
Nature Genetics

nature genetics

https://doi.org/10.1038/s41588-025-02227-wLetter

Transferability of European-derived 
Alzheimer’s disease polygenic risk scores 
across multiancestry populations

 

A polygenic score (PGS) for Alzheimer’s disease (AD) was derived 
recently from data on genome-wide significant loci in European ancestry 
populations. We applied this PGS to populations in 17 European countries 
and observed a consistent association with the AD risk, age at onset 
and cerebrospinal fluid levels of AD biomarkers, independently of 
apolipoprotein E locus (APOE). This PGS was also associated with the AD 
risk in many other populations of diverse ancestries. A cross-ancestry 
polygenic risk score improved the association with the AD risk in most of 
the multiancestry populations tested when the APOE region was included. 
Finally, we found that the PGS/polygenic risk score captured AD-specific 
information because the association weakened as the diagnosis was 
broadened. In conclusion, a simple PGS captures the AD-specific genetic 
information that is common to populations of different ancestries, although 
studies of more diverse populations are still needed to better characterize 
the genetics of AD.

Over the last 15 years, genome-wide association studies (GWASs) have 
fostered the development of powerful approaches for characterizing 
disease processes and the introduction of diagnostic/prognostic tools 
such as polygenic scores (PGSs)1,2. Given the high estimated heritability 
(60–80%, in twin studies) of Alzheimer’s disease (AD)3, a number of PGSs 
have been developed; associations with AD risk or related phenotypes 
have been described for almost all of the scores4–10. However, interstudy 
comparisons are complicated by marked differences in the popula-
tions analyzed, the PGS calculation methods, the summary statistics 
used and the variants included11. Furthermore, most PGSs have been 
developed from studies of European ancestry populations, and only 
a few studies have investigated PGSs performance in populations of 
different ancestries12–15.

Here, we describe the generation of a PGS (PGSALZ) that includes the 
genome-wide significant, independent sentinel single nucleotide poly-
morphisms (SNPs) at the loci reported by Bellenguez et al.16, excluding 
the apolipoprotein E (APOE) locus (n = 83; see Supplementary Table 1 
for the list of variants). We studied the associations between PGSALZ and 
AD risk or relevant endophenotypes in populations from 17 European 
countries and then extended the analysis to populations of diverse 

ancestries (from Asia, Africa, Latin America and North America). Finally, 
as already performed for other complex human diseases17–20, and with 
a view to improving the predictive performance of PGSALZ (refs. 2,21), 
we generated a cross-ancestry polygenic risk score (PRS) by integrating 
GWAS summary statistics from several populations.

We first evaluated the association between PGSALZ and AD risk in 
case–control studies of European countries (see Supplementary Table 2 
for population description and adjustments used in each population 
and Supplementary Figs. 1–3 for PGSALZ distributions). PGSALZ was 
associated significantly with AD risk irrespective of APOE adjustment 
(Extended Data Fig. 1a and Supplementary Fig. 4). PGSALZ was similarly 
associated with AD risk in men and in women (Extended Data Fig. 1b and 
Supplementary Fig. 6). Furthermore, the score was associated with a 
younger age at onset (Extended Data Fig. 2). It is noteworthy that when 
the PGSs were adjusted for difference in PGSALZ distribution between 
the European populations, the association with AD remained similar 
(Supplementary Fig. 5).

As we did not identify any potential bias/heterogeneity when 
comparing PGSALZ in the European populations, we performed a 
combined analysis (mega-analysis) of our European datasets to assess 
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Asia (China, Japan and Korea), North Africa (Tunisia), sub-Saharan 
Africa (Central African Republic/the Congo Republic), South America 
(Argentina, Brazil, Chile and Colombia) and African American, Native 
American and Latin American ancestry populations from US studies 
(that is, more than 75% African American or Native American ancestry 
or self-reporting for Latin American populations; see Extended Data 
Fig. 3a and Supplementary Table 2 for a description of the population). 
With the exception of the analyses for Korea and Japan (where 72 and 
74 SNPs, respectively, were available), most PGSs were built from 78 
to 85 SNPs (including APOE variants; see Supplementary Table 1 and 
Supplementary Figs. 8–10 for PGSALZ distributions). The strength of 
the APOE ε4-AD association differed from one population to another, 
as observed previously23,24. The odds ratios (ORs) ranged from 1.36 
in sub-Saharan Africa to 5.46 in North Africa (Extended Data Fig. 3b).

As expected, the association between PGSALZ and AD risk was 
strongest in European ancestry populations (United States and Aus-
tralia). PGSALZ was also significantly associated with AD risk in North 
African, East Asian, Latin American and African American populations 
(Fig. 3a and Supplementary Fig. 11). Finally, PGSALZ was not associated 
with AD risk in the sub-Saharan African and Indian populations; this 
might be related to the small sample size and corresponding lack of 
statistical power. PGSALZ was associated with a younger age at onset 
in most of the populations studied, with the notable exception of the 
Chinese and Korean populations (Extended Data Fig. 4). Of note, the 
APOE ε2/ε3/ε4 alleles influenced age at onset in Chinese and Korean 
populations (Supplementary Fig. 12).

To refine our analysis of these populations of diverse ances-
tries, we calculated the association between AD and PGSALZ quintiles 
(0–20%, 20–40%, 60–80% and 80–100%; reference, 40–60%) and 
meta-analyzed them by ancestry (Fig. 3b,c and Supplementary Tables 6 
and 7). The Indian, North African and sub-Saharan African populations 
were excluded because of the small sample size. The strength of the 
association with PGSALZ decreased from the European American, East 
Asian and Latin American populations to the African American popula-
tion, in that order (Fig. 3b and Supplementary Table 6). PGSALZ gener-
ated from a European ancestry population GWAS performed poorly in 
African ancestry populations.

the risk of developing AD within various PGSALZ strata: 0–2%, 2–5%, 
10–20%, 20–40%, 60–80%, 80–90%, 90–95%, 95–98% and 98–100%, 
with the 40–60% PGSALZ stratum as the reference. We also generated 
a PGS that included both the sentinel AD GWAS loci and the two SNPs 
defining the ε2/ε3/ε4 APOE alleles. As expected, the risk of developing 
AD in the most extreme strata was particularly high when APOE was 
included (Fig. 1a). The association with PGSALZ was also significant 
in all strata analyzed, irrespective of APOE adjustment. In the 0–2% 
and 98–100% strata, PGSALZ was associated with a greater than two-
fold decrease in AD risk and a greater than threefold increase in AD 
risk, respectively, compared with the 40–60% stratum (Fig. 1a and  
Supplementary Table 3).

Since these results suggested that association of PGSALZ was inde-
pendent of APOE, we leveraged our mega-analysis to determine how 
PGSALZ interacted with the APOE genotypes. We found a weak inter-
action between PGSALZ, the number of APOE ε4 alleles and AD risk 
(P = 3 × 10−4). Next, we stratified the mega-analysis into four APOE geno-
type groups (ε2ε2/ε2ε3, ε3ε3, ε2ε4/ε3ε4 and ε4ε4) and assessed the 
association between PGSALZ and AD risk per quintile (0–20%, 20–40%, 
60–80% and 80–100%) for each subpopulation (reference, 40–60% 
stratum). PGSALZ was associated with AD risk to a similar extent in all 
strata, although a stronger association might be present among ε4ε4 
carriers (Fig. 1b and Supplementary Table 4).

To determine whether PGSALZ is associated with AD pathophysi-
ological processes, we analyzed GWAS data on CSF levels of Aβ42, tau 
and p-tau (n = 13,051 individuals), as described previously22. PGSALZ 
was associated with a decrement in Aβ42 levels and an increment in tau 
and p-tau levels, whatever the adjustment for APOE (Fig. 2a,b and Sup-
plementary Fig. 7). We also checked for a possible association between 
PGSALZ and Aβ42 levels, tau and p-tau levels in quintiles (0–20%, 20–40%, 
60–80% and 80–100%); again, the 40–60% stratum served as the refer-
ence. As expected, PGSALZ was associated with the lowest and highest 
levels of p-tau and Aβ42 in the 0–20% strata and, conversely, the highest 
and lowest levels of p-tau and Aβ42 in the 80–100% stratum (Fig. 2c and 
Supplementary Table 5).

We then extended the PGSALZ analyses to other European ancestry 
populations (United States, Australia), populations from India, East 
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Fig. 1 | Associations between the various PGSs and the risk of developing AD 
as a function of APOE status (25,782 AD cases and 35,280 controls). a, The risk 
of developing AD, by PGSALZ stratum (0–2%, 2–5%, 10–20%, 20–40%, 60–80%, 
80–90%, 90–95%, 95–98% and 98–100%). The 40–60% PGSALZ stratum was used 
as the reference. b, Risk of developing AD, by PGSALZ stratum (0–20%, 20–40%, 
60–80% and 80–100%) and by APOE genotype (by grouping together the ε2ε2/

ε2ε3, ε3ε3, ε2ε4/ε3ε4 and ε4ε4 carriers). The 40–60% PGSALZ stratum was used as 
the reference. OR per s.d. was calculated by logistic regression adjusted for age, 
gender, 14 first PCs and chip center if necessary. The lines indicate the 95% CI of 
each OR. ε2ε2/ε2ε3 carriers (960 AD cases and 3,604 controls), ε3ε3 (15,623 AD 
cases and 17,782 controls), ε2ε4/ε3ε4 (8,780 AD cases and 6,242 controls) and 
ε4ε4 carriers (2,309 AD cases and 479 controls).
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The latter observation was strengthened by analyzing the associa-
tion between PGSALZ and AD risk as a function of the African American 
admixture. The strength of the association decreased as the percentage 
of African ancestry increased, and ultimately reached a level similar to 
that observed in our sub-Saharan African population: the association 
between PGSALZ and AD risk in populations in whom more than 90% of 
the members were of African ancestry had an OR of 1.09 (95% confi-
dence interval (CI) 0.98–1.21; P = 1.4 × 10−1, adjusted for APOE). Of note, 
a similar pattern was observed in the Native American population of 
the Alzheimer Disease Sequencing Project: the strength of the associa-
tion decreased as the Native American ancestry percentage increased, 
from OR = 1.21 (95% CI, 1.12–1.32; P = 5.3 × 10−6) and OR = 1.14 (95% CI, 
1.05–1.25; P = 2.6 × 10−3) to OR = 1.12 (95% CI, 1.02–1.24; P = 1.4 × 10−2 
in the populations with more than 50%, 75% and 90% of individuals of 
Native American ancestry, respectively, after adjustment for APOE. A 

similar result was found for Chilean and Argentinian populations: the 
PGSALZ association weakened as the proportion of individuals with 
Native American ancestry rose14.

We next checked that we had fully captured the genetic infor-
mation in the GWAS-defined loci in the non-European populations. 
To this end, we developed a PGS (PGSALZ+) that included other SNPs 
associated with AD risk in non-European multiancestry populations 
(P < 10−3) at the European GWAS-defined loci (Methods). We used 
the summary statistics generated by Kunkle et al.25, Lake et al.26 and 
Shigemizu et al.27, and added 30, 13 and 47 variants to the initial 83 
PGSALZ variants for Latin American, East Asian and African American 
ancestries, respectively (Supplementary Table 8). We did not detect 
any increment in (1) the strength of the PGSALZ+ association with the 
AD risk or (2) PGSALZ+’s predictive performance, relative to PGSALZ 
(Supplementary Table 9).
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Fig. 2 | Association of PGSALZ with Aβ42 and p-tau in cerebrospinal fluid. 
a–c, Association of PGSALZ with the level of normalized Aβ42 (a) and p-tau (b) 
in cerebrospinal fluid (n = 13,004) across European ancestry populations and 
according to PGSALZ strata (0–20%, 20–40%, 60–80% and 80–100%) (c); the 40–
60% PGSALZ stratum was used as the reference. β values were calculated by general 

linear model and logistic regression adjusted for APOE, age, gender, ten first PCs 
and chip center if necessary. The horizontal lines in the forest plots indicate the 
95% CI of each β value. If heterogeneity P (HetP) < 0.05, a random effect is shown 
for the meta-analysis results. I2; heterogeneity.
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By initially restricting our analyses to the genome-wide significant 
loci from European ancestry AD GWAS, we probably excluded genetic 
information associated with AD risk in both European populations 
and (especially) non-European multiancestry populations (for which 
ancestry-specific loci may exist). Furthermore, the effect sizes used to 
construct PGSALZ were extracted from European ancestry populations 
without taking account of population differences. To deal with these 
various questions, we used the Bayesian polygenic modeling method 
PRS-CSx to build a cross-ancestry PRS20. The PRS re-estimates vari-
ant effect sizes by coupling various summary statistics with external 
ancestry-matched allele frequencies and local linkage disequilibrium 
structure, according to the sparseness of the genetic architecture of AD. 
We used GWAS summary statistics generated from European (36,569 
AD cases and 63,137 controls), African American (2,784 AD cases and 
5,222 controls), Latin American (1,088 AD cases and 1,152 controls) 
and East Asian (3,962 AD cases and 4,074 controls) populations25–27. 
PRSs (all adjusted for the population structure) were generated in 
multiancestry populations from the Million Veteran Program (MVP; 
European American, Latin American and African American ancestries), 
EPIDEMCA (sub-Saharan Africa ancestry) and GARD studies (East Asian 
ancestry; Supplementary Fig. 13).

We assessed potential increments in the association of PRS with 
the AD risk and in predictive performance when the summary statis-
tics of the European American, African American, Latin American or 
East Asian multiancestry populations were applied independently 
(PRSEUR, PRSAA, PRSLA and PRSEA, respectively) or when the statistics 
were combined (PRSCOMB) at various sparseness values (10−8, 10−7, 10−6, 

10−5, 10−4, 10−2 and 1). We initially excluded the APOE region, to facilitate 
the comparison with PGSALZ. We did not observe any increases in the 
association with AD risk or in predictive performance in the different 
multiancestry populations (Fig. 4, Supplementary Fig. 14 and Sup-
plementary Table 10), with the exception of the Latin American MVP 
population. However, we cannot rule out overfitting as the reason for 
this improvement. Next, we included the APOE region when generating 
the different PRSs. Whereas no impact on European ancestry popula-
tions was observed when comparing PRSEUR and PRSCOMB, we detected 
an increment in both the strength of association with the AD risk and 
in the predictive performance when comparing PRSEUR and PRSCOMB for 
all other populations. This indicated that a cross-ancestry PRS is more 
effective than a PRS constructed solely from European summary statis-
tics when the APOE region is included, whatever the overall shrinkage 
value used (Fig. 5, Supplementary Fig. 14 and Supplementary Table 10).

Finally, we leveraged the MVP data to determine how the associa-
tion between PGSALZ or PRSCOMB (without the APOE region) and AD risk 
changed in multiancestry populations as a function of diagnostic speci-
ficity. We looked at how a PGSALZ/PRSCOMB derived from AD case/control 
studies performed when the diagnosis was broadened to dementia. 
In all the multiancestry population studied, the association between 
PGSALZ/PRSCOMB and AD risk weakened as the diagnosis became broader 
(Fig. 6 and Supplementary Table 11).

Our work produced several important findings. First, the asso-
ciations between PGSALZ and AD risk in European populations may be 
influenced slightly by the APOE genotype; this suggests the existence 
of two independent genetic entities for sporadic AD: one associated 
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Fig. 3 | Association of PGSALZ across multiancestry populations. a, Association 
of PGSALZ with the risk of developing AD in multiancestry populations. The 
European ancestry meta-analysis includes MVP and Australia. The African 
American ancestry (more than 75% AA ancestry) meta-analysis includes MVP and 
ADSP. The East Asia meta-analysis includes China, Korea and Japan. The Latin 
American ancestry (self-reported) meta-analysis includes MVP and ADSP. The 
South America meta-analysis includes Argentina, Brazil, Chile and Colombia. 
b, The risk of developing AD, according to PGSALZ (logistic regression adjusted 
or not for APOE or included APOE variants) strata (0–20%, 20–40%, 60–80% and 
80–100%) in multiancestry populations. The 40–60% PGSALZ stratum was used as 
the reference in each population, and results were meta-analyzed. The European 

ancestry meta-analysis includes MVP and Australia. The African American 
ancestry meta-analysis includes MVP and ADSP. The East Asia meta-analysis 
includes China, Korea and Japan. The Latin American ancestry meta-analysis 
includes MVP and ADSP. The South America meta-analysis includes Argentina, 
Brazil, Chile and Colombia. Ncases, number of cases; Ncontrols, number of controls. 
OR per s.d. was calculated by logistic regression adjusted for APOE, age, sex 
and specific PCs according to the study (Supplementary Table 2). The lines in 
the Forest plots indicate the 95% CI of each OR. If HetP < 0.05, a random effect is 
shown for the meta-analysis results. AA, African American; EUR, European; LA, 
Latin American.
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with APOE ε4 and the other not, as suggested previously28. Second, the 
simple PGSALZ (based on the European GWAS-defined loci) seems to be 
enough to detect an AD genetic risk in most ancestry populations. Our 
results thus suggest that most of the various ancestry populations are 
likely to be affected by shared pathophysiological processes that are 
driven in part by genetic risk factors. Third, in contrast to what has been 
observed in the genetics of complex traits29 and other multifactorial 
diseases17,30,31, a cross-ancestry PRS built with a Bayesian polygenic 
modeling method did not systematically outperform a simple PGSALZ 
when the APOE locus was excluded. This observation might be due to 
the small population size of GWAS for the various ancestry populations, 
which can significantly limit the power of the PRS-CSx approach. How-
ever, this might also indicate that a high proportion of AD genetic risk 
is already accounted for by the European ancestry GWAS-defined loci. 
Fourth, the APOE region appears to contain additional multiancestry 
genetic variability, as suggested previously32–35. Finally, the PGS/PRS 
associations capture mainly genetic information related to AD because 
they weakened as the diagnosis was broadened. This observation 
suggests that the quality of the clinical diagnosis can interfere with 
the measurement of the association between the PGS/PRS and the AD 
risk in a given population.

In conclusion, our study of diverse ancestry populations and AD 
highlights the importance of cross-ancestry analyses for characterizing 
the genetic complexities of this disease. However, the AD genetics field 
is still limited by the size of GWASs in these diverse ancestry popula-
tions. Furthermore, it is likely that different ancestry populations 
will differ strongly regarding rare/very rare variants associated with 
AD risk; this would significantly impact the association of PRSs with 
AD risk and their predictive abilities36. Better characterization of AD 
genetics thus requires both GWASs and sequencing studies of more 
diverse populations.
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Methods
Sample and variant quality controls
Written informed consent was obtained from study participants or, 
for those with substantial cognitive impairment, a caregiver, legal 
guardian or other proxy. Study protocols for all cohorts were reviewed 
and approved by the appropriate institutional review boards (Supple-
mentary Information).

To ensure that the β values were completely independent of the 
summary statistics, all samples from ADGC, CHARGE and FinnGen 
GWASs were filtered out. Sample overlap was assessed systematically, 
and there was no sample overlap between any of the non-US studies 
analyzed. Overlap between Alzheimer's Disease Sequencing Project 
ADSP and MVP is likely to be negligible—no more than a few cases. 
For the biomarker analysis, there is a 460-sample overlap between 
the American samples used in the biomarker analyses and the ADGC 
(which is included in the summary statistics we used to generate the β 
values for the PGSALZ). However, this overlap is small (less than 2.5%). 
Furthermore, we analyzed the association of PGSALZ only with quantita-
tive traits (p-tau, tau and Aβ42 CSF concentrations) in these samples, 
which limited the risk of inflation.

After each sample had met the conventional GWAS gold standard 
for quality control, it was included in the analyses16. If a discordance in 
a variant dose, covariate or APOE status (the difference between the 
imputation and the genotyping results (if available)) was observed, 
the sample was discarded. After the quality control, each study’s 
demographics were described (Supplementary Table 1)37. Genotyped 
variants had to meet the gold standard for GWAS variant quality con-
trol16. All studies containing genotyping data were imputed with the 
TOPmed reference panel37,38. If the variants were imputed, those with 
an R2 value below 0.3 were excluded. For whole-genome sequencing 
data, only variants passing the corresponding quality control were 
selected (see the Supplementary Information for the ADSP and China 
samples) (Supplementary Table 2). The global ancestry of each person 
in the ADSP samples was determined with SNPweights v.2.1 (ref. 39) 
using a set of ancestry-weighted variants computed on reference 
populations from the 1000 Genomes Project (as in ref. 40). By apply-
ing a global ancestry percentage cutoff of >75%, the samples were 
assigned to the different ancestry populations. The ancestry of MVP 
participants was determined using the harmonized ancestry and race/
ethnicity (HARE) method41. HARE is like other genotype-based ances-
try calling methods, except that concordance between self-reported 
ancestry and genetically inferred ancestry is checked. Participants 
with discrepant ancestry calls are not assigned to a HARE category. 
Within-group principal components (PCs) for ancestry were computed 
using FlashPCA2 (ref. 42).

Mega-analysis of European populations
We merged samples from five datasets: EADB-core, GERAD, EADI, Dem-
gene and Bonn. To adjust for population structure, we computed PCs 
using the following procedure. From the list of 146,705 variants used 
in the PC analysis of EADB-core42, we extracted the TOPMed imputed 
variants with an imputation quality ≥0.9 in each dataset; this resulted 
in 91,353 variants. Next, we set a genotype to ‘missing’ if none of the 
genotype probabilities were greater than 0.8. Finally, all datasets were 
merged, and variants with a proportion of missing genotypes greater 
than 0.02 were removed. Ultimately, 90,471 variants were included 
in the PC analysis (performed with FlashPCA2). The analyses were 
adjusted for the first 14 PCs, the genotyping chip and the center.

PGS and PRS computations
All codes for PGS and PRS analyses have been made available43. The 
equation used to calculate the PGSs and the PRSs is as follows:

PGSALZsampleor PRSsample =
n
∑
i=1

(βi × genotypei, sample)

where the PGSALZsample PRSsample is the sum per sample of the product of the 
variant i effect size βi (extracted from GWAS summary statistics) and 
the number of risk alleles of this variant i (either as a dosage or as a 
genotype).

PGSALZ includes the 83 independent signals associated with AD13 
and listed in Supplementary Table 1. We also calculated another PGSALZ 
combining the same 83 independent signals and the two SNPs encoding 
the APOE ε2 (rs7412) and APOE ε4 alleles (rs429358). PGSAPOE includes 
only these two last SNPs. The stage I meta-analysis of EADB studies13 
(without the United Kingdom (UK) Biobank samples) contained 36,659 
clinically diagnosed AD cases, and the stage II meta-analysis (including 
the ADGC, CHARGE and FinnGen data) contained 25,392 (ref. 13). To 
ensure independence between the samples and the GWAS summary 
statistics, the European summary statistics used in the PGS analyses 
were from stage II. In the PGSALZ/PRS analyses adjusted for the differ-
ence in distribution between populations, the European more powerful 
summary statistics (that is, the stage I meta-analysis of EADB) were 
preferred.

The PGSALZ+ score was developed to include additional SNPs 
in the GWAS-defined loci, to capture more genetic information in 
non-European ancestry populations. First, the ‘start and end positions’ 
of each locus (as specified in the GRCh38 assembly) were defined 
manually by looking at the regional plots and extracting (1) recombi-
nation rate peak positions, (2) chromosome start and end positions, 
(3) specific variant positions or (4) the start/end positions of regions 
containing no variants. Next, insertions and deletions were excluded. 
Variants that were not ambiguous (that is, A/T or C/G) and present 
in the 1000 Genomes Phase 3 data (1000GP3) and had an imputa-
tion quality above 0.3 in the EADB-core TOPMed imputations were 
selected. To extract information on these variants in non-European 
ancestry populations, we used the summary statistics generated by 
Lake et al., Shigemizu et al. and Kunkle et al. to represent Latin Ameri-
can, East Asian and African American ancestries, respectively25–27. 
Since these summary statistics were based on the GRCh37 assembly, 
we lifted their positions and alleles in the GRCh38 assembly by using 
the Picard LiftoverVcf tool (v.2.27.5) and restricting the process to 
variants with a minor allele frequency above 0.01. To remove variants 
in linkage disequilibrium with the sentinel variant of each locus, we 
computed the linkage disequilibrium for each sentinel variant versus 
all the other variants in the locus by using the 1000GP3 data restricted 
to samples representing European ancestries (the EUR superpopula-
tion), Latin American ancestries (the AMR superpopulation plus the 
IBS population), Japanese ancestries (the JPT population) and African 
American ancestries (the AFR superpopulation). Since one of the sen-
tinel variants (chr. 9:104903697:C:G) was not present in the 1000GP3 
data, we replaced it with a proxy variant (chr. 9:104903754:G:GC, 
R2 = 1 in the EUR superpopulation). In each set of summary statistics, 
we removed variants with R2 > 0.1 in either the European summary 
statistics or the summary statistics for the corresponding ancestry. 
Finally, we performed a clumping procedure on the remaining variants 
in each of the three ancestries by using plink v.1.9, a P value threshold of 
1 × 10−3, an R2 of 0.05 (as estimated in the corresponding 1000GP3 data 
samples, as described above) and a distance of 1 Mb. For the PGSALZ+, 
this led us to select 30, 13 and 47 variants (in addition to the initial 85 
PGS variants) for the Latin American, East Asian and African American 
ancestries, respectively.

At the time of our analysis, PRS-CSx20,44 was one of the best- 
performing methods for modeling a cross-ancestry PRS45,46 without a 
validation dataset and using GWAS summary statistics. With a Bayesian 
high-dimensional regression framework model based on continuous 
shrinkage priors, the variant effect sizes were adaptively re-estimated 
by coupling cross-ancestry GWAS summary statistics13,25–27, external 
ancestry-matched allele frequencies and local linkage disequilibrium 
structure, according to a global shrinkage parameter. This global 
shrinkage parameter corresponded to the sparseness of the genetic 
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architecture of AD by avoiding overshrinkage of true signals and by 
shrinking noisy signals. The sparseness was modeled for the values of 
1, 10−2, 10−4, 10−5,10−6, 10−7 and 10−8, with the --meta option and the Straw-
derman–Berger prior default parameters (a = 1 and b = 0.5). The initial 
1,297,432 variants present in the 1000 Genomes reference panel were 
lifted over in GRCh38. Next, new ancestry-specific or joint-ancestry 
effect size estimates were obtained with PRS-CSx, leading to a maxi-
mum number of 1,292,532 variants in the joint-ancestry summary sta-
tistics and potentially included in the PRS computations. The PRSs were 
computed per chromosome with joint-ancestry, European ancestry and 
ancestry-specific PRS-CSx-effect size estimates, using PLINK (v.2.0.a) 
software47 and its --score option. Finally, the PRSs were summed across 
all chromosomes.

Adjustment for interpopulation differences in the PGSALZ/PRS 
distribution
To account for the population structure, PRSraw and PGSALZ

raw were 
adjusted for interpopulation differences in distribution48. The adjust-
ment was performed with a selection of 84,035 independent and 
well-imputed (R > 0.8) variants common to all studies. Starting from 
this list of variants, FlashPCA2 projected the samples into the 1000GP3 
PC-space and calculated the projected PCs. For each study, the raw 
score was fitted into a linear model in controls, according to the first 
five projected PCs. This model was used to compute a predicted score 
in all the samples. The resulting adjusted score was the difference 
between the raw score and the predicted score.

Statistical analyses
The PGSs and PRSs were standardized to a normal distribution, using 
the mean and s.d. calculated for the samples as a whole. The associa-
tions between AD status and the various scores were tested in logistic 
regressions named according to the score and the covariates used. 
Hence, the name ‘ALZinclAPOE’ was attributed if the score included 
variants in the APOE region (from 43 Mb to 47 Mb). The other covariates 
included age and sex, as well as the covariates specific to each study 
(Supplementary Table 2).

 – Model PGSALZ: AD ~ PGSALZ + COV
 – Model PGSALZ: AD ~ PGSALZ + COV + the count of APOE ε2 alleles + 

the count of APOE ε4 alleles (when adjusted for APOE)
 – Model PRS: AD ~ PRS + COV
 – Model PRS: AD ~ PRS + COV + the count of APOE ε2 alleles + the 

count of APOE ε4 alleles (when adjusted for APOE)
 – Model PRSALZinclAPOE: AD ~ PRSALZinclAPOE + COV

To estimate the proportion of phenotypic variance explained by 
the variance in the score, we computed Nagelkerke’s Pseudo-R2

Full using 
the Nagelkerke function implemented in the rcompanion package in 
R49,50. A Pseudo-R2

Null was also computed for the covariates only. The 
adjusted Pseudo-R2 is the difference between Pseudo-R2

Full and the tied 
Pseudo-R2

Null. This adjusted Pseudo-R2 corresponds to the phenotypic 
variance explained by the genetic score only. The adjusted Pseudo-R2 
was also transformed into a liability scale for ascertained case–control 
studies51, using a prevalence value of 0.15. We consider this value of 0.15 
to be consistent for populations with a mean age greater than 75 years. 
However, this prevalence is different in multiethnic populations of the 
same mean age. Furthermore, the AD prevalence increases with age, so 
genetic liability is not homogeneous in all age groups. AD heritability 
cannot be expressed as a single number because it depends on the ages 
of the cases and controls52.

Quantile and percentile analyses
Depending on the value of the corresponding PGSALZ, the samples were 
classified into the reference group or into one of the test groups. In 
the mega-analysis, the reference group corresponded to the 40–60% 

percentile and was tested across other percentiles (0–2%, 2–5%, 5–10%, 
10–20%, 20–40%, 60–80%, 80–90%, 95–98% and 98–100%). In the 
APOE-stratified analysis and in the multiancestry analyses, the ref-
erence group was defined as the 40–60% percentile and was tested 
across the other quintiles (0–20%, 20–40%, 60–80%, 80–100%). The 
multiancestry analyses were performed on each population and then 
meta-analyzed per genetic ancestry by using the inverse variance 
method, as implemented in METAL53. It should be noted that the Indian, 
North African and sub-Saharan African populations were excluded 
because of their small sample size.

 – Model PGSALZ: AD ~ Group0/1(PGSALZ) + COV
 – Model PGSALZ: AD ~ Group0/1(PGSALZ) + COV + number of APOE 

ε2 alleles + number of APOE ε4 alleles (when adjusted for APOE)
 – Model PGSALZinclAPOE: AD ~ Group0/1(PGSALZinclAPOE) + COV

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The EADB GWAS (without UK biobank) summary statistics used to 
develop PRS have been deposited with the European Bioinformat-
ics Institute GWAS Catalog under accession no. GCST90565439. 
Summary statistics from African American multiancestry popula-
tion used to develop PRS were accessed through NIAGADS under 
accession number NG00100. Summary statistics from Japan pop-
ulations were accessed through the National Bioscience Database 
Center (NBDC) at the Japan Science and Technology Agency ( JST) 
with accession number hum0237.v1.gwas.v1. 1000GP3 data is 
available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_col-
lections/1000_genomes_project/release/20190312_biallelic_SNV_
and_INDEL/). GRCh37 assembly data is available at https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.25_
GRCh37.p13/GCF_000001405.25_GRCh37.p13_genomic.fna.gz. 
GRCh38 assembly data is available at https://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/
GCF_000001405.39_GRCh38.p13_genomic.fna.gz. ADSP data is avail-
able at https://dss.niagads.org/datasets/ng00067/.

Code availability
All codes developed and shared with collaborators to run PGS and PRS 
are available via Zenodo at https://doi.org/10.5281/zenodo.15164089 
(ref. 43). Based on IRB and protected status of the Latin American popu-
lation in dbGaP access process for this data, the summary statistics 
of the Latin American GWAS cannot be shared. The code to generate 
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Extended Data Fig. 1 | Association of PGSALZ with the risk of developing AD (a) 
in 17 European countries and (b) in Men and Women. Ncases, number of cases; 
Ncontrols, number of controls; OR, Odds ratio per Standard deviation were 

calculated using logistic regressions adjusted for age, gender and PCs according 
to the population studied (Supplementary Table 2). The lines in the Forest plots 
indicate the 95% confidence interval for the ORs.
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Extended Data Fig. 2 | Associations between (a) PGSALZ or (b) PGSALZ adjusted for APOE and age at onset of AD in European countries. Ncases, the number of cases. 
Since HetP <0.05, the random effect is shown for the meta-analysis results. βs were calculated using a general linear model adjusted for APOE, gender and PCs 
according to the population studied (Supplementary Table 2).
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Extended Data Fig. 3 | Distribution and association of APOE ε2/ε3/ε4 alleles 
with AD risk worldwide. (a) World map showing the populations analyzed. A 
color gradient indicates the strength of the association between APOE ε2/ε3/ε4 
alleles and the risk of developing AD in different countries (b) frequencies of APOE 
ε2/ε3/ε4 alleles in case and controls as well association of APOE ε4 alleles with the 

risk of developing AD in different countries. OR, Odds ratio were calculated using 
logistic regressions adjusted for age, gender and PCs according to the population 
studied (Supplementary Table 2). Sample sizes are reported in Supplementary 
Table 2. The map was generated using ggplot2 and royalty-free data from 
rnaturalearth (https://www.naturalearthdata.com/about/terms-of-use/).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Association between (a) PGSALZ or (b) PGSALZ (adjusted 
for APOE) and age at onset of AD in multi-ancestry populations. Ncases, number 
of cases. The African-American-ancestry meta-analysis (more than 75% of 
the population with African-American ancestry) included the MVP and ADSP 
datasets. The East Asia meta-analysis included datasets from China, Korea, and 

Japan. The Latin American (LA) ancestry (self-reporting) meta-analysis included 
the MMVP and ADSP datasets. The South America meta-analysis included the 
datasets from Argentina, Brazil, Chile, and Colombia. * not used in the meta-
analysis. βs were calculated using a general linear model adjusted for gender and 
PCs according to the population studied (Supplementary Table 2).
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