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ABSTRACT

The goal of low-rank matrix completion is to minimize the rank of a matrix while adhering to the constraint that known

(non-missing) elements are fixed in the approximation. Minimizing rank is a difficult, non-convex, NP-hard problem, often

addressed by substituting rank with the nuclear norm to achieve a convex relaxation. We focus on structured matrices for comple-

tion, where, in addition to the constraints described earlier, matrices also adhere to a predefined structure. We propose a technique

that ensures the exact recovery of missing entries by minimizing the nuclear norm of a matrix where the non-missing entries are
first subject to block-column scaling. We provide the proofs for exact recovery and propose a way for choosing the scaling parame-
ter to ensure exact recovery. The method is demonstrated in several numerical examples, showing the usefulness of the proposed

technique.

1 | Introduction

Low-rank matrix completion aims to reconstruct matrices with
missing entries by exploiting an inherent low-rank structure. In
the general case, low-rank matrix completion is an optimiza-
tion problem with the objective of minimizing the rank of a
matrix subject to constraints. Rank minimization problems are
generally NP-hard and non-convex (see, e.g., [1]), so several
authors propose to instead solve a convex relaxation based on the
nuclear norm, which has well-grounded theory for the case of
unstructured matrices [2—-4]. While there are other approaches to
relax the nonconvexity —see, for example, [5]—we focus on the
nuclear norm approach since it is pervasive. A natural question
emerges—when does the solution of the convex relaxation coin-
cide with the rank minimization problem? It is known that the

nuclear norm performs well when the missing values are sampled
in a random fashion, where perfect (or exact) recovery is ensured
with high probability, see the seminal work [2, 3] and numerous
follow-ups.

In this paper, we consider the case of structured matrix comple-
tion. Informally speaking, structured matrices have dependen-
cies between their elements, and we wish to preserve the struc-
ture whilst making the completion. Examples of well-known
structured matrices include Hankel, block-Hankel, Toeplitz,
Sylvester, and circulant; each of these structures is associated
with particular problem domains, and we offer some examples
shortly. The completion of structured matrices can be viewed as
a special case of structured low-rank approximation [6, 7]. In the
applications we consider, and for structured matrices generally,
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missing data often appear in blocks as opposed to being randomly
located throughout the matrix.

Specifically, we consider structured matrix completion based
on minimizing the nuclear norm in the deterministic scenario
(structure and missing-data-not-at-random). In this case, the use
of the nuclear norm breaks down, as shown by several stud-
ies [8]. For Hankel matrices References [9, 10] suggest that an
exponential rescaling (dampening) of the problem is possible,
but it is difficult to provide good bounds for such a rescaling.
In this paper, we propose a simple block-column scaling of the
observed entries, which guarantees the exact recovery of miss-
ing entries. Our contribution in this paper is applicable to any
affinely-structured matrix and provides theoretical guarantees
for exact recovery as well as a method to choose the scaling
parameter.

There are other methods available to solve some of the example
problems described in this paper. Note, however, that our work
applies to general affine structures (not just Hankel-type); for
general structures, parametric model equivalents may not be
available. In this paper, we propose an alternative to estimating
parameters of a parametric model which is not only demonstrably
useful for practical application, but also interesting mathemati-
cally, and complements the results in seminal work such as [2, 3,
11]. Hence, our contributions are beyond just a method to solve
a particular Hankel matrix completion problem.

This paper has the following structure. In Section 2, we introduce
the matrix completion problem and provide some examples of
matrix structures and typical completions needed. In Section 3,
we describe the means to scale the matrix structure so that the
nuclear norm relaxation achieves the correct recovery for the
scaled matrix structure. Our result on scaling columns to achieve
exact recovery of missing values is also given in Section 3. Before
giving the proof of the main result in Section 5, we provide a
roadmap in Section 4. Numerical examples are given in Section 6
before the paper is concluded in Section 7.

2 | Affine Structured Matrix Completion

21 | Structured Matrices

An affine matrix structure S(-) is an affine mapping S : FV —
FLXK where F is R or C, thus parameterizing (an affine) set of
structured matrices. An example of such matrices are given below
and a formal construction is offered in Section 4.1.

Example 2.1 (running example, Hankel matri-
ces). The Hankel matrix structure H, : FN — FEXK,
K =N — L+ 1, mapsavector p € FN toan L x K matrix with

(Hp (D)) j = Pivj

that is, the values are constant on the antidiagonals and parame-
terized by the elements of p (see also (1)).

Note that the notation H, (p) is used for a vector p of any size
N > L, and the number of columns of the matrix is determined
by the size of the input vector.

2.2 | Matrix Completion and Rank
Minimization

The goal of low-rank matrix completion is to fill in the missing
elements of the matrix S(p) based on the low-rank assumption.
From now on, we write N = n + m, and we assume that the first
n values of p (denoted p;.,) are known and the goal is to recover
the last m missing values', p,; ..., (S0 that N = n + m).

Formally, the exact structured low-rank matrix completion is for-
mulated as the rank minimization

n}in rank{S(p)} subjectto p;.,=po (RMIN)
pe m+n -

, Do) is a given vector of known values.
HEMIN

where py = (py 1> P25 - - -
We denote an optimal solution to (RMIN) as

Example 2.2 (Example 2.1, continued). Our running
example stems from time series analysis, where we would like
to fill in the last values of a scalar Hankel matrix. In Equation (1),
the gray-shaded elements are known (fixed) and the remaining
values are missing. The Hankel matrix in Equation (1) has size
LxKsothat K+ L—-1=n+m.

pl p2 . . ... . pK
P P3
m
H.(p)= . (H
0 Dut
_pL " Pn Pnyr pn+m_

The Hankel low-rank completion problem is shown to be useful
in the context of forecasting [12-14], where p corresponds to a
scalar time series. The first n values of the time series p are known
(observed), and we would like to forecast m steps forward.

This approach is motivated by the fact that time series, which can
be written as a sum of products of polynomial, exponential, and
sinusoidal functions, have low-rank Hankel matrices (see, e.g.,
[14]). Such time series constitute an exceptionally rich class able
to model complex trends and multiple modulated periodic com-
ponents (see also [15]). Here, forming the forecasting problem
as Hankel structured low-rank matrix completion is very attrac-
tive because it avoids parameter estimation necessary for classic
model-based statistical forecasting methods [16]. A more gen-
eral class of problems with multivariate time series is described
in Section 6.4. In practice, an approximate version of (RMIN)
is often considered when we allow for the error in the known
values.

2.3 | Convex Relaxation and Nuclear Norm

In this manuscript, we investigate the performance of the nuclear
norm relaxation, which for the rank minimization problem
(RMIN) is replaced with:

min [|S(p)ll, subjectto p,., = p, (NNMIN)

peEF+m
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where || X||, is the nuclear norm (sum of all singular values of X).
The intuition behind this relaxation is the same as for using the
¢;-norm in compressed sensing. The nuclear norm is expected to
force all but a few singular values to be zero (a low-rank solution).

In what follows, we will denote an optimal solution to (NNMIN)
~(NNMIN)
asp .

In our applications, the pattern of missing data is fixed, as
opposed to the random sampling in Reference [2, 3], and the con-
ditions for perfect recovery are much more restrictive in such
cases. In particular, it was shown in References [9] and [10] thatin
Hankel matrix completion, the time series need to be sufficiently
damped to allow for perfect recovery. In this paper, we show that
for a wide range of structures, a simple block-wise scaling guar-
antees perfect recovery of the scaled matrix structure.

2.4 | Alternatives to the Nuclear Norm

Nuclear norm minimization has been celebrated for its convex
formulation, which offers strong theoretical recovery guaran-
tees and robustness in the presence of noise. Nonetheless, sev-
eral alternative methods for matrix completion exist that avoid
its convex relaxation while offering complementary advantages.
For instance, low-rank factorization-based approaches model the
given matrix as a product A B and apply alternating minimization
to optimize for A and B. Although these methods tend to be more
computationally efficient, they often require careful initialization
and might converge to local minima rather than the globally opti-
mal solution [17]. In addition, Riemannian optimization tech-
niques directly optimize on the manifold of fixed-rank matrices
to benefit from the intrinsic geometric structure of the solution
space, typically resulting in rapid convergence; however, their
performance can be sensitive to noise and depends on the qual-
ity of the starting point [18]. Iterative hard thresholding methods
enforce a strict rank constraint via singular value truncation at
each iteration, which can be highly efficient in practice, yet they
often lack the universal convergence guarantees that come with
convex nuclear norm methods [19]. Overall, while these alterna-
tives provide efficient and scalable solutions in various settings,
nuclear norm minimization remains a cornerstone approach due
toits balanced trade-off of robust global optimality, provable error
bounds, and practical effectiveness in a wide range of applica-
tions, as described in this paper.

3 | Block-Column Scaling for Nuclear Norm
Completion

3.1 | Block-Column Scaling

In this section, we describe the proposed scaling approach ensur-
ing that nuclear norm minimization for a fixed structure obtains

exact recovery of missing values. Our proposal is to replace S(p)
with the scaled matrix structure

I
S.(p) := S(p>[ Kox i ] 2

where £ > 0 is a small parameter, that is, we scale the last «
columns of S(p), with 0 < k < K, by a small number . The fol-
lowing remark is of prime importance:

Remark 3.1. For e >0, we have rank{S,(p)} = rank{S(p)}
therefore all the solutions of the exact matrix completion (RMIN)
using either the original matrix S(p) or its scaled version S,(p)
coincide.

Our proposal is to replace S(p) with S, (p), in the nuclear norm
minimization problem (NNMIN), and we seek to solve the mod-
ified problem

min ||S.(p)|l. subjectto pq., = po (NNMIN-¢)

pE R (n+m)

Under several natural assumptions, replacing S(p) with the
scaled S,(p) leads to guaranteed exact recovery of the missing
values p,, ;... for suitably chosen e. The goal is to choose
such a scaling so that the solution i;(NNMIN'S) of (NNMIN-¢)
leads to exact recovery of p,.,.,., and is therefore better

than ﬁ(NNMIN) .

3.1.1 | Related Work

Scaling of rows and columns has already been proposed for the
case of unstructured matrix completion. Such a scaling, equiva-
lent to a weighted nuclear norm minimization [20], was shown
to be effective and provides better recovery guarantees than ordi-
nary nuclear norm minimization [21]. There has been an increas-
ing activity in analyzing non-uniform deterministic patterns of
missing values [22]. However, the authors are unaware of any
such works that address the case of structured matrix completion,
except for the recent work [23] that mainly reveals connections
between weighting and structured completion (rather than using
scalings to improve the performance of the nuclear norm in the
structured case). Our work, therefore, offers a novel contribution
to ensuring the exact recovery of missing entries of structured
matrices.

3.2 | Assumptions and the Main Result

We now describe the necessary assumptions before discussing
them in more detail in the subsequent section.

Assumption 3.1. The solution P M™ of the rank minimiza-
tion problem (RMIN) is unique.
Assumption 3.2. For any optimal solution p™™" of

(RMIN), we have

(RMIN) ~(RMIN)

rank{S(p )} = rank{S,(p )}

where S,(p) is the scaled structure (2) with € = 0.

Assumption 3.3. The matrix structure S,(p) depends only
on p,., (i.e., the first n elements of the vector p); in such a case
we write Sy(p)= Sy(p;.,)-

Before formulating the main results, we make some remarks
about these technical assumptions.
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Remark 3.2.
So(P)

Assumptions 3.2 and 3.3 concern the matrix

I
So(p) :=S(p>[ Ko 0} 3)

This is a limiting (¢ = 0) case of S,(p), which is special for the
following reasons:

« In this case, Remark 3.1 (on the equivalence of rank min-
imization problems for the scaled matrix S,(p) and S(p))
does not necessarily hold. Thus Assumption 3.2 ensures that
an analogue of Remark 3.1 holds true for € = 0;

» As seen in Equation (3), Sy(p) contains the first K —«
columns of S(p) (which are left unscaled in S,(p) for any
€); thus Assumption 3.3 is equivalent to assuming that
the parameters p,,;.,,, do not appear in the first K — «
columns (i.e., all the missing elements p,.,.,,,, are scaled
by €);

« From a practical point of view, S;(p) is not relevant as it does
not depend on the missing elements (so it does not provide
a way to complete them); however, it is important for the
theoretical analysis of the scaled problem (NNMIN-¢) which
appears later.

We are also going to provide examples for the assumptions in the
following subsections. Under Assumptions 3.1-3.3, the following
result holds.

Theorem 3.3. Let S.(p) be the scaled matrix structure (2) sat-
isfying Assumptions 3.1-3.3, and ﬁ(RMIN) be the unique solution of
(RMIN). Then there exists g, such that for any € € (0, &), the min-
imizer f)(NNMIN"E) of the scaled problem (NNMIN-¢) is unique and
is equal to p"M™

For ease of reading, the proof of the theorem will be split into
several stages and into dedicated subsections. In the rest of the
section, we provide a discussion on the plausibility of the assump-
tions, show the key ideas behind the proof, and also indicate how
we can find an estimate for .

3.3 | Discussion on the Assumptions: The Case
of Hankel Matrices

In this subsection, we give examples for the assumptions using
our running example, that of completing Hankel matrices, which
are linked to some well-known conditions in the literature.

Lemma 3.4. For completing the Hankel matrix H, (p) given in
Equation (1), Assumption 3.3 is equivalent to k > m.

Proof. The last elements p,,;.,.» appear only in the m last
columns of H, (p) and so the first K — k columns do not depend
on p,,;..4m if and only if & > m. o

To illustrate Lemma 3.4, consider a special case of a Hankel
matrix (1) with n = 7, m = 2, and « = 3 (i.e., the right-hand side
block is scaled):

Py Py P3 Py P5s Ds P7
Hs5(p) =|'py P3 P4 Ps Ps P7 Ps
P3 P4 Ps Pe P7 Pg Do

and it is seen that Assumption 3.3 is satisfied. We also note that
a necessary condition for Assumption 3.1 is r = rank{H (p,)} <
L (otherwise any completion of H,(p,) has rank L, and is
thus nonunique). Under a stronger, well-known condition, we
can guarantee that both Assumptions 3.1 and 3.2 are also
satisfied.

Lemma 3.5. Let Assumption 3.3 be satisfied for the Hankel
matrix structure in Equation (1). If, in addition,

e, =(0,...,0,1) & span{H, (py)}

then both Assumptions 3.1 and 3.2 are also satisfied.

Lemma 3.5 is well-known in Hankel low-rank approximation lit-
erature (see [24, Def. 5.9, p. 99], [15, §5.3], but also [6, 14]), and
we summarize a proof in Appendix A. In particular, Lemma 3.5
holds true for time series that are sums of complex exponentials
and polynomials, and this is the example that follows.

Example 3.6 (see, e.g., [14, Thm 5.1]).
be given as

Letp, k=1,...,n

pe= 2 PR, k=12, ... 4)
j=1

J

where P;(k) are complex polynomials of degrees at most v; — 1
and 4; € C.Thenifr =v; +---+ v, <min(K-x, L — 1), then the
rank minimization of M, (p) is unique (is of rank r), and the
unique completion is given by the same formula (p, = p,, k =
n+1,...,n+m in Equation (4)). Therefore, both Assumptions
3.1 and 3.2 are satisfied.

We offer further commentary on the applicability of Assumptions
3.1-3.3 for some other problem settings.

Remark 3.7. The problem treated in Lemma 3.5 and
Example 3.6 can be viewed as a special case in a more general
context behavioral systems theory. In particular, Assumptions
3.1-3.3 are similar to Assumptions A1-A3 in Reference [25],
which considers the same problem (for the special case of a
so-called mosaic-Hankel structure) from a systems theoretic per-
spective. The main difference is the method of solution, which is
not based on the nuclear norm relaxation.

Additionally, Assumptions 3.1-3.3 are intuitive for the problem
of data-driven simulation, which is presented in depth in
Section 6.4. For example, Assumption 3.2 corresponds to the
condition of persistency of excitation [26]. We also note that a
similar scaling was heuristically proposed for the special case of
data-driven simulation in Reference [27], where it was proposed

to scale the matrix as
e
[ K }S(m
IK
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where y is a large number. Such a scaling is, in fact, equivalent to
(2) if we take y = e 1.

Finally, we discuss the applicability of Assumptions 3.1-3.3
when the missing values occur elsewhere in the parameter
vector p.

Remark 3.8. Our results also apply when:

« the missing data are located in the middle of the vector p;

« the columns in the middle of the matrix are scaled by ¢.

Indeed, this case can be treated by rearranging the columns of the
matrix and the elements of the parameter vector (this operation
affects neither the rank nor the nuclear norm).

Consider the following example

Py P2 P3 Py DPs|Pe P7
H3(p) = p, p3 Py Ps Ps P7 Ps
P3 Py Ps Pe P7 Pg Po

with missing elements p, and ps. We can rearrange the columns
to get an equivalent matrix

Py Pe P7 P2 P3 Dy Ds
S(p)=|p p; Pg P3 Py Ps Pe
P3 Pg P9 Py P5 Pe P7

and by permuting the arguments of the vector, we obtain an
equivalent matrix structure that satisfies Assumption 3.3.

4 | Roadmap for the Proof

4.1 | Nuclear Norm Minimization: Optimality
Conditions

To give the main ideas behind the proof of Theorem 3.3, we recall
the optimality conditions for (NNMIN) from References [10, 13],
and we cover both real- and complex-valued matrices.

Let p be a parameter vector for which we wish to test its opti-
mality, i.e., whether it is a minimizer of (NNMIN), and let r =
rank{S(p)}. Let us introduce the following notation for the com-
pact SVD:

S(ﬁ) — UEVH, U e CLxr, T e Rrxr’ Ve Cer

The key quantities needed for formulating the optimality
conditions are:

def
« the polar factor B = yyH (semi-unitary matrix in polar
decomposition)

« and projectors on the left and right nullspace of S(p):

Q,=1I1,-UU" Q,=I,-vVH

Note that the polar factor B and the projectors Q, and Q, depend
on p (which is fixed in the proofs), therefore we omit this depen-
dence in the notation for the ease of reading.

Next, we recall notation for basis matrices, which are needed

to consider structured matrix completion problems. An affine
matrix structure [7] can be parameterized as:

m+n

S(p) =Sy + ). piSy (5)
k=1

For example, for the Hankel structure (1), the basis matrices are

10---00 01---00
00 .. 00 10 .. 00
Si=: oL ESe= L)
00 ... 0 00 .. 00
00---00

-00

0
00---00
00 .. 00
"Sm+n=
00 .. 00
00---01

with S, being the zero matrix.

Using the notation introduced above, the necessary (and suffi-
cient) optimality conditions for a vector to be an optimal solution
of (NNMIN) can be formulated as follows.

Lemma4.1 (First-order optimality conditions [10,
Proposition 14] [13]).  The point p is a minimizer of (NNMIN)
if and only if there exists a matrix M € CYK with spectral norm
IM||, < 1, satisfying

(O;MQ,+B,S,)p=0, foralke{n+1,....,n+m} (6)

If, in addition, the norm of matrix M satisfies || M ||, < 1, and the
set of matrices {Q,S,Q,},*" | is linearly independent, then p is
the unique minimizer of (NNMIN).

A matrix M satisfying the conditions of Lemma 4.1 (with || M||,
< 1)iscalled a dual certificate. It is a standard term in the nuclear
norm minimization literature [2, 3] as it refers to duality in con-
vex optimization [28]. Our proof strategy relies on constructing
a particular dual certificate for the given solution of (NNMIN),
that is, the matrix M satisfying linear constraints (6), for which
we can guarantee | M|, < 1.

4.2 | Candidate Dual Certificate and Its Norm
Instead of finding M with small spectral norm (as suggested by
Lemma 4.1), we relax the problem and find M with small Frobe-
nius norm (subject to constraints (6)), which has explicit solution.
A matrix with minimal Frobenius norm will be called a candidate
dual certificate (see also [3]), this is defined next.
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Definition 4.2. A candidate dual certificate for p in Equation
(NNMIN) is a minimizer of

. def . . . .
M* = argmin||M|| subjectto constraintsin (6) (7)

Due to the standard inequality || M|, < || M| s, a candidate dual
certificate becomes a dual certificate if |M || <1 (and thus
will ensure optimality in Equation (NNMIN)). Therefore, the key
point of the proof would be to guarantee that such an inequality
holds for a sufficiently scaled problem, as shown by the following
proposition.

Proposition 4.3. Under Assumptions 3.1-3.3 let p = pRMIN
and let M*(¢) denote the candidate dual certificate for the scaled
problem (NNMIN-¢). Then, for small € > 0, the candidate dual cer-
tificate exists, is unique, and its squared Frobenius norm has the
expansion

IM*(e)||% = mye> + o(e?)

where my, is a constant depending only on S @(RMIN)

).
The proof of the proposition, as well as precise form of the con-
stant m, will be given in Section 5.3. Note that, in particular,
Proposition 4.3 ensures that lim, _, || M *(e)llfr = 0, which shows
that for sufficiently small € we have || M (¢)|| < 1.

We conclude this section with a remark on the usefulness of
Proposition 4.3; it will enable us to provide a practical estimate
for the value of the scaling needed to obtain exact recovery.

Remark 4.4. For small €, Proposition 4.3suggests that we can
replace ||M *(e)lli with its leading term approximation. There-
fore, the value of ¢, chosen such that || M*(¢e)||% ~ e?m, = 1is a
good estimate to enable exact recovery. It is given by

1 ®)

(L}
Il

3

4.3 | Sketch of the Proof

To give a gist of the proof, we first note that the constraints (6)
are linear in elements of M and thus can be equivalently vector-
ized as

Avec(M)=b 9

where A € C"™EK and b € C™ are the matrices obtained by vec-
torizing (6):

VeCT(S,H.l)(Q; ®0,))
A= (10)
vec'(S,,,)(Q] ® 0,)
—(B,S,1)
b=| an
_<B’ Sn+m>

and vec(-) denotes the vectorization operation which stacks the
columns of a matrix into a single column vector, ® is the Kro-
necker product, and the polar factor B, and the projectors Q,, Q,
are as in Lemma 4.1.

With such notation, the candidate dual certificate is more eas-
ily constructed. Indeed, in terms of vectorized constraints (9),
the minimization (7) is equivalent to minimizing the 2-norm
of the vector vec(M) subject to linear constraints Avec(M) = b.
Therefore (see, e.g., [28, Ch.6]), when A is full row-rank (i.e.,
rank{ A} = m), the candidate dual certificate M* is unique and
has an explicit expression in terms of A and b in Equation (9):

vec(M™) = AT(AAT) b (12)

in addition, the Frobenius norm of the optimal solution is
given by
IM*||% = |lvec(M*)||? = b"(AA™)'b (13)

The proof of Theorem 3.3 can be summarized as follows:
1. Forafixed p = p™™, we test its optimality for (NNMIN-¢)
using Lemma 4.1 and the vectorized form of constraints (9).

2. For the case of the scaled structure S,(p), the matrices in
Equation (9) also depend on ¢ (i.e., they become A(¢), b(e)).

3. Under Assumptions 3.1-3.3, we show A(¢) is full row rank
(hence (12) and (13) hold for the candidate dual certificate
M*(e)).

4. We then show that the norm ||[M*(¢)|| <1 for small ¢,
and hence ||[M*(¢)||, < [IM*(¢)||p < 1, which implies that
M*(¢) is a valid dual certificate (in the sense of Lemma 4.1)
for (NNMIN-¢).

5 | Proofof the Main Result

This section is organized as follows. We first discuss in Section 5.1
the implications of the assumptions of Theorem 3.3 and derive
the form of the perturbed projectors and basis matrices. Based on
lemmas in Section 5.1, we provide in Section 5.2 expressions for
A(e) and b(e) from Equations (10) and (11). Finally, in Section 5.3,
we give the proof of Theorem 3.3 and Proposition 4.3.

5.1 | Scaled Matrix Structure: Basis Matrices
and Orthogonal Projectors

To get analogous expressions for (12) and (13) for the scaled
matrix structure S,(p), we adapt (10) and (11) to the scaled
problem (NNMIN-¢). Specifically, in this subsection, we pro-
vide details on the matrices B, Q,,Q,, S, for the scaled matrix
structure S,(p). Note that the scaled matrix structure S.(p) is
expressed as

N
S.(p) = Sy(e) + Zpksk(f)

k=1

Follow where S, (¢) depend linearly on ¢, which follows from the
linearity of the scaling. We have the following lemma relating
S, (¢) to S, for the missing values.
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Lemma5.1. Under Assumption 3.3, the scaled basis matrices
for the missing values can be expressed as:

S, (e)=¢€S,, forallke{n+1,...,n+m} (14)

Proof.  Since the scaling (2) amounts just to multiplying by the
matrix S(p) on the right and by linearity of (5) we have that, for

all k,
Ig., ©
Se)=S «
g "[ 0 EIK:|

Since, by Assumption 3.3, the limiting structure S,(p) (and thus
the first K-k columns of S(p)) does notdepend on p,,,+, ..., Pyims
we obtain (14). O

In what follows, we fix p = p""™ and assume that one of
Assumptions 3.2 and 3.3 holds. For the scaled matrix structure
S.(p), we look at the corresponding projectors Q, (¢), Q,(¢) (as
defined in Section 4.1), and show that these projectors have the

following form.

Lemma5.2. Letp = pEM™) pe fixed. Then:

1. Under Assumption 3.2, the projector Q,(¢) on the left
nullspace of S.(p) is constant for any e (even, for e = 0)

Ql(e) = Q1

where Q, = Q,(0) is the projector on the left nullspace of
So(®)-

2. Under Assumption 3.3, the matrix Q,(0) (the projector on the
right nullspace of S,(p)) has the form

0,(0) = [ 0“‘”*"}

OKX(K—K) IK

in particular, S$,0,(00) = S, forke {n+1, ...,n+ m}

3. Under Assumptions 3.2 and 3.3, the right projector Q,(¢) has
the expansion

Q,(e) = Q,(0) + o(e)

and thus is continuous in a neighborhood of € = 0.
Proof.

1. Due to Assumption 3.2, the range of S,(p) does not change
with e and is equal to the range of S,(p). Therefore, the left
nullspace also does not change with € and Q, (¢) = Q,(0).

2. Note that we have
SO@) = [* OLXK]

and therefore the right projector has the form

* O(K—K)XK]

kX(K—k) IK

15)

0,(0) =TI — (S, SyP)) =T — [0

In particular, this implies that S, 0,(0) = S for k € {n+
1,...,n+m} since by Assumption 3.3 only the last x
columns of such S, are nonzero.

3. By Assumption 3.2, the rank of S (p) is constant for all
€ € R. Therefore, the right nullspace projector Q,(¢) is con-
tinuous and analytic in a neighborhood of 0 (for example,
due to the analyticity of the projectors [29, Ch. II, Theorem
1.10]). O

Finally, we return to the unscaled case to demonstrate the impli-
cations of the assumptions on the solution of the rank minimiza-
tion problem.

Lemma 5.3.
ﬁ(RMIN)

Under Assumptions 3.2 and 3.3, a vector p =
is a minimizer of (RMIN) if and only if it is the solution
of the following linear system of equations:

S(p) =0,
?1 ® (16)
Pi:n = Po
where Q, is the projector on the left nullspace of Sy(p,).
Proof. By Assumption 3.2, p = p""'" is an optimal solution to
(RMIN) if and only if
rank{S(p)} = rank{Sy(p,)} 17)

Next, we notice that the nonzero part of Sy(p,) is a submatrix of
S(p), and therefore (17) holds if and only if the column space
(resp. left nullspace) of S(p) coincides with the column space
(resp. the left nullspace) of Sy(p,), which happens if and only if
(16) is satisfied. O

5.2 | Candidate Dual Certificate for the Scaled

Case
To get closed-form expressions of the matrices in Equation (9),

we require additional notation. Let §; be the basis matrices in
Equation (5). We define the following matrix S”:

s = |vee(S,.,) - Vec(S,,+m)] € REKxm a8)

Using such notation, the following lemma holds true.
Lemma 5.4. Under both Assumptions 3.3 and 3.2, we have

that, for the scaled sturcture S,(p) the matrices A(e) and b(e)
defined in Equation (9) have the form

Ale) = e(SH(Q,6) R0 =¢((SHTI® Q) +¢)  (19)
b(e) = —(S")Tvec(B(¢)) (20)
Proof. We first note that

Ql(E)S,H_k(é)QZ(E) = 5Q1Sn+kQ2(5) = 5Q1Sn+k(Q2(0) + o(g))
=€(0,S 41 + 0(g))
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where the last three equalities are due to Lemma 5.2. By vector-
izing, rows of A(e) can be expressed as

vec(Q,S,,,0,(€) = £(Q) (e) ® Q,)vec(S,,,)
=e((I ® Qy)vec(S, ;) + o(e))

which, after transposition, yields the desired result for A(¢). Sim-
ilarly, for b(e) we get

(b(e)), = —vec(S,,,(€))vec(B(g)) = —evec(S,,,)vec(B(e))

which completes the proof. m|

To use (12) and (13), we require that A(¢) is full row rank. The
proof relies on Lemma 5.3 to show that the main term of (19) is
of full rank.

Proposition 5.5. Under Assumptions 3.1-3.3, rank{ A(e)} =
m in some neighborhood of 0 (for all € € (0, £,) for some €,).

Proof of Proposition 5.5. The matrix A(e) has m rows, and
therefore, by (19), it is sufficient to show that rank{S"T(I ®
QT)} = m, which, by semi-continuity of the rank would imply
rank{ A(¢)} = m in a neighborhood of 0.

To do that, we make use of Lemma 5.3. Let us take the parame-
terization of feasible p in Equation (RMIN) p = p(z) = (p,, z), for
z € C™ and denote x, = vecS(p(0)). Then, by applying vectoriza-
tion, we have that

vec(S(P) = x5+ 'z

Therefore, the condition (16) can be equivalently rewritten as
(I ® 01)(S'z + x,) = 0, or after regrouping the terms,

I ®0)S'z=~(I ®0)x, (21

By Assumption 3.1, the solution of (21) exists and is unique,
therefore, the matrix (I ® Q,).S” must be full column rank, oth-
erwise there is another solution to (21) (and therefore, another
solution to (16)). But the matrix (I ® Q,)S’) is just the transpose
of (S")T(I ® Q)), therefore, the proof is complete. u]

We finish this section with a lemma on the form of b(¢) from
Equation (20).

Lemma 5.6. Under Assumptions 3.1-3.3, the vector b(e) is
analytic in a small neighborhood of 0 and has an expansion:

b(e) = 2(b, + o(e)) (22)

Proof. We first show that B(e) has a convergent power series
expansion for real € in a neighborhood of 0. For this we first
note that (thanks to Lemma 5.2) there is a semi-unitary (i.e., W
W = I) matrix W € CIX" spanning the column space of S, (p)
for any e. Then we have that

S.(p) = WWHS,(p) (23)

where Z(¢) := WHSE (p) is full row rank for all e € R. Therefore,
the polar factor (for real £) can be expressed as (see, e.g., [30])

B(e) = W(Z(e)Z"(e): Z(e)

and therefore has a convergent power series expansion for real £
in a neighborhood of 0:

B(e) = By + €B, + o(¢) (24)
Now recall that the right block of Sy(p) is zero by (3), hence,
By =W(ZOZ O) WS, = [+ 0,,,]
Therefore, by Lemma 5.2 (i.e., from Assumption 3.3), we have
(By, Sy=0forallke{n+1,...,n+m}
Combining (20) and (24), we get b(e) = £2(b, + o(e)) with
b, = —(S")Tvec(B,) (25)

which completes the proof. O

5.3 | The Proof of the Main Theorem

Proof of Theorem 3.3.  Now let us denote by M*(¢) the candi-
date dual certificate (Definition 4.2) for the scaled case. Thanks
to Lemma 5.5, we have rank{ A(e)} = m for small ¢, therefore, by
(13), we have that

| M*(e)]I3. = b (e)(A() A" (£) " b(e)
Note that from Equation (19), we have

A(e)AM(e) = (ST ® Q))(S") + 0(e))

in a neighborhood of 0, with (S")"(I ® QT)(S’) nonsingular by
Lemma 5.5.

Therefore, we get that, from Equation (22):
IM* ()12 = €2(b, + o(e))" (Ae)A™(e)) ™' (b, + o(e))
= (B ((STU ® O])(SN) by +0(1) )

which is analytic in a neighborhood of 0. This implies that there
exists a neighborhood of 0 such that

IM* @I < IM* ()7 <1
which concludes the proof.
Finally, we give the proof of Proposition 4.3.

Proposition 5.7 (Proposition 4.3, reformulated). Under
Assumptions 3.1-3.3let p = p"™, and let M*(¢) denote the can-

didate dual certificate for the scaled problem(NNMIN-¢). Then, for
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small € > 0, the candidate dual certificate exists, is unique, and its
squared Frobenius norm (see (13)) has the expansion

IM* (&)} = moe” + o(e?)
where my, is a constant defined as follows:
my = by ((S)'(I ® 0])S")'b,

The term b, has the expansion b, = —(S")Tvec(B;) (see (25), the
coefficient corresponding to €* from Equation (22)), where B is
the first-order term in the expansion (24), which can be found as

B, =UZ'U{A (26)

where in Equation (26), U, and X, are the terms of the SVD of
So(@) = U Z V| and

0 0
s (ol )

is the notation that we introduce for the unscaled block of S, (p) (so
that S.(p) = Sy(D) + €A).

Proof. To show that B, has the form (26), we denote Z(¢) as
in Equation (23), with a particular choice of W = U . Recall that
Z(¢) is a perturbation of a full-row-rank matrix Z,,

Z(e)=2Zy+eZ,

with

Z,=Uls,®. Z,=UfA
where (Z, Z, ) = 0. Then from [30, Lemma 3.2, equation (28)],
we get that the polar factor of Z(¢) has expansion

P(Z(e)) =P(Zy) + e(ZOZgIY%Zl + o(¢)
Bringing it all together and using Z, = U{'S,(p) = Z, V', we get
B, =U\Z,Z) :Z, =UyE) :Z, =UyZ) 'UJA

which completes the proof. O

6 | Numerical Examples

In this section, we describe some expository numerical examples
describing how the scaling proposed enables exact recovery. We
later focus on forecasting time series and data-driven simula-
tion to offer just two application areas. Exact recovery guarantees
obtained via nuclear norm minimization for structured matrices
can be extended beyond these examples based on Hankel-type
structures to other formats that naturally appear in diverse appli-
cations. For example, Toeplitz matrices—which often model
convolution operators in imaging, communications, and system
identification —arise when linear systems exhibit time-invariant
or shift-invariant properties. Circulant matrices, which are a spe-
cial case of Toeplitz matrices where each row is a cyclic shift of
the previous one, are common in the analysis of digital filters

and channel estimation problems because they diagonalize under
the discrete Fourier transform. Such structures also emerge in
array processing and radar signal detection, where block-Toeplitz
or block-circulant matrices characterize multi-channel or spa-
tial correlations. In these contexts, exact recovery results can
be used to robustly interpolate missing measurements or recon-
struct degraded signals while preserving the inherent matrix
structure. This not only leads to more efficient computational
algorithms (by exploiting fast Fourier transform techniques in the
circulant case) but also reinforces the reliability of system identi-
fication and deconvolution methods in applications ranging from
advanced medical imaging to network communications. Several
application areas for which the result in this paper has significant
consequences are also described in Reference [7] and the refer-
ences therein.

In our current MATLAB implementation, we leverage CVX
[31, 32], a software for convex optimization, which provides a
rapid and versatile framework for our computations. This setup
enables us to efficiently handle a variety of problem instances
without extensive tailoring to specific applications. Due to the
non-specific optimization routines we have used in this paper, we
may experience some loss in efficiency since it is not specifically
optimized for any particular problem or application. This gen-
erality means that while our approach can be applied to a wide
range of scenarios, it might not be as finely tuned or perform as
well as methods designed for specific tasks. However, if needed,
our method can serve as an effective initial step for non-convex
optimization routines.

Efficient algorithms for matrix completion leverage a variety
of advanced computational techniques to improve performance
and scalability. One primary approach involves first-order opti-
mization methods, such as those described in Reference [33].
Randomized linear algebra also plays a crucial role in efficient
matrix completion [34]. By using random sampling and projec-
tions, these methods can approximate the leading singular val-
ues and vectors with high accuracy while significantly reduc-
ing the computational load compared to traditional determin-
istic algorithms. The efficient computation of SVD is particu-
larly important in matrix completion. Structured matrices fur-
ther enhance the efficiency of SVD computations (e.g., [35]).
Algorithms that exploit these structures can perform SVD more
rapidly.

6.1 | The Rank-1 Case

In this example, we revisit the numerical study of [10], and take
b, = A, A € R, with structure as described in Equation (1). The
aim is to investigate for which range of A and e the solutions
of (RMIN) and (NNMIN-¢) coincide. It is shown in Reference
[10, Thm. 6] that for the case with no matrix scaling (i.e., € =
1) if |4] < 1 then the solution of (NNMIN) is unique and coin-
cides with the solution of (RMIN), namely p,,, = A"**. Other-
wise, the solutions do not coincide. In this numerical exercise,
we show that the scaling (2) and consequent solving of the
scaled optimization problem (NNMIN-¢) indeed increases the
range of |4| for which we get exact (perfect) recovery of miss-
ing values. We use (12) to compute candidate dual certificates to
evidence this.
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FIGURE1 | Plot of the Frobenius norm of the candidate dual certificate as given in Equation (13) against 4 for the form of p as described, with

n=10,L =4,and xk = m.

Figure 1 is a plot of the Frobenius norm of the candidate dual
certificate as given in Equation (13) against A for the form of
p as described, with n =10, L =4, k¥ = m, for different num-
bers of unknown observations m and scaling ¢, as stated within
the figure. The horizontal “dashed” lines denote the value when
the Frobenius norm of the candidate dual certificate is one. By
Lemma 4.1, when this norm is strictly less than one then the solu-
tion of (NNMIN-¢) is unique, coincides with that of (RMIN), and
thus we have exact recovery of the m missing values. The range
of 4 for which we have exact recovery is a function of the scal-
ing parameter ¢; the range increases as more scaling (in the sense
of taking ¢ small) is applied. For p with exponential growth, the
more observations that are unknown, the more scaling is required
for exact recovery. Note that the point at which the solution with
no scaling (¢ = 1) intersects the horizontal “success” line, is the
value of 4 as given in Reference [13, Corollary 4.3], which gives
bounds on A for which the solution of (NNMIN) coincides with
that of (RMIN).

6.2 | The Rank-r Case

We extend the example of the previous section for a more chal-
lenging problem, and instead take p, = ¥ 4%, 1; € R, with
again Hankel structure as described in Equation (1). We take
m=1, L =10, n =20, k =1 and each A;is independently sam-
pled uniformly in the range (0, u), for some selected u > 0. We
explore the influence of u and r and how they interact with the
necessary amount of scaling (dictated by the parameter €) to yield
the Frobenius norm of the candidate dual certificate as given in
Equation (13) to be smaller than 1.

Figure 2 contains plots (3-d and contour) of the proportion of
times this Frobenius norm of the candidate dual certificate (13)
exceeds one, with € plotted against r = 1,2, ..., 8, for different
u. We take 10,000 Monte-Carlo simulations. The amount of scal-
ing required for exact recovery of the missing values increases
with r and u. This is consistent with the intuition as written in
References [10] and [13], that the observed vector needs to be

sufficiently damped for (NNMIN) to yield an identical solution
to (RMIN).

In the examples considered so far, we have opted to compute
the Frobenius norm of the candidate dual certificate, ||M*||p,
as given in Equation (13), instead of its spectral norm ||[M*||,
by virtue of Theorem 3.3, thus obtaining a weaker sufficient
condition. We now investigate the gap between these norms. We
take the same signal as described at the opening of this section,
with L =10, n =20, r =3, and « = m, and inspect the ratio
(IM*||z/|IM*||, for different m and u.

Figures 3 and 4 contain boxplots of the ratio ||[M*||z/||M*|,
for different m and u (as stated in the caption), e = 0.5 and € =
0.1 respectively, taken over 10,000 Monte-Carlo simulations. The
ratio appears more variable as the number of missing values m
increases, and for small u the ratio seems to be a piece-wise lin-
ear function of m, increasing until beginning to (approximately)
plateau after a particular number of missing observations. For
small ¢, the ratio is smaller.

We now discuss the result of Proposition 5.7. Using the notation
as given in this proposition, Figure 5 is a plot of the ratio
| M*|| /6\/m_0 against e and r for the example considered with
kx = 1, for different u, again taken over 10,000 Monte-Carlo sim-
ulations. The leading term approximation of the Frobenius norm
of the candidate dual certificate M™* can be seen to be an excel-
lent approximation, with deviation only for more “complex” time
series for large r or u, but this deviation can be mitigated with a
selection of a smaller €.

6.3 | Forecasting Time Series

In this section, we provide figures directly showing the impact
of scaling upon forecasting a given signal/time series. Take
Py = exp(4k)sin(2zwk), A = w = 0.1, with Hankel structure as
described in Equation (1). We take m =5, L =4, n =10, k = 5.
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FIGURE2 | Plots(3-dand contour) of the proportion of times the Frobenius norm of the candidate dual certificate as given in Equation (13) exceeds
one, with ¢ (lhs) against r = 1,2, ..., 8 (bottom), for different u. Parameter settings are m = 1, L = 10, n = 20, and x = 1.

Practically, one may view the problem considered here as fore-
casting five observations ahead, having already recorded ten exact

observations of a signal/time series.

Figure 6 contains plots of the signal p with the solutions obtained
from Equations (NNMIN-¢) and (NNMIN) (i.e., nuclear norm

minimization with and without scaling, respectively). The failure
of (NNMIN) to exactly recover the time series is clearly evident,
and the introduction of scaling gives exact recovery of the m = 5
missing values once ¢ is taken sufficiently small. The final value
of € ~ 0.0694 is that found from Equation (8), showing its value
in selecting the scaling parameter ¢ in practice.
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FIGURES5 | Ratio ||M"|;/ey/m, against € and r for the example considered with x = 1 and different u.

6.4 | Data-Driven Simulation

In this subsection, we describe an example of structured matrix
completion that appears in modeling (linear time-invariant)
dynamical systems (with p inputs and m outputs) that trans-
form an input sequence u(f) € R” to the output sequence y(t) €
R™. The simulation problem [16] aims at computing the output
time series for a given dynamical system, input, and initial
conditions; the system parameters often have to be estimated

prior to simulation. The data-driven approach to simulation
[7, 27] avoids the step of estimating system parameters and is
rather based on previously recorded data of inputs and out-
puts produced by the system. As shown in References [7,
27], data-driven simulation can be reformulated as structured
matrix completion. More details on the data-driven simula-
tion problem are provided in Appendix, and we give below
just the necessary details to formulate the matrix completion
problem.
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FIGURE 6 | Plots of the signal p (blue curve) with the solutions obtained from Equation (NNMIN-¢) (black cross, with ¢ as given) and (NNMIN)

(orange circle).
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FIGURE 7 | Therelative reconstruction error in the data-driven simulation problem exhibits a transition to a zero error for sufficiently small values

of the scaling parameter . This effect is shown on the simulated signal where large values of € > 1 result in a zero simulation output (relative error of
1), while small values of ¢ <« 1 lead to a perfect reconstruction of the signal in the noiseless case, indicated by the bold line connecting the circled points.
We additionally show simulation results for intermediate values of ¢ in gray lines that have a nonzero relative error — their corresponding relative errors

are indicated on the left panel by circles.
Letu, € R™T: and y, € R”™Ts be some known input-output pair
of time series (“data”)

ug = (ug), . uy(T) ), ya= (v .., y,(T))

and a new input time series u, € R™: the goal is to find the cor-
responding output y, € R>T:

ug = (u,D), ...,u(T,) ),

Y= ¥y, ...,y y,(£+ 1), ..., y(T))

unk;lrown
assuming the knowledge of its first £ < T, values (initial
conditions).

By choosing the parameter L > # + 1 and denoting K, =T, —
L+1and K, =T, — L + 1, the approach of [27] consists in min-
imizing the rank of the following L(m + p) X (K, + K) matrix

[, uy@ - owg(Ky)  u () u,(2) - uy(K) |

w,@ @) 02 u,G3) :

u, (L) -~ - uy (T,  ug(L) soou(T))

M Ya) ¥42) -+ y(Ky)  y(1) y@&) y,(&+1) .-+ y(K,)
@ v® - : :
: y,(&)
y,(&+1)
Ly @) = s y,@) oy (L) sy (T ]

@7

We consider a randomly generated single-input single-output
(m = p =1) linear time-invariant system of order # = 6 (gener-
ated by MATLAB’s function DRSS). The input is a standard nor-
mal zero-mean white Gaussian noise sequence u, of length T; =
40, and we denote the corresponding (noise-free) output as y,.
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The simulation input u, of length T, = 20 + ¢ is generated in the
same way, and the (noise-free) simulation output is denoted by y..
All simulations assume to start from zero initial conditions. We
set the number of block rows L of the Hankel matrixto L = £ + 1.

To study the effect of the data scaling, we replace the data w, =
(u,,y,) by ew, and investigate the results for values of ¢ in the
range [1073,10%]. The nuclear norm minimization using the pro-
posed block-column scaling (NNMIN-¢) returns the (scaled) sim-
ulation output y,, which is then compared to the true simula-
tion output j, after rescaling the result by multiplying it with
e71. Figure 7 contains the result of this analysis, showing the
relative simulation error ||y, — ¥,1|/117,]| with y, the true simula-
tion output. At large values € > 1, the simulation signal is close
to a zero signal (and the relative error is one). As ¢ decreases,
the reconstruction error gradually decreases, and for a suffi-
ciently small value ¢ < 1 the method returns the true simulation
output y,.

7 | Conclusion

We have introduced a technique to achieve exact recovery of
missing entries of structured matrices using the commonly used
nuclear norm relaxation of low-rank matrix completion, where
the observations are recorded without noise. To do this, we use
block-column scaling of the given matrix. As well as describ-
ing the theoretical basis of this approach, we have offered sev-
eral examples showing the usefulness and merit of our pro-
posed technique. We provide a result suggesting a value for
our scaling parameter, which will be helpful for the practical
use of our results. There is significant potential for synergiz-
ing our theoretical advancements with several practical applica-
tions in fields such as time-series analysis, data-driven simula-
tion, and more. Future work will consider the hard problem of
when observations are noisy and not exact, and derive conditions
for when Assumption 3.1 is verifiable for general affine matrix
structures.

Data Availability Statement

The authors have nothing to report.

Endnotes

! Missing values in the middle of p can be also treated, see discussion in
Section 3.3.
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Appendix A

Forecasting for Hankel Matrices

Proof of Lemma 3.5. Note that Sy(p) depends only on p) = (Po)y:p4m—s

So(p) 1= [1,8)) 0]

where M, (p;) is a subblock of M, (p,). Under the assumption of the
lemma, thanks to [15, §5.3], the vector pj has a unique minimal rank
completion for any number of forecasted values, and so does p,,.

Subdifferential of the Nuclear Norm

Definition (Subdifferential of a function f at x). For a convex function
f : RY = R, the subdifferential [36, p. 167] of f at x, denoted by 0 f(x),
is defined as the set

af (x) o {zeRY : f(») > f(x)+(z,y—x), forall y e RV}

Notice that if f is differentiable at x, then the subdifferential contains a
single element, namely the gradient, that is, d f(x) = V f(x).

The subdifferential of the nuclear norm of a matrix X is related to the
SVD of X as follows. Consider a rank-r matrix X € R“*X, and its compact
SVD as

X=Uzv'

withorthonormal U € RP" and V € R¥, and £ € R™ a diagonal
matrix with the nonzero singular values. Let also U, € R and
V| € REXK=n pe the matrices containing the remaining left and right

singular vectors (spanning the left and right nullspaces of X, respec-
tively). Then the subdifferential of the nuclear norm [37, p. 41] at X is
the following set of matrices:

allx|l, = {[U v,

def
In what follows, we use a slightly more compact notation. Denote by B =
UV" the polar factor of X and by Q, and Q, the orthogonal projectors
on the left and right nullspace of X respectively:

o T (L=r)X(K—-r)
[V VL] 1 Z e REXED 7)1, <1
02z

0,=UU]=I,-UU", Q,=V V] =I,-VV"

Then the subdifferential of the nuclear norm at X can be expressed as
olX|l, ={B+0,MQ, : M € R™X with M|, <1} (A1)

Let f(p) = ||S(p)||,. denote the function that maps coefficients p to the
nuclear norm of the associated structured matrix S(p). By the chain rule,
the subdifferential of f at p is (see [10])

.
of(p) = { [<S19H>F o (Shs H)F]
: H €0||X]|, and X = S(p)} (A2)

where (-, -) » denotes the Frobenius inner product. Combining (A1) with
(A2) and the standard necessary and sufficient conditions for convex opti-
mization problems, we can easily obtain conditions for the structured
nuclear norm minimization case.

Linear Dynamical Systems and Block-Hankel Matrices

Willems’ behavioral system theory [38] defines a system B as the
set of its admissible trajectories w. A trajectory w of a discrete-time
g-variate system /3 (in shorthand notation “w € B”) is a sequence w =
(wQ), ...,w(T) ),withw(t) € R?fort =1, ..., T. In this paper, we con-
sider the class of g-variate linear time-invariant (LTI) systems £9. An LTI
system B3 € £4 (with m inputs and p outputs, such that ¢ = p+ m) has a
kernel representation

B={w|Rw®+ -+ Rw+7¢)=0, fort>1} (A3)

where R = [R, R, ... R/|,inwhich R, € R is a kernel parameter
that specifies the system. This formulation can be viewed as a difference
equation describing the admissible trajectories w € B. The minimal value
for ¢ for which (A3) holds, is an invariant of the system /3 and is called
the lag.

For a trajectory w, the block-Hankel matrix is defined similarly to (1) as

w(l) w(2) - w(T —-L+1)
Hyw) = w@ w@ € RIPI=IAD(A4)
w(ll) w(L+1) --- w(T)

The block-Hankel matrix captures into the language of linear algebra the
linear time-invariance of /3, and is closely connected to the kernel rep-
resentation of B € L4. For a trajectory w € B, the block-Hankel matrix
H,;(w) with L > ¢ +1 is (row) rank-deficient, since RH,;(w) = 0.
More precisely, the rank of the block-Hankel matrix H,(w) is
bounded [7]

rank H,(w) < mL + p¢ (A5)

for T > L, and under the persistency of excitation condition.

A trajectory w € B admits a partitoning into inputs and outputs: that is,
there exists two time series u(¢) € R™ (input) and y(r) € R? (output), so
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u@)|.
y®|’
we will write w = (u, y) for short and assume that the permutation is
known.

that the vector w(r) is a permutation of the elements of the vector [

Remark A2 (SISO LTI systems). The case m = p=1 is referred to as
single-input-single-output (SISO); in this case, the lag ¢ is equal to the sys-
tem order. Moreover, the block-Hankel matrix has rank rankH ,, (w) <
2¢ + 1 (rank defeciency 1), with generically equality.

Data-Driven Simulation as Matrix Completion

The simulation of a system for a given input signal can be stated as fol-
lows. Given a system BB € L4, an input u,, and initial conditions w;,

w, = (w,(~¢ +1),w, (- +2), ..., w,(-1), w,0) ) (A6)

find the output y, such thatw; A w, = w; A (u,,y,) € B, where A denotes
concatenation of time series (trajectories). This is a basic problem in sys-
tem theory and is studied in various formulations. In data-driven sim-
ulation, the system B is defined implicitly by a given trajectory w, =
(w,Q), ...,w,(T,)) € B, where “d” stands for data. In this context,
the simulation of the output y, = ( y,(1), ..., y,(T,) ) for a given input
u, = ( u,(1), ...,u(T,) ) where “s” stands for simulation, is done with-
out first identifying (i.e., estimating parameters of) the system 3. We
assume that the input u, of the given trajectory w, = (u,,y,) is per-
sistently exciting, so w, completely specifies the system /B [26]. The
data-driven simulation problem can then formally be stated as follows.

Problem A3 (Exact data-driven simulation). Given a trajectory w, =
(uy,y,) € B € L£9, an input u, and initial conditions w;, find the output
¥, such that w; Aw, = w; A (u,,y,) € B.

Remark A4. If we assume that the initial conditions are zero, that is,
w; = 0, the specification of initial conditions is done by prepending the
trajectory w with £ zeros.

The rank deficiency of the Hankel matrix H;(w), for L > +1, is
closely related to the kernel representation of the system B and its inter-
pretation in terms of difference equations. The mosaic Hankel matrix
[HL(w’) HL(w”)] built from two trajectories w’, w” € B has the same
rank as H ; (w), since w’ and w" satisfy the same difference equations, so
rank [H, (w') H; w")] <mL+ pt.

This observation is crucial for formulating the data-driven simulation
problem as a matrix completion problem. Puttingw, = (u,,y,) andw, =
(ug, y,) (Where w, is only partially known), the unknown output trajec-
tory y, should be determined such that

rank [HL(wd) HL(wX)] <mL+pt, for L>¢+1 (A7)

implying that both trajectories belong to the same system /3. Remark
that again we need to specify initial conditions to uniquely determine
the simulation output y,. If we denote by w! = w; A w, the simulation
trajectory prepended with initial conditions, then data-driven simulation
problem can be phrased as the following block-Hankel matrix completion
problem.

Problem A5 (Data-driven simulation via Hankel completion). Given a
trajectory w, = (u,,y,) € B € L9, an input u,, and initial conditions w;,
find the output y, from the following minimization problem.

minimize rank [HL(wd) HL(w/,)] (A8)
Y, N

where w, = (u,,y,).

By rearranging the rows of the mosaic Hankel matrix in Equation (A8), it
is easy to see that Problem A.5 is equivalent to rank minimization of the
matrix in Equation (27) (where the fixed element in the right blocks in
Equation (27) are due to initial conditions).
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