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BACKGROUND & AIMS: Current diagnosis of celiac disease
(CeD) is inaccurate in patients consuming a gluten-free diet
(GFD). Blood-based diagnostics targeting gluten-specific T cells,
such as tetramer assays, are highly sensitive and specific but
are impractical for clinical use. We evaluated the potential of a
simple, whole-blood assay measuring interleukin 2 (IL2)
release (WBAIL-2) for detecting gluten-specific T cells to aid in
CeD diagnosis. METHODS: WBAIL-2 was assessed in 181
adults; 88 with CeD (75 consuming a GFD, 13 consuming
gluten) and 93 controls (32 consuming a GFD with nonceliac
gluten sensitivity, 61 healthy). In vitro IL2 release in whole
blood after gluten peptide stimulation was measured. The as-
say’s performance was compared with tetramer-based
methods, and serum IL2 levels were monitored before and after
a single-dose gluten challenge. Correlations between IL2 levels,
tetramer-positive T-cell frequencies, and symptoms were exam-
ined. RESULTS: The WBAIL-2 assay demonstrates high accuracy
for CeD diagnosis, even in patients consuming a strict GFD.
Optimized dual cutoffs in HLA-DQ2.5þ patients showed high
sensitivity (90%) and specificity (95%), with lower sensitivity
(56%) in HLA-DQ8þ CeD. WBAIL-2 correlated strongly with the
frequency of tetramer-positive gluten-specific cluster of differ-
entiation (CD) 4þ T cells and serum IL2 levels after a gluten
challenge. Elevated WBAIL-2 levels predicted gluten-induced
symptom severity, such as vomiting. The assay required only
small blood volumes and performed comparably with tetramer-
based methods. CONCLUSIONS: Gluten-stimulated IL2 secretion
indicates the presence of pathogenic gluten-specific CD4þ T cells
and is a useful diagnostic for CeD. WBAIL-2 and serum IL2 after
gluten could be complementary and allow biopsy-free CeD
diagnosis. WBAIL-2 may help diagnose and monitor other CD4þ

T cell-driven diseases.
Abbreviations used in this paper: AUC, area under the curve; CeD, celiac
disease; CD, cluster of differentiation; CI, confidence interval; CLIP, class
II-associated invariant chain peptide; ELISpot, enzyme-linked immuno-
spot; CV, coefficient of variation; GCIL-2, grass carp interleukin 2; GFD,
gluten-free diet; IFN, interferon; IL, interleukin; PBMC, peripheral blood
mononuclear cells; PE, phycoerythrin; T , T-effector memory; TNF, tu-
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Keywords: Celiac Disease; T cells; Interleukin 2; Diagnostics.

eliac disease (CeD) is caused by an adaptive immune

EM

mor necrosis factor; WBA, whole-blood assay; WBAIL-2, whole-blood
assay measuring interleukin 2 release. Q11
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Cresponse to dietary gluten mediated by cluster of
differentiation (CD) 4þ gluten-specific T cells that results in
chronic small intestinal injury and diverse chronic morbid-
ities.1 The only available treatment is a strict, life-long,
gluten-free diet (GFD). Expeditious diagnosis is important
to minimize long-term complications, but global prevalence
FLA 5.7.0 DTD � YGAST66865_proo
is high (1%–2%), with 50% to 80% of cases undiagnosed or
diagnosed late.2–4

Reliable diagnosis of CeD requires patients to consume
gluten, because first-line serology tests and confirmatory
endoscopic duodenal biopsy specimens depend on the
detection of gluten-induced injury, which normalizes on a
GFD. This requirement poses challenges for patients already
avoiding gluten, and with the anticipated approval of non-
dietary therapies, accurate tools for confirming diagnosis
and monitoring disease severity will become increasingly
important.5

The diagnosis and therapeutic monitoring of CeD and
other chronic immune diseases, as well as infectious dis-
eases and cancers, could be significantly advanced by
measuring disease-relevant antigen-specific effector CD4þ T
cells. However, this approach has seen limited clinical
application outside of academic studies, vaccine develop-
ment, and pharmaceutical research. Tuberculosis is one of
the few conditions diagnosed by measuring antigen-specific
T cells. Circulating mycobacteria-specific T cells are rela-
tively abundant in latent tuberculosis and can be detected
by enzyme-linked immunospot (ELISpot) or whole-blood
cytokine release assay.6,7

Unfortunately, the frequency of antigen-specific T cells in
blood without antigen rechallenge is below the detection
limits of these platforms for most diseases, and in many
cases, the identity of the triggering antigenic peptides is
poorly defined. Although flow cytometry with peptide-major
histocompatibility complex multimers has the sensitivity to
detect these rare cells, it requires knowledge of the relevant
T-cell epitopes and is restricted to highly specialized
laboratories.
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Celiac disease (CeD) diagnosis is challenging, particularly
for patients on gluten-free diets. A whole blood interleukin
(IL) 2 release assay (WBAIL-2) may simplify detection of
gluten-specific T cells and be a straightforward
diagnostic tool for CeD.

NEW FINDINGS

WBAIL-2 is a simple and accurate CeD diagnostic even in
patients consuming a gluten-free diet. IL2 production
reflects the activation of gluten-specific T cells,
correlates with their frequency, and stratifies symptom
severity to gluten.

LIMITATIONS

This was a single-center study with relatively small
subgroup sizes and untested reproducibility across
laboratories. Pediatric populations and patients on
immunosuppressants were not assessed, and
prospective validation is required.

CLINICAL RESEARCH RELEVANCE

WBAIL-2 is an accurate diagnostic tool for CeD, even in
patients consuming a gluten-free diet. It matches the
sensitivity of major histocompatibility complex-tetramer
detection but requires significantly less blood and is
easier to perform. It has the potential to replace
gastroscopy and small intestinal biopsies. WBAIL-2
could aid in diagnosing and monitoring other diseases
driven by cluster of differentiation 4þ T cells.

BASIC RESEARCH RELEVANCE

This study confirms IL2 as a sensitive and specific
biomarker of gluten-specific T-cell activation, capable of
detecting a single gluten-specific T cell in 4 mL of
blood. WBAIL-2’s practical advantages, including
minimal blood requirements and no need for specialized
infrastructure, make it a valuable tool for studying
immune responses in CeD and other T cell–driven
disorders.
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CeD is an appealing candidate for a T-cell diagnostic due
to the central role of gluten-specific CD4þ T cells in its
pathogenesis and the clear identification of immunodo-
minant gluten epitopes driving these cells.8 Gluten-specific
CD4þ T cells are specific to CeD; however, they circulate
in low numbers in the blood and can only be detected by
peptide-major histocompatibility complex tetramers9,10 or
by functional T-cell assays, such as ELISpot, which require a
preceding oral gluten challenge.11,12

Recent advances suggest that ultrasensitive assays
detecting interleukin 2 (IL2) release after gluten ingestion
could complement serology and enable non-biopsy
specimen–diagnosis of CeD.13–17 IL2 release has demon-
strated high sensitivity and specificity in distinguishing CeD
patients from healthy controls and nonceliac gluten sensi-
tivity.18,19 A whole-blood assay for IL2 (WBAIL-2) was
developed, in which gluten peptides stimulate blood in vitro,
and IL2 release is measured.20

This study assessed the feasibility and performance of
these novel, but technically straightforward, in vivo and
FLA 5.7.0 DTD � YGAST66865_proo
in vitro gluten-stimulated IL2 release assays in CeD. The
findings provide proof of concept for these ultrasensitive
assays being comparable to HLA-DQ:gluten peptide
tetramer assays in detecting rare antigen-specific CD4þ T
cells and having clinical utility in the diagnosis of CeD.
Materials and Methods
Study Design and Participants

This was a single-center, investigator-led study performed
at the Walter and Eliza Hall Institute, with recruitment via the
Royal Melbourne Hospital. Adult participants aged 18 to 75
years with medically diagnosed CeD (treated and active co-
horts), nonceliac gluten sensitivity, and healthy controls were
recruited. All participants provided written informed consent.
The study was approved by the Human Research Ethics Com-
mittees of the Royal Melbourne Hospital (2021.210) and the
Walter and Eliza Hall Institute (21/18) and was conducted in
accordance with the ethical principles in the Declaration of
Helsinki.

Inclusion criteria for CeD participants was documentation
confirming a past CeD diagnosis based on duodenal villous
atrophy (Marsh 3), positive celiac serology, and supportive
clinical criteria. The treated cohort of CeD participants were
consuming a GFD for at least 12 months. The active CeD cohort
were recruited at diagnosis before starting a GFD and had
positive transglutaminase-IgA or deamidated gliadin peptide-
IgG and duodenal histology that subsequently confirmed CeD.
Inclusion criteria for nonceliac gluten-sensitivity participants
were self-report of gluten sensitivity, adherence to a GFD,
documentation of prior exclusion of CeD based on negative CeD
serology or small intestinal histology, or both, while eating
gluten, or the presence of an HLA genotype not consistent with
CeD. Inclusion criteria for nonceliac, non-gluten–sensitive
controls were the absence of self-reported gluten sensitivity,
regular gluten consumption, and documentation of prior
exclusion of CeD confirmed by negative CeD serology or
duodenal histology, or both, while eating gluten. Participants
with autoimmune disease, such as type 1 diabetes mellitus and
autoimmune thyroid disease, were diagnosed based on
accepted clinical criteria. Exclusion criteria were the use of
systemic immunosuppressant medication, pregnancy, or the
presence of refractory CeD.
239
Procedures
Eligible participants attended a single visit where blood was

collected for CeD serology (transglutaminase-IgA and deami-
dated gliadin peptide-IgG, Melbourne Health) and HLA-DQ2/
DQ8 genotyping via single-nucleotide polymorphism tagging21

or polymerase chain reaction (Melbourne Pathology). Medical
history and medications were recorded. A subset of partici-
pants with treated CeD, nonceliac gluten sensitivity, and
healthy controls on a GFD for at least 4 weeks underwent a
single-dose open-label gluten challenge (10 g vital wheat
gluten) for additional immune studies or to follow-up WBAIL-2
results discordant with their diagnosis. Serum for IL2 assess-
ment was collected at baseline and 4 hours after a gluten
challenge (IL2 found in grass carp [GCIL-2]), while whole blood
was collected at baseline (8 mL) and day 6 (8 mL) for WBAIL-2.
In some cases, additional blood (50–300 mL) was collected at
f � 27 June 2025 � 4:31 pm � ce
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baseline and day 6 for tetramer analysis. A subset of treated
CeD participants undertook a 3-day oral gluten challenge (10 g/
d) to enable cytokine capture assays on peripheral blood
mononuclear cells (PBMCs) collected on day 6. Participants
undergoing gluten challenges completed a diary (modified CeD
patient-reported outcome)22 to record symptoms before, dur-
ing, and after the challenge.
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Cytokine Assays
The WBAIL-2 assay was adapted from a previously re-

ported 96-well plate approach20 to an individual tube format.
The WBAIL-2 assay used in this study is a prototype version of
the Novoleukin-C.G8 whole-blood assay, which is a proprietary
commercial product developed and distributed by Novoviah
Pharmaceuticals (Brisbane, Queensland, Australia). The stimu-
lation tube contains a mixture of 8 synthetic immunoreactive
gluten T-cell stimulatory peptides, including the well-
characterized, overlapping DQ2.5-glia-a1b, DQ2.5-glia-a2,
DQ2.5-glia-u1, and DQ2.5-glia-u2 epitopes included in the tet-
ramers used in this study, as well as selected additional HLA-
DQ2.5, HLA-DQ2.2, and HLA-DQ8–restricted epitopes derived
from wheat a-, g-, and u-gliadins, and low-molecular-weight
glutenin.8 The scrambled peptide negative control condition
matched the amount and amino acid composition of the peptide
mix in the stimulation tube. Synthetic peptides were >95%
pure by high-performance liquid chromatography, and identity
was confirmed by liquid chromatography-mass spectrometry
(Mimotopes, Clayton, Victoria, Australia).

Whole-blood was collected in 4 mL heparinized tubes, and
within 30 minutes, the peptide cocktail or a negative control
(scrambled peptide) was added. Samples were incubated at
37�C in 5% CO2 for 24 hours ± 20 minutes. Plasma was then
collected and stored at �80�C. IL2 levels were measured using
an electrochemiluminescence IL2 S-PLEX kit (Meso Scale Di-
agnostics [MSD], Rockville, MD) following the manufacturer’s
instructions. A subset of samples was also assessed for inter-
feron-g (IFN-g), IL17A, IL6, tumor necrosis factor-a, and IL10
using Proinflammatory and Cytokine V-PLEX assays. Plates
were run on an SQ 120MM instrument (MSD) , and mean
cytokine levels from duplicate wells were analyzed using MSD
Discovery Workbench software. The fold-change (peptide/
control) and IL2 concentration (peptide minus control) were
calculated. The optimal diagnostic cutoff was determined post
hoc using receiver operating characteristic curve analysis.
Interassay and intra-assay variability were calculated
(Supplementary Figure 1).
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Tetramer Generation
The extracellular domain of HLA-DQ2.5 (HLA-DQA1*5:01

and HLA-DQB1*02:01) with the DQ2.5-hor-3a epitope or the
DQ2.5-glia-a1a, DQ2.5-glia-a2, DQ2.5-glia-u1, DQ2.5-glia-u2
epitopes, or a class II-associated invariant chain peptide (CLIP;
ATPLLMQALPMGA) control covalently linked to the N-terminus
of the HLA-DQ2.5 b-chain via a flexible linker (GSGGSIEGRGGSG)
was produced and purified essentially as described.23 Purified
HLA-DQ2.5-peptidemonomerswere biotinylated on the C-terminal
Escherichia coli BirA ligase recognition sequence (GLNDI-
FEAQKIEWHE) of the HLA-DQ2.5 b-chain using BirA ligase buffer
exchanged on a HiTrap Desalting column (Cytiva) to remove excess
FLA 5.7.0 DTD � YGAST66865_proo
biotin, and complexed with streptavidin-phycoerythrin (PE) (BD
Pharmingen) to form tetramers.

Peripheral Blood Mononuclear QCell Studies
Immune studies on PBMCs used tetramers and cytokine

capture assays. PBMCs were isolated from whole-blood sam-
ples by density gradient centrifugation (Leucosep, Interpath
Services) and cryopreserved. PBMCs were incubated with 50
nmol/L dasatinib at 37�C for 30 minutes (Cell Signaling Tech-
nology), followed by an incubation with Fc receptor blocker
(Miltenyi Biotec or Stem Cell Technologies). PBMCs were
stained with HLA-DQ2.5-CLIP tetramer or HLA-DQ2.5:gluten
tetramers conjugated to PE, representing the epitopes DQ2.5-
glia-a1a, DQ2.5-glia-a2, DQ2.5-glia-u1, DQ2.5-glia-u2, and
DQ2.5-hor3 (10 mg/mL of each tetramer). Tetramer-stained
PBMCs underwent tetramer-enrichment using the EasySep
Release Human PE positive selection kit (Stem Cell Technolo-
gies) following the manufacturer’s instructions (not the CLIP
control). The CLIP negative control was used to establish a pre-
enrichment number of CD4þ T cells. Cells were stained with
Zombie UV live/dead marker (BioLegend) for 30 minutes at
room temperature, followed by an antibody mix comprising
anti-human CD3-BUV395 (clone: UCHT1; BD), CD4-BV480
(clone: RPA-T4; BD), CD8-BV750 (clone: SK1; BioLegend),
CD62L-fluorescein isothiocyanate (clone: DREG-56; Bio-
Legend), CD14-APC-H7 (clone: MDP9; BD Pharmingen),
CD45RA-PerCP-Cy5.5 (HI100; BD), Integrin b7-BV421 (clone:
FIB504; BD), and CD38-APC/Fire810 (clone: HB-7; BioLegend),
prepared in brilliant stain buffer (BD), for 30 minutes at 4�C.
Cells were analyzed on a Cytek Aurora cytometer, and flow
cytometry data were analyzed by FlowJo 10 software (BD
Biosciences). CD4þ T cells were analyzed by flow cytometry for
CD3þCD14�CD4þ HLA-DQ2.5:gluten tetramerþCD62L�C-
D45RA�Integrin b7þ, hereafter termed tetramerþb7þ T-
effector memory (TEM) cells. Expression of CD38þ tet-
ramerþb7þ TEM cells was assessed to determine activation
status. The gating strategy is shown in Supplementary Figure 2.
The number of tetramerþb7þ TEM cells was normalized to 106

CD4þ cells estimated from a pre-enriched sample.

Interleukin 2 Interferon-g Capture Assay
Cytokine capture assay was performed on fresh or frozen

PBMCs acquired from treated CeD patients 6 days after a 3-day
oral gluten challenge (10 g vital wheat gluten daily). Briefly, as
large numbers of PBMC were required, CD4þ T cells were
isolated using EasySep Human CD4þ T Cell Isolation Kit (Stem
Cell Technologies) then stained with HLA-DQ2.5-gluten tetra-
mers and magnetically enriched, as above. Tetramer-enriched
samples were incubated with 900,000 autologous PBMCs and
glia-a1/a2–, glia-u1/u2– and hor-3a–containing 14 to 16 mer
peptides (GL Biochem) at 15 mg/mL equimolar in T-cell media
(Iscove’s Modified Dulbecco’s Medium supplemented with 5%
heat-inactivated pooled human serum [Australian Lifeblood],
1x GlutaMAX [Gibco], 1x nonessential amino acids [Gibco], and
50 mmol/L 2-mercaptoethanol [Sigma-Aldrich]) for 4 hours at
37�C in 5% CO2. A CLIP condition and unstimulated condition
were included. Cytokine-secreting cells were identified using
the IL2-allophycocyanin and QIFN-g–fluorescein isothiocyanate
secretion assay kits (Miltenyi Biotec), following the manufac-
turer’s instructions, with a shortened secretion period of 30
f � 27 June 2025 � 4:31 pm � ce
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minutes. Cells were stained with Zombie UV Live/Dead marker
(BioLegend) for 30 minutes at 4�C, followed by an antibody mix
comprising anti-human CD3-Brilliant UltraViolet (BUV) 395
(clone: UCHT1; BD), CD4- Brilliant Violet (BV) 480 (clone: RPA-
T4; BD), CD8-BV750 (clone: SK1; BioLegend), CD62L-BV510
(clone: DREG-56; BD), CD14-BUV661 (clone: M5E2), CD11c-
BUV661 (clone: B-ly6; BD), CD19-BUV661 (clone: HIB19),
CD56-BUV661 (clone: MY31; BD), CD45RA-peridinin-
chlorophyll protein-Cy5.5 (HI100, BD), integrin-b7–BV421
(clone: FIB504; BD), CD38-allophycocyanin/Fire810 (clone:
HB-7; BioLegend), and CD60-BUV737 (clone: FN50; BD), pre-
pared in Brilliant Stain Buffer (BD), for 30 minutes at 4�C. Cells
were analyzed on a Cytek Aurora cytometer, and flow cytom-
etry data were analyzed by FlowJo 10 software.

Interassay and Intra-assay Variability
The interassay and intra-assay variability of the WBAIL-2

and plasma IL2 assessment (MSD S-PLEX) were evaluated
(Supplementary Figure 1A). The interassay variability of the IL2
whole-blood assay (WBA)was determined by testing samples on
2 occasions 1 to 2 weeks apart. The mean IL2 fold change and
pg/mL from triplicateWBA tests was used to compare across the
2 time points. The intra-assay variability was determined by
triplicate IL2 WBA tests performed from the same blood draw.
Additionally, a different operator performed an additional trip-
licate set of IL2WBA tests to determine interoperator variability.
The coefficient of variation (CV) was calculated as the ratio of the
standard deviation to the mean, expressed as a percentage
(%CV ¼ standard deviation/mean � 100).

Statistical Analyses
Data were analyzed using GraphPad Prism 5 software

(GraphPad Prism Software). Nonparametric tests were applied: the
Mann-WhitneyU test for unpaired data andWilcoxon’s signed rank
test for paired data, with corrections for multiple comparisons.
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Results
Participant Demographics

Between August 23, 2022, and December 18, 2024, 220
adults were screened for inclusion. Of these, 39 were excluded,
and 181were enrolled, comprising individualswith treated CeD
(n¼ 75), active CeD (n¼ 13), nonceliac gluten sensitivity (n¼
32), and healthy controls (n¼ 61) (Table 1 and Supplementary
Table 1).Women comprised 72% to 85%of the cohorts. Among
the CeD participants, 85% (treated) and 92% (active) carried
the celiac-susceptibility genotype HLA-DQ2.5 compared with
39% of healthy controls and 31% of nonceliac gluten-sensitive
participants.

The Whole-Blood Assay Measuring Interleukin
2 Release Is Sensitive and Specific for Celiac
Disease

The diagnostic utility of WBAIL-2 was evaluated in a
cohort of 88 adults with CeD (75 treated, 13 active) and 93
controls (32 nonceliac gluten sensitivity, 61 healthy). IL2
fold change and concentration were significantly higher in
treated CeD (median, 7.77–3.195 pg/mL) and active CeD
FLA 5.7.0 DTD � YGAST66865_proo
(median, 3.73; 1.162 pg/mL) compared with healthy (me-
dian, 0.79; �0.0078 pg/mL) and nonceliac gluten-sensitive
controls (median, 1.08; 0.001 pg/mL) (Figure 1A and B).

All CeD individuals were compared with all non-CeD
individuals and an optimal cutoff of 1.99-fold change yiel-
ded 88% sensitivity (77 of 88) and 89% specificity (83 of
93; area under the curve [AUC], 0.92; 95% confidence in-
terval [CI], 0.87–0.95; P < .0001) (Figure 1C; green). A
secondary cutoff of 0.271 pg/mL achieved 90% sensitivity
(79 of 88) and 83% specificity (77 of 93; AUC, 0.91; 95% CI,
0.86–0.96; P < .0001) (Figure 1D; green). Combining both
cutoffs improved specificity to 95% (88 of 93) with 86%
sensitivity (76 of 88) (Figures 1E and F). Treated CeD was
also compared with nonceliac gluten sensitivity to deter-
mine specificity in these 2 cohorts consuming a GFD. The
1.99-fold change cutoff yielded 81% specificity (26 of 32;
AUC, 0.89; 95% CI, 0.82-0.95; P < .0001) (Figure 1C; blue),
and the 0.271 pg/mL cutoff yielded 84% specificity (27 of
32; AUC, 0.90; 95% CI, 0.83-0.96; P < .0001) (Figure 1D;
blue). The combined cutoff yielded 91% specificity (29 of
32) in participants consuming a GFD.

No significant differences in WBAIL-2 were observed
across HLA types or zygosity (Figure 1G). However, sensi-
tivity was lower (56%) in participants with the less com-
mon HLA-DQ8 genotype. Excluding this genotype from the
analyses increased WBAIL-2 sensitivity to 90% (71 of 79).
Using dual cutoff criteria in HLA-DQ2.5þ CeD participants,
WBAIL-2 achieved 90% sensitivity (71 of 79) and 95%
specificity (88 of 93).

Of 5 non-CeD participants with positive WBAIL-2 re-
sponses, 4 were first-degree relatives of a person with CeD
(Table 2). First-degree relatives had a higher IL2 fold change
(median, 1.35) than nonrelatives (median, 0.74; P ¼ .0146)
(Figure 1H). Of these 5, 2 were healthy, and 3 reported
nonceliac gluten sensitivity. Three participants (1 healthy, 2
nonceliac gluten sensitive) agreed to a repeat WBAIL-2
assessment and underwent a single-dose gluten challenge
after a 4-week GFD. The healthy participant and 1 nonceliac
gluten-sensitive participant again showed positive WBAIL-2
but had a negative GCIL-2. The other nonceliac gluten-
sensitive participant had a negative WBAIL-2 on retesting,
suggesting an initial false positive.

Negative WBAIL-2 responses occurred in 12 CeD partici-
pants (n ¼ 10 treated, n ¼ 2 active) (Table 2). Among them
were 4 HLA-DQ8þ individuals: 1 had no follow-up tests, 1 had
prior positive IFN-g ELISpot T-cell responses to rye and barley
but not wheat, and 2 had high IL2 concentrations in the WBA
control tube. This pattern was also observed in 2 HLA-DQ2.5þ

treated CeD nonresponders, who initially had substantially
higher IL2 concentrations in the control tube of their WBAIL-2
assays, but upon retesting, they had lower control tube IL2
levels and their WBAIL-2 results were positive.

WBAIL-2 responses were initially negative in 2 treated
CeD nonresponders, but these became positive on day 6
after a gluten challenge. One treated CeD participant had
consistently negative WBAIL-2 results, including repeat
WBAIL-2, postchallenge WBAIL-2, and GCIL-2. Both active
CeD participants, after starting a GFD, showed positive
WBAIL-2 responses when the test was repeated.
f � 27 June 2025 � 4:31 pm � ce
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Table 1.Demographics and Clinical Q21Characteristics of Participants

Variable

Treated CeD Active CeD Healthy NCGS

(n ¼ 75) (n ¼ 13) (n ¼ 61) (n ¼ 32)

Female participants 64 (85) 10 (77) 44 (72) 27 (84)

Age, y 55 (20–76) 28 (18–52) 44 (19–71) 47 (24–75)

HLA-DQ
2.5/2.5 7 (9) 2 (15) 3 (5) 0 (0)
2.5/x 35 (37) 7 (54) 14 (23) 9 (29)
2.5/2.2 14 (19) 2 (15) 2 (3) 0 (0)
2.5/7 3 (4) 0 (0) 1 (2) 0 (0)
2.5/8 7 (9) 1 (8) 4 (7) 1 (3)
2.2/2.2 0 (0) 0 (0) 7 (12) 0 (0)
2.2/x 1 (1) 0 (0) 1 (2) 6 (19)
2.2/8 0 (0) 0 (0) 0 (0) 1 (3)
8/8 2 (3) 0 (0) 0 (0) 0 (0)
8/7 1 (1) 1 (8) 0 (0) 1 (3)
8/x 5 (7) 0 (0) 9 (15) 3 (10)
7/x 0 (0) 0 (0) 6 (10) 7 (23)
x/x 0 (0) 0 (0) 13 (22) 3 (10)

Positive TTG and DGP serology 4 (5) 10 (77) 1 (2) 0 (0)

Positive TTG serology only 8 (11) 3 (23) 2 (3) 0 (0)

Positive DGP serology only 2 (3) 0 (0) 2 (3) 1 (3)

Years on a GFD, y 11 (1–52) 0 NA 7 (0.5–32)

Autoimmune disease other than CeD 14 (19) 0 (0) 10 (16) 6 (19)
Hashimoto’s thyroiditis 5 (7) 0 (0) 3 (5) 4 (13)
Grave’s disease 2 (3) 0 (0) 0 (0) 0 (0)
Rheumatoid arthritis 3 (4) 0 (0) 0 (0) 1 (3)
Type 1 diabetes mellitus 2 (3) 0 (0) 7 (11) 1 (3)
Dermatitis herpetiformis 1 (1) 0 (0) 0 (0) 0 (0)
Scleroderma 1 (1) 0 (0) 0 (0) 0 (0)
Addison’s disease 1 (1) 0 (0) 0 (0) 0 (0)
Autoimmune hepatitis 1 (1) 0 (0) 0 (0) 0 (0)
Sjogren’s syndrome 0 (0) 0 (0) 0 (0) 1 (3)
Lupus 0 (0) 0 (0) 0 (0) 1 (3)

GCIL-2, n 35 0 5 16

Tetramer analysis, n 10 0 0 4

Baseline WBAIL-2, n 75 13 61 32

Day 1 pregluten challenge WBAIL-2, n 31 0 1 12

Day 6 postgluten challenge WBAIL-2, n 31 0 1 11

NOTE. Data are presented as n (%), or median (range).
DGP, deamidated gliadin peptide antibody; NA, not applicable; NCGS, nonceliac gluten sensitivity; TTG, tissue trans-
glutaminase antibody.
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To evaluate the disease specificity of WBAIL-2, the CeD
cohort was stratified by the presence (n ¼ 14) or absence
(n ¼ 61) of concurrent autoimmunity. IL2 fold change did
not differ significantly between CeD participants with
autoimmunity (median, 12.52) and those without (median,
7.66) (Figure 1I). Similarly, in the nonceliac cohort (n ¼ 93),
there was no significant difference between participants
with (n ¼ 16; median, 0.68) and without autoimmune dis-
ease (n ¼ 77; median, 0.99) (Figure 1J). WBAIL-2 was
positively correlated with years on a GFD (r ¼ 0.35; 95% CI.
FLA 5.7.0 DTD � YGAST66865_proo
0.13–0.54; P ¼ .002) (Figure 1K) and participant age (r ¼
0.49; 95% CI, 0.01–0.45; P ¼ .034) (Figure 1L).

To determine whether the diagnostic utility of the
WBAIL-2 could be improved, additional cytokines reported
to be increased by acute gluten challenge (IFN-g, IL17A, IL6,
tumor necrosis factor-a, and IL10)14,24 were measured in a
subset of CeD (n ¼ 43) and nonceliac (n ¼ 26) participants.
Samples were selected based on WBAIL-2 results either
concordant (n ¼ 58) or discordant (n ¼ 11) with the
diagnosis. Across cohorts, IL2 correlated most strongly with
f � 27 June 2025 � 4:31 pm � ce
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IFN-g (r ¼ 0.632, P ¼ 2.2�07) and IL-17A (r ¼ 0.595, P ¼
1.6�07) (Supplementary Table 2). After IL2, IFN-g and IL17A
showed the highest diagnostic performance (AUC, 0.69 and
0.64; P ¼ .018 and P ¼ .091, respectively). In participants
with WBAIL-2, results consistent with their diagnosis, IFN-g
and IL17A had lower diagnostic accuracy than IL2 (AUC,
0.84 and 0.75; P ¼ .0002 and P ¼ .005, respectively), and
neither cytokine was positive in CeD participants with
negative WBAIL-2 results. These findings confirm IL2 as the
optimal cytokine for CeD diagnostic assays. High IFN-g re-
sponses in nonceliac participants with positive WBAIL-2
suggest a true biological response rather than technical is-
sues or nonspecific IL2 production.

The variability of WBAIL-2 and the IL2 S-PLEX was
assessed in 3 treated CeD participants and 3 nonceliac
controls (Supplementary Figure 1A). For WBAIL-2, the
mean CV was 24.1% to 29.7% for interassay variability,
28.9% to 46.3% for intra-assay variability, and 17.8% to
19.4% for interoperator variability (Supplementary
Figure 1B–E). In the IL2 S-PLEX, replicate wells had a
mean CV of 2.5%, and interassay variability had a mean CV
of 7.6% (Supplementary Figure 1F).
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The Whole-Blood Assay Measuring Interleukin 2
Release Response Correlates With Serum
Interleukin 2 After Oral Gluten Challenge

Serum IL2 production after the oral gluten challenge
(GCIL-2) was assessed to determine its diagnostic accuracy.
GCIL-2 levels were significantly higher in CeD participants
(n ¼ 35; median, 16.1 pg/mL) compared with nonceliac
participants (n ¼ 21; median, 1.0 pg/mL; P < .0001)
(Figure 2A). The optimal diagnostic cutoff for GCIL-2 was
identified as a 2-fold increase from baseline to 4 hours
postchallenge, achieving 97% sensitivity and 100% speci-
ficity for detecting CeD (AUC, 0.96; 95% CI, 0.9–1.0; P <
.0001) (Figure 2B). Additionally, GCIL-2 levels were posi-
tively correlated with WBAIL-2 results (r ¼ 0.72, 95% CI
0.56–0.83; P < .0001) (Figure 2C).
820

821

822

823

824

825

826

827

828
The Whole-Blood Assay Measuring Interleukin 2
Release Response Correlates With the
Frequency of Activated Gluten-Specific Cluster
of Differentiation 4þ T Cells

The WBAIL-2 and GCIL-2 were compared with matched
HLA-DQ2.5:gluten tetramer analysis. Higher tetramerþb7þ
=
Figure 1.WBAIL-2 diagnostic performance. (A) IL2 fold change
(n ¼ 13), healthy controls (n ¼ 61) and nonceliac gluten sensitivit
are shown for IL2 fold change and (D) concentration for treated
with NCGS alone (blue). Performance of combined cutoffs usin
control cohorts. (G) IL2 fold change in treated CeD based on HL
stratified by presence of a first-degree relative (FDR) with CeD. I
the presence or absence of autoimmune diseases (AID) other tha
GFD and (L) age. The cutoffs determined by the receiver ope
Negative IL2 concentrations were set at 0.01 to allow graphing o
*P < .05, **P < .01, ***P < .001, ****P < .0001.

FLA 5.7.0 DTD � YGAST66865_proo
TEM cell frequencies in CeD participants (n ¼ 10; median,
2.15) than in nonceliac participants (n ¼ 4; median, 0.19;
P ¼ .024) (Figure 2D) were shown. A cutoff of 0.59 cells per
million CD4þ T cells achieved 100% sensitivity and 75%
specificity for CeD (AUC, 0.90; 95% CI, 0.7–1.0; P ¼ .024)
(Figure 2E). Tetramerþb7þTEM cell frequency correlated
with GCIL-2 (r ¼ 0.74, P ¼ .0035) (Figure 2F) and with
WBAIL-2 both with (r ¼ 0.79; 95% CI, 0.58–0.90; P < .0001)
(Figure 2G) and without (r ¼ 0.73; 95% CI, 0.48–0.87; P <
.0001) the gluten challenge (Figure 2H). A positive WBAIL-2
(�2-fold change over control) was detected with as few as 1
tetramerþb7þTEM cell per million CD4þ T cells, equivalent
to 1 cell in 4 mL of blood. WBAIL-2 also correlated with
CD38þ tetramerþb7þTEM cells (r ¼ 0.62, P ¼ .0005)
(Figure 2I), representing activated gluten-specific T cells.
In Vivo Gluten Challenge Increases the
Frequency of Tetramerþb7þT-Effector Memory
Cells and the Whole-Blood Assay Measuring
Interleukin 2 Release Response

WBAIL-2 and tetramer frequency were assessed at
baseline (day 1) and day 6 after an oral gluten challenge in
treated CeD. The gluten challenge expands gut-homing
gluten-specific T cells in the blood by day 6.11,12,16,25,26

The WBAIL-2 increased by a median of 3-fold on day 6
compared with baseline, with IL2 fold changes rising from a
median of 7.8 on day 1 to 34.1 on day 6 (P ¼ .0013)
(Figure 3A). Two CeD participants with negative WBAIL-2
results on day 1 had positive responses on day 6, indi-
cating gluten-induced expansion of gluten-specific T cells
enhances in vitro IL2 production. The oral gluten challenge
increased absolute IL2 concentrations in vitro by a median
of 2.5-fold, from 1.5 pg/mL on day 1 to 7.4 pg/mL on day 6
(P < .0001) (Figure 3B). Similarly, the frequency of tetra-
merþb7þTEM cells increased by a median of 2.4-fold, from
2.2 on day 1 to 8.7 on day 6 (P ¼ .0098) (Figure 3C).
CD38þtetramerþb7þTEM cells, indicative of recent gluten-
induced activation,16 rose from 0.12 on day 1 to 6.8 on
day 6 (P ¼ .004) (Figure 3D). One participant showed a
decrease in tetramerþb7þTEM cells on day 6, consistent with
their WBAIL-2 response. The percentage of tetra-
merþb7þTEM cells expressing CD38 increased from 3.6% on
day 1 to 76.6% on day 6 (P ¼ .0098) (Figure 3E). These
findings demonstrate that the WBAIL-2 reflects the expan-
sion of circulating gluten-specific T cells after a gluten
challenge.
and (B) IL2 concentration in treated CeD (n ¼ 75), active CeD
y (NCGS; n ¼ 32). (C) Receiver operating characteristic curves
CeD compared with NCGS and healthy (green) or compared
g both IL2 fold change and concentration in (E) CeD and (F)
A type and zygosity. (H) IL2 fold change in non-CeD controls
L2 fold change in (I) CeD and (J) non-CeD cohorts stratified by
n CeD. IL2 fold change correlation with (K) years consuming a
rating characteristic curves are shown by the dashed lines.
n a log10 scale. Median and 95% CIs (shaded area) are shown.
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Table 2.Participants With Discordant Whole-Blood Assay Measuring Interleukin 2 Release Responses

Participant Baseline WBA Repeat baseline WBA Day 6 after challenge WBA GCIL-2 HLA Notes

Active CeD
1 Negative Positivea 2.5/8 Baseline WBA close to cutoff (1.93-fold change,

2.14 pg/mL)
2 Negative Positivea 2.5/x Baseline WBA close to cutoff (2.72-fold change,

0.24 pg/mL)

Treated CeD
1 Negative 8/x No follow-up tests due to death
2 Negative 8/x Previously responded to rye and barley on

ELISpot but not wheat
3 Negative Positive Positive Positive 8/8 Baseline WBA high control IL2 (0.75 pg/mL)

compared with positive repeat WBA (0.22
pg/mL)

4 Negative Negative 8/x High control IL2 in baseline (7.9 pg/mL) and
repeat WBA (35.4 pg/mL)

5 Negative Negative Positive Positive 2.5/x
6 Negative Negative Positive Positive 2.5/x
7 Negative Positive Positive Positive 2.5/x Baseline WBA high control IL2 (2.4 pg/mL)

compared with positive repeat WBA (0.16
pg/mL)

8 Negative Positive Positive Positive 2.5/2.2 Baseline WBA high control IL2 (0.35 pg/mL)
compared with positive repeat WBA (0.08
pg/mL)

9 Negative Negative Negative Negative 2.5/2.5 In clinical trial on a-melanocyte–stimulating
hormone for type 1 diabetes

10 Negative Negative No gluten challenge as pregnant

Healthy
1 Positive Positive Positive Negative 2.2/x FDR, negative serology while eating gluten

(2024)
2 Positive 2.5/x FDR, negative serology and histology while

eating gluten (2024)

NCGS
1 Positive Positive Negative 7/x FDR, refused gluten challenge
2 Positive Negative Negative Negative 8/x FDR
3 Positive Positive Negative 7/x Refused gluten challenge

FDR, first degree relative; NCGS, nonceliac gluten sensitive.
aRepeat baseline WBAIL-2 done after 1 week on GFD for active CeD.
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Figure 2. Comparison of WBAIL-2 with GCIL-2 and tetramer frequency. (A) GCIL-2 calculated as the fold change in IL2 be-
tween baseline and 4 hours after the gluten challenge is shown for CeD (n ¼ 35) and non-CeD cohorts (n ¼ 21). (B) Receiver
operating characteristic curve is shown for the GCIL-2. (C) GCIL-2 responses are plotted against IL-2 WBA responses
(calculated as fold change between peptide and control tube). The cutoffs for a positive GCIL-2 and WBA (2-fold change) are
indicated by the dotted lines. (D) The number of tetramerþb7þTEM T cells per million CD4þ T cells are shown for CeD (n ¼ 10)
and non-CeD cohorts (n ¼ 4). (E) Receiver operating characteristic curve is shown for the frequency of tetramerþb7þTEM T cells
per million CD4þ T cells. The frequency of tetramerþb7þTEM T cells per million CD4þ T cells is plotted against (F) GCIL-2 fold
change, (G) WBAIL-2 fold change, and (H) WBAIL-2 concentration (pg/mL). (I) Frequency of CD38þ tetramerþb7þTEM T cells
per million CD4þ T cells is plotted against the WBAIL-2 fold change. Treated CeD are shown in blue, NCGS in purple, and
healthy participants in green, and baseline frequencies are indicated by circles, and frequencies on day 6 after the gluten
challenge are indicated by triangles. Median and 95% CIs (shaded area) are shown. *P < .05, ****P < .0001.
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Figure 3.WBAIL-2 responses and tetramer frequencies reflect gluten challenge–induced T-cell expansion and symptoms in
treated celiac disease. (A) WBAIL-2 fold change, (B) WBAIL-2 concentration (pg/mL), (C) frequency of tetramerþb7þTEM T cells
per million CD4þ T cells, (D) frequency of CD38þ tetramerþb7þTEM T cells per million CD4þ T cells, and (E) percentage of
tetramerþb7þTEM T cells expressing CD38 are shown before (day 1; D1) and after (day 6; D6) the gluten challenge in treated
CeD participants (n ¼ 31 for WBAIL-2 and n ¼ 10 for tetramer). Treated CeD participants were stratified based on whether or
not they vomited after the oral gluten challenge. (F) GCIL-2 is shown, and both (G) frequency of tetramerþb7þTEM T cells per
million CD4þ T cells, and (H) IL2 WBA performed before the gluten challenge are shown. Box and whisker plot: The boxes
indicate the 25th percentile (bottom border), median (center line), and 75th percentile (top border), the whiskers show the
maximum and minimum ranges, and the circles indicate outliers. *P < .05, **P < .01, ****P < .0001.
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In Vivo and In Vitro Interleukin 2 Responses and
Tetramer Frequency Correlate With Patient
Symptoms

The relationship between gluten-induced symptoms and
gluten-specific T-cell responses was assessed in 31 treated
CeD participants. The most common symptoms after gluten
exposure were tiredness (55%; mean severity, 4.5 of 10),
nausea (55%; mean severity, 5.1 of 10), and headache (52%;
mean severity, 3.7 of 10), with peak symptoms most
commonly occurring at 3 to 4 hours (symptom heat map,
Supplementary Figure 3). Severe symptoms (�7 of 10) were
reported by 9 participants (29%), 7 of whom experienced
vomiting. Vomiting participants had significantly higher
gluten-specific T-cell responses: GCIL-2 was 60-fold higher,
with a median 949-fold change compared with 14-fold in
nonvomiting participants (P < .0001) (Figure 3F). Tetra-
merþb7þTEM cell frequency was 20-fold higher, with a
median of 48.5 compared with 2.4 (P ¼ .017) (Figure 3G),
and WBAIL-2 was 10-fold higher, with a median 60-fold
change compared with 6.7-fold (P ¼ .004) (Figure 3H). No
consistent relationship was observed between other symp-
toms and T-cell responses, although notably, 1 nonvomiting
participant with a >100-fold WBAIL-2 increase reported
severe tiredness (Figure 3H). These findings suggest that
the magnitude of WBAIL-2 responses at baseline can iden-
tify treated CeD participants likely to experience severe
symptoms after gluten exposure.
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Gluten-Specific Cluster of Differentiation 4þ T
Cells Are Responsible for Gluten-Induced
Interleukin 2 Production

To confirm acute IL2 production is a biologically rele-
vant marker of pathogenic gluten-specific T cells, a cyto-
kine capture assay was performed using PBMCs from
treated CeD participants after the gluten challenge
(Figure 4A). From 125 to 205 million starting PBMCs, a
median of 323 tetramerþb7þTEM T cells was detected, with
64.7% (median, 209 cells) expressing CD69 (Figure 4B).
The cytokine profile of CD69þtetramerþb7þTEM T cells
varied: 1 participant had more IL2þIFN-gþ cells (38.9%)
than IL2�IFN-gþ cells (29.1%), and the other 2 had pre-
dominantly IL2�IFN-gþ cells (61.7% and 28.7%)
compared with IL2þIFN-gþ cells (12.4% and 16.6%,
respectively) (Figure 4C). All participants had few
IL2þIFN-g� cells (median 4.97%). Higher frequencies of
IL2þ cells correlated with higher WBA IL2 fold changes
(Figure 4D). A similar trend was observed for IFN-g,
although 1 participant had a high frequency of IFN-gþ cells
but low IFN-g fold change, likely due to using fresh
PBMCs instead of frozen, which may affect cytokine
secretion. Shorter secretion periods favor IL2 capture,
whereas longer periods favor IFN-g. No IL2 was detected
from naïve, central memory, or CD8þtetramerþb7þ T cells
(data not shown). These findings confirm that activated
gluten-specific CD4þ T cells drive gluten-induced IL2
production.
FLA 5.7.0 DTD � YGAST66865_proo
Discussion
Accurate blood-based T-cell diagnostics to support clin-

ical practice are highly attractive, but none are used
routinely outside of the QuantiFERON-Gold (Labcorp) assay
for tuberculosis. CeD is an ideal candidate for T-cell di-
agnostics due to the central role of gluten-specific CD4þ T
cells in its pathogenesis and the well-defined immunodo-
minant gluten epitopes driving them.8 The field is increas-
ingly shifting toward an immune-based diagnosis of
CeD5,27,28 with increased acceptance of an immune
(serology) non–biopsy specimen–based diagnosis when
transglutaminase-IgA is 10 times the upper limit of normal
in both children29,30 and, increasingly, adults.31 However,
serology has limited positive-predictive value in average-
risk patients and is uninformative for those avoiding
gluten.3

Our findings show that the WBAIL-2 provides a direct
measure of pathogenic gluten-specific T cells and offers high
accuracy for diagnosing CeD, even in patients adhering to a
strict GFD. The assay performed optimally in patients with
the common HLA-DQ2.5 genotype, present in >85% of CeD
cases.32 We confirm that IL2 production in vitro correlates
with serum IL2 and the circulating frequency of gluten-
specific T cells before and after gluten exposure. Strong
WBAIL-2 responses predicted severe symptoms, such as
vomiting, even before gluten ingestion. Importantly, we
show that IL2 is produced by tetramerþ gluten-specific T
cells, highlighting the biological relevance of this diagnostic
approach.

Detection of gluten-specific T cells is challenging due to
their low frequency (w1 per 100,000 CD4þ T cells in treated
CeD and negligible in individuals without CeD).10,16 To date,
this has only been possible using HLA-DQ-gluten tetramer–
based assays10 or prior expansion using a 3-day gluten
challenge coupled with T-cell ELISpot or enzyme-linked
immunosorbent assays.11,33 Although the tetramer-based
approach incorporating 5 T-cell epitopes (HLA-DQ2.5-glia-
a1a, DQ2.5-glia-a2, DQ2.5-glia-u1, DQ2.5-glia-u2, and
DQ2.5-hor-3) has excellent sensitivity (97%) and specificity
(95%) for CeD, the requirement for large blood volumes
(30 to �50 mL), knowledge of patient HLA genotype,
technical expertise, and access to flow cytometry, makes this
approach impractical for clinical translation.10,16 Further,
approaches using a gluten challenge are less appealing to
patients. The WBAIL-2 has similar sensitivity and specificity
to these approaches but avoids the gluten challenge, is simple
to perform, and requires limited blood (4 mL per tube).

In our community study, the WBAIL-2 demonstrated
high sensitivity and specificity for the detection of CeD. The
findings confirm the accuracy of the WBAIL-2 in a simple
tube-based format. Variability (mean CV, 18%–46%) was
similar to the QuantiFERON-Gold assay (mean CV, 13%–
30%),34 and likely reflects the challenges of detecting
gluten-specific T cells that are circulating in low frequencies.
Although GCIL-2 offered optimal diagnostic performance,
the WBAIL-2 required only 8 mL of blood and no gluten
challenge. We showed that priming with oral gluten
f � 27 June 2025 � 4:31 pm � ce
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Figure 4. IL2 and IFN-g production by gluten-specific CD4þ T cells. (A) Gating strategy for IL2- and IFN-g–producing cells
gated on tetramerþb7þ cells in blue and tetramer�b7þ in grey, CD45RA�CD62L�TEM, and Q20activated CD69þ cells, 1 repre-
sentative of 3 similar experiments. (B) The number of tetramerþb7þTEM cells and CD69þtetramerþb7þTEM cells (left y-axis) and
the frequency of tetramerþb7þTEM T cells that express CD69 (right y-axis). (C) IL2 and IFN-g double positives, single positives,
and double negatives as a frequency of CD69þ tetramerþb7þTEM cells. (D) Frequency of CD69þ tetramerþb7þTEM cells that
express IFN-g (blue) or IL2 (purple) are plotted against the fold change in the respective cytokine from a WBA. Median and
95% CIs are shown. Each shape represents a different patient.
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enhances the sensitivity of the WBAIL-2 by expanding the
gluten-specific T-cell pool.

The lower sensitivity of the WBAIL-2 for HLA-DQ8þ CeD
may have been impacted by the small sample size for this
less common genotype, and another possibility is that HLA-
DQ8–restricted responses in some CeD patients were below
the assay’s detection limit. Indeed, we previously showed
that serum IL2 responses after an oral gluten challenge in
FLA 5.7.0 DTD � YGAST66865_proo
HLA-DQ8þ CeD is lower than HLA-DQ2.5þ CeD, suggesting
that HLA type can impact the T-cell response.18 Further,
there may be other HLA-DQ8–restricted peptides that could
enhance WBAIL-2 sensitivity, although detailed character-
ization of HLA-DQ8–restricted immunodominant epitopes is
considerably more limited than in HLA-DQ2.5þ CeD.8

Prospective studies in larger populations are needed,
both to better understand WBAIL-2 performance in HLA-
f � 27 June 2025 � 4:31 pm � ce
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DQ8þ CeD and also inform the optimal testing algorithm for
this assay. The WBAIL-2 could potentially be used as a
confirmatory diagnostic in lieu of gastroscopy or as a first-
line test in people consuming a GFD. The role of a single-
dose gluten challenge to measure serum IL2 or boost
WBAIL-2 responses to clarify “equivocal” WBAIL-2 results
also warrants investigation.

Confirming published work, we show a single-dose
gluten challenge triggers a rise in serum IL2 within hours,
with high sensitivity (97%) and specificity (100%) for CeD,
and an expansion of circulating CD38þ activated gluten-
specific CD4þ T cells within days.14,16 Although WBAIL-2
closely correlates with GCIL-2 responses, some discordant
results occur, with positive GCIL-2 but negative WBAIL-2, or
vice versa. This may reflect differences in the assays: GCIL-2
measures systemic IL2 responses to ingested wheat gluten,
where a broad range of polyclonal gluten-specific T cells
have been activated, whereas WBAIL-2 uses in vitro stim-
ulation with a small number of deamidated gluten peptides,
targeting a narrower T-cell repertoire in a low blood volume
that may only contain a few gluten-specific T cells.

This study is the first to demonstrate that the gluten-
specific T cell is responsible for gluten-induced IL2 pro-
duction, and it does this generally alongside IFN-g produc-
tion. These T cells fall into 3 functional subsets: IL2þIFN-g�,
IFN-gþIL2�, and IFN-gþIL2þ, with the IFN-gþIL2� subset
being most common in 2 of 3 participants. However,
IL2þIFN-g� cells may be underestimated due to rapid IL2
internalization,35 and whether cytokine levels reflect a few
highly active T cells or many less active ones remains un-
clear. Future work should examine how gluten-specific T
cells shift between functional states over time and in rela-
tion to acute gluten exposure. These data confirm that
gluten-induced IL2 in the WBAIL-2 and GCIL-2 directly re-
flects the activation of pathogenic gluten-specific CD4þ T
cells, confirming its biological relevance as a diagnostic
biomarker in CeD.

We confirmed that higher GCIL-2 levels correlate with
more severe symptoms14,36 and extended this to show that
prechallenge WBAIL-2 responses and tetramerþ T-cell fre-
quency predict gluten-induced vomiting. This suggests
WBAIL-2 could predict symptom severity without an oral
gluten challenge, aiding in selecting symptomatic patients
for therapy trials where symptoms are key end points.
Another advantage of the WBAIL-2 is monitoring the func-
tional status of gluten-specific T cells without the need for a
gluten challenge, which can be counterproductive and un-
desirable in the trial setting.

This study has several limitations. First, the single-center
design and rigorous inclusion criteria limit the generaliz-
ability of the findings to diverse real-world patient pop-
ulations, such as those taking systemic immunosuppression.

Second, the sample size for certain subgroups, particu-
larly patients with less common non–HLA-DQ2.5 HLA ge-
notypes, was small, reducing the robustness of the
conclusions drawn for these populations.

Third, although the WBAIL-2 demonstrated promising
results, its reproducibility across different laboratories was
FLA 5.7.0 DTD � YGAST66865_proo
not assessed, which is critical for its adoption in routine
clinical practice.

Fourth, the study also does not address the cost-
effectiveness of implementing the WBAIL-2 compared with
current diagnostic methods, an important consideration for
real-world applicability. Studies assessing IL2-based T-cell
diagnostics in children are also needed, especially as we
showed WBAIL-2 responses correlated positively with older
participant age and previously showed serum IL2 responses
to oral gluten may be lower in younger patients with CeD.18

Future prospective validation studies with multiple centers
and a larger patient numbers, including those with non–
HLA-DQ2.5 genotypes, will provide important data to vali-
date the diagnostic performance of the WBAIL-2 in different
clinical settings.

Using the WBAIL-2 approach, our findings highlight the
potential for practical, blood-based T-cell diagnostics to
extend beyond infectious diseases into autoimmunity. The
ultrasensitive electrochemiluminescent platform is well-
suited to clinical laboratories due to its compact design,
minimal setup requirements, and automation that reduces
the need for extensive technical training. Its high sensitivity,
broad dynamic range, and capability to analyze various
sample types, including serum and plasma, make it a prac-
tical choice for diagnostic purposes. Such a platform could
be adapted for a variety of T cell–driven diseases and con-
ditions, including type 1 diabetes, malignancies, transplant
immunology, and other infectious diseases, whenever
circulating antigen-specific T cells are likely to be present,
even at low frequencies. Future studies should explore how
whole-blood cytokine release assays, combined with ultra-
sensitive cytokine detection, can further advance T-cell di-
agnostics in these contexts, improving early detection,
disease monitoring, and therapeutic stratification.
Conclusion
Our study indicates that gluten-stimulated IL2 release

assays are practical and correlate with the presence of a
pathogenic gluten-specific CD4þ T-cell response in CeD.
Availability of complementary in vivo and in vitro IL2
release assays in CeD could address the diagnostic needs of
clinicians managing patients with an uncertain diagnosis
while avoiding a prolonged gluten rechallenge, children and
adults unsuitable or unwilling to undergo endoscopy for
histologic diagnosis, and provides a biomarker for strati-
fying disease severity by the “strength” of antigluten im-
munity. In immune conditions with T cells specific for well-
defined antigens, in-tube WBAIL-2 release assays could be
feasible and facilitate personalized diagnosis and therapy
previously not possible in clinical care.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://dx.doi.org/10.1053/
j.gastro.2025.05.022
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Supplementary Figure 1. Evaluation of interassay and intra-assay variability of the WBAIL-2 and the MSD IL2 S-PLEX. (A)
Experimental design for assessment of interassay and intra-assay and interoperator variability. IL2 fold change (left) and
concentration (pg/mL; right) are shown for (B) interassay replicates at visit 1 and 2, (C) intra-assay replicates for tests 1, 2 and
3, and (D) interoperator replicates for operators 1 and 2 for the IL2 WBA. (E) Percentage CVs are shown for fold change and pg/
mL for interassay, intra-assay, and interoperator variability of the IL2 WBA. (F) Percentage CVs are shown for intra-assay and
interassay variability of the MSD IL2 S-PLEX.
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Supplementary Figure 2. Tetramer gating strategy. Example gating strategy of the tetramer-enriched sample. Shown is 1
representative treated CeD patient on day 6 after the gluten challenge. Firstly, cleanup gates were applied to gate lympho-
cytes, single cells, live CD14� cells and CD3þCD4þ cells (top row). FSC-A, forward side scatter area; SSC-A, side scatter area.
Next, tetramerþ cells were gated on, followed by effector memory cells identified as CD45RA�CD62L�, then integrin b7þ cells,
and lastly, CD38hi cells (middle row). Integrin b7þ and CD38þ gates are shown for respective fluorescence minus one samples
(bottom row).
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Supplementary Figure 3. Heat map of gluten-induced symptoms. Heat map of patient-reported symptom scores after gluten
challenge in treated CeD participants (n ¼ 31). Each row represents 1 participant. Maximum reported severity scores are
shown, ranging from 0 (no symptoms; white) to 10 (severe symptoms; red).
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Supplementary Table 1.Participant Screening, Inclusion and Exclusion Numbers

Variable

Treated CeD Active CeD Healthy NCGS Total

(n) (n) (n) (n) (n)

Screened 96 13 66 45 220

Included 75 13 61 32 181

Excluded 21 0 5 13 39

Reason for exclusion
Use of immunosuppressants 5 0 2 1 8
Uncertain diagnosisa 12 0 1 8 21
Laboratory technical issues 1 0 2 1 4
Nonadherent with GFD 3 0 0 3 6

NCGS, nonceliac gluten sensitivity.
aUncertain diagnosis includes insufficient documentation to confirm the diagnosis, diagnosis on biopsy or serology alone and
serology/biopsy specimen testing performed while the patient was consuming a GFD.
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Supplementary Table 2.Additional Cytokine Analysis Performed on the Whole-Blood Analysis Plasma

Variable

Correlation with IL2 Diagnostic performance

pg/mL Fold change All participants (N ¼ 69) Participants with IL-2 WBA consistent with diagnosis (n ¼ 58)

Cytokine Spearman’s r P value Spearman’s r P value AUC 95% CI P value AUC 95% CI P value

TNF-a 0.257 .033 0.348 .003 0.58 0.44-0.71 .287 0.64 0.50-0.79 .066

IL6 0.293 .015 0.261 .030 0.62 0.49-0.76 .090 0.66 0.52-0.80 .041

IL10 0.218 .072 0.225 .063 0.55 0.41-0.69 .492 0.61 0.46-0.76 .157

IFN-g 0.684 9.66�11 0.706 1.27�11 0.75 064-0.86 .0005 0.87 0.77-0.96 <.0001

IL17A 0.683 1.02�10 0.595 6.80�08 0.73 0.61-0.85 .0016 0.82 0.71-0.93 <.0001
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