Supporting Information for:

Microwave assisted selective oxygenation of propene over bismuth molybdate catalysts: the importance of catalyst synthesis methodology.

Jia Sun,^[a] James S. Hayward,^[a] Michael Barter,^[b] Daniel R. Slocombe^[b] and Jonathan K. Bartley^{*[a]}

[a] Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, UK

[b] Centre for High Frequency Engineering, School of Engineering, Cardiff University, Cardiff, UK

* E-mail: BartleyJK@cardiff.ac.uk

Figure S1 The reactor set up for the microwave assisted reactions. Temperature of the catalyst bed was monitored remotely using an infrared pyrometer through a hole in the cavity wall. For experiments using conventional heating the microwave cavity was replaced with a tube furnace and the temperature monitored using a thermocouple placed in the catalyst bed.

photoelectron spectra for the Bi 4f, Mo 3d and O1s regions of the bismuth molybdate catalyst hydrothermally synthesized at pH 4.

Figure S3 X-ray photoelectron spectra for the Bi 4f, Mo 3d and O1s regions of the bismuth molybdate catalyst hydrothermally synthesized at pH 4 after calcination at 500 °C.

Figure S4 X-ray photoelectron spectra for the Bi 4f, Mo 3d and O1s regions of the bismuth molybdate catalyst hydrothermally synthesized at pH 6.

Figure S5 X-ray photoelectron spectra for the Bi 4f, Mo 3d and O1s regions of the bismuth molybdate catalyst hydrothermally synthesized at pH 6 after calcination at 500 °C.

Figure S6 X-ray photoelectron spectra for the Bi 4f, Mo 3d and O1s regions of the bismuth molybdate catalyst hydrothermally synthesized at pH 8.

Figure S7 X-ray photoelectron spectra for the Bi 4f, Mo 3d and O1s regions of the bismuth molybdate catalyst hydrothermally synthesized at pH 8 after calcination at 500 °C.