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Abstract

Historic timber-framed buildings, although a small part of the UK's historic building stock, contribute to UK national
cultural identity. However, their thermal performance is typically inferior to their masonry counterparts, and their
defining exposed frames limit retrofit options. Where historic infill is missing or damaged, there exists the opportunity
to infill with thermal insulation. However, this may increase moisture accumulation leading to biological decay. The
research in this paper, funded by Historic England, has monitored the hygrothermal performance of eight experimental
infill panels in Cardiff, since 2019. Four infills materials were monitored, wattle-and-daub, a wood fibre/wood wool
composite, expanded cork board, and hempcrete, within a reclaimed oak frame. Two finishes were applied, NHL 3.5
and sand render, and a non-hydraulic lime with hemp shiv aggregate. Moisture content and temperature were
monitored at nine positions within each panel. Over five years, significant moisture fluctuations were recorded. Initially
no interstitial condensation was identified, with wetting and drying cycles corresponding with wind-driven rain events.
However, in the last few years, incidences of interstitial condensation were identified in the wood fibre/wood wool
composite and the wattle-and-daub. Additionally, extended periods of high moisture content were recorded at some
perimeter junctions. Overall, those panels finished in the less moisture permeable NHL 3.5 show higher moisture
contents and longer drying times. Comparative WUFI® Pro simulations are now underway using measured climate data
and material properties. The final results will inform best practice guidance as we aim towards a sustainable future for
these iconic buildings.

Highlights

e The paper focuses on an under-researched typology, UK historic timber-framed buildings.

e Results highlight the complexities of retrofitting historic buildings, especially those of timber-frame construction.

e The use of moisture permeable materials is key, as is the detailing and workmanship of the junction between frame
and infill.

e Beware of unnecessary changes of material densities and water vapour resistance factors (u) within infill build-up.

e The increase in wind-driven rain events increases the risk to this building typology in the UK.

such, there is pressure to undertake energy retrofits with
the aims of improving occupant hygrothermal comfort,
lowering energy bills and reducing carbon emissions in
line with UK (BEIS, 2019) and EU goals (OJEU, 2018). It is
however important to safeguard their cultural heritage
(OJEU, 2018, Historic England, 2017). As such, in some
instances where the timber-frame is exposed both
internally and externally, the only option for thermally
upgrading the walls is through the replacement of the
panel infill with one with a lower thermal conductivity.

Introduction

External walls of often exposed timber structural frames,
with non-loadbearing infill, were once one of Britain’s
most common construction techniques (Innocent, 1971,
Braun, 1940), with examples still surviving from the 13t
century (Harris, 2010). Despite today only representing
7.5% of the pre-1850 housing stock in England (Nicol et
al.,, 2014), 1.6% in Wales and almost non-existent in
Scotland (Naismith, 1985) and Northern Ireland (Gailey,

1984), the surviving 68,000 buildings (Whitman, 2017)
constitute an important component of the UK national
identity (Ballantyne & Law, 2011).

Due to their materiality, construction and wall thickness,
the thermal performance of these buildings is typically
worse than that of their masonry counterparts (Demaus,
2017), and well below that of modern regulations. As

However, this is limited to those cases where historic
infill is already missing or damaged, and brings with it the
risk of moisture accumulation, which in turn could lead
to biological decay.

The aim of the research funded by Historic England and
presented in this paper, is to assess the hygrothermal
performance of eight different experimental infill panels,
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within a reclaimed oak exposed timber-frame, over a
five-year period. It is hoped by doing so to inform
guidance and best practice, reducing risk, whilst enabling
these buildings to continue to provide adequate
accommodation for years to come.

Figure 1. C15 timber-framed building, “Cordwinders”,
High St, Lavenham, Suffolk (Author, 2017)

Methods

Following in situ measurements at a number of historic
timber-framed buildings across the UK (Whitman &
Prizeman, 2016, Whitman and others, 2018, Whitman,
2020), experimental mock-up panels were chosen for the
methodology as they permit both increased monitoring
opportunities and greater control over variables. Initial
laboratory testing conducted on three infill materials
between two climate controlled test chambers at the
University of Bath’s Building Research Park near
Swindon, funded by the Association of Preservation
Technology International’s Martin Weaver Scholarship,
produced interesting results and confirmed the
advantages of physical monitoring over digital simulation
(Whitman and others, 2020). However, the high running
costs of running two climate chambers limited the
duration of the tests to five weeks. For the
methodological design of the research presented in this
paper, it was therefore decided to install the
experimental mock-up panels as part of the north facing
facade of the external envelope of a test cell, the internal
hygrothermal climate of which would be controlled only
during the UK heating season (Oct/Nov-March/April).
During this period a 1kW heater has a set point of 21°C
and a humidifier keeps relative humidity >60%. During
the non-heating season, the internal conditions are free-
running, replicating the conditions in most UK domestic
properties. The northern orientation was chosen to
minimise the impact of climatic variables, such as direct
solar radiation and wind-driven rain.

The aforementioned initial laboratory testing, through
the review of a representative sample of 100 exposed
timber-framed buildings, had established an almost
equal split between square-framed panels (53%) and
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close-studding (tall thin panels 47%) (ibid.). Therefore, in
order to maximise the number of panels with
comparable monitoring locations, close-studding was
chosen, using the calculated average size of 305mm x
1830mm. This enabled the monitoring of four pairs of
panels infilled with i) wattle-and-daub to replicate the
most traditional construction; ii) a wood fibre/ wood
wool composite detail as published by Historic England
(McCaig & Ridout, 2012); iii) expanded cork board and iv)
hempcrete, two infill solutions commonly being used in
practice. One panel from each pair was finished
internally and externally in a Natural Hydraulic Lime NHL
3.5 based render, a typical specification by conservation
architects, and the other in a lime-hemp render as
suggested by Ty Mawr Lime Ltd. All panels were framed
in reclaimed oak.

Within each panel, interstitial temperature (°C) was
measured using embedded Type T thermocouples and
wood moisture content (%) using electrical resistance.
Monitoring positions are located, in elevation, in the
centre of each panel, at the midpoint of the horizontal
junction between the panel and sill beam (lower
member) and at the midpoint of the vertical junction
between the panel and stud (upright member). At each
of these there are sensors at three depths, i) the
interface between external render and infill material; ii)
midpoint of infill material; and iii) at the interface
between internal render and infill material (Figure 2).
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Kipp and Zonen CM11— aJ Elevation Section a-a Detail section

Figure 2. Monitoring positions in elevation (Red-centre
of panel, Orange- midpoint of horizontal junction,
Green- midpoint of vertical junction) and section (Cyan-
interface external render and infill, Blue- midpoint of
infill, Purple- interface internal render and infill).

All sensors were wired back to a Campbell Scientific®
CR1000™ datalogger, extended with an AM16/32B™
multiplexer, with readings every 30 minutes. External
climate (temperature (°C), relative humidity (%),
precipitation (mm), wind speed (m/s) and direction, and
direct solar radiation on vertical face of panels (W/m?))
and internal climate (temperature (°C) and relative
humidity (%)) were also recorded.

During the heating seasons 2019/20 to 2024/25 in situ u-
value measurements were undertaken annually
according to BS ISO 9869-1:2014 (British Standards
Institution, 2014) using type T thermocouples and
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Hukseflux® HFPO1 heat flux plates connected to a
Campbell Scientific® CR1000™ datalogger. External
thermography was also completed in February and
November 2020 using a FLIR® B250™ and February 2025
using a FLIR One® Edge™.

Following the first two years of monitoring (Dec 2019-
Dec 2021), dynamic digital numerical simulation of
interstitial hygrothermal conditions was undertaken with
the software WUFI® Pro 5.3 using the measured internal
and external climatic condition, and proxy materials
Results

Interstitial Moisture
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taken from the software’s existing database. This
predicted similar but not identical hygrothermal
conditions. As such, since then, detailed material
characterisation has been undertaken, the methodology
for which is beyond the scope of this paper. A second
round of simulations using this measured physical
properties and the updated software WUFI® Pro 6.6 is
currently underway.
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Figure 3. Wood Moisture Content at mid-point of NHL 3.5 finished panels 12/12/2019 — 05/02/2025. With UK named
storm events overlaid. (WD-Wattle & Daub, WF-Wood Fibre, CK-Cork, HC-Hempcrete. i-internal, c-centre, e-external.)
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Figure 4. Wood Moisture Content at mid-point of Lime-Hemp finished panels 12/12/2019 — 05/02/2025. High moisture
content at centre of Wattle & Daub (WDc) and Wood Fibre (WFc) panels highlighted.

The results for the moisture content monitoring (Figure
3 and Figure 4) show a pattern of wetting and drying for

all panels. These cycles generally coincide with wind-
driven rain events, frequently related to named storms
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(Figure 3) during which winds can come from the north.
For the first three years of study, no evidence of
measured interstitial condensation was apparent.
However, since the beginning of 2023, high levels of
moisture has been recorded at the central monitoring
position in those panels with wattle & daub, and the
wood fibre/ wood wool combination infills. These
readings do not directly relate to wind-driven rain events
and would therefore suggest interstitial condensation is
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occurring. Glaser calculations according to (BS EN ISO
13788:2012) (British Standards Institution, 2012) using
the average internal and external temperatures for these
period, confirm that interstitial condensation is likely due
to the changes in water vapour diffusion properties
within these constructions. More evidence of this can
also be seen to be occurring at the horizontal junction
between the panel infill and timber frame (Figure 5 and
Figure 6)
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Figure 5. Wood Moisture Content at horizontal junction between NHL 3.5 finished panels and timber frame
12/12/2019 — 05/02/2025. (WD-Wattle & Daub, WF-Wood Fibre, CK-Cork, HC-Hempcrete. i-internal, c-centre, e-
external.)
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Figure 6. Wood Moisture Content at horizontal junction between Lime-Hemp finished panels and timber frame
12/12/2019 — 05/02/2025.

The high moisture content at this junction for the wood
fibre/ wood wool detail had initially been thought to be
due to the inclusion of an impermeable sealant. Whilst

this may exacerbate the problem and increase drying
times, the recent occurrence in the wattle & daub panels,
which have no such sealant, suggest that interstitial
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condensation is the root cause. The fact that interstitial
condensation is occurring in the most traditional
material, wattle & daub may mean that our historic
timber-framed buildings have always coped with these
occurrences, or it may be a result of anthropogenic
climate change and the increased occurrence of storm
events. This would be an interesting area for future
research utilising digital simulation using historic climate
data and future climate predictions.

Overall, thos.e panels finish.ed .in the more mo?sture Figure 7. External thermography 07:00, 19/02/20.
permeable lime-hemp maintain a lower moisture Internal temp. 20.6°C. External temp. 3.7°C
content, with faster drying times.

Thermal Conductivity — Thermography

The external thermography (Figure 7- Figure 9)
demonstrates the wattle & daub panels to be worst
thermally performing, and the expanded cork the best.
However, with the cork and wood fibre/ wood wool
panels there is a large difference in surface temperature
between infill and frame, with the frame forming a cold
bridge. Internally this could be problematic,
concentrating surface condensation on the historic
fabric. The hempcrete, whilst not providing the same
thermal efficiency, does create a more homogenous
surface temperature and as such may provide less risk
and be a more appropriate solution, especially for
buildings of high heritage significance.

Figure 8. External thermography 07:00, 19/11/20.
) Itena/ temp. 20.5°C. External temp. 8.7°C

Thermal Conductivity — in situ U-value

The results of in situ u-value measurements (Table 1)
corroborate the external thermography and also show
the improvement to thermal performance provided by ‘ 44 -6.5°C
the lime-hemp render with its insulating aggregate. ! :
Fluctuations in results year on year could be due to
changes in moisture content; however, they are within

e Figure 9. External thermography 07:00, 06/02/25.
the expected error factor, so may not be significant.

Internal temp. 20.5°C. External temp. 1.4°C

Table 1: Results of in situ u-value measurements.

Infill Finish Position Heating Season Average
Material 2019/20 | 2020/21 | 2021/22 | 2022/23 | 2023/24 | 2024/25
Wattle & NHL 3.5 Midpoint
Daub Corner 2.18 2.08 1.71 1.95 error 2.11
Lime- Midpoint 2.21 2.39 2.02 2.15 2.22 2.16
Hemp Corner 2.40 2.39 2.11 1.87 1.35 2.16 2.05
Cork NHL 3.5 Midpoint 0.65 0.61 0.62
Corner 0.68 0.79 0.74 0.80 0.78 error 0.76
Lime- Midpoint 0.64 0.79
Hemp Corner 0.57
Wood NHL 3.5 Midpoint 0.71 0.63 0.64 0.65 0.55 0.61 0.63
Fibre/ Corner 0.71 0.79 0.63 0.60 0.69 0.65 0.68
Wood Lime- Midpoint 0.66 0.66 0.74 0.69 0.67 0.58 0.67
Wool Hemp Corner 0.77 0.84 0.85 0.81 0.72 0.72 0.79
Hempcrete | NHL3.5 Midpoint 1.56 0.94 1.12 1.39 1.39 1.41 1.30
Corner 1.54 1.30 1.48 1.35 1.30 1.49 1.41
Lime- Midpoint 1.22 0.99 1.39 1.59 1.54 1.34 1.35
Hemp Corner 1.34 1.20 1.20 1.20 1.18 1.27 1.23
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Discussion and Conclusion

This research highlights some of the key risks of
retrofitting historic timber-framed buildings using
replacement infill panels. Interstitial condensation is a
risk where there are changes in material density and
moisture permeability within the panel depth. Equally
the use of infills with a thermal performance significantly
better than the surrounding frame could focus internal
surface condensation on the historic fabric. The use of
moisture permeable materials, good detailing and
installation are all paramount. Balancing these with the
heritage values requires review on a case-by-case basis,
and as noted, where intact historic infill exists, the
solutions tested in this research would not be
appropriate. The results do however demonstrate that in
some cases, improvements to the energy performance of
this historic construction typology are possible,
increasing the potential for the continued habitation and
use of these culturally important buildings.

It is hoped that the current digital simulation using
measured material properties will produce results closer
to those measured, enabling the simulation of both
historic climate conditions and future predictions.
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