensing retrievals. 
In such areas, precipitation exhibits significant spatiotem-
poral variability over small scales, and interpolation or 
merging algorithms may struggle to fully capture micro-
topographic features and convective processes. Therefore, 
CHIRPS is less suitable for highly spatially heterogeneous 
and dynamic precipitation environments (Liu et al. 2019). 
PERSIANN-CDR estimates precipitation based on the sta-
tistical relationship between geostationary satellite infra-
red brightness temperature and rainfall intensity, resulting 
in a weaker mechanism for retrieving precipitation (Ash-
ouri et al. 2015; Funk et al. 2015).

In addition to the algorithm, terrain significantly affects 
the performance of RSPPs. For example, in the northern 
and southwestern regions of our study area, the terrain is 
complex and diverse (Fig. 1). The ability of the RSPPs to 
capture drought events is significantly weakened (Fig. 7). 
This is mainly because precipitation is greatly affected 
by complex local terrain, making it difficult for remote 
sensing signals to capture precipitation accurately. Fur-
thermore, these areas are remote and have few observation 
stations, complicating the verification and improvement of 
RSPPs retrieval algorithms. Therefore, accurately estimat-
ing precipitation in areas with complex terrain or lack of 
observational data is remains a considerable challenge for 
accurately calculating precipitation using remote sensing 
information.

In addition, a comparative analysis between our study 
and existing studies for drought monitoring over the 
Huang-Huai-Hai Plain were conducted., and the conclu-
sion highlights the consistencies and discrepancies in 
detecting drought characteristics across different RSPPs. 

Zhong et al. (2019) found that CHIRPS and PERSIANN-
CDR can effectively capture drought events in typical 
agricultural areas. However, PERSIANN-CDR shows 
weaker spatial pattern matching, whereas CHIRPS per-
forms better in identifying the spatial extent and centers 
of drought events. This result aligns with the advantage 
of CHIRPS in reproducing spatial distribution character-
istics of CMA. Gao et al. (2018) further found CHIRPS's 
multi-temporal drought monitoring capability in the Hai 
River Basin. However, they also pointed out that CHIRPS 
tends to significantly overestimate precipitation in moun-
tainous areas, particularly in regions with high spatial het-
erogeneity. This finding is consistent with our conclusion 
that CHIRPS has weaker drought detection capabilities in 
some areas. In the Yellow River Basin, Wei et al. (2019) 
found that GPCC 8.0 outperforms PERSIANN-CDR and 
CHIRPS regarding precipitation consistency, particularly 
in high-altitude areas where PERSIANN-CDR shows poor 
drought monitoring performance. However, they observed 
high consistency (CC > 0.8) among the products in cap-
turing precipitation distribution and drought variations in 
southeastern regions. In this study, MSWEP demonstrated 
the best performance in drought monitoring across the 
Huang-Huai-Hai Plain, consistent with previous findings 
(Wei et al. 2019), further confirming MSWEP's superior 
capability in capturing drought variations across different 
temporal scales.

Overall, the existing literature and our study reveal sub-
stantial consistency in drought monitoring performance 
across different regions while highlighting the limitations 
of CHIRPS and PERSIANN-CDR in high-altitude or 
highly heterogeneous areas. This study further emphasizes 
MSWEP's advantages in monitoring drought categories and 
extreme drought events, supporting the recommendation to 
prioritize MSWEP in drought monitoring across the Huang-
Huai-Hai Plain. At the same time, it underscores the need to 
select remote-sensing precipitation products flexibly based 
on regional characteristics in practical applications.

These extreme drought events are highly consistent with 
findings from existing literature. Zhong et al. (2019), using 
SPI3 analysis, reported a prolonged drought in northern 
China from 1999 to 2000, corresponding to the February 
1999 drought event identified in this study. Wang et al. 
(2015) noted that severe droughts frequently occurred in 
the 1980s, late 1990s, and early 2000s based on daily SPEI, 
which validates the regional impacts of the extreme drought 
events recorded in 1988, 1998, and 2001 in this study. Ali 
et al. (2020), in their analysis of drought event frequency, 
found that drought events were more frequent in 2001, align-
ing with the May 2001 drought event identified in this study. 
Although these studies used different drought indices and 
time scales, they point to similar time periods and extreme 
drought events, indicating that the SPI1-based results in this 



 Environmental Earth Sciences          (2025) 84:355   355  Page 14 of 16

study are reliable. Furthermore, the complementary nature 
of different timescale drought indices is demonstrated, sug-
gesting that multi-scale analysis is essential for comprehen-
sive drought monitoring.

Uncertainties and prospective

Although this study has undergone strict quality control, 
such as the quality control on the observational precipitation 
data, some uncertainties still inevitably exist. For example, 
in the calculation of SPI, we use the gamma distribution 
function to fit the precipitation. However, many fitting func-
tions exist, such as Pearson III type, Weibull type, and log-
normal distribution. Previous studies have shown that choos-
ing different theoretical distribution functions significantly 
impacts drought characteristics. In addition, this study only 
analyzed the characteristics of the Huang-Huai-Hai Plain 
and did not comprehensively evaluate the performance of 
different climate regions and watersheds. However, the 
conclusions of our study generally follow previous studies, 
and we confirm the importance of coupling bias correction 
and microwave information for remote sensing precipitation 
estimates.

In this study, we validated the performance of three 
RSPPs in reproducing the drought characteristics. However, 
all three products require bias correction and processing 
time before release, with delays from days to months. This 
time delay limits the application of RSPPs in real-time or 
near-real-time drought monitoring. However, precipitation 
estimation at such a time scale has important practical sig-
nificance for agricultural production and flood forecasting. 
Therefore, short-time delays or near-real-time RSPPs are 
urgent to develop in future research. Regarding the issue 
of "spurious correlation" that may arise from seasonality 
and time series autocorrelation, this study mainly relies on 
monthly-scale data spanning over 30 years, which to some 
extent smooths out the impact of seasonal fluctuations. How-
ever, given that the core objective of this study focuses on 
the comparative evaluation of multi-source precipitation 
products, more rigorous detrending processes have not yet 
been applied. Future research could implement stricter raw 
data processing to minimize potential spurious correlation 
effects.

It is worth noting that this study’s evaluation of the spa-
tiotemporal distribution of droughts and the identification 
of extreme events using multi-source remote sensing pre-
cipitation products not only helps to understand the per-
formance differences of RSPPs but also provides valuable 
references for agricultural planning and drought prevention 
in the Huang-Huai-Hai Plain and similar regions. On the 
one hand, timely identification of drought periods and areas 
can facilitate precise irrigation and rational water resource 
allocation, avoiding resource waste. On the other hand, 

for drought-prone or precipitation-sensitive regions, the 
drought frequency characteristics captured in this study can 
guide the selection of drought-tolerant crop varieties and 
adjustments to planting structures. Furthermore, analyzing 
extreme drought events offers direct scientific support for 
government departments in formulating drought emergency 
plans and long-term food security strategies, particularly in 
mitigating disaster risks during critical agricultural periods.

Conclusions

In this study, using the SPI and run theory, we quantitatively 
evaluated the capability of three long-term RSPPs (PER-
SIANN-CDR, CHIRPS, and MSWEP) in detecting drought 
characteristics over the Huang-Huai-Hai plain. The main 
conclusions are as follows:

(1) Significant discrepancies were found among the differ-
ent RSPPs in characterizing the precipitation of CMA. 
The three RSPPs generally captured the spatial pattern 
of the annual average of CMA, but overestimated the 
annual mean precipitation, by 6.0%, 3.6%, and 3.6% 
for PERSIANN-CDR, CHIRPS, and MSWEP, respec-
tively. CHIRPS showed the best performance in terms 
of rBIAS, fRMSE, r, and KGE, followed by MSWEP 
and PERSIANN-CDR.

(2) MSWEP reasonably estimated the variations of CMA’s 
SPI, followed by PERSIANN-CDR, and CHIRPS. For 
different time scales, the correlation coefficient (r) of 
the three RSPPs generally decreased as the time scale 
increased, with the one-month scale (SPI1) showing the 
best consistency. In terms of monitoring drought fluc-
tuation (SPI1) over time, PERSIANN-CDR performed 
best and was relatively consistent with the changing 
trend of CMA. In estimating the proportion of drought 
area, MSWEP has the best overall performance, fol-
lowed by PERSIANN-CDR and CHIRPS.

(3) Regarding evaluating drought categories, MSWEP per-
formed at a superior level compared to the other two 
products, especially in HSS and POD. For the charac-
teristics of drought events described by MDD, MDS, 
MDI, and MDP, MSWEP performs best, followed by 
CHIRPS and PERSIANN-CDR. In capturing the spa-
tial distribution of the specific extreme drought events, 
MSWEP performs well, while CHIRPS performs 
poorly. Thus, all three products still have much room 
for improvement in drought monitoring.

Acknowledgements We sincerely appreciate the reviewers’ valuable 
comments and suggestions, which have greatly improved the quality 
of this manuscript.



Environmental Earth Sciences          (2025) 84:355  Page 15 of 16   355 

Author contributions P.N.H. guided, reviewed, and revised this manu-
script. M.J.H. wrote the main manuscript text. A.Q.F. guided the frame-
work and provided funding. Y.Z.L. reviewed and revised the text and 
figures. K.X.Y. gives suggestions to the revised manuscript. All authors 
have reviewed the manuscript.

Funding This research was jointly funded by the Belt and road Fund 
on Water and Sustainability of The National Key Laboratory of Water 
Disaster Prevention (2023490111, 2023490711), Open Research Fund 
Program of State Key Laboratory of Eco-hydraulics in Northwest 
Arid Region, Xi'an University of Technology (2023KFKT-1), and the 
National Key R&D Program of China (2023YFC3206801).

Data availability The daily precipitation data are available from the 
National Meteorological Information Center of China at http:// data. 
cma. cn/. The three long-term remote sensed precipitation productions 
can be obtained from three sources: (1) national centers of environ-
mental information (https:// www. ncei. noaa. gov/ data/- preci pitat ion- 
persi ann/ access/); (2) Climate Hazards Center of University of Cali-
fornia (https:// data. chc. ucsb. edu/ produ cts/); (3) Department of Civil 
and Environmental Engineering of Princeton University (https:// www. 
gloh2o. org/ mswx/). Spatial figures were created by ArcGIS 12.7. Code 
for processing the datasets can be available on request.

Declarations 

Conflict of interest The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

AghaKouchak A, Farahmand A, Melton FS et al (2015) Remote 
sensing of drought: progress, challenges and opportunities. Rev 
Geophys 53(2):452–480

Ali R, Kuriqi A, Kisi O (2020) Human–environment natural disasters 
interconnection in China: a review. Climate 8(4):48

Ashouri H, Hsu K-L, Sorooshian S et al (2015) PERSIANN-CDR: 
daily precipitation climate data record from multisatellite obser-
vations for hydrological and climate studies. Bull Am Meteor 
Soc 96(1):69–83

Beck HE, Wood EF, Pan M et al (2019) MSWEP V2 global 3-hourly 
0.1° precipitation: methodology and quantitative assessment. 
Bull Am Meteorol Soc 100(3):473–500

Brito CS, Silva RM, Santos CAG et al (2021) Monitoring mete-
orological drought in a semiarid region using two long-term 
satellite-estimated rainfall datasets: a case study of the Piranhas 
River basin, northeastern Brazil. Atmos Res 250:105380

Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time 
precipitation estimates from satellite observations and numeri-
cal models. Bull Am Meteor Soc 88(1):47–64

Fleig AK, Tallaksen LM, Hisdal H et al (2006) A global evaluation 
of streamflow drought characteristics. Hydrol Earth Syst Sci 
10(4):535–552

Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards 
infrared precipitation with stations: a new environmental record 
for monitoring extremes. Sci Data 2(1):150066

Gao F, Zhang Y, Ren X et al (2018) Evaluation of CHIRPS and its 
application for drought monitoring over the Haihe River Basin, 
China. Nat Hazards 92:155–172

Gimeno-Sotelo L, Sorí R, Nieto R et al (2024) Unravelling the origin 
of the atmospheric moisture deficit that leads to droughts. Nat 
Water 2(3):242–253

Guo H, Bao A, Liu T et al (2017) Meteorological drought analysis in 
the lower Mekong basin using satellite-based long-term CHIRPS 
product. Sustainability 9(6):901

Guo H, Li M, Nzabarinda V et al (2022) Assessment of three long-term 
satellite-based precipitation estimates against ground observations 
for drought characterization in Northwestern China. Remote Sens 
14(4):828

Huffman GJ, Bolvin DT, Braithwaite D et al (2015) NASA global pre-
cipitation measurement (GPM) integrated multi-satellite retrievals 
for GPM (IMERG). 4(26):30

Hutchinson MF, Xu T (2004) Anusplin version 4.2 user guide, Cen-
tre for Resource Environmental Studies, The Australian National 
University, Canberra

Joyce RJ, Janowiak JE, Arkin PA et al (2004) CMORPH: a method 
that produces global precipitation estimates from passive micro-
wave and infrared data at high spatial and temporal resolution. J 
Hydrometeorol 5(3):487–503

Li M, Lv X, Zhu L et al (2022a) Evaluation and application of MSWEP 
in drought monitoring in Central Asia. Atmosphere 13(7):1053

Li Y, Zhuang J, Bai P et al (2022b) Evaluation of three long-term 
remotely sensed precipitation estimates for meteorological 
drought monitoring over China. Remote Sens 15(1):86

Li Y, Yan H, Chen L et al (2024) Performance and uncertainties of five 
popular satellite-based precipitation products in drought monitor-
ing for different climate regions. J Hydrol 628:130562

Liu S, Mo X, Lin Z et al (2010) Crop yield responses to climate change 
in the Huang-Huai-Hai Plain of China. Agric Water Manag 
97(8):1195–1209

Liu J, Shangguan D, Liu S et al (2019) Evaluation and comparison of 
CHIRPS and MSWEP daily-precipitation products in the Qing-
hai-Tibet Plateau during the period of 1981–2015. Atmos Res 
230:104634

Ma F, Yuan X (2023) When will the unprecedented 2022 summer 
heat waves in Yangtze River Basin become normal in a warming 
climate? Geophys Res Lett 50(4):e2022

McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought 
frequency and duration to time scales, California. pp 179–183

Schaefer JT (1990) The critical success index as an indicator of warn-
ing skill. Weather Forecast 5(4):570–575

Sreeparvathy V, Srinivas VV (2022) A Bayesian fuzzy clustering 
approach for design of precipitation gauge network using merged 
remote sensing and ground-based precipitation products. Water 
Resour Res 58(2):1–33

Sternberg T, Thomas D, Middleton N (2011) Drought dynamics on the 
Mongolian steppe, 1970–2006. Int J Climatol 31(12):1823–1830

Su B, Huang J, Fischer T et al (2018) Drought losses in China might 
double between the 1.5 °C and 2.0 °C warming. Proc Natl Acad 
Sci 115(42):10600–10605

Sun Q, Miao C, Duan Q et al (2018) A review of global precipitation 
data sets: data sources, estimation, and intercomparisons. Rev 
Geophys 56(1):79–107

Tuan NT, Qiu J-J, Verdoodt A et al (2011) Temperature and precipita-
tion suitability evaluation for the winter wheat and summer maize 

http://data.cma.cn/
http://data.cma.cn/
https://www.ncei.noaa.gov/data/-precipitation-persiann/access/
https://www.ncei.noaa.gov/data/-precipitation-persiann/access/
https://data.chc.ucsb.edu/products/
https://www.gloh2o.org/mswx/
https://www.gloh2o.org/mswx/
http://creativecommons.org/licenses/by/4.0/


 Environmental Earth Sciences          (2025) 84:355   355  Page 16 of 16

cropping system in the Huang-Huai-Hai plain of China. Agric Sci 
China 10(2):275–288

Wang Q, Shi P, Lei T, Geng G, Liu J, Mo X, Wu J (2015) The alleviat-
ing trend of drought in the Huang-Huai-Hai Plain of China based 
on the daily SPEI. Int J Climatol 35(13):3760–3769

Wei L, Jiang S, Ren L et al (2019) Performance of two long-term 
satellite-based and GPCC 8.0 precipitation products for drought 
monitoring over the Yellow River Basin in China. Sustainability 
11(18):4969

Wilks DS (2011) Statistical methods in the atmospheric sciences. Aca-
demic press Inc., London

Xie J, Liu X, Jasechko S et al (2024) Majority of global river flow 
sustained by groundwater. Nat Geosci 17(8):770–777

Xu Z, Wu Z, He H et al (2019) Evaluating the accuracy of MSWEP 
V2.1 and its performance for drought monitoring over mainland 
China. Atmos Res 226:17–31

Yuan X, Wang Y, Ji P et al (2023) A global transition to flash droughts 
under climate change. Science 380(6641):187–191

Zargar A, Sadiq R, Naser B et al (2011) A review of drought indices. 
Environ Rev 19:333–349

Zhang Y, Zheng H, Zhang X et al (2023) Future global streamflow 
declines are probably more severe than previously estimated. Nat 
Water 1(3):261–271

Zhong R, Chen X, Lai C et al (2019) Drought monitoring utility of 
satellite-based precipitation products across mainland China. J 
Hydrol 568:343–359

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Performance of remotely sensed precipitation products in capturing meteorological drought over typical agricultural planting area
	Abstract
	Introduction
	Study area and datasets
	Study area
	Precipitation datasets
	Observational precipitation
	Remote sensed precipitation products (RSPPs)


	Methodology
	Basic statistical metrics
	Meteorological drought index of SPI and classification
	Categorical probability skill
	Run theory and drought event characteristics

	Results
	Basic skill of RSPPs
	Mean and trend patterns of precipitation
	Basic statistical performance

	Performance of RSPPs in capturing spatiotemporal variations of SPI
	SPI in different time scales
	Drought trend and affected area

	Performance of RSPPs in capturing drought events characteristics
	Skill in capturing drought categories
	Skill in capturing drought event characteristics

	Performance of RSPPs in capturing specific extreme drought events

	Discussion and uncertainties
	Potential factors affecting RSPPs’ performance
	Uncertainties and prospective

	Conclusions
	Acknowledgements 
	References


