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Abstract: 

The widespread adoption of vertical farming is constrained by excessive energy 

consumption, highlighting the need for accurate energy consumption forecasting to 

develop effective energy-saving strategies. Data-driven models have become 

increasingly important for this purpose, yet prediction accuracy depends heavily on 

both data smoothing and feature selection. However, their effects on vertical farm 

energy estimation remain underexplored. 

This study examines how different data preprocessing methods and feature selection 

techniques influence energy cost prediction in vertical farming using data-driven 

models. Specifically, it compares two data smoothing techniques—Gaussian Kernel 

Density Estimation and the Savitzky-Golay filter—in the preprocessing stage. 

Additionally, it evaluates three feature selection methods: backward elimination, PCA-

based backward elimination, and genetic algorithms (GA), assessing their impact on 

model performance. 



The results indicate that the Savitzky-Golay filter and PCA-based backward elimination 

significantly enhance both prediction accuracy and computational efficiency. These 

findings provide valuable insights for optimizing energy efficiency in vertical farming. 

Keywords: energy prediction, machine learning, vertical farming, data smoothing, 

feature selection 

 

1. Introduction: 

1.1 Background 

While vertical farming offers a sustainable solution to modern agricultural challenges, 

its high energy consumption remains a significant concern. This demand primarily 

stems from illumination, cooling, ventilation, and heating systems. Harbrick et al. 

reported that vertical farms consume 11 to 13 times more energy than traditional 

greenhouses [1]. Similarly, Graamans et al. compared lettuce production in vertical 

farms and greenhouses, finding that vertical farms require substantially more electricity 

[2]. 

Studies have shown that optimizing building operations and control strategies can 

significantly reduce energy consumption in energy-intensive buildings [3][4][5]. 

Accurate energy consumption forecasting is crucial for developing effective energy-

saving policies. Advances in the Internet of Things (IoT) have simplified large-scale 

data collection, enabling the widespread adoption of data-driven models for energy 

prediction [6][7][8]. Implementing high-efficiency management strategies based on 

these predictions can further reduce energy consumption. 

 

1.2 State of the art 

Energy consumption in high-demand buildings is typically estimated using two primary 

methodologies: physical modeling (white-box) and data-driven approaches (black-box) 

[9]. 

The white-box method [10] relies on detailed building physics and simulation software 

such as EnergyPlus, OpenStudio, and TRNSYS. These tools require comprehensive 



building attributes, including both geometric and non-geometric data [11]. However, 

Guo et al. noted that crop transpiration models are often overlooked in vertical farm 

energy simulations, with only 24% of 72 studies incorporating them. Instead, most rely 

on CFD simulations for temperature and ventilation analysis [12]. Graamans et al. 

introduced a plant energy submodule, later integrated into EnergyPlus and TRNSYS 

[13]. However, these models assume a constant leaf area index (LAI) and overlook key 

energy transfer processes, leading to inaccuracies in machine learning-based energy 

forecasting [14]. 

With advancements in computing power and the Internet of Things (IoT), machine 

learning (black-box) approaches have become increasingly viable. Various methods, 

including Artificial Neural Networks (ANN), Random Forest (RF), Support Vector 

Regression (SVR), and Decision Trees (DT), have been explored for energy prediction 

[15][16][17]. As a type of high-density, energy-intensive building, vertical farms have 

gained attention, with growing efforts to predict their internal microclimate using 

machine learning algorithms [18][19][20]. 

Data smoothing is a critical preprocessing step in machine learning, ensuring the quality 

and relevance of input data. Common techniques include Moving Averages, 

Exponential Smoothing, Low-Pass Filtering, Spline Smoothing, the Savitzky-Golay 

Filter, Data Aggregation, and Gaussian Kernel Density Estimation (Gaussian KDE). 

Choosing the appropriate smoothing technique is challenging, as an unsuitable method 

can lead to information loss, reduced predictive accuracy, and decreased computational 

efficiency. Despite its importance, many studies use only a single smoothing method or 

omit this step entirely before training machine learning models. 

Beyond data smoothing, feature selection also significantly impacts training time and 

prediction accuracy. Due to the difficulty of preselecting the most relevant features, 

some studies incorporate all available variables, often introducing irrelevant data that 

reduces model interpretability and increases computational cost [21]. However, most 

research employs only a single feature selection method, lacking a comparative analysis 

of how different techniques affect model performance. 

 



1.3 Problem statement 

Based on the available literature, several key shortcomings have been identified: 

• Impact of Data Smoothing: Data smoothing techniques play a crucial role in 

shaping machine learning model performance. However, their specific impact 

on energy cost estimation in vertical farming remains largely unexplored. 

• Feature Selection Comparisons: While feature selection enhances model 

accuracy, computational efficiency, and interpretability, most studies in building 

energy prediction focus on a single feature selection method, lacking 

comprehensive comparative analyses. 

• Limited Training Data Duration: Existing studies primarily use weather data 

spanning one week to several months for training machine learning models. 

However, such short-term datasets fail to capture the full relationship between 

weather variation and energy costs over an entire year, as factors like outdoor 

temperature and solar radiation fluctuate significantly across seasons. 

To address these challenges, this study investigates the influence of different data 

smoothing and feature selection techniques on energy consumption prediction models. 

Specifically, two widely used smoothing approaches—Gaussian Kernel Density 

Estimation (KDE) and the Savitzky-Golay filter—are analyzed to assess their impact 

on predictive accuracy. 

Additionally, the study evaluates the most significant variables influencing energy costs 

using three feature selection methods: backward elimination, PCA-based backward 

elimination, and genetic algorithms (GA). These methods aim to prevent inefficient 

training and performance degradation. The results from these feature selection 

techniques are compared to assess their computational cost and impact on predictive 

accuracy. 

This paper is structured as follows: Section 2 presents the proposed methodology, 

detailing data sources, smoothing techniques, feature selection strategies, and the 

energy prediction model. Section 3 analyzes and compares the findings, examining the 

influence of smoothing techniques and feature selection strategies. Section 4 discusses 

the study's limitations and outlines directions for future research. 



 

2. Methods 

2.1 Data acquisition 

This study utilizes data from three Venlo glass greenhouses in Yangling, China, 

dedicated to the production of cherry tomatoes, lettuce, and flowers (see Figure 1). Each 

greenhouse is equipped with a ventilation system, supplementary lighting, and an 

HVAC system. Environmental data is collected in real-time through sensors at one-hour 

intervals, covering indoor and outdoor temperatures, indoor humidity, indoor CO₂ 

concentration, solar intensity, outdoor wind speed, and wind direction. The data 

collection period spans March 2021 to February 2022. The dataset, obtained from Cao 

et al. [24], provides detailed greenhouse environmental parameters for energy 

consumption prediction. 

 

Figure 1. Experimental greenhouse: (a) Greenhouse for flower. (b) Greenhouse for 

cherry tomato. (c) Greenhouse for lettuce 

 

2.2 Data preprocessing 

Data collected from researchers or sensors inherently contains anomalies, missing 

values, and noise, which can negatively impact the accuracy of machine learning 

models. Additionally, the dataset comprises various sensor readings, each with a unique 

feature scale. Since many machine learning models and feature selection methods are 

sensitive to feature scaling, data normalization is essential to ensure efficient model 

convergence and improved predictive performance [22]. 

2.2.1 Missing Value and normalization 

(1) Missing value: 



The raw dataset contains a small number of missing sensor readings. However, given 

the large dataset size, removing these missing values is unlikely to affect subsequent 

analysis. Therefore, this study excludes records with missing values. 

(2) Data normalization 

Min-max normalization was applied to standardize wind-related variables. 

min − max =  
𝑥− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
                                             (1) 

Where: x is the target eigenvalue; 𝑋𝑚𝑎𝑥 is the max value in wind direction; 𝑋𝑚𝑖𝑛  is 

the minimum value in wind direction. 

 

2.2.2 Data smoothing methods 

Selecting an appropriate data smoothing technique requires consideration of data 

characteristics, smoothing objectives, and algorithmic complexity. This study employs 

Gaussian KDE and the Savitzky-Golay filter as smoothing methods. To determine the 

optimal approach for energy prediction in vertical farming, the effectiveness of models 

trained on raw data, Gaussian KDE-smoothed data, and Savitzky-Golay-smoothed data 

is assessed and compared. The underlying principles and rationale for these two 

smoothing techniques are outlined below. 

(1) Gaussian KDE 

Gaussian KDE is primarily used for continuous and multi-dimensional data, including 

structured data such as time series. It is also commonly applied in outlier detection, as 

it estimates high-probability regions and identifies low-probability anomalies based on 

probability thresholds. 

The Gaussian KDE is represented by the following equation [23]: 

𝐾(𝑥, ℎ) =  
1

ℎ√𝜋
𝑒−

𝑥2

2                                                   (2) 

𝑓(𝑥) =  
1

𝑛ℎ
∑ 𝐾(

𝑥−𝑥𝑘

ℎ
)𝑛

𝑘=1                                               (3) 

Where: 𝑛 is the number of data samples, ℎ denotes the bandwidth, 𝐾 refers to the 

Gaussian kernel formulated in one-dimensional space. 

 

(2) Savitzky-Golay Filter 



The Savitzky-Golay Filter is particularly suitable for continuous time series and 

experimental measurement data obtained by experimental measurement, especially in 

scenarios where there is a certain amount of noise, and the data features need to be 

retained. 

𝑓(𝑥𝑖) =  ∑ 𝑐𝑛𝑥𝑖
𝑘

𝑘=2                                                  (4) 

Where: 𝑓(𝑥𝑖)  represents the smoothed value of 𝑥𝑖 , 𝑘  denotes the poly order, 𝑐𝑛  

refers to the coefficients derived from the least square method, estimated using 2n + 1 

points, which are determined by the window length. 

 

2.3 Feature selection 

Feature selection improves the efficiency and effectiveness of predictive models by 

identifying and prioritizing the most relevant variables. Features with low correlation 

can add unnecessary complexity and increase computational burden, ultimately 

reducing model accuracy. 

  

2.3.1 Backward elimination based on principal component analysis (PCA): 

A backward elimination approach based on PCA is proposed to identify the most 

significant variable.  

Step (1) Data preparation: 

Define energy as the target variable, while treating all other variables as independent 

variables.  

Step (2) Data standardization: 

Normalize all independent variables to achieve a mean of 0 and a standard deviation of 

1. 

Step (3) Apply PCA to reduce dimensionality: 

Form the covariance matrix. 

Calculate eigenvalues and eigenvectors and extract the principal components. 

Select the principal components that contribute to over 95% of the cumulative 

explained variance. 

Step (4) Apply backward elimination: 



Remove the smallest eigenvalues each time. 

Reapply PCA after each removal to evaluate changes in cumulative explained variance 

and decide whether to retain the variable. 

Step (5) Outputs the most important features. 

 

2.3.2 Backward elimination:  

Backward elimination is an efficient and straightforward technique for selecting a 

subset of variables in a linear regression model. It is easily implementable and can be 

automated. 

Step (1) Data preparation: 

Set Energy as the dependent variable (Y), while the independent variables X comprise 

all columns except Energy. 

Step (2) Define the backward elimination function: 

Define the significance level as 0.01 and construct the backward elimination functions. 

Step (3) Apply the backward elimination: 

Calculate P-values for all features and evaluate each variable's P-value. Eliminate the 

feature with the highest P-value each time. 

Step (4) Output significant variables. 

 

2.3.3 Genetic algorithm: 

GA is a computer science and operations research method for solving optimization 

problems that use principles of natural selection and evolution. Figure 2. illustrates the 

flowchart of the GA. 



 

Figure 2. Flow diagram for GA 

 

Step (1) Data preparation: 

Assign energy as the target variable and designate all other variables as independent 

variables. 

Step (2) Train/test sets split: 

Divide the dataset into a training set and a testing set, allocating 70% for training and 

30% for testing. 

Step (3) Apply genetic algorithm: 

Initialization: Randomly generate initial subsets of features. 

Fitness function: Utilize mean squared error (MSE) to evaluate the performance of each 

subset. 

Step (4) Model selection: 

Random forest was selected to evaluate the ability of prediction of feature subsets. 

Step (5) Outputs the most important features. 

 

2.4 Training set volumes 

Prior to training the machine learning model, determining the optimal size of the 

training set is crucial. The amount of training data significantly influences the 

prevention of underfitting and overfitting. In this study, the dataset is split into a 3:1 

training-test ratio (75% training, 25% testing) to ensure that the model has sufficient 



data for learning while reserving enough unseen data for reliable evaluation. This ratio 

provides a balance between model training efficiency and performance assessment, 

reducing variance in test results while maintaining computational feasibility. 

 

2.5 Prediction algorithm 

A previous study successfully used this dataset to predict energy load. After comparing 

the accuracy and generalization capability of eight widely used machine learning 

models, random forest (RF) was identified as the optimal choice [24]. Moreover, this 

study focuses on analyzing factors that influence prediction accuracy rather than the 

machine learning model itself. Therefore, RF is used as the predictive model. 

 

2.6 Hyperparameter tune 

In this study, the Random Search Cross-Validation optimizer was employed to enhance 

the accuracy of the random forest. 

Step (1):  Defining the search space, specifying key hyperparameters such as the 

number of estimators, maximum depth, minimum samples split, and maximum features. 

Step (2):  Random sampling from this space to select candidate hyperparameter sets. 

Step (3): Applying RandomizedSearchCV with 3-fold cross-validation and 100 

iterations, balancing computational efficiency and performance estimation. 

Step (4):  Identifying the best hyperparameter set and comparing it with the baseline 

model. 

Random Search Cross-Validation was chosen for its balance between efficiency and 

accuracy. Unlike Grid Search, which exhaustively tests all hyperparameter 

combinations and is computationally expensive, Random Search explores a subset of 

possibilities, reducing cost while still finding near-optimal solutions. 

The 3-fold cross-validation was chosen to reduce computation time while maintaining 

a reasonable performance estimate. Although 5-fold or 10-fold cross-validation could 

improve stability, the added cost was not justified for hyperparameter tuning in this 

study. Future work may explore different validation strategies. This study uses R-

squared and variance as performance metrics, as they assess model fit and 



generalization ability, respectively. The summary of various random forest 

hyperparameters along with their typical default values is presented below: 

Table 1. Hyperparameter and description 

 

 

2.6 Model evaluation indicators 

This study utilizes multiple evaluation metrics to measure the performance of trained 

models, including root mean square error (RMSE), R-squared (R²), and training time. 

R – squared (R²) quantifies the goodness of fit of the regression model to the dataset. 

The formula for R² is expressed as follows: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                       (5) 

Where: 

The residual Sum of Squares (𝑆𝑆𝑟𝑒𝑠) quantifies the portion of variance in the dependent 

variable that remains unexplained by the model. The total Sum of Squares (𝑆𝑆𝑡𝑜𝑡 ) 

measures the overall variance in the dependent variable, serving as a baseline for 

variability. 

The Root Mean Squared Error (RMSE) quantifies the average deviation between the 

model's predicted values and the actual values, indicating accuracy. RMSE can be 

obtained by Equation 6. 

 



𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (log(𝑦𝑡 + 1) − log (�̂�𝑡 + 1))2𝑀

𝑡=1                            (6) 

 

Where: 𝑀 represents the total number of data points, 𝑦𝑡   denotes the actual value, 

and �̂�𝑡  refers to the forecasted value. 

 

3. Results 

3.1 Random forest hyperparameter tuning results 

Table 2. presents the optimal hyperparameters identified through the Random Search 

Cross-Validation technique, using R² as the evaluation criterion. 

Table 2. Hyperparameter tune 

 

 

3.2 Effects of data smoothing on predictive model 

This section examines how data smoothing techniques influence machine learning-

based energy prediction, utilizing two approaches: Gaussian KD and the Savitzky-

Golay Filter. 

Table 3 presents the performance of different smoothing techniques in energy 

prediction. 

Table 3. Data smoothing methods comparison 



 

 

The "Basic" column in Table 3 represents the R² value of the RF model from prior 

research, while "Raw Data" reflects the performance of the model trained on 

unprocessed data. 

For R², the Gaussian KDE model performs worse than the raw data model, indicating 

its unsuitability for energy prediction in vertical farming. In contrast, the Savitzky-

Golay filter significantly improves model performance, yielding a notably higher R². 

As shown in Table 3, thermal load predictions exhibit a better model fit than electrical 

load predictions, likely due to a stronger correlation between input variables and 

thermal load. In contrast, the dataset lacks sufficient variables to explain variations in 

electrical load. 

For RMSE, models trained on Gaussian KDE-smoothed data demonstrate significantly 

lower accuracy than those using the Savitzky-Golay filter, confirming that the latter is 

more suitable for energy consumption prediction in vertical farming. 

The superior performance of the Savitzky-Golay filter over Gaussian KDE stems from 

their differing smoothing mechanisms. Gaussian KDE relies on bandwidth selection, 

which may over-smooth data, reducing accuracy. In contrast, the Savitzky-Golay filter 

preserves local trends while reducing noise, leading to improved predictive 

performance. 

These findings highlight the significant impact of data smoothing on model 

performance in vertical farm energy prediction. Future research could explore 

alternative techniques, such as wavelet denoising or adaptive filtering, to further 



enhance prediction accuracy while preserving critical data patterns. 

 

3.3 Impacts of Feature selection on the prediction model 

This section applies three feature selection methods: backward elimination, PCA-based 

backward elimination, and genetic algorithms (GA). 

Table 4 presents the key features identified through backward elimination for different 

greenhouses and target loads. Table 5 shows the results of PCA-based backward 

elimination under similar conditions, while Table 6 highlights the significant features 

selected using genetic algorithms (GA) for each greenhouse and target load. 

 

Table 4. Backward elimination 

 

 

Table 5. PCA based on backward eliminations 

 

 

Table 6. Genetic Algorithms 

 

 

Tables 4, 5, and 6 show that different feature selection methods identify varying key 

features. However, all three methods consistently highlight indoor and outdoor 

temperatures, humidity, and CO2 concentration as closely related to energy load. 

PCA-based backward elimination suggests that wind speed and wind direction have 

minimal impact on heat and electric load, favoring variables that directly influence the 

internal greenhouse environment. In contrast, the GA method tends to retain all features, 



indicating weaker feature elimination, which may be better suited for capturing 

complex nonlinear relationships. 

For heat load, all three feature selection methods identify indoor and outdoor 

temperatures as key factors, aligning with fundamental heat load dynamics in natural 

environments. Additionally, relative humidity and carbon dioxide concentration are 

repeatedly selected, suggesting their strong influence on crop transpiration and overall 

thermal balance within the greenhouse. 

For electric load, indoor and outdoor temperatures remain the primary features. 

However, unlike heat load, indoor humidity and carbon dioxide concentration also play 

a significant role, likely due to their indirect impact on cooling and ventilation system 

operation. 

In this study, random forest was also used to evaluate feature importance across 

different greenhouses. The results are as follows: 

 

 

Figure 3. Feature important ranking (Flower heat load) 

 



 

Figure 4. Feature important ranking (Lettuce electric load) 

 

 

Figure 5. Feature important ranking (Lettuce heat load) 

 

 

Figure 6. Feature important ranking (Tomato electric load) 

 



 

Figure 7. Feature important ranking (Tomato heat load) 

 

Figures 3–7 and the analysis of five tables lead to the following conclusions: 

• Heat Load Prediction: Outdoor temperature (OT) is the most influential factor 

across all three greenhouses, with its importance significantly surpassing other 

features. This suggests that heat load is primarily driven by external temperature 

fluctuations, as greenhouses regulate their internal climate accordingly. 

• Electric Load Prediction: While outdoor temperature (OT) and outdoor solar 

radiation intensity (OR) remain critical, other factors—such as indoor 

temperature (IT), indoor relative humidity (IH), and CO₂ concentration (CO₂)—

also play significant roles, varying across different crops. This indicates that 

electric load is influenced by a broader range of factors. 

By comparing the evaluation metrics of different feature selection methods, this study 

analyzes their impact on the performance and efficiency of the machine learning 

prediction model. The results are as follows: 

 

Table 7. Comparison of feature selection methods 



 

 

The subsequent analysis will evaluate the strengths and limitations of the three feature 

selection methods concerning different greenhouse loads. 

 

Figure 8. Comparison of feature selection methods in heat load (Flower) 

 

Figure 3 illustrates that outdoor temperature (OT) is the primary factor influencing heat 

load in flower greenhouses, followed by outdoor solar radiation. 

Analysis of Tables 4–6 indicates that the backward elimination method retains all input 

features, while PCA-based backward elimination selects only outdoor and indoor 

temperatures. In contrast, GA excludes outdoor wind speed. 

As shown in Figure 8, PCA-based backward elimination significantly improves 



computational efficiency, reducing prediction time by approximately 40%. In contrast, 

the other two methods offer negligible runtime improvements compared to the original 

dataset without feature selection. 

Regarding model fit, PCA-based backward elimination results in a 12% reduction in 

R², while backward elimination and GA maintain performance comparable to the 

original dataset. However, PCA-based backward elimination substantially increases 

RMSE, indicating higher prediction errors. 

These findings suggest that for heat load prediction in flower greenhouses, PCA-based 

backward elimination effectively identifies critical features and enhances 

computational efficiency. However, this comes at the cost of reduced prediction 

accuracy. If accuracy is the priority, backward elimination or GA are more suitable. If 

reducing runtime is the main concern, PCA-based backward elimination provides a 

favorable trade-off. 

 

 

Figure 9. Comparison of feature selection methods in electric load (Lettuce) 

 

In Figure 4, outdoor temperature and solar radiation are important factors influencing 

electrical load in lettuce greenhouses, while outdoor wind speed and wind direction 

have minimal impact. 

A comparison of Tables 4–6 reveals that backward elimination and GA retain all input 



features, whereas PCA-based backward elimination excludes wind speed and wind 

direction. This aligns with the feature importance ranking from the random forest model. 

As shown in Figure 9, PCA-based backward elimination slightly improves runtime, 

reducing computation time by 2.7%. However, it also results in a 6.2% decrease in R² 

compared to the original dataset. In contrast, backward elimination and GA maintain 

performance comparable to the original dataset. For RMSE, PCA-based backward 

elimination increases error by 9.7%. 

These findings suggest that PCA-based backward elimination effectively identifies key 

features while enhancing computational efficiency. For electric load prediction in 

lettuce greenhouses, it provides a balanced trade-off between feature selection and 

performance. 

 

 

Figure 10. Comparison of feature selection methods in heat load (Lettuce) 

 

As shown in Figure 5, outdoor temperature is considered a key feature influencing 

electric load, while solar radiation also plays a significant role. Other features have 

minimal impact on electric load. 

A comparison of Tables 4–6 shows that backward elimination removes carbon dioxide 

concentration and wind direction, PCA-based backward elimination excludes outdoor 

wind speed and wind direction, while GA removes only outdoor wind direction. All 



three methods accurately identify the key factors. 

As illustrated in Figure 10, all three feature selection methods enhance computational 

efficiency. Backward elimination reduces computation time by 18%, PCA-based 

backward elimination by 16%, and GA by 19%, demonstrating similar performance in 

runtime efficiency. Model fit (R²) remains comparable across all methods, indicating 

minimal impact on predictive performance. 

For RMSE, GA achieves prediction errors closest to the original dataset. Backward 

elimination results in the highest RMSE increase (20%), while PCA-based backward 

elimination increases RMSE by 16%. 

These findings suggest that for heat load prediction in lettuce greenhouses, GA is the 

most favorable feature selection method, offering a balance between computational 

efficiency and predictive accuracy. 

 

 

Figure 11. Comparison of feature selection methods in electric load (tomato) 

 

As illustrated in Figure 6, the critical factors influencing electric load in tomato 

greenhouses include outdoor and indoor temperatures, solar radiation, humidity, and 

indoor CO2 concentration, while wind speed and direction have minimal impact. 

An analysis of Tables 4–6 shows that backward elimination removes outdoor wind 

direction, PCA-based backward elimination excludes both outdoor wind speed and 



wind direction, while GA retains all features. 

As shown in Figure 11, the three feature selection methods exhibit negligible 

differences in computational efficiency. Regarding model fit, PCA-based backward 

elimination reduces R² by 4.6%, while backward elimination and GA maintain 

performance comparable to the original dataset. In terms of RMSE, PCA-based 

backward elimination increases error by approximately 11%, while the other two 

methods show minimal changes. 

These findings suggest that PCA-based backward elimination effectively identifies key 

features but provides limited computational efficiency improvements. However, the 

slight reduction in model fit and increase in prediction error remain within an acceptable 

range. Overall, for electric load prediction in tomato greenhouses, all three methods 

perform similarly, with PCA-based backward elimination being a slightly more 

favorable option due to its balance between feature selection and performance trade-

offs. 

 

 

Figure 12. Comparison of feature selection methods in heat load (tomato) 

 

As shown in Figure 7, outdoor temperature is the primary factor affecting heat load in 

tomato greenhouses, while other features have a relatively minor impact. 

An analysis of Tables 4–6 reveals that backward elimination removes outdoor wind 



direction and indoor carbon dioxide concentration, PCA-based backward elimination 

excludes outdoor wind speed, wind direction, and solar radiation, while GA eliminates 

carbon dioxide concentration and wind speed. 

As shown in Figure 12, the three feature selection methods exhibit minimal differences 

in computational efficiency, with PCA-based backward elimination offering a slight 

runtime improvement. In terms of model fit, all three methods perform similarly to the 

model trained on raw data, showing no substantial differences in fit quality. However, 

for RMSE, backward elimination increases error by 11.7%, PCA-based backward 

elimination by 13.2%, and GA by 10.6%. 

These findings suggest that none of the feature selection methods significantly improve 

computational efficiency or accuracy for heat load prediction in tomato greenhouses. 

Model fit remains unchanged, while prediction errors increase. Based on these results, 

feature selection methods are not recommended for predicting heat load in tomato 

greenhouses. 

 

4. Conclusion and future work  

This study enhances energy consumption prediction for vertical farms by evaluating 

data smoothing and feature selection techniques. Results highlight the superior 

performance of the Savitzky-Golay Filter for data smoothing and the effectiveness of 

PCA-based backward elimination for feature selection under specific conditions. Key 

predictive features vary across load types and crop varieties, emphasizing the 

importance of tailored data processing strategies. 

Beyond vertical farms, these findings may generalize to other high-energy-

consumption buildings, such as greenhouses, data centers, or smart buildings, where 

accurate energy forecasting is critical for efficiency and sustainability. The 

demonstrated impact of smoothing techniques on model accuracy suggests potential 

applications in real-time energy monitoring systems and adaptive control strategies. 

Future research will focus on incorporating high-resolution seasonal weather data to 

better account for climate-induced variations, exploring k-fold cross-validation for 



improved model tuning, and investigating alternative smoothing techniques (e.g., 

wavelet denoising) for further accuracy enhancements. Additionally, integrating 

advanced feature selection methods with domain-specific knowledge may provide 

novel insights into energy consumption patterns, enabling more generalizable and 

scalable predictive models. 

Furthermore, future work will explore time-series-specific machine learning models, 

such as Long Short-Term Memory (LSTM) networks, to better capture temporal 

dependencies in energy consumption patterns. Combining deep learning approaches 

with existing feature selection and smoothing techniques could further improve 

prediction accuracy and adaptability in dynamic environments. 
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