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Abstract
Water quality assessment is definitely important, as the available water resources are highly stressed by population growth, 
climate change due to anthropogenic activities, and a significant change in consumption patterns. This study aims an inno-
vative framework to predict the total dissolved solids (TDS) with more accuracy in the rivers, case study: “Karkheh River”, 
Iran, with the integration of signal analysis with machine learning algorithms. First, continuous wavelet transform (CWT) 
was applied to decompose the time series of water quality variables (e.g., Ca,  HCO3,  SO4, and Cl) into their trends, seasonal-
ity, and residuals, extracting features that capture temporal dynamics. These features served as input for non-linear machine 
learning models (XGBoost, Random Forest, Decision Tree) in differenct scenarios to compare which way of adding new 
feature would improve the model performance in terms of the TDS predictions. Adding new features characterized by only 
TDS signal analysis improved the TDS predictions and was compared with adding all variables signal characterization and 
compared with only using raw data to predict TDS level. Using a 50-year dataset from three different hydrometric stations, 
the models could achieve over 95% accuracy, and XGBoost outperformed others in terms of taking the advantage of the 
new extracted features from signals. The results indicates that signal-driven features significantly contribute to ccurately 
TDS prediction by 30% improvement in RMSE, and it can offer a scalable approach for real-time water quality monitoring 
in semi-arid river systems, which leads to a better early warning system for designing future mitigation strategies.
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Introduction

Water is a fundamental and highly limited resource, essen-
tial for the sustenance of life and the health of ecosystems. 
Water quality is a pivotal priority for public health, eco-
system sustainability, and economic development, and it 
faces unprecedented challenges from population growth, 
climate change, and anthropogenic activities [23, 36, 60]. 
Given the strong and direct correlation between water 
quality and public health, governments and international 
organizations have made it a top priority [16]. Globally, 
the abovementioned challenges in freshwater resources 
are mainly from agricultural runoff, industrial discharges, 
and urban wastewater degrading surface and groundwater 
quality [13, 41]. According to the World Health Organiza-
tion (WHO), poor water quality accounts for a significant 
portion of global diseases and mortality rates, especially 
in developing regions where access to safe drinking water 
is limited (WHO, 2011). Water quality is influenced by a 
variety of factors, including natural processes and human 
activities. Pollutants from agricultural runoff, industrial 
discharges, and urban wastewater are some of the main 
contributors to water contamination which are affect-
ing both surface and groundwater sources. In semi-arid 
regions, such as the Middle East and North Africa, these 
challenges are more important and necessary to be con-
sidered due to the water scarcity, rising temperatures, and 
continuous and long droughts, which increases the neces-
sity for robust water quality monitoring and management 
[37]. Effective monitoring of key indicators, such as Total 
Dissolved Solids (TDS), is essential to ensure water safety 
and inform sustainable resource management [47, 52].

Among the various indicators that are used to assess the 
water quality, Total Dissolved Solids (TDS) and Electrical 
Conductivity (EC) are among the most widely recognized. 
TDS represents the total concentration of dissolved sub-
stances in water, including minerals, salts, and organic 
matter, which can affect the taste, hardness, and health 
impact of water [2]. EC is similar to TDS,in EC, we meas-
ure the water’s ability to conduct electrical current, which 
is directly related to the concentration of dissolved ions 
in water [52]. Elevated levels of TDS and EC can indicate 
the presence of pollutants that may be harmful to human 
health, necessitating rigorous monitoring and manage-
ment [30]. In West Asian countries like Iran, an increase in 
TDS levels, often caused by natural processes and human 
activities (anthropogenic activities), can have risks to pub-
lic health [30]. The Karkheh River, Iran’s third-longest 
river, exemplifies these challenges, with its water quality 
affected by rapid urbanization, industrial activities, and 
climate variability [5]. Traditional water quality assess-
ment methods, such as chemical analysis and biological 

monitoring, are expensive and human resource demand-
ing, and sometimes inefficient to capture completely the 
temporal dynamics of the non-stationary time series of 
the variables. To elaborate more, sometimes, in tradi-
tional methods, the seasonal fluctuations or abrupt pollu-
tion events cannot be tracked or captured [32]. In a sense, 
there is an essential need for advanced methodologies that 
can accurately predict TDS levels and support real-time 
monitoring in complex hydrological systems.

In recent years, the integration of signal processing 
techniques, such as Fourier Analysis, Wavelet Transform, 
and Continuous Wavelet Transform (CWT), alongside the 
advancement and improvements in Artificial Intelligence 
(AI) and Machine Learning (ML), has opened new avenues 
for the precise and efficient monitoring of water quality [32, 
40, 54]. Wavelet analysis, particularly Continuous Wavelet 
Transform (CWT), has been used to analyze non-station-
ary water quality signals, revealing temporal patterns and 
anomalies [24, 58]. Similarly, ML models, such as Artifi-
cial Neural Networks and Random Forests, have shown high 
accuracy in predicting water quality parameters [27, 59]. 
However, few studies have integrated wavelet-based trend-
seasonal decomposition with ML to predict TDS in semi-
arid river systems. For instance, Dong et al. [19] combined 
signal decomposition with deep learning for dissolved oxy-
gen prediction, but their approach did not address TDS or 
leverage ensemble ML models. This gap highlights the need 
for a framework that combines the time–frequency localiza-
tion of CWT with advanced ML to enhance TDS prediction 
accuracy and interpretability. The novelty of this work lies in 
showing which way of doing signal analysis and adding fea-
tures might improve the model capability in TDS prediction. 
In a sense, it is important to be computationally efficient, as 
this signal analysis might increase the computational costs 
of the process,however, the accuracy does not improve sig-
nificantly. Thus, in this study, we try to show which factor 
can improve the TDS prediction accuracy.

This study tries to propose a novel and new method to 
predict TDS levels in the Karkheh River, Iran, by integrat-
ing CWT for trend-seasonal decomposition and using the 
extracted features from signals in the ensemble ML models, 
including XGBoost, Random Forest, and Decision Tree. 
Using a 50-year dataset from three hydrometric stations, we 
decompose water quality signals (e.g., Ca,  SO4) into trends, 
seasonality, and residuals, extracting features that capture 
non-stationary dynamics. Given this feature extraction, three 
different scenrios of dataset construction are defined includ-
ing considering only original data, considering all variables 
to be analyzed through signal analisys and add them to the 
original dataset, and finally considering only features from 
TDS signal to be added to the original dataset. We hypoth-
esize that adding more features would improve the TDS 
prediction. These extracted features, along with the original 
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data, serve as inputs for ML models to achieve high pre-
diction accuracy. The study aims to address the limitations 
of prior approaches by leveraging signal-derived features 
and ensemble ML, offering a scalable solution for real-time 
water quality monitoring in semi-arid regions. By applying 
this framework to the Karkheh River, we demonstrate its 
potential to inform water resource management and safe-
guard public health.

Materials and Methods

Study Area

Hydro-environmental research often faces the challenge of 
inconsistent and limited data. To overcome this, the Karkheh 
River was chosen for its extensive 50-year data record, 
which makes it ideal for studying the impacts of climate 
change, urban development, and human activities on water 
quality [5]. The Karkheh River, Iran’s third longest river at 
approximately 950 km, originates in the Zagros Mountains 
in western Iran and flows into the Persian Gulf through the 

Hurolazim wetland, which is located at the Iran-Iraq bor-
der. This river has an average flow rate of 177.8  m3/s and a 
catchment area of about 51,912.3  km2 [35, 44]. The region 
experiences cold winters, hot summers, 360 mm of annual 
precipitation, and 3200 mm of annual evaporation. The aver-
age temperature is 19 °C with 37% relative humidity from 
the early  1990 s to around 2020 [42], and elevations range 
from 3000 to 500 m [50]. The Karkheh River is crucial for 
irrigation, drinking water, and industrial uses in the regions 
it traverses. The study area’s location and the river’s path 
within Khuzestan province in the southwest of Iran are 
shown in Fig. 1 [43].

Data Collection and Preparation

Data on both qualitative and quantitative variables includ-
ing TDS, EC, pH, cations (Sodium (Na⁺), Magnesium 
(Mg2⁺), Calcium (Ca2⁺)), anions (Chloride (Cl⁻), Sulfate 
(SO₄2⁻), Bicarbonates (HCO₃⁻)), and Discharge (Flow 
rate, Q) were collected from three hydrometric stations on 
the Karkheh River, provided by the Iran Water Resources 
Management Company. These data, sampled monthly from 

Fig. 1  The path of the Karkheh River in Khuzestan province, southwestern Iran
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1968 to 2018 (50 years), come from stations strategically 
positioned along the river:

• Payepol station: 48° 08′ E, 32° 24′ N
• Abdul Khan station: 48° 21′ E, 31° 51′ N
• Hamidiyeh station: 48° 25′ E, 31° 29′ N

To address data gaps, interpolation techniques using lin-
ear regression were applied to the nearest periods of meas-
ured values. Additionally, ML statistical methods were used 
to assess whether the data followed a normal distribution. 
Table 1 compares the quality variables of the Karkheh River 
to the permissible values according to WHO guidelines. But 
before employing the data, it is essential to check the statisti-
cal condition of the measured data by statistical tests.

Table 1  Comparative analysis 
of monthly water quality 
variables of the Karkheh River 
against WHO drinking water 
standards

Value/variable Average of three stations Max acceptable 
value (WHO)

Max allowed 
value (WHO)

Min Max Mean Standard 
deviation

TDS (mg/l) 344.3 1601 857.2 231.5 600 1000
EC (µs/cm) 613 2446 1316.4 360.1 500 1500
Na (mg/l) 1.2 14.2 5.6 2.5 200
Mg (mg/l) 1 5 2.7 0.74 50 150
Ca (mg/l) 2.5 12.5 5 1.3 75 200
pH (µs/cm) 5.3 8.5 7.9 0.26 6.5–8.5
Cl (mg/l) 0.95 14.7 5.5 2.5 200 600
SO4 (mg/l) 1.7 11.7 5.1 1.7 200 400
HCO3 (mg/l) 1.1 4 2.7 0.43 150

Fig. 2  The density distribution of water quality variables
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The data was checked through Kolmogorov–Smirnov 
normality test, and the variables show normal distribution 
(TDS,  HCO3, Cl,  SO4, Mg, Na) and discharge; pH and Ca 
do not show normal distribution (Fig. 2). However, not all 
data variables are completely normally distributed (Table 2), 
but the machine learning model selection can be done in a 
way that this problem gets resolved. In the sense, there are 
machine learning models that are scale-invariant, and they 
do not require normal distribution.

In this study, the selected models are those that are not 
sensitive to this problem. It is also noteworthy that for this 
study, the data gets normalized in order to avoid data imbal-
ance, but at the end of the modeling, to obtain an estima-
tion of real TDS prediction values versus actual values, the 
predicted data was rescaled back to normal value ranges.

Wavelet Transform Analysis

In environmental hydrology and water quality investiga-
tion, the temporal dynamics of water quality indicators are 
evaluated using signal analysis to provide useful informa-
tion for well-informed decision-making. Complex patterns, 
such as long-term trends and periodic components with 
low frequencies (about the sampling frequency rate), are 
commonly observed in the data stream. Understanding the 
underlying hydrological processes and creating efficient 
water management plans require a thorough characteriza-
tion of these patterns [7, 21, 32]. There are methods to find 
more details from a signal, such as Fourier Transform and 
Wavelet Transform. As an example, a mathematical method 
is available, called Fourier Transformation (FT), and is used 
to break down a signal or function into a linear mixture of 
sinusoidal functions with different frequencies. Synthesizing 
a complex waveform from simpler, harmonic components 
is comparable to this procedure. These periodic functions 
are expressed as the sum of sine and cosine functions via 
the Fourier series, a specific application of the FT [53]. [21, 
33, 36]).

where a0 is the constant, and this function decomposes the 
signal to an endless infinite number of cosines and sines. 
While FT is a powerful tool for signal analysis, it is limited 
in capturing abrupt temporal changes due to its global fre-
quency representation, and this method has not been used in 
this study. The sum of sines and cosines is not well localized 
in terms of time and space [38, 53]. Therefore, to accurately 
describe a signal, there must be another class of function that 
is well localized in the time–frequency domain.

Transformation is a sort of mapping that transforms the 
input function, which includes the place and time, to the 
output function. The first reason would be to facilitate the 
modeling process [7, 53]. The main aim of the transforma-
tion is to understand and highlight details in the data that 
conventional exploratory data analysis may miss. The afore-
mentioned detail would be frequency, scale, etc., that can 
describe the phenomena more clearly. In other words, the 
main aim of wavelet transform is the extraction of the fea-
tures (Fig. 3).

In the context of wavelet transform, similarly, there is also 
a decomposition procedure that takes place similar to what is 
done in FT but with a different concept. In wavelet analysis, 
two types of basis functions are typically used: the scaling 
function (often referred to as the “father wavelet”) and the 
wavelet function (the “mother wavelet”).

(1 )g(t) = a0 +
∑∞

n=1
ancos

(

2�nf0t
)

+ bnsin(2�nf0t)

Table 2  Kolmogorov–Smirnov 
normality test for the variables 
in this study

Variables K-S p-value

Discharge 0
TDS 0.51
EC 0.30
pH 0.01
HCO3 0.97
Cl 0.17
SO4 0.40
Ca 0
Mg 0.18
Na 0.09

Fig. 3  A general view of using a transformation for the input data to 
have an output extracted features that are used as the new input for 
the ML model
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where the first part is the father wave, and it is good to cap-
ture the approximation of the smoothness of the signal; it 
also captures low frequencies, while the second part is the 
mother wave of decomposition, and this part is for under-
standing the detail of the signals [11, 36],Kumar & Fou-
foula‐Georgiou, 1997; [55].

Depending on the decomposition level, the detail and 
information obtained by the model increase significantly 
(Fig. 4).

In this context, several terms should be described: scal-
ing and shifting. Scaling refers to the process of stretching 
or shrinking the signal in time, to show how much a signal 
is scaled in time. This factor is inversely proportional to fre-
quency. Also, the act of shifting the wavelet function along 
the time or space axis is referred to in wavelet transforms. 
This is carried out in order to analyze various signal com-
ponents that are done in both Time and Frequency [36, 46, 
56] (Fig. 5).

In general, there are two different wavelet transforms: 
(a) Continuous Wavelet Transform (CWT) and (b) Dis-
crete Wavelet Transform (DWT). From a discretization 
standpoint, the decomposition scale in CWT is finer, which 
provides more information (depending on the problem’s 
nature), while in DWT, the scale parameter is always dis-
cretized to the power of 2.

In this work, CWT is used to analyze both periodic pat-
terns and the trend of the indicators describing the water 
quality. Since wavelet analysis can capture both temporal 

(2)x(t) ≈
∑

k
Sj,k�j,k(t) +

∑1

j=J

∑

k
dj,k�j,k(t)

and frequency information, CWT was chosen over Fourier 
transform for the analysis of non-stationary signals with 
localized fluctuations. Wavelet transform permits multi-reso-
lution analysis, allowing the discovery of transitory patterns 
and changes in signal over time, in contrast to the Fourier 
transform, which only offers global frequency content. The 
outcome of CWT (extracted features from the time series) as 
input, along with the raw data, is the matrix of complex coef-
ficients, including rows defined as the frequency and col-
umns as time points. For example, for each variable’s signal 
(e.g., Mg), CWT computes the coefficient matrix; the mean 
power, representing the average energy of the signal across 
all time and scales; the max power, indicating the strongest 
localized oscillation observed; and, finally, the dominant 
scale, which corresponds to the scale (or frequency range) 
where the signal shows the highest overall energy. There 
have been many prior research studies investigating the sig-
nal analysis in water quality using CWT [12, 29, 36, 45], but 
in this study, we try to find an optimum way of adding engi-
neered features which might improve the TDS prediction.

In order to create the final dataset, first, CWT was per-
formed for all variables, and then three different datasets 
were created: (i) only raw measured original dataset, (ii) 
the original dataset along with engineered features of “all” 
time series, and (iii) the original dataset along with the engi-
neered features of only “TDS” time series. The results were 
then compared with different metrics for different models. 
The main difference between the second and third datasets 
is that in the second dataset, signal analysis results of all 
variables were added to the original datasets and used as 

Fig. 4  A systematic and schematic illustration of the way that a signal is checked using both high-pass and low-pass filters to extract features 
from the signal
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the input, while in the third dataset, only the “TDS” signal 
analysis results were added to the original dataset.

Machine Learning Model

In this paper, several ML algorithms have been employed 
to predict the TDS level using the extracted features from 
signal analysis along with the original datasets, includ-
ing eXtreme Gradient Boosting (hereinafter XGBoost), 
Random Forest, and Decision Tree. XGBoost is distinct 
from other decision-based models due to its optimization 
and parallelizability. XGBoost is an efficient implementa-
tion of the gradient boosting technique. It is possible to 
utilize the model directly for predictive regression mod-
eling [1], Bentéjac et al., 2019; [8, 10]. Random Forest 
is an ensemble learning model that incorporates multiple 

Decision Trees (base models) to generate a single, often 
more robust and accurate prediction. To arrive at a single 
outcome, Random Forest aggregates the predictions of 
these individual Decision Trees using methods like averag-
ing or majority voting. In contrast, a single Decision Tree 
is a standalone supervised learning algorithm that makes 
predictions based on a hierarchical set of decisions derived 
from the training data [15, 22, 26, 28, 51].

As can be seen in Fig. 6, the process of reaching a pre-
diction is done via asking questions and answering. In 
order to check whether or not the model has performed 
the process of training and testing properly, there are a 
number of metrics that quantitatively evaluate this subject. 
The metrics that have been used to check the performance 
are as follows:

Fig. 5  Flowchart of the signal 
analysis
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where yi is the actual value in the dataset, ŷi is the predicted 
data using trained model, and y is the mean of the actual 
data. R2 measures proportion of variance in the dependent 
variable explained by the model, including all ensemble 
models, e.g., XGBoost model (Mitchell, 1999; Miura et al., 
2023; Uddin et al., 2022), and MSE quantifies the prediction 
error as the average of squared differences between observed 
and predicted values. R2 reports the fact that the model could 
have captured the complexities of the dataset, and it can be 
generalized to the other datasets, while MSE reports that the 
existing model for this current dataset has predicted with an 
accuracy between the actual data and predicted data.

Model architecture plays a crucial role in machine 
learning performance. The hyperparameters employed in 

(3)MSE = 1∕n
∑

(yi − ŷi)
2

(4)R2 = 1 − (

∑

(yi − ŷi)
2

∑

(yi − y)2
)

this study are listed in Table 3. It is essential to compare 
which machine learning takes more advantage of adding 
more features (extracted by CWT) to predict the target; 
thus these models have been chosen to have a quantitative 
comparisons between different models.

In this study, the ratio between train and test is 70/30%. 
To elaborate more, the train set is 70% of the whole dataset 
in every scenario, and 30% is considered for the test. This 
is an essential step that should be done for the prevention 
of overfitting.

Results and Discussions

The study’s findings show that combining machine learning 
(ML) with continuous wavelet transform (CWT) is an effec-
tive way to forecast total dissolved solids (TDS) in Iran’s 
Karkheh River. Power spectra analysis is used to measure 
frequency-domain dynamics, signal decomposition is used 
to uncover temporal patterns, and TDS prediction perfor-
mance is examined across several dataset circumstances in 

Fig. 6  A schematic view of 
tree-based ML algorithms 
for a classification problem 
to achieve the best predic-
tion through questioning and 
answering

Table 3  Model characteristics 
and architecture

Random forest

Criterion Max depth Splitter ccp_alpha min_samples_split
Squared_error none Best 0.0 2
XGBoost
Learning rate Max depth Objective Sampling method
0.3 6 reg:linear Uniform
Decision tree
Criterion Max depth Splitter ccp_alpha min_samples_split
Squared_error none Best 0.0 2
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this section. In order to meet the demand for precise, scal-
able water quality monitoring in semi-arid areas, this study 
combines CWT with ensemble machine learning models to 
forecast TDS in the Karkheh River. The succeeding part of 
this section tries to delve into deeper lessons learned from 
the integration of signal decomposition and machine learn-
ing models, evaluates the model’s performance against ear-
lier research, and considers the management implications 
for water quality.

Signal Decomposition and Feature Extraction 
and Power Spectra Analysis

This section presents the result of Continuous Wavelet 
Transform (CWT) that was applied to decompose the water 
quality time series to analyze the seasonality, trend, and 
residual for the variable. The results regarding some of the 
variables are presented in the Fig. 7, and the rest of the vari-
ables’ details are presented in the supplementary document. 
As can be seen in Fig. 7, EC and TDS generally show an 
upward trend. They have approximately similar seasonality 
patterns which have been repeated in time. The CWT result 
for pH is different as it has downtrend behavior in time, and 

also, its seasonality pattern differs from those of the other 
variables.

In terms of  HCO3, there are fluctuations in the trend, as 
seen also in the signal itself; however, the seasonality does 
not seem similar to the abovementioned variables. This 
cyclical behavior is due to the nature of the variable and 
the climatic condition, but the change in the trend can be a 
result of climate change and direct/indirect anthropogenic 
activities (e.g., water sewage and increasing environmental 
pollution). Since this research deals with time-dependent 
and time-independent variables, it is essential to check the 
stationary condition of the variables within the dataset.

Figure  8 illustrates non-stationary parameters that 
have been separated to check how they are when they get 
detrended and deseasonalized to compare the signal and 
do the analysis. In CWT analysis, the preprocessing pro-
cesses of detrending and deseasonalizing guarantee that the 
attention is on the pertinent, localized dynamics of the data, 
unhindered by regular periodicities or large-scale trends. 
This clarifies the results by exposing the actual time–fre-
quency features of the data. Among different parameters, 
EC, TDS,  SO4, and Ca are not in steady state condition. 
Then the power spectrum analysis has been conducted for 

Fig. 7  Different variables signal decomposed into their trends, seasonality, and residuals for different variables a TDS, b EC, c  HCO3, and d pH. 
The plots start with the “signal” and are followed by its “trend, seasonality, and residuals”
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both stationary and non-stationary variables. Power spectra 
analysis using CWT reveals the frequency-domain dynam-
ics of water quality variables, with and without detrending, 
to isolate localized periodicities. Figures 9 and 10 show the 
wavelet power spectra for some of the key variables before 
and after detrending, respectively. In both plots—with and 
without the detrended process—the TDS level shows some 
significance during different periods. As an example, strong 
seasonal and annual cycles occurred during the  1980 s and 
early 2000s. In the normal (without detrending) analysis, 
after 2000, long-term trends are dominant, while in the 
detrended plot, the TDS level shows shorter periodicities 
(e.g., 10–20 months). These findings are reflected in red/
yellow patches observed during different periods. “Ca” also 
shows a strong dominance during the mid-80s and weaker 
signals later (after the  2000 s). Both “Ca” and “TDS” illus-
trate periodic behavior on the same time scale, which means 
changes in “Ca” concentration influence the “TDS” level. In 
the long term, both “TDS” and “Ca” could stem from shared 
environmental factors, such as an increase or decrease in Ca, 
causing changes in “TDS” level over time (which is due to 
the human activities and climate change).

This behavior (similarity between variables, e.g., Ca, Cl, 
 SO4,  HCO3 on the TDS level) can be seen in other plots. 
 SO4 shows a dominant long-term trend at larger periods. 

This again confirms that TDS level is influenced by  SO4 
as both Ca and  SO4 are contributors to the total dissolved 
solids concentration. Similar to Ca, there is a temporal align-
ment in the power spectra of  SO4 in the mid-80 s. These 
shared periodic patterns suggest that factors such as rainfall, 
runoff, and other factors like industrial pollution impact the 
TDS level simultaneously. Detrended spectra provide clearer 
insight into how the periodicities in  SO4 and Ca align with 
the TDS level.

Different periodicities and temporal dynamics throughout 
the time series are revealed by the variables’ wavelet power 
spectra. At lower frequencies (longer periods), the majority 
of variables show substantial power concentrations, espe-
cially around annual to multi-annual scales. This suggests 
that seasonal and possibly interannual climatic or hydro-
logical cycles are influencing these parameters. A substan-
tial seasonal component that is congruent with anticipated 
hydrological cycles in river systems is indicated by variables 
like discharge, TDS, and  SO4, which display notable bands 
of power linked with 12- to 24-month intervals.

TDS Prediction Performance

As it was mentioned in this study, we investigated the impact 
of incorporating the features driven by Continuous Wavelet 

Fig. 8  Non-stationary variables a TDS, b  SO4, c EC, and d Ca that have been detrended and deseasonalized to have a clearer insight into the sig-
nals to check the power spectra as well
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Transform (CWT) on the predictive performance of machine 
learning models for TDS estimation. The analysis compared 
three main scenarios: (i) using only raw measured data; (ii) 
combining raw data with the “all” signal-base character-
istics, the features that are extracted from CWT analysis; 
and (iii) combining raw data with only “TDS” signal-base 
characteristics, the features that are extracted from CWT 
analysis. The models showed different performance; how-
ever, “XGBoost” outperformed the other algorithms. Table 4 
shows the model performance for each algorithm using the 
metrics.

As indicated in Table 4, XGBoost model showed more 
advantages of adding features to the original dataset in pre-
dicting the TDS level. It trained on measured data only, and 
it could achieve an R2 of 0.93, indicating that the model 
could explain around 93% of the variance in the TDS values. 
When the data was augmented using CWT-driven features 
only from “TDS”, the R2 score improved to 0.97, reflecting 
a slight yet meaningful increase in the model’s ability to 
capture the target values’ variability. Additionally, integrat-
ing CWT-driven feature to the dataset (measured data + TDS 
signal CWT-driven features) resulted in approximately 
30% reduction in Root Mean Squared Error (RMSE). This 
reduction in RMSE and improvement in R2 reports that TDS 

predictions were close to the actual values. In water quality 
problems, this RMSE is significant, since even small errors 
in the prediction (in early warning systems) can influence 
the decisions related to water treatment. This result shows 
only that adding TDS’s signal characteristics would improve 
the performance of the model and increase the accuracy of 
TDS prediction which is definitely crucial for early warn-
ing systems and water treatment designations that is done 
by policy makers. Considering all variables’ time series via 
signal analysis would improve the prediction; however, this 
enhancement is more computationally expensive compared 
to only TDS signal characterization.

The use of CWT for variables, because of its capacity 
to break down the signal (in this case TDS) into time–fre-
quency components, may uncover patterns like periodic 
oscillations or transient changes that may not be fully repre-
sented by raw sensor data. The observed increases in RMSE 
(by about 30% reduction) and R2 (from 0.93 to 0.97) show 
that these characteristics successfully captured extra tempo-
ral dynamics, boosting the predictive potential of the model 
[4, 17, 45, 48]. The other algorithms including Random 
Forest, and Decision Tree, could have improved due to the 
existence of engineered features from TDS singal analysis 
but not as much as XGBoost. Also, when all variables’ time 

Fig. 9  Power spectra of the variables a TDS, b  SO4, c EC, and d Ca
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series characteristics were added to the original dataset, the 
Decision Tree shows an increase in RMSE and a decrease 
in R2 which means underperformance in terms of TDS 

prediction. This shows that having more features in some 
machine learning models does not necessarily lead to an 
improvement in prediction accuracy  [9].

Given these metrics information, the results regarding 
the model are illustrated in Figs. 11, 12, and 13. In Fig. 11 
(scatter plot of actual vs. predicted TDS levels), the data-
points are scattered around the best fit line. As it is seen 
in Fig. 11, when “TDS” signal characteristics get added to 
the raw dataset and used for the prediction, the prediction 
results improved compared to the time that only raw data is 
considered or the time the all variables are analyzed through 
signal processing and then added to the dataset.

Figure 12 (time series comparison over 2008–2018) fur-
ther shows this improvement, showing that the predicted 
TDS values from the combined dataset (orange dashed line) 
closely track the actual TDS measurements (black line), par-
ticularly during peak events (e.g., around 2010, 2012, and 
2018). In contrast, the model trained on measured data alone 
(blue dashed line) exhibits larger deviations during these 
periods, underscoring the value of CWT features in captur-
ing temporal fluctuations.

According to our comparison research, these results 
have important practical implications for real-world water 

Fig. 10  Power spectra of detrended the variables a TDS, b  SO4, c EC, and d Ca

Table 4  Model performance in different input data condition

The bold values show the significance of the values and shows the 
better prediction

Model/metrics R2 RMSE

Only original measured data
Random forest 0.94 57.03
XGBoost 0.93 61.96
Decision tree 0.89 81.21
Combination of engineered features of “All” variable + original data
Random forest 0.94 55.09
XGBoost 0.95 52.01
Decision tree 0.88 85.1
Combination of engineered features of only for “TDS” vari-

able + original data
Random forest 0.95 51.63
XGBoost 0.97 48.01
Decision tree 0.93 62.10
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Fig. 11  Scatter plot predicted data vs actual data, when only meas-
ured data was used for TDS prediction (base XGBoost), when fea-
tures of all variables are extracted via CWT (All_Wavelet XGBoost), 

and, ultimately, only “TDS” signal features are added to the original 
dataset (TDS_Wavelet XGBoost)

Fig. 12  Comparison between 
the predicted and actual time 
series of TDS level

Fig. 13  Comparison between the predicted and actual time series of TDS level
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monitoring and real-time water treatment. The accuracy of 
TDS predictions is improved by the 30% RMSE reduction, 
which is essential for real-world water quality monitoring, 
such as ensuring the safety of drinking water or evaluat-
ing environmental health. The model’s applicability for 
treatment and regulatory decisions is further supported by 
the enhanced R2 (0.97), which shows a greater connection 
between expected and actual TDS values.

Because of its capacity to simulate non-linear interactions 
and its resilience to noisy, high-dimensional water quality 
data, Random Forest showed better performance as it is a 
good option for integrating the complexity of CWT-derived 
features. Notwithstanding these improvements, there may be 
room for more optimizations, given the slight increase in R2 
(0.04) and the 30% RMSE decrease.

Figure 13 shows the residual error of the prediction versus 
actual data when a different scenario is considered for the 
model training and testing. As it is seen when only “TDS” 
characteristics are added to the raw dataset, the results are 
much closer to the real values, which in turn cause the resid-
ual to become closer to zero. Comparing it with the original 
data, it is seen that TDS prediction using the original data 
has a higher range of errors with respect to the zero-crossing 
line.

Water Quality Monitoring Implications, Limitations 
and Future Works

This proposed framework suggests a new way for water qual-
ity modeling in riverine system for the TDS evaluation. In 
semi-arid environments like west Asian countries like Iran, 
that is suffering from water scarcity, climate change, urbani-
zation and industrialization have put the water quality condi-
tion in a highly crucial risk. This new TDS prediction shows 
better performance in terms of the prediction (Figs. 11 and 
12). The CWT analysis along with Machine learning imple-
mentations (Figs. 7, 8, and 9) shows the importance of using 
the hidden features within a time series that can add value 
to the data set and improve the ML modeling. Aside from 
TDS, other hazards to aquatic habitats include algal blooms 
and other stresses brought on by pollutants, which can have a 
negative effect on ecosystems and human health. It is crucial 
to anticipate changes in climate, aquatic ecosystem disrup-
tion, oxygen depletion, and water usability early on since 
these elements could pose a health risk to the general public.

The accuracy and robustness of predictive models are 
paramount for effective water quality policymaking. Poorly 
designed methodologies or models with low predictive 
power can lead to misinformed policies, resulting in inad-
equate treatment measures or resource misallocation. The 
CWT-ML approach, by contrast, provides a reliable founda-
tion for policy design by extracting meaningful features from 
complex datasets, as demonstrated in the improved TDS 

predictions. This accuracy is crucial for crafting policies 
that address immediate water quality concerns while antici-
pating future risks. For example, early warning systems built 
on this framework (Fig. 14) can guide the designation of 
mitigation strategies, such as adjusting treatment processes 
or regulating industrial discharges, to prevent water quality 
degradation. Designing an early warning system based on 
the integration of CWT and ML models could level up the 
mitigation strategy designation appropriately. Limitations 
in this study were ensuring the data gaps that might cause 
minor biases. Another limitation would be the computational 
costs that might occur for real-time implementation. To this 
end, future studies should be focused on model optimization 
and reduction in computational costs. This study suggests 
the incorporation of “Causal Inference” modeling within 
designing early warning systems for mitigation strategy, 
to not only understand the features’ correlation but also 
to understand the causal relationships between variables. 
Since this study was aiming to understand the effect of the 
signal analysis on the TDS prediction and not looking to 
understand the importance of the features, it is suggested to 
conduct feature importance analysis to realize the variable’s 
contribution in the model prediction. Further analysis can 
be done using “SHapply Additive exPlainations or SHAP” 
and “LIME”.

Conclusion

The available freshwater bodies are under severe stress 
which makes the studies regarding the water quality signifi-
cantly important. Among different methods of water qual-
ity investigation/prediction, data-based solutions are mak-
ing an important contribution to level up the quality of the 
studies as the availability of the observation is increasing 
and the necessity to process the actual data observed in the 
environment has been essential. In this study, we tried to 
use not only machine learning models to predict the water 
quality (in this case, Total Dissolved Solids or TDS), but 
also, in order to employ the ML models, we tried to see if 
we can find more information from the time series through 
signal analysis that can lead to a better TDS prediction or 
not. The observed data was treated as signals that could have 
potentially features that need extraction. Then, according 
to the comparison approach, three scenarios were defined: 
(i) using only original data to predict the TDS level, (ii) 
adding features extracted by CWT for the all variables to 
the original dataset and TDS prediction, and finally, (iii) 
only considering “TDS” signal characteristics and adding 
them to the original data. Different signals had different fea-
tures including seasonality, trends and residuals. For this 
study, XGBoost, Random Forest, and Decision Tree were 
employed. Among different machine learning algorithms, 
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XGBoost showed a better performance with an R2 score of 
97% and an RMSE of around 48 when the TDS signal char-
acteristics were added to the measured data and used for 
TDS prediction with significantly lower RMSE, while using 
only measured data had an RMSE of around 62. The accu-
racy of the prediction which was over 95% showed that the 
signal analysis had the potential to be employed along with 
the original data as it can gain more information about the 
fluctuations of the variables within the duration of the meas-
urement. Although, the results indicated an improvement in 
the TDS level prediction by considering the signal analysis 
and adding the time series characterization to the original 
dataset, not all variables can make a significant contribution 
to the prediction accuracy improvement. Considering the 
signal analysis for only the target can significantly improve 
the TDS prediction while this reduction in signal analysis 
is relatively cheaper than analyzing all signals. This study 
offers a scalable and novel way of TDS prediction by inte-
grating signal analysis and machine learning in predicting 
the TDS level.
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