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Abstract—Distribution networks (DNs) face challenges in
maintaining continuous power supply for critical loads under
disasters. However, from a resilience perspective, the forecast
accuracy of line/component failure rates under hurricanes still
needs to be improved in order to gain an optimal allocation
strategy for multiple emergency power supply vehicles (EPSVs),
and the economics under normal state is supposed to be con-
sidered in the optimization pre-hurricane EPSV allocation. Due
to the rapid development of environmentally friendly EPSVs,
electric EPSVs and hydrogen fuel cell EPSVs are considered to
be allocated jointly for their different advantages in enhancing
DNs’ resilience. Hence, to balance the resilience and economics
of DNs against hurricanes, an equilibrium allocation strategy
for electric EPSVs and hydrogen fuel cell EPSVs is proposed
in this paper based on the Nash equilibrium. First, a statistical
model for meteorological data about hurricanes is established
via the conditional value at risk (CVaR) considering strong
wind and the consequent rainfall. Failure rate models of DN
lines/components are built on account of the damage mechanism
of hurricanes. Then the emergency power supply capability of
electric EPSVs and hydrogen fuel cell EPSVs are calculated
considering the limited power energy stored in electric EPSVs
and abundant hydrogen in a hydrogen fueling station. In addition,
an equilibrium allocation strategy for sizing and locating multiple
EPSVs is proposed, in which the Nash equilibrium method is
utilized. Finally, simulation tests verify the superiority of the
proposed failure rate models and equilibrium allocation strategy
in balancing the resilience of DNs under hurricanes and the
economics of DNs under normal states.

Index Terms—Distribution network, economics, electric
emergency power supply vehicle, hydrogen fuel cell emergency
power supply vehicle, Nash equilibrium, resilience.
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I. INTRODUCTION

EXTREME natural disasters, such as hurricanes, usually
cause severe damage to distribution networks (DNs), and

then huge structural damage and long-term large-scale power
outages appear as a result of high wind speed and strong
rainfall intensity [1], [2]. To improve resilience indicating
the ability of DNs to prevent high-impact low-probability
(HILP) events and quick restoration of power supply, an
accurate prediction of DN failure rates and optimal allocation
of emergency power supply sources are considered major roles
in pre-hurricane DN planning.

Emergency power supply vehicles (EPSVs) [3] have been
allocated as effective measures to guarantee continuous power
supply under disasters, especially electric EPSVs, but over-
investment may occur if excessive EPSVs are allocated for
low-probability events. On the other hand, insufficient EPSVs
will delay DN restoration under disasters, which may cause
huge economic losses especially for critical loads. Moreover,
hydrogen fuel cell EPSVs have been developing vigorously
for the booming growth of hydrogen fueling stations to pro-
vide abundant hydrogen locally after disasters [4], and are
utilized to maintain continuous power supply under hurricane
Shanzhu in Zhejiang Province of China. Therefore, it is of
great significance to allocate electric EPSVs and hydrogen
fuel cell EPSVs, jointly, before disasters considering the
complementarity between the above two types of EPSVs, so
outage power loss can be reduced, and overinvestment can be
avoided. However, there are two critical challenges in sizing
and locating EPSVs to minimize outage power losses with the
lowest investment. One is the accurate evaluation of the failure
rates of DNs, the other is the equilibrium between resilience
and economics of DNs considering different characteristics in
power supply of multiple EPSVs.

In order to allocate emergency power supply sources prop-
erly for maintaining continuous power supply for critical loads,
the accuracy of failure rate evaluation in DNs is considered a
critical basis. Historical data were utilized in [5] to establish
meteorological models under floods and earthquakes. How-
ever, due to the low probability of extreme natural disasters,
the accuracy of the disaster model based on a small amount of
historical data can hardly meet the requirements. To improve
prediction accuracy, a Monte Carlo method was used to expand
the sample size and hence a probability model was established
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[6]. Afterwards, the conditional value at risk (CVaR) was
further proposed to describe the conditional mean of the proba-
bility distribution functions (PDFs) of meteorological models
with a confidence interval of 95% in [7], which makes the
disaster models more conservative and reliable. Furthermore,
the application of CVaR can overcome insufficiency of the
value at risk (VaR) for tail estimation based on additivity,
positive homogeneity, monotonicity and transfer invariance.
However, the above statistical models can only depict the in-
tensity of disasters at a specific moment, lacking the capability
of reflecting time variations of disasters. Therefore, a time-
variable model was proposed in [8] to characterize the intensity
of disasters at any moment of dynamic disaster duration.
However, the existing statistical models of hurricanes [9] only
describe the instantaneous wind speed without considering
rainfall and hurricane durations. This may affect accuracy
of line/component failure rate models of DNs, thereafter,
the rationality of multiple EPSV allocation results will be
weakened.

Existing research usually concentrated on proposing an
optimized allocation strategy of emergency power supply
sources of DNs [10]–[12]. Different types of emergency power
supply sources were also allocated to enhance the resilience
of DNs, such as distributed generators (DGs) and EPSVs. For
example, the mixed integer programming method, piecewise
linearization method and robust optimization method were
implemented to obtain the allocation results of DGs in [13],
[14]. However, DGs are usually located at fixed locations,
indicating the power supplies provide little maneuverability
or mobility under disasters. Moreover, the output power of
DGs is greatly affected by meteorological factors, hence it is
difficult to ensure a continuous power supply for critical loads
under extreme natural disasters. To overcome the above short-
comings of DGs which resulted in quite complex optimization
problems, a bi-level mixed integer programming model and
a quadratic curve optimization model were established in
[15]. In the novel AC/DC hybrid DNs [16], taking EPSVs as
emergency power supply sources is another solution without
increasing the complexity of optimization models. Mobile
emergency generators and devices were considered as useful
measures to enhance resilience under ice storms and other
natural disasters, and the routing of emergency vehicles were
further discussed in [17], [18]. However, existing research
mainly dealt with dispatching strategies during restoration
periods with little consideration of the sizing and locating
of EPSVs [19], [20]. In addition, existing pre-hurricane DN
planning strategies only enhanced the resilience of DNs while
hardly considering the economic aspects [21]. For exam-
ple, reference [22] evaluated the resilience of DNs based
on an optimization allocation method during the period of
prevention, survival and restoration without calculating the
economics. As extreme natural disasters are low-probability
events, overinvestment will be caused if a large amount of
emergency power supply sources are allocated.

To mitigate the above shortcomings, time-variable probabil-
ity models of wind speed and rainfall caused by hurricanes are
proposed in Section III during the whole hurricane duration.
On this basis, failure rates of DNs under hurricanes can be

evaluated accurately combined with damage mechanisms of
DN components. Then allocating electric EPSVs and hydrogen
fuel cell EPSVs jointly, where their different capabilities in
maintaining continuous power supply of critical loads are
considered Section IV. The capabilities of electric EPSVs are
determined by maximum output power and capacities, but
hydrogen fuel cell EPSVs are only correlated with maxi-
mum output power because hydrogen can be replenished in
a hydrogen fueling station during the restoration period. In
Section V, a multi-objective optimization allocation strategy
portrays inconsistent variation trends between resilience and
economics through the lens of DNs. By defining the resilience
and economics of DNs as two players utilizing the Nash equi-
librium method, an equilibrium model is obtained to transform
the above multi-objective optimization to a single-objective
one. Note that the Nash equilibrium method has been widely
used for solving power restoration problems considering var-
ious conflicting objectives and constraints [23]–[25]. Then,
a Pareto-based non-dominated sorting genetic algorithm II
(NSGA-II) is applied for solving the proposed multi-objective
optimization model, and then the equilibrium point of Pareto
frontier is obtained by the above Nash equilibrium method
and genetic algorithm (GA). Section VI presents case studies
on an IEEE 33-node DN in hurricane-prone areas to verify
the proposed failure rate models under hurricanes and the
equilibrium strategy of resilience and economics. Finally,
conclusions are summarized in Section VII.

II. PROBLEM DESCRIPTION AND FRAMEWORK

To ensure continuous power supply for critical loads under
hurricanes, it is of great significance to propose an optimal
allocation strategy of multiple EPSVs. However, failure rates
of DNs under hurricanes caused by wind speed and rainfall
intensity jointly, are hard to describe by traditional probability
models. During the whole planning period considering hur-
ricanes, dynamic dispatching of EPSVs due to their different
power supply capabilities and mobility also need to be consid-
ered to ensure continuous power supply of prioritized critical
loads.

There is still another key point lying in the allocation
strategy of EPSVs considering hurricanes owing to their low
probability characteristics, where the equilibrium between
resilience under hurricanes and economics under normal states
is necessary to be further stated. However, it is difficult to fully
utilize the emergency power supply capabilities of electric
EPSVs and hydrogen fuel cell EPSVs during the restoration
period after hurricanes. It is also hard to transform a multi-
objective optimization model into a single-objective one by
the existing entropy weight method as outage losses and
economic benefits are two goals with inconsistent variation
trends. Therefore, it is significant to evaluate temporal output
powers and capacities of multiple EPSVs and portray the
bargaining process towards resilience and economics via the
game theory, such as the Nash equilibrium method, because
the game theory can reflect the diversity of dimensions,
magnitudes and probabilities between players.
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Fig. 1. Framework of the proposed equilibrium allocation strategy of multiple EPSVs considering hurricanes.

As shown in Fig. 1, dealing with the above critical
points, through the lens of the resilience under hurri-
canes and economics under normal states, an optimal pre-
hurricane.1allocation method of multiple EPSVs is proposed
based on the Nash equilibrium method. The framework of the
proposed allocation strategy is as follows:

a) Statistic-mechanism failure rate model of DNs under hur-
ricanes. The intensity and duration of hurricanes are modeled
in Section III CVaR based on additivity, positive homogene-
ity, monotonicity and transfer invariance, where probability
distributions of wind speed, rainfall intensity and hurricane
duration are obtained by PDFs considering the uncertainty of
hurricanes. Line/component failure rates in DNs are further
modeled by analyzing the effects of wind speed, rainfall
intensity and hurricane duration on DN components, which
mainly contain broken lines, collapsed poles/towers, insulators
and transformers; on this basis, failure rate models are estab-
lished. Assuming that various failures of DN components are
independent, power outage rates of loads in DNs are gained
considering DN topologies.

b) Optimization allocation strategy of electric EPSVs and
hydrogen fuel cell EPSVs via Nash equilibrium. In Section IV,
emergency power supply capabilities of electric EPSVs and
hydrogen fuel cell EPSVs are evaluated. A multi-objective
optimization model is established considering resilience under
hurricanes and economics under normal states in Section V.
Note that resilience is represented by the outage cost under
hurricanes, and economics is correlated with investment cost,
maintenance cost and reliability improvement by EPSVs.
Then, to seek for the optimal sizing and locating solution
of EPSVs balancing the above two objectives, the Nash
equilibrium method is adopted to transform the multi-objective
optimization to a single-objective one, for its superiority in
dealing with multiple inconsistent objectives based on lin-
ear transformation invariance principle, so an optimal pre-
hurricane allocation strategy of multiple EPSVs can be ob-
tained.

III. STATISTIC-MECHANISM FAILURE RATE MODEL OF
DNS UNDER HURRICANES

The line/component failure rates of DNs will increase
significantly under strong wind and rainfall, which mainly is
caused by the following two aspects: one is it will lead to
collapsed poles/towers and broken lines once the wind load
exceeds the load capacities of poles, towers and overhead
lines; the other is a decrease of resistance on the surface of
insulators and transformers caused by strong rainfall will lead
to insulators flashing and insulation failures of transformers.
Failure rate models of lines and components in DNs, such as
poles, towers, overhead lines, insulators and transformers, are
established in this section considering strong hurricanes and
consequent rainfall.

A. CVaR Models of Meteorological Factors Under Hurricanes

To precisely model meteorological factors of hurricane
intensity and duration, PDFs characterizing wind speed and
rainfall intensity are obtained based on the fitted curves of
historical meteorological factors, and then confidence intervals
are obtained by establishing CVaR models. The end of a
hurricane is determined by the moment when the wind speed
decreases to 12 on the Beaufort Scale [26].

Time-variable probability vectors of wind speed and rainfall
intensity can be expressed as:

V (t) =
[
Vwind(t) Vrain(t)

]
(1)

where Vwind(t) is the probability vector of wind speed at
moment t, and Vrain(t) is the probability vector of rainfall
intensity at moment t.

The PDF of V (t) is defined as ρ(V (t)), which can be
obtained by fitting historical data of wind speed and rainfall
intensity [7]. The conditional confidence interval [Rlow

CVaR,
Rup

CVaR] is obtained with a confidence coefficient β. The
CVaRs are

Rup
CVaR =

1

1− β

∫
V (t)≥Rup

VaR(t)

V (t)ρ(V (t))d(V (t))
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Rlow
CVaR =

1

1− β

∫
V (t)≤Rlow

VaR(t)

V (t)ρ(V (t))d(V (t)) (2)

where Rup
VaR and Rlow

VaR are the critical values of the conditional
confidence interval, which can be defined as:

Rup
VaR = min

{
α ∈ R : φup ≥ β;

φup(α) =

∫
V (t)≤α

ρ(V (t))d(V (t))

}
Rlow

VaR = min

{
α ∈ R : φlow ≥ β;

φlow(α) =

∫
V (t)≥α

ρ(V (t))d(V (t))

}
(3)

where φup and φlow are the probabilities that V (t) is outside
the threshold α at moment t.

The hurricane duration T can be expressed as:

T = tend − tbegin ∈ [tlow
end − tbegin, t

up
end − tbegin] (4)

where tbegin is the initial time of hurricanes and tend is the
terminal time of hurricanes. The boundaries of the confidence
interval tup

end and tlow
end can be obtained by (5).{

tup
end = min{t;V up

wind(t) ≤ Vwmin&&V up
rain(t) ≤ Vrmin}

tlow
end = min{t;V low

wind(t) ≤ Vwmin&&V low
rain(t) ≤ Vrmin}

(5)

where V up
wind and V up

rain are the upper boundaries of the con-
fidence intervals of wind speed and rainfall intensity; V low

wind

and V low
rain are the lower boundaries of the confidence intervals

of wind speed and rainfall intensity; Vwmin is the minimum
value of wind speed; Vrmin is the minimum value of rainfall
intensity.
ttotal is defined to show the outage time of loads under

hurricanes, which can be expressed by the confidence interval
of hurricane duration.

ttotal =
(tlow

end − tbegin) + (tup
end − tbegin)

2
(6)

B. Failure Rates of DN Components Under Wind Loads

The direct impact of hurricanes on DNs is characterized as
effects on poles and towers. By calculating the wind load on
poles, towers and overhead lines under hurricanes, failure rate
models correlated with wind speed are developed [27].
1) Wind Load Effects for Poles, Towers and Overhead Lines

At moment t during hurricanes, the wind speed at point P
can be expressed as:

VP (t) =


Vwind(t) LP ∈ [0, Reye]

Vwind(t)Reye

LP
LP ∈ [Reye,∞]

(7)

where Vwind(t) is the wind speed of hurricanes at moment t;
Reye is the radius of the hurricane; and LP is the distance
between the hurricane center and point P .

Wind load at point P can be expressed as the sum of the
wind loads on lines, poles/towers and insulators at moment t,
i.e., wx(t), ws(t) and wz(t), respectively.

wx(t) = αµzµSCdlH sin2 ϕ
VP (t)2

1600

ws(t) = βµzµSA
VP (t)2

1600

wz(t) = n1n2µzAP
VP (t)2

1600
(8)

where α is the uneven coefficient of wind pressure on overhead
lines; µz is the coefficient of wind pressure depending on
height; µSC is the shape coefficient of overhead lines; d is the
outer diameter of overhead lines; lH is the horizontal span; ϕ
is the angle between the wind and overhead lines; β is the
vibration coefficient of the wind; µS is the shape coefficient
of wind loads; A is the windward projected area of poles and
towers; n1 is the number of insulator strings on a single-phase
line; n2 is the number of insulators on each insulator string;
and AP is the windward area of each insulator.

The cross-bending of poles and towers at moment t is:

MX(t) = (wxz(t)h1 + wsv(t)h1h) · (1 +mx)

with


wxz(t) = wx(t) + wz(t)

wsv(t) = βµzµsF
VP (t)2

1600

h =
h1

3
· 2D0 +Dx

D 0
+Dx

(9)

where wxz(t) is the sum of wind loads on lines and insulators;
wsv(t) is the sum of wind loads on poles and insulators; h1 is
the distance from a certain cross to the top of poles; h is the
distance from a certain cross to the wind pressure point; mx

is the additional bending moment coefficient caused by the
disturbance; F is the windward projected area of poles and
towers; D0 is the tip diameter of poles and towers; and Dx is
the cross diameter of poles and towers.
2) Failure Rate Models of Poles and Towers

During hurricanes, once cross-bending exceeds the cross-
bending strength of poles and towers, poles/towers will col-
lapse. To describe the failure rate of poles and towers, a state
function of poles and towers is proposed, see (9).

Z = R− S (10)

where R is the bending strength of poles and towers as shown
in (11), which follows the Gaussian; and S is the inner stress
of poles and towers caused by wind loads, which is related to
the speed and direction of the wind.

fr(R) =
1√

2πδP
e
− 1

2 (
R−µP
δ P

)2

with

{
µP = βMu

δP = υMu

(11)

where µP is the mean value of the bending strength of poles
and towers; δP is the standard deviation of the bending strength
of poles and towers; β and υ are constants which can be
measured by operating experience or destructive tests; and Mu

is the capacity of bearing wind loads of poles and towers.
Thus, the stable operation probability for poles and tow-

ers is:

P (t) = P{(R− S) > 0} =

∫ ∞
0

fr(R)dR (12)
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The failure rate of poles and towers can be described as:

Pr(t) = 1− P (t) =

∫ S

0

1√
2πδp

e
− 1

2 (
R−µp
δp

)2
dR (13)

3) Failure Rate Models of Overhead Lines
Overhead lines will break once bending exceeds the cross-

bending strength, which is similar with failure rate models.
To describe the failure rate of overhead lines, the self-weight
LG and maximum stress LDesm of overhead lines can be
calculated as: LG = LvG0g

LDesm =
0.6Tm

K

(14)

where Lv is the vertical span between overhead lines; G0 is
the mass of overhead lines per meter; Tm is the breaking force
determined by the type of overhead lines; and K is the safety
factor.

The state function of overhead lines can also be obtained
as given in (10), in which S can be expressed as:

S = LG + LDesm (15)

Therefore, the failure rate of overhead lines is:

Pl(t) =

∫ S

0

1√
2πδp

e
− 1

2 (
R−µp
δp

)2
dR (16)

where R is the tensile strength of overhead lines; µP is the
average of R; and δP is the standard deviation of R.

C. Failure Rates of DN Components Under Rainfall Loads

The indirect impact of hurricanes on DNs is characterized as
effects on insulators and transformers caused by heavy rainfall.
To describe these effects, failure rate models of insulators
and transformers related to rainfall intensity and duration are
developed [28].
1) Failure Rate Models of Insulators

Once insulators are submerged in water, a short circuit will
occur leading to a power outage in DNs. Under heavy rainfall,
insulator flashover is one of the main causes of outages.

Critical rainfall intensity of insulators can be expressed as
[29]:

Aς =

{
ln[Uς/a(P/P0)− b]

cP

}− 1
0.055

− 0.02 (17)

where Uς is the critical flashover voltage of insulators; P is the
ambient atmospheric pressure; P0 is the standard atmospheric
pressure; and a, b and c are constant coefficients with the
values of 2.021, 2.981 and 0.0003.

The flashover probability of each insulator is:

Pi(t) = 1−
∫ Aς

0

F (Vrain(t))dVrain(t) (18)

where F (Vrain(t)) is the probability distribution of rainfall
intensity.

2) Failure Rate Models of Transformers
A large proportion of distribution transformer faults are

insulation accidents resulting from dampness. The main causes
are as follows: a) Owing to high air humidity during hurri-
canes, moisture in the air enters insulations along the con-
necting caps; b) Rain and damp air enter transformers causing
the insulating materials to get wet.

Critical rainfall intensity of insulating oil discharging and
oil-impregnated paper breakdown can be expressed as:

Aς1 =

{[
W1π

a 1
T

(
P0

P

)n1
]2

− b1

} 1
0.949

Aς2 =

{
ln

[
W2π

a 2
T

(
P0

P

)n2
]2

− b2

} 1
1.323

(19)

where W1 is the moisture content of transformer insulating
oils; W2 is the moisture content of transformer oil-impregnated
paper; T is the hurricane duration; and a1, a2, b1, b2, n1 and n2

are all constant coefficients with the values of 0.0018, 0.591,
0, 1, 1.023 and 1.942.

The probability of insulating oil discharge is:

Pt1 = 1−
∫ Aς1

0

F (Vrain(t))dVrain(t) (20)

The probability of oil-impregnated paper breakdown is:

Pt2 = 1−
∫ Aς2

0

F (Vrain(t))dVrain(t) (21)

Therefore, the total failure rate of distribution transform-
ers is:

Pt = Pt1 + Pt2 − Pt1Pt2 (22)

D. Comprehensive Power Outage Rates of DN Loads

Considering DN topologies and failure rates of all compo-
nents in DNs caused by hurricanes including the poles/towers,
overhead lines, insulators and transformers, the total failure
rate of the ith load at moment t can be expressed as:

PΣ(t) = 1−
∏

τ∈[0,t]

(1− Pr(τ))(1− Pl(τ)) + Pi(t) + Pt(t)

(23)

IV. EMERGENCY POWER SUPPLY CAPABILITY OF
MULTIPLE EPSVS

Emergency power supply capabilities of multiple EPSVs
include the maximum discharging power and electric quantity
at the beginning of each dispatching period during restoration,
and multiple EPSVs show different emergency power supply
capabilities under extreme disasters, such as hurricanes. For
example, capabilities of electric EPSVs are determined by
their powers and capacities of battery energy storage systems
(BESSs), of hydrogen fuel cell EPSVs are determined by
their powers of hydrogen energy storage systems (HESSs).
The above differences are caused by the limited power energy
stored in BESSs, but hydrogen can be replenished to HESSs
locally during restoration of hurricanes.
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A. Electric EPSVs

As emergency power supply sources, the capabilities of
electric EPSVs in restoring outage loads under hurricanes
are determined by their maximum charging/discharging power,
state of charge (SoC) and mobility.

Due to the limited powers and SoCs, power supply of the
ith load can be maintained by the jth electric EPSV based on
constraints in (24). 

xi,jESS(t) = 1

P
j

ESS ≥ P i(t)
EjESS(t) ≥ P i(t)∆t

(24)

where xi,jESS(t) is the state whether the jth electric EPSV
is transported to the ith load at the moment t, if xi,jESS(t)
equals to 1, the EPSV stands by the load at moment t, as
a main cause of EPSVs in transport at the beginning of
dispatching periods, the congestion degree of transportation
networks after hurricanes can be taken into consideration;
P
j

ESS shows the maximum charging/discharging power of the
jth electric EPSV, which is set to 40 kW in this paper; EjESS(t)
represents the SoC of the jth BESS at moment t; P i(t) is the
power demand of the ith load at moment t; and ∆t represents
the duration of a dispatching period, which is 1 h in this
paper. Note the power demand of loads during a dispatching
period is assumed as invariable, and EPSVs are considered as
emergency sources maintaining point-to-point power supply
without being connected to DNs.

Considering the consumption of time and energy during the
transportation of electric EPSVs, SoCs of BESSs are correlated
with transportation states and power supply states.

EjESS(t) = E
j

ESS −
∫ t

0

γjESS(τ)dτ (25)

where EjESS(t) represents the SoC of the jth BESS at moment
t; E

j

ESS is the initial SoC of the jth BESS at the beginning
of the restoration period after hurricanes which is 250 kWh
without consideration of uncertainty; γjESS(τ) is the power
consumption during the dispatching period from τ , which can
be further expressed as:

γjESS(τ) =



Dj
ESS(τ)× Ed if max

i∈[1,m]
(xi,jESS(τ)) = 0

0 if max
i∈[1,m]

(xi,jESS(τ)) > 0

&EjESS(τ) < P i(τ)

P i(τ) otherwise
(26)

where Dj
ESS(τ) shows the transporting distance of the jth

electric EPSV during the dispatching period from τ ; Ed

represents per-kilometer energy consumption of EPSVs, which
is 0.2 kWh in this paper; m is the amount of load nodes in
DNs. Note during a dispatching period, the transportation state
and power supply state of an EPSV are invariable, i.e., if the
location of an EPSV must be changed, the EPSV will certainly
fail to participate in power supply in the next dispatching
period for transportation.

B. Hydrogen Fuel Cell EPSVs

Different from electric EPSVs, capabilities of restoring
critical loads of hydrogen fuel cell EPSVs are determined
by maximum charging/discharging powers of HESSs, for
hydrogen can be replenished to HESSs locally during the
restoration of hurricanes, where the amount and locations of
hydrogen fueling stations are critical factors.

Due to the limited powers and limitless SoCs, power supply
of the ith load can be maintained by the jth hydrogen fuel
cell EPSV based on constraints in (27).

xi,jHSS(t) = 1

P
j

HSS ≥ P i(t)
EjHSS(t) ≥ P i(t)∆t

(27)

where xi,jHSS(t) is the state whether the jth hydrogen fuel cell
EPSV is transported to the ith load at moment t, which is the
same as xi,jESS(t); P

j

HSS shows maximum charging/discharging
power of the jth hydrogen fuel cell EPSV, which is set to
100 kW in this paper; EjHSS(t) represents the SoC of the jth

HESSs at moment t. Note local hydrogen is assumed abundant
at hydrogen fueling stations.

Moreover, transportation characteristics are the same be-
tween electric EPSVs and hydrogen fuel cell EPSVs based on
their mobility, which are mainly presented as time and energy
consumption.

EjHSS(t) = E
j

HSS −
∫ t

0

γjHSS(τ)dτ (28)

where EjHSS(t) represents the SoC of the jth HESS at moment
t; E

j

HSS is the initial SoC of the jth HESS at the beginning
of the restoration period after hurricanes which is 500 kWh
without consideration of uncertainty; γjHSS(τ) is power con-
sumption during the dispatching period from τ , which can be
further expressed as:

γjHSS(τ) =



Dj
HSS(τ)× Ed if max

i∈[1,m]
(xi,jHSS(τ)) = 0

&yjHSS(τ) = 0

−P jHSS if yjHSS(τ) = 1

0 if max
i∈[1,m]

(xi,jHSS(τ)) > 0

&EjHSS(τ) < P i(τ)

P i(τ) otherwise
(29)

where Dj
HSS(τ) shows the transporting distance of the jth

HESS during the dispatching period from τ ; yjHSS(τ) is
whether the jth HESS is transported to the hydrogen fueling
station at the moment t, if yjHSS(τ) equals to 1, the EPSV
stands by the hydrogen fueling station.

V. ALLOCATION STRATEGY OF MULTIPLE EPSVS
BALANCING RESILIENCE AND ECONOMICS

On the basis of mobility characteristics, EPSVs can be used
to restore critical loads after hurricanes, however, EPSVs are
usually idle under normal states. Therefore, it is necessary
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to propose an allocation strategy of EPSVs to balance the
resilience and economics of DNs optimally.

A. Multi-Objective Optimization Allocation Strategy of EPSVs

In the restoration period of hurricanes, EPSVs are used
to restore critical loads and enhance resilience of DNs with
a huge investment. Therefore, a multi-objective optimization
model balancing the resilience and economics of DNs is
proposed as follows.

min(FC, FE) (30)

where FC and FE are the resilience and economic indexes
of DNs based on multiple EPSVs, respectively. Note to deal
with various time scales of the resilience index and the
economic index, all typical hurricane scenarios are considered
to transform the time scale of the resilience index into the
whole planning period, where typical hurricane scenarios are
generated by the proposed statistic-mechanism failure rate
model of DNs.
1) Sub-objective of Resilience

A resilience-oriented allocation strategy is usually used to
seek minimum outage power loss under all hurricanes during
the whole planning period.

minFC = γ

∫ ttotal

0

m∑
i=1

(ciPi(t)PΣ(t)(1− ni(t)))dt (31)

where γ is the frequency of hurricanes during the planning
period; ttotal represents the restoration period, which is 8 h
in this paper; ci is the outage power loss of the ith load,
where c1, c2, · · · , cm are the prioritized outage power loss of
loads; Pi(t) is the outage power for the ith load at moment
t; and ni(t) is the power supply state of the ith load at
moment t by allocating EPSVs, which is valued as 1 when
(24) or (27) is satisfied, and it is related to the congestion
degree of transportation networks after hurricanes.
2) Sub-objective of Economics

An economics-oriented allocation strategy of EPSVs is usu-
ally proposed for the minimum investment cost, maintenance
cost and reliability improvement. Economics sub-objective can
be expressed as:

minFE = MESS

(
n

N
CESS

f +
Tp

24
CESS

m PESSTESS

)
+MHSS

(
n

N
CHSS

f +
Tp

24
CHSS

m PHSSTHSS

)
− Tp

8760
cEENS (32)

where MESS and MHSS are the amount of electric EPSVs
and hydrogen fuel cell EPSVs respectively; n is the frequency
of charging/discharging during the simulation; N is the life
cycle of EPSVs, which is set to 4000; CESS

f and CHSS
f are

the unit investment cost of electric EPSVs and hydrogen fuel
cell EPSVs respectively, which are 3 million CNY/set and 5
million CNY/set; Tp indicates the planning period of EPSVs;
CESS

m and CHSS
m represents the unit maintenance cost of elec-

tric EPSVs and hydrogen fuel cell EPSVs respectively, which
are 0.12CNY/kW/day and 0.2CNY/kW/day; TESS and THSS

are the charging/discharging time of electric EPSVs and hy-
drogen fuel cell EPSVs with maximum charging/discharging
power; c is the average outage power loss of loads under
normal states, which is 1 CNY/kW; and EENS represents the
expected value of energy not supplied in a year [30].
3) Constraints

During the restoration period considering the dispatching of
electric EPSVs and hydrogen fuel cell EPSVs, constraints of
power supply states, power supply capabilities and uniqueness
of EPSVs must be obeyed strictly.

a) Power supply state. The state constraint of the jth EPSV
at moment t are shown in (24) and (27), which is determined
by transportation states, powers and capacities for electric
EPSVs, but only correlated with transportation states and
powers for hydrogen fuel cell EPSVs.

b) Power supply capability. Owing to the limited power
energy of BESSs and HESSs, the SoCs of electric EPSVs and
hydrogen fuel cell EPSVs are required to satisfy the constraint
in (26) considering whether the jth EPSV is in transport, idle
at the ith load, or maintaining the power supply of the ith load
during the dispatching period from τ .

c) Uniqueness of EPSVs. At moment t, only one EPSV, at
most, is utilized to maintain power supply of the ith load, so
the following constraint must be met.

MESS∑
j=1

xi,jESS(t) +

MHSS∑
j=1

xi,jHSS(t) ≤ 1 (33)

B. Equilibrium Model Between Resilience and Economics
Based on Nash Equilibrium

The weighted sum scalarization technique and ε-constrained
method are not suitable for transforming the above multi-
objective problem of multiple ESSs allocation strategy into
a single-objective problem for the HILP characteristics [31],
[32], because it cannot deal with the huge diversity of dimen-
sions, magnitudes and probabilities between multiple objec-
tives, which influence uniformity of frontier a lot. Therefore, a
bargaining model is presented to achieve a Nash equilibrium in
the pre-hurricane allocation through approaching the Pareto’s
optimal frontier by choosing resilience and economics as two
players.

The resilience FC and economics FE of DNs are usually
opposite stakeholders; they are usually regarded as two players
in the bargaining process. To obtain an optimal allocation of
multiple EPSVs, an equilibrium model is established with the
objective of:

max
x∈X

(d1 − FC)(d2 − FE) (34)

where d1 and d2 are the critical values of the resilience sub-
objective and economics sub-objective.

Note the existence of Nash equilibrium of a finite strategy
game was proved (Nash, 1950), and if the Nash equilibrium
point lies on the Pareto frontier, the multi-objective optimiza-
tion problem gains an optimal solution, otherwise, a Pareto
optimal solution approaching to the Nash equilibrium point is
chosen as the optimal solution based on the theorem 8.4 in
reference [33].
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The Pareto optimal frontier is gradually approached through
continuous bargaining, and the equilibrium solution is ob-
tained. According to the linear transformation invariance prin-
ciple, an equilibrium model is established by linear transfor-
mations to depict HILP events, such as hurricanes, and normal
states, so different dimensions and magnitudes of resilience
and economics can be retained. Therefore, an equilibrium
allocation of EPSVs is gained on the basis of bargaining
between resilience and economics through allocating multiple
EPSVs.

Then, the multi-objective optimization model in (30) is
solved by NSGA-II algorithm [34], so a Pareto optimal frontier
is obtained, which is formed by all optimal allocation results
of multiple EPSVs. Since the multi-objective optimization is
converted into a single-objective one as shown in (34), GA
method is used to gain an equilibrium point on the Pareto
optimal frontier, the equilibrium point represents the equilib-
rium allocation of multiple EPSVs balancing the resilience and
economics of DNs. Finally, the optimal allocation of multiple
EPSVs is gained containing amounts and locations of electric
EPSVs and hydrogen fuel cell EPSVs.

VI. CASE STUDY

A. Simulation Background

An IEEE 33-node DN in hurricane-prone areas is chosen to
verify the proposed allocation strategy with a planning period
of 10 years. The following two aspects will be emphasized;
one is the accuracy of failure rate models of DNs under
hurricanes considering strong winds and rainfall, the other
is the effectiveness of the equilibrium allocation strategy of
EPSVs based on Nash equilibrium method.

As shown in Fig. 2, a coordinate system is set up, and east
is taken as the positive direction of the x-axis, the north is
taken as the positive direction of the y-axis. It is assumed that
geographical connections between adjacent loads are the same
as electrical distances, and the type of overhead lines in the
DNs is LGJ-240/30 [35]. Electrical distances and temporal
curve of loads of the simulated DN are shown as Table I
and Fig. 3, and loads are divided into two types according
to their importance under hurricanes: nodes in red are critical
loads with unit outage power loss c1 = 1000 CNY/kW, and
others are normal loads with unit outage power loss c2 = 100
CNY/kW. The reliability of power supply of the simulated DN
achieves 99.999%, and a hydrogen fueling station is located at
Node 8. It is assumed a hurricane occurs 10 times per year in
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Fig. 2. Topology of the IEEE 33-node DN in hurricane-prone areas.

TABLE I
PARAMETERS OF THE SIMULATED IEEE-33 NODE DN

Initial node End node Distance
(km)

Maximum load
power (kW)

Importance
degree

0 1 0.4 100 2
1 2 0.4 90 1
2 3 0.4 120 2
3 4 0.4 60 2
4 5 0.4 60 2
5 6 0.4 200 2
6 7 0.4 200 1
7 8 0.4 60 1
8 9 0.4 60 2
9 10 0.4 45 2
10 11 0.4 60 2
11 12 0.4 60 2
12 13 0.4 120 2
13 14 0.4 60 1
14 15 0.4 60 2
15 16 0.4 60 2
16 17 0.4 90 2
1 18 2 90 2
18 19 0.4 90 2
19 20 0.4 90 1
20 21 0.4 90 2
2 22 2 90 2
22 23 0.4 120 2
23 24 0.4 120 2
5 25 1 60 2
25 26 0.4 60 2
26 27 0.4 60 2
27 28 0.4 120 2
28 29 0.4 200 2
29 30 0.4 150 2
30 31 0.4 100 2
31 32 0.4 60 2
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Fig. 3. Temporal curve of resident loads in the simulated DN.

the range of DNs at any time during a day, and the hurricane
is centered at (200, −80) with a radius of 30 km, the speed of
the hurricane is 12 km/h to the north and 8 km/h to the west.

B. DN Failure Rate Models Under Hurricanes

To achieve an optimal pre-hurricane allocation, it is neces-
sary to model meteorological data and measure line/compo-
nent failure rates of DNs under hurricanes accurately.

Through the analysis of hurricane historical data on the web-
site of China meteorological administration (CMA) [36], tem-
poral variations of hurricane intensity are shown in Fig. 4(a)
and Fig. 4(b), note that each point on the curve is obtained
by the mean value of the Gaussian distribution, which is the
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Fig. 4. Temporal distributions of hurricane intensity and duration. (a) Tem-
poral distribution of wind speed. (b) Temporal distribution of rainfall intensity.
(c) PDF of hurricane duration.

PDF fitted by hurricane intensity data at that moment. The
instantaneous values of wind speed and rainfall intensity are
characterized by the 95% conditional confidence interval of
the fitted Gaussian distribution, where the average fitting error
of wind speed and rainfall intensity during the whole hurricane
duration are 7.38% and 6.57%, respectively. A regression
analysis of hurricane duration based on historical data has
been adopted, and the PDF is shown as Fig. 4(c). In addition,
hurricane duration is found to be Gaussian with a mean of
12.02h and a variance of 2.09, so the mean value can be taken
as the predicted hurricane duration, i.e., ttotal = 12.02 h.

Based on the hurricane intensity and duration, the failure
rate of DNs can be obtained under strong winds and rainfall.
The instantaneous wind speed of hurricanes leads to wind
loads on poles, towers and overhead lines of DNs resulting
in fallen poles/towers and broken overhead lines. However, as
the distances between adjacent poles and towers of DNs are
short and arcs of overhead lines are small, the probability of
fallen poles/towers is greater than of broken overhead lines. In
addition, heavy rainfall caused by hurricanes result in failures
of insulators and transformers submerged in water. The failure
rate of transformer insulation due to substation flooding is
greater. According to the failure rate models shown in (13),
(16), (18), and (22), total failure rates of DNs under hurricanes
are presented in Table II. It can be calculated the failure rate
caused by rainfall accounts for 19.37% of the total failure rate
of DNs, which cannot be ignored. Therefore, during evaluation
of the failure rate of DNs, the proposed failure rate models
show great advantages.

C. Optimal Allocation Results of EPSVs

To verify superiority of the proposed pre-hurricane allo-
cation strategy based on multiple EPSVs, simulation studies
are conducted to evaluate allocation considering concurrent

TABLE II
FAILURE RATES OF A NODE UNDER HURRICANES

Component Failure rate (%)
Pole/Tower 3.65
Overhead line 1.27
Total (under winds) 4.87
Insulator 0.01
Transformer 1.16
Total (under rainfalls) 1.17
Total 6.04

disasters, equilibrium allocation considering resilience and
economics, sensitivity of EPSV allocation strategy, and su-
periority of allocating multiple EPSVs jointly.
1) Resilience-oriented Allocation of EPSVs Considering Con-
current Disasters

To verify the proposed failure rate models considering
strong winds and rainfall in Section III and Section IV,
simulation cases are organized based on different failure rate
models as follows:

Case 1-1: Considering the impact of wind speed on failure
rates of DNs individually, pre-hurricane allocation results of
EPSVs are optimized to improve resilience of DNs;

Case 1-2: Considering the impact of wind speed, rainfall
intensity and hurricane duration on failure rates of DNs, pre-
hurricane allocation results of EPSVs are optimized to improve
resilience of DNs.

By solving allocation strategy models of EPSVs, allocation
results and outage power loss are shown in Table III. It is
verified that considering wind speed individually in Case 1-1,
25 electric EPSVs and 2 hydrogen fuel cell EPSVs are needed
in the simulated DN, and resilience measured by outage power
loss is 0.4 million CNY under every hurricane. If wind speed,
rainfall intensity and hurricane duration are considered jointly
as Case 1-2, the amount of electric EPSVs increases to 33,
all loads can be restored during every hurricane. A decrease
of 40.49 million CNY in outage power loss is achieved by
increasing the 8 EPSVs, and all critical loads are restored
under hurricanes. Therefore, the proposed failure rate models
of DNs under hurricanes show superiority in enhancing the
resilience of DNs by pre-hurricane allocation considering wind
speed, rainfall intensity and hurricane duration jointly.

TABLE III
ALLOCATION RESULTS BASED ON DIFFERENT FAILURE RATE MODELS

Case Amount of electric
EPSVs (set)

Amount of hydrogen
fuel cell EPSVs (set)

FC

(Million CNY)
1-1 25 2 40.49
1-2 33 2 0

2) EPSV Allocation Balancing Resilience and Economics
To verify the overall advantages of the proposed Nash

equilibrium model on balancing resilience and economics
in (34), based on the same failure rate models of DNs as
Case 1-2, simulation cases of allocation electric EPSVs and
hydrogen fuel cell EPSVs solved by different methods are
organized as follows:

Case 2-1: Case 2-1 is the same as Case 1-2, which is
resilience-oriented.
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Case 2-2: Equilibrium of the resilience and economics of
DNs based on the entropy weight method, weights of the
resilience sub-objective and economics sub-objective are set
to 2/73 and 71/73 considering the occurrence probabilities of
hurricanes and normal states. The objective can be shown as
minx∈X

(
2
73FC + 71

73FE

)
;

Case 2-3: Equilibrium of the resilience and economics
of DNs based on the entropy weight method, weights of
the resilience sub-objective and economics sub-objective are
set to 6/25 and 19/25 [37]. The objective can be shown as
minx∈X

(
6
25FC + 19

25FE

)
;

Case 2-4: Equilibrium of the resilience and economics of
DNs based on the Nash equilibrium method as shown in (34).
Critical values of the resilience sub-objective and economics
sub-objective are set to d1 = 7270 million and d2 = 50
million. It should be noted that d1 depends on the outage costs
of all loads, and d2 is maximum investment cost of purchasing
multiple EPSVs.

Allocation results of EPSVs, resilience and economics are
shown in Table IV. As shown in Case 2-1, all loads can be
restored with 33 electric EPSVs and 2 hydrogen fuel cell
EPSVs. The investment cost, maintenance cost and reliability
improvement are 109.72 million CNY. Different from Case
2-1, the equilibrium of resilience and economics of DNs is
applied in Case 2-2 and Case 2-3 with different weights of
entropy weight method. Because of the high magnitude of
hurricane impact, the resilience index constitutes the main
factor of the weighted objective. Allocation results verge on a
resilience-oriented allocation with an investment boundary 50
million CNY, but there are still 3877.9 million CNY power
outage losses in Case 2-2 weighting objectives according
to occurrence probabilities of hurricanes and normal states,
and 3852.47 million CNY power outage losses in Case 2-
3 by increasing the weight of resilience of DNs. However,
comparing Case 2-4 with Case 2-2 and Case 2-3, only 16.88
million CNY of power outage losses is increased by decreasing
more than 50% investment. That is, in Case 2-4, the Nash
equilibrium method is adopted and an equilibrium allocation
result of 3 electric EPSVs and 3 hydrogen fuel cell EPSVs is
conducted.

TABLE IV
ALLOCATION RESULTS BASED ON DIFFERENT EQUILIBRIUM MODELS

Case
Amount (set) Equilibrium benefit

(million CNY) (d1 − FC)
(d2 − FE)
(million 2)

Electric
EPSVs

Hydrogen fuel
cell EPSVs FC FE

2-1 33 2 0 109.72 –
2-2 4 7 3877.9 47.58 8209.7
2-3 8 5 3852.47 49.5 1695.65
2-4 3 3 5553 24.27 44178

3) Sensitivity Analysis of EPSV Equilibrium Allocation
To further verify the sensitivity of EPSVs allocation results

solved by the proposed equilibrium allocation strategy, Fig. 5
presents the gradient between resilience and economics, where
units of resilience and economics are billion CNY and million
CNY, respectively. It is obvious that magnitudes of the above
two indexes vary a lot, so the traditional entropy weight
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Fig. 5. Pareto curve of multi-objective optimization and allocation results.

method is unavailable to obtain an equilibrium allocation of
multiple EPSVs.

As the investment of allocation results in Case 2-1 exceed
the boundary of investment, the feasible region in Fig. 5 cannot
present the above results. Optimal allocation results in Case
2-2 and Case 2-3 are distributed in the terminal of the curve,
which lead to an imbalance between resilience and economics
of DNs. As for Case 2-4, optimal allocation results of the
proposed equilibrium method is distributed in the middle of
the Pareto curve and adjacent to the inflection point of the
curve, which shows the variation rate of resilience becomes
slow from the point by increasing investment.

To analyze the equilibrium allocation results solved by
entropy weight method and Nash equilibrium method, Table V
is presented to compare the effects of results in Case 2-3
and Case 2-4. At the equilibrium point gained by Case 2-
3, a 50.94 million CNY outage power loss is reduced by
increasing 1 million CNY investment, the variation rate is
similar when reducing the amount of multiple EPSVs. At the
equilibrium point obtained by Case 2-4, a 106.2 million CNY
outage power loss is increased by reducing 1 million CNY
investment, which is more than 1.61 times of Case 2-3. The
variation rate is approximate to Case 2-3 when increasing
the amount of multiple EPSVs. That means the gradient of
power outage loss is reduced slowly by reinvesting emergency
power supply sources but increased rapidly by cutting down
investment. Therefore, the equilibrium result of Case 2-4
is better than Case 2-3, so the superiority of the proposed
equilibrium allocation strategy based on the Nash equilibrium
model is proved.
4) Superiority of Allocating Multiple EPSVs Jointly

To verify the superiority of allocating multiple EPSVs
jointly, based on the same failure rate models of DNs as
Case 1-2, simulation cases of allocating different types of
EPSVs balancing resilience and economics by Nash equilib-
rium method are organized as follows:

Case 3-1: Only electric EPSVs are allocated to improve the
resilience and economics of DNs;

Case 3-2: Only hydrogen fuel cell EPSVs are allocated to
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TABLE V
SENSITIVITY OF OPTIMAL ALLOCATION RESULTS

Objectives Case 2-3 Case 2-4
Variation of economics
(million CNY) −1 1 −1 1

Variation of resilience
(million CNY) 66.02 −50.94 106.2 −66.85

improve the resilience and economics of DNs;
Case 3-3: Case 3-3 is the same as Case 2-4, which aims at

improving the resilience and economics by allocating electric
EPSVs and hydrogen fuel cell EPSVs jointly.

Case 3-4: Case 3-4 is similar to Case 3-3, but the hydrogen
fueling station is located at Node 14.

Table I shows optimal allocation of EPSVs in Case 3-1 to
Case 3-4, which is presented to capture the advantage of utiliz-
ing both electric EPSVs and hydrogen fuel cell EPSVs jointly,
restoring outage loads after hurricanes. In Case 3-1, 9 electric
EPSVs are allocated to maintain continuous power supply of
critical loads in the simulated DN with an investment of 27.16
million CNY, but there are still 5757 million CNY power
outage losses during the whole planning period. However, only
4 hydrogen fuel cell EPSVs are allocated in Case 3-2, which
lead to a similar resilience index to Case 3-1. The main reason
is both the powers and capacities of ESSs are limited, but
capacities of HESSs are limitless for the abundant hydrogen
locally. So, the investment is cut down to 23.36 million CNY,
and the objective calculated by (34) shows better. Comparing

TABLE VI
ALLOCATION RESULTS BASED ON DIFFERENT TYPES OF EPSVS

Case
Amount (set) Equilibrium benefit

(million CNY) (d1 − FC)
(d2 − FE)
(Million CNY2)

Electric
EPSVs

Hydrogen fuel
cell EPSVs FC FE

3-1 9 0 5757 27.16 34562.43
3-2 0 4 5735.63 23.36 40264.87
3-3 3 3 5553 24.27 44178
3-4 4 3 5604.68 27.29 37819.42

the above cases allocating single type of EPSVs with Case 3-
3, which adopts electric EPSVs and hydrogen fuel cell EPSVs
in restoring outage loads after hurricanes, 182.63 million CNY
of outage power loss is reduced with low investment, the max-
imum objective is gained through allocating 3 electric EPSVs
and 3 hydrogen fuel cell EPSVs. Comparing Case 3-1, Case 3-
2 with Case 3-4, advantages of allocating electric EPSVs and
hydrogen fuel cell EPSVs jointly, cannot be reflected without
proper location of the hydrogen fueling station. Moreover,
the importance of locations of hydrogen fueling stations is
further verified comparing Case 3-3and Case 3-4, so more
electric EPSVs are required if the hydrogen fueling station is
far away from critical loads, but less power is restored with
higher investment.

To further portray the strength of multiple EPSVs after hur-
ricanes, a restoration period lasting 8 hours is conducted from
8:00 a.m. As shown in Fig. 6, temporal restored power and
output power of multiple EPSVs are accessed. In Case 3-1, the
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Fig. 6. Restoration strategy after hurricanes by allocating different of EPSVs. (a) Temporal restored load powers in Case 3-1. (b) Temporal restored load
powers in Case 3-2. (c) Temporal restored load powers in Case 3-3. (d) Temporal output powers of multiple EPSVs in Case 3-3. (e) Temporal restored load
powers in Case 3-4. (f) Temporal output powers of multiple EPSVs in Case 3-4.



TANG et al.: OPTIMAL ALLOCATION STRATEGY FOR ELECTRIC EPSVS AND HYDROGEN FUEL CELL EPSVS BALANCING RESILIENCE AND ECONOMICS 1281

maximum output power of all 9 electric EPSVs are 360 kW,
which cannot meet the required power of critical loads in
peak durations, such as 12:00–13:00, and total restored load
for 8 hours is 2250 kWh. In Case 3-2, the maximum output
power of all 4 EPSVs with HSSSs are 400 kW, which
can satisfy most required power of critical loads during the
restoration period. By utilizing the maximum output power
of hydrogen fuel cell EPSVs, total restored load for 8 hours
approaches to 3200 kWh. In Case 3-3, the maximum output
power of 3 electric EPSVs and 3 hydrogen fuel cell EPSVs
is 420 kW, which is even higher than Case 3-2. Although the
total restored load for 8 hours is 50 kWh less than Case 3-
2, the weighted restored load is greater, because more critical
loads can be restored in peak durations based on the larger
output powers in Case 3-3 with a smaller electric quantity.
Therefore, the optimal coordination of powers and capacities
during a temporal restoration period is gained by allocating
electric EPSVs and hydrogen fuel cell EPSVs jointly, which
leads to the optimal restoration effect in both time and space.
Optimal locations of Case 3-3 and Case 3-4 are shown in
Tables VII and VIII, in Case 3-3, EPSV 1 to EPSV 3 are
electric EPSVs, others are hydrogen fuel cell EPSVs; but in in
Case 3-4, EPSV 1 to EPSV 4 are electric EPSVs. Comparing
Case 3-3 and Case 3-4, less loads are restored in Case 3-4for
EPSV 6 is being transported to the hydrogen fueling station
far away from critical loads at 9:00 and 12:00, and EPSV
7 is replenishing hydrogen at the hydrogen fueling station at
14:00, so it is confirmed that dispatching routes of multiple
EPSVs and locations of hydrogen fueling stations impact the
restoration effect a lot.

TABLE VII
OPTIMAL LOCATIONS OF MULTIPLE EPSVS IN Case 3-3

Time (h) EPSV 1 EPSV 2 EPSV 3 EPSV 4 EPSV 5 EPSV 6
8 2 20 14 8 6 7
9 2 20 14 8 6 7
10 2 20 14 8 6 7
11 2 20 14 8 5 7
12 5 14 20 2 7 8
13 5 14 20 2 7 8
14 20 14 2 8 7 8
15 20 14 2 8 7 8

TABLE VIII
OPTIMAL LOCATIONS OF MULTIPLE EPSVS IN Case 3-4

Time (h) EPSV 1 EPSV 2 EPSV 3 EPSV 4 EPSV 5 EPSV 6
8 2 4 7 8 6 20
9 2 20 7 8 6 –
10 2 4 7 8 6 20
11 2 4 7 8 5 20
12 5 14 8 2 7 –
13 5 4 8 2 7 14
14 20 4 8 8 7 14
15 20 2 8 8 7 14

VII. CONCLUSION

This paper focused on a novel pre-hurricane equilibrium
allocation strategy of electric EPSVs and hydrogen fuel cell

EPSVs being proposed considering the balance of the re-
silience and economics of DNs, the main conclusions of this
paper are summarized as follows:

1) The accuracy of line/component failure rate models of
DNs is improved by CVaR method considering strong wind
speed, consequent rainfall, and hurricane duration jointly. The
proposed failure rate models of DNs are more accurate, which
account for 19.37% of total failure rate.

2) The Nash equilibrium model for balancing the resilience
and economics can enhance resilience of DNs while limit-
ing investment. Compared with traditional portrayed weight
method, the proposed method increases only 16.88 million
CNY of power outage loss by decreasing more than 50%
investment.

3) By allocating electric EPSVs and hydrogen fuel cell
EPSVs jointly, coordination of powers and capacities are
attained during the restoration period after hurricanes, which
makes full use of multiple EPSVs’ advantages. Compared
with allocating a single type of EPSVs, the proposed method
can obtain less outage power losses by utilizing 50 kWh less
electric quantity during a restoration period after hurricanes.
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