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Abstract

Load frequency control (LFC) remains a critical challenge in ensuring the stability of modern
power grids. The integration of nonlinear dynamics into LFC design is paramount to achiev-
ing robust performance, which directly underpins grid reliability. This study introduces a
novel hybrid control strategy—a fuzzy fractional-order proportional–integral–derivative
(Fuzzy FOPID) controller augmented with a proportional–integral (PI) compensator—for
LFC applications in two distinct dual-area interconnected power systems. To optimize
the controller’s parameters, the recently developed Catch Fish Optimization Algorithm
(CFOA) is employed, leveraging the Integral Time Absolute Error (ITAE) as the primary
cost function for precision tuning. A comprehensive comparative analysis is conducted
to benchmark the proposed controller against the existing methodologies documented in
the literature. Nonlinear elements’ impact on the system stability is also investigated. The
investigation evaluates the impact of critical nonlinearities, including governor dead band
(GDB) and generation rate constraints (GRCs), on system performance. The simulation
results demonstrate that the CFOA-tuned Fuzzy FOPID + PI controller exhibits superior
robustness and dynamic response compared to conventional approaches, effectively mit-
igating frequency deviations and maintaining grid stability under nonlinear operating
conditions. Furthermore, the CFOA demonstrates marginally superior convergence and
tuning accuracy relative to the widely adopted Particle Swarm Optimization (PSO) algo-
rithm. These findings underscore the proposed controller’s potential as a high-performance
solution for real-world LFC systems, particularly in scenarios characterized by nonlineari-
ties and interconnected grid complexities. This study advances the field by bridging the
gap between fractional-order fuzzy control theory and practical power system applications,
offering a validated strategy for enhancing grid resilience in dynamic environments.

Keywords: LFC; dual-area power system; fuzzy FOPID + PI; CFOA; PSO; ITAE

1. Introduction
Load frequency control (LFC) is a critical component in the design and operational

management of stable and reliable power systems. Inherently, power systems are subject
to dynamic and stochastic load variations, which introduce uncertainties that adversely
impact system frequency stability [1]. Such deviations from nominal frequency values
are undesirable, as they compromise grid reliability and power quality. To mitigate these
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challenges, LFC mechanisms are employed to regulate frequency by dynamically adjusting
generation output or minimizing frequency deviations, thereby maintaining system param-
eters within predefined operational thresholds. This regulatory process, referred to as load
frequency control (LFC), is integral to ensuring the robustness and efficiency of modern
power networks [2].

An optimally designed and effectively operated power system must demonstrate re-
silience against load disturbances while delivering an economically viable and high-quality
power supply. LFC not only enhances transient and steady-state stability but also ensures
compliance with operational constraints, balancing generation–demand mismatches and
sustaining frequency within acceptable limits. Consequently, LFC serves as a founda-
tional framework for achieving operational reliability, economic dispatch, and adherence
to performance standards in power system engineering [3].

1.1. Literature Review

The escalating complexity and evolving dynamics of contemporary power systems
have positioned load frequency control (LFC) as a pivotal mechanism for preserving grid
stability and operational reliability. Over recent decades, an extensive volume of scholarly
work has been devoted to the domain of LFC in interconnected power networks. LFC
functions as a key control strategy to mitigate the detrimental impacts of load fluctuations
on system frequency and tie-line power flow, thereby ensuring reliable system operation [4].
To confront these challenges, numerous control methodologies—ranging from conventional
linear controllers to advanced intelligent techniques—have been explored to formulate
resilient LFC frameworks capable of improving both transient performance and steady-
state precision. Nevertheless, selecting the most appropriate LFC approach remains a
complex endeavor, as each control scheme entails specific merits and drawbacks influenced
by system nonlinearity, operational limitations, and regulatory conditions. Consequently,
the practical realization of effective LFC systems demands in-depth domain expertise to
navigate the inherent trade-offs between control complexity, flexibility, and performance
robustness under dynamically varying grid environments [5,6].

The proportional–integral–derivative (PID) controller continues to serve as a fun-
damental component in LFC system design, primarily due to its structural simplicity,
straightforward implementation, and well-established effectiveness in handling linear
dynamics. Its widespread adoption extends far beyond power systems, with extensive use
in industrial automation, robotics, and process control, reflecting its adaptability across
engineering domains [7]. Within LFC applications, the PID controller maintains system
frequency by modulating generator output based on proportional, integral, and derivative
error components. In Ref. [8], a PI controller was optimized using the Flood Algorithm
(FLA) for a two-area power system that integrates thermal and photovoltaic (PV) genera-
tion. The findings indicated that the FLA-optimized controller outperformed alternative
metaheuristic approaches in terms of reduced settling time, minimal overshoot, and lower
steady-state error, particularly under fluctuating solar input and variable load profiles.
Similarly, the Firefly Algorithm (FA) was employed in Ref. [9] to fine-tune a PI controller
for frequency regulation in a two-area system with PV integration. In another instance,
Particle Swarm Optimization (PSO), a widely adopted technique, was applied in Ref. [10]
to tune a PID controller in a stand-alone multi-source configuration for frequency control.
Furthermore, the Artificial Bee Colony (ABC) algorithm was utilized in Ref. [11] to optimize
PID parameters for an LFC scheme implemented in a hydro–thermal interconnected system.
This controller outperformed conventional PID controllers tuned using different algorithms,
including the Chef-Based Optimization Algorithm (CBOA) and Sine–Cosine Algorithm
(SCA). In Ref. [12], the Lozi map-based Chaotic Optimization Algorithm (LCOA) was used
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to optimize parameters for a classical PID controller in a two-area interconnected power sys-
tem for LFC. Furthermore, Ref. [13] proposed a Rat Swarm Optimization (RSO)-based PID
controller demonstrating improved stability, shorter settling time, and near-zero frequency
deviations. This method surpassed traditional approaches by consistently maintaining
frequency regulation under dynamic conditions, strengthening overall system resilience.

Recent studies confirm that conventional PID controllers fundamentally struggle to
mitigate the nonlinearities, parametric uncertainties, and communication delays inherent
in modern power grids. To overcome these limitations, researchers have developed ad-
vanced variants including fractional-order PID (FOPID), PID-Acceleration (PIDA), and
Filtered/Double-Derivative PID (PIDF/PIDD), alongside cascaded structures like PID-PI
and adaptive gain-scheduled architectures.

Fractional-order PID (FOPID) controllers incorporate non-integer-order differentiation
and integration operators through fractional calculus, enabling enhanced tuning flexibility
and robustness. Recent advances confirm significant FOPID performance improvements
in power systems. Specifically, Ref. [14] introduced optimized PID and FOPID controllers
for load frequency control (LFC) in a three-area thermal–wind–hydro system, utilizing
advanced metaheuristics—the Genetic Algorithm (GA), the Grey Wolf Optimizer (GWO),
the Sine–Cosine Algorithm (SCA), and Atom Search Optimization (ASO)—with evaluation
across multiple cost functions. The results demonstrated that ASO-tuned FOPID delivered
superior transient performance and robustness under dynamic conditions. Complementar-
ily, Ref. [15] developed an FOPID controller for single-area LFC, tuned via Integral Error
Criterion (IEC) and applied to distinct turbine configurations: non-reheat, reheat, and hydro
turbines. The controller was tuned for robustness against ±50% parameter uncertainties
and demonstrated superior disturbance rejection relative to traditional approaches. Simula-
tion outcomes validated the FOPID controller’s capability to maintain performance under
both nominal and uncertain system conditions. Concurrently, Ref. [16] introduced a dereg-
ulated hybrid power system scenario in which an Aquila Optimizer (AO)-based FOPID
controller was developed for LFC. Comparative analysis showed that the AO-FOPID con-
figuration outperformed controllers optimized using Particle Swarm Optimization (PSO)
and the Whale Optimization Algorithm (WOA), effectively reducing frequency deviations
and tie-line power oscillations across a range of dynamic operating conditions.

Regarding PID-Acceleration (PIDA), Ref. [17] developed hybrid strategies combin-
ing Teaching–Learning-Based Optimization (TLBO), Tabu Search (TS), and Equilibrium
Optimizer (EDO) for PIDA tuning in two-area load frequency control. These methods en-
hanced convergence speed, dynamic response, and robustness against load variations and
renewable energy fluctuations. The simulation results demonstrated that the TLBO-EDO-
tuned PIDA controller outperformed conventional methods by minimizing peak-to-peak
oscillations, root mean square (RMS) error, and tie-line power deviations under multiple
contingencies. Regarding Filtered/Double Derivative PID (PIDF/PIDD), n Ref. [18], a
Modified Whale Optimization Algorithm (MWOA) was proposed to tune a proportional–
integral–derivative with filter (PIDF) controller for load frequency control in a two-area
photovoltaic–thermal power system. The simulation results demonstrated that the MWOA-
optimized PIDF controller delivered improved damping characteristics and enhanced
robustness compared to controllers tuned using conventional optimization techniques. In
a separate study [19], a proportional–integral–double-derivative (PIDD) controller was
applied to an isolated hybrid power system (IHPS) comprising conventional generators,
renewable energy sources, energy storage devices, and electric vehicles (EVs). The con-
troller parameters were optimized using the Magneto-Tactic Bacteria Optimization (MBO)
algorithm, with tuning guided by a peak-based integral square error (PISE) performance in-
dex. The simulation results indicated that the PIDD controller provided superior frequency
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regulation under combined load and generation disturbances, outperforming classical
counterparts. However, nonlinearities, such as generation rate constraints and governor
dead band, were not included in the control design. These variants attenuated high-
frequency noise sensitivity while enhancing transient performance, with PIDD structures
demonstrating superior robustness under load variations.

However, PID-based controllers require precise tuning and demonstrate limited effec-
tiveness in highly nonlinear or stochastic environments. These limitations have motivated
the development of advanced control methodologies aimed at overcoming the constraints
of linear controller architectures:

➢ Sliding Mode Control (SMC): SMC is recognized for its robustness against uncertain-
ties, directing system trajectories toward a predefined sliding surface. Recent studies
on SMC for load frequency control (LFC) have introduced various advanced controller
designs and optimization strategies. In Ref. [20], an SMC design was developed for a
simplified model of the Great Britain power system, utilizing a five-parameter sliding
surface optimized through the Bees Algorithm (BA) and Particle Swarm Optimization
(PSO), with performance evaluated using the ITAE criterion. The results were com-
pared to a BA-tuned PID controller, showing that the SMC configuration delivered a
superior dynamic response and stronger robustness to parameter uncertainties. In
Ref. [21], an output feedback SMC was proposed for a multi-area, multi-source power
system, where Teaching–Learning-Based Optimization (TLBO) was used to tune feed-
back gains and switching vectors. This design outperformed other approaches based
on Differential Evolution, PSO, and Genetic Algorithms and included consideration
of HVDC link dynamics. The study in Ref. [22] developed a four-parameter SMC con-
troller optimized by PSO and Grey Wolf Optimization (GWO), implemented across
single-, two-, and four-area systems. It demonstrated significant improvements in fre-
quency regulation and robustness under load disturbances and system uncertainties.
While all three works emphasized robust controller tuning under various disturbance
scenarios, none explicitly incorporated nonlinear dynamics into the system models.

➢ Linear Quadratic Regulator (LQR): The studies in Refs. [23,24] proposed LQR-based
approaches for load frequency control in power systems but omitted nonlinear con-
siderations during controller design. In Ref. [23], an advanced LQR scheme based
on Linear Matrix Inequalities (LMIs) was implemented in a hybrid system incor-
porating wind turbines, diesel generators, fuel cells, aqua-electrolyzes, and battery
energy storage. This controller exhibited improved performance under various dis-
turbances when compared with conventional closed-loop LQR methods. In Ref. [24],
the LQR technique was applied to a two-area power system and assessed against a
conventional PI controller under step load perturbations, with evaluation focusing
on frequency regulation and system stability. While both studies demonstrated the
effectiveness of optimal control strategies in enhancing LFC performance, they were
constrained by their reliance on linearized models, limiting their applicability to
real-world systems characterized by inherent nonlinear dynamics.

➢ Model Predictive Control (MPC) techniques enhance LFC performance under diverse
operating conditions. In Ref. [25], a hybrid Grey Wolf Optimizer–Pattern Search
(HGWO–PS)-tuned MPC for a two-area islanded microgrid was used to improve
frequency stability and reduce control complexity.

➢ Adaptive control strategies for LFC in interconnected power systems were proposed
in Refs. [26,27] to enhance stability under disturbances and parameter variations.
Specifically, Ref. [26] introduced an adaptive PI controller that dynamically tuned
gains during load/renewable fluctuations (including WECS and PV–thermal sys-
tems), exhibiting superior robustness and transient performance versus conventional
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PI/optimized PID methods. In contrast, Ref. [27] implemented decentralized Model
Reference Adaptive Control (MRAC) for two-area systems, utilizing local feedback sig-
nals with Lyapunov-based stability guarantees. Critically, both approaches neglected
nonlinear elements (dead bands, valve limits), potentially compromising real-world
applicability and reliability.

➢ H-infinity Control (H∞): The study in Ref. [28] proposed a robust H∞-based LFC
strategy for a two-area interconnected power system, addressing nonlinearities and
parameter uncertainties using a sector-bounded formulation. The simulation results
confirmed superior performance compared to conventional PI controllers, with re-
duced frequency deviations and enhanced stability under load disturbances and
uncertainty. The method further demonstrated scalability to multi-area systems while
sustaining robust performance across varying operating conditions.

Fuzzy Logic Control (FLC) offers a potent solution for LFC in nonlinear, stochastic, and
model-agnostic environments by leveraging expert-defined linguistic rules for decision-
making under uncertainty. Its key advantages include intrinsic nonlinearity handling [29],
enhanced robustness [30], and compatibility with hybrid architectures [31,32]. However,
FLC performance critically depends on the rule base and membership function design,
demanding rigorous optimization that may challenge practical implementation. Table 1
summarizes LFC systems reported in the literature.

Table 1. LFC systems proposed in the literature.

Ref. Year Control
Method

Optimization
Tool

Renewable
Energy

Nonlinear
Elements

Nonlinearity Impact
Investigation

[8] 2025 PI FLA � × ×
[9] 2018 PI FA � × ×

[10] 2023 PID PSO × × ×
[11] 2022 PID ABC × × ×
[12] 2012 PID LCOA × × ×
[13] 2024 PID RSO × × ×
[14] 2023 PID/FOPID ASIA � × ×
[15] 2014 FOPID IEC × × ×
[16] 2024 FOPID AO × × ×
[17] 2025 PIDA TLBO × × ×
[18] 2020 PIDF MWOA � × ×
[19] 2024 PIDD MBO � × ×
[20] 2022 SMC BA × × ×
[21] 2015 SMC TLBO × × ×
[22] 2021 SMC GWO × × ×
[23] 2013 LQR - × × ×
[24] 2024 LQR - � × ×
[25] 2023 MPC HGWO–PS × × ×
[26] 2022 Adaptive PI - � × ×
[27] 2021 MRAC - × × ×
[28] 2016 H∞ - × × ×
[29] 2022 Fuzzy PID WCA � � ×
[30] 2016 Hybrid Fuzzy PSO × × ×
[31] 2023 Hybrid Fuzzy DE and GA � � ×

[32] 2022 Several hybrid
Fuzzy structures BA × × ×

Concisely, classical PID controllers remain a cornerstone of LFC because of their
simplicity and cost-efficiency. Yet, their limited effectiveness under nonlinear and uncertain
conditions necessitates the adoption of advanced control strategies:
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➢ Enhanced PID variants—such as FOPID and PIDA—extend classical PID capabilities in
robustness and adaptability, though at the cost of increased design and tuning complexity.

➢ Advanced controllers (SMC, MPC, H∞) provide precision and robustness but en-
counter computational and implementation challenges.

➢ Fuzzy Logic Control balances adaptability and implementation feasibility in hybrid
architectures, positioning it as a viable strategy for modern power systems.

1.2. Objectives and Contributions

A critical gap remains in evaluating how nonlinearities, specifically generation rate
constraints (GRCs) and governor dead band (GDB), influence frequency stability within
load frequency control (LFC) systems. While prior work acknowledges their operational
significance, few studies rigorously assess their impact when integrated into or excluded
from LFC design. This underscores the need for a systematic investigation into how these
elements affect LFC performance and overall system dynamics. This study conducts a
comprehensive analysis of GRC and GDB effects on frequency regulation, addressing a
pivotal research gap.

1.2.1. Challenges in LFC System Design

A core challenge in LFC design lies in balancing rapid dynamic response with system
stability. Fast transient correction enables timely frequency stabilization in dynamic grids,
particularly during load fluctuations, thereby minimizing downtime and maintaining op-
erational continuity. However, aggressive responses risk overshoots that exceed safety
thresholds, jeopardizing sensitive equipment. In contrast, slower corrections ensure fre-
quency adherence but may introduce underfrequency or overfrequency deviations during
transitions, reducing reliability. Thus, optimal LFC controllers must harmonize rapid stabi-
lization with overshoot minimization to ensure both performance and operational safety.

1.2.2. Limitations of Existing Control Strategies

Traditional PID controllers remain prevalent in LFC applications because of their simplic-
ity, cost-efficiency, and ease of implementation. However, their performance deteriorates in
the presence of nonlinearities, parametric uncertainties, and system sensitivity—challenges
typical of modern power networks. Notably, PID controllers often struggle to maintain voltage
stability during dynamic load variations. Advanced methods, such as adaptive control and
Sliding Mode Control (SMC), offer improved robustness. Adaptive control adjusts gains
in real time, enhancing performance under uncertainty, though its complexity and tuning
demands limit practical deployment. SMC provides robustness against matched uncertainties
but introduces chattering—undesired high-frequency oscillations that impair performance
and accelerate actuator wear. Fuzzy logic controllers (FLCs) eliminate the need for precise
mathematical models by utilizing expert-defined linguistic rules. Nevertheless, many FLC
implementations overlook robustness under variable operating conditions, limiting their
reliability in dynamic environments.

1.2.3. Proposed Methodology and Contributions

This study proposes a novel hybrid fuzzy controller that integrates a fuzzy fractional-
order proportional–integral–derivative (FOPID) structure with a classical PI controller,
optimized using the Catch Fish Optimization (CFO) algorithm. The main contributions are
outlined as follows:

1. Impact of Nonlinear Elements: This study conducts a systematic investigation of GRCs
and GDB on power system stability, providing critical insights for future LFC design.
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2. Innovative Controller Design: This study proposes a hybrid FOPID + PI configuration
that synergizes fuzzy logic adaptability with classical control precision to enhance
stability and dynamic response.

3. Optimization via Metaheuristic Algorithms: The CFO algorithm is applied for the first
time in LFC contexts to optimize controller parameters, complemented by Particle
Swarm Optimization (PSO) for comparative validation.

4. Comprehensive Performance Evaluation: This study conducts a rigorous comparative
analysis against existing controllers, demonstrating superior transient response, over-
shoot mitigation, and robustness under parametric uncertainties. Also, the proposed
controller is implemented in two different power systems under different operating
conditions to validate its readiness for real-time operation.

5. Robustness Validation: The proposed controller exhibits resilience in maintaining
frequency stability under diverse disturbances, including ±35% parametric variations
and abrupt load changes.

By integrating fractional-order dynamics with fuzzy logic and metaheuristic optimiza-
tion, this study advances LFC controller design, addressing the limitations of conventional
and advanced methods. The hybrid Fuzzy FOPID + PI controller demonstrates enhanced
reliability, robustness, and adaptability in dynamic environments, offering a viable solution
for modern power systems. These findings underscore the imperative of incorporating
nonlinear element analysis and innovative control architectures to ensure stable, efficient
frequency regulation in increasingly complex grids.

1.3. Paper Structure

The organizational structure of this research paper is delineated as follows: Section 2
establishes a mathematical framework for the power systems under investigation, incorpo-
rating parameter specifications and rigorously defining the nonlinear elements central to
the analysis, namely, GRCs and GDB. Section 3 elaborates on the innovative architecture of
the proposed LFC mechanism, accompanied by a systematic exposition of the optimization
methodologies employed and the formulation of the objective function governing the de-
sign process. Section 4 presents an empirical validation of the proposed framework, offering
a critical analysis of the results derived from diverse operational scenarios to underscore the
methodological robustness and comparative efficacy of the approach. Moreover, it conducts
a rigorous robustness assessment of the FLC based on the CFOA, examining its perfor-
mance under different parametric uncertainty scenarios. Finally, Section 5 synthesizes the
principal findings of this study, articulates their theoretical and practical implications, and
proposes trajectories for subsequent research endeavors to address unresolved challenges
and extend the applicability of the proposed framework.

2. Power Systems Under Study: Modeling and Parameters
This study conducts a comparative analysis of two distinct power systems to evaluate

the practical efficacy of the proposed fuzzy control framework. The first system is em-
ployed to investigate the influence of governor dead band (GDB) nonlinear dynamics on
operational stability, while the second system is utilized to assess the effects of generation
rate constraint (GRC) nonlinear characteristics on power system stability. These case studies
collectively demonstrate the robustness of the control architecture in addressing nonlinear
constraints inherent to modern power grid operations.

2.1. Power System One

This section analyses a widely recognized two-area power system model, a benchmark
configuration extensively validated in power grid stability research. The system com-
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prises two asymmetrically parameterized interconnected regions, integrated with standard
components, such as governors, turbines, load dynamics, and synchronous machines, to
emulate real-world operational conditions. The schematic of the testbed architecture is
illustrated in Figure 1, with comprehensive parameter specifications enumerated in Ap-
pendix A [33]. Central to the design of load frequency control (LFC) frameworks is the area
control error (ACE), a foundational feedback metric that quantifies system-level imbalances.
The ACE synthesizes both frequency deviation and tie-line power exchange discrepancies,
establishing the core inputs for the LFC controller’s corrective actions. Within the examined
two-area framework, the ACE for areas 1 and 2 is formally expressed through Equations (1)
and (2), respectively, enabling precise frequency regulation under dynamic load variations.

ACE1 = ∆P12 + B1 ∆F1 (1)

ACE2 = ∆P21 + B2 ∆F2 (2)

Figure 1. The first power system under study.

The variables ∆F1 and ∆F2 represent frequency deviations in areas 1 and 2, ∆P12 and
∆P21 indicate tie-line power flow deviations, and B1 and B2 are the respective frequency
bias coefficients for each area.

2.2. Governor Dead Band (GDB) Modeling and Integration

Governor dead band (GDB) constitutes an inherent physical nonlinearity in power
system governor mechanisms, characterized by a defined threshold range within which
minor frequency deviations fail to elicit a corrective response from the governor valve.
This phenomenon originates from two primary factors: (i) inherent mechanical tolerances
in the valve positioning system, which introduce operational slack, and (ii) deliberate
signal filtering implemented to mitigate excessive control actuations caused by transient
disturbances. The resultant latency in governor response compromises the efficacy of
LFC systems by inducing phase lag, amplifying power oscillations, and diminishing
regulation precision.
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To accurately emulate real-world turbine–governor dynamics, the GDB nonlinearity is
integrated into the system model, implemented in accordance with the analytical frame-
work established by Ref. [34]. This formulation explicitly accounts for the governor valve’s
non-responsive zone during small-magnitude speed variations. The modified governor
transfer function incorporating GDB effects is expressed as:

GGDB(s) =
− 0.2

π s + 0.8
Tgs + 1

(3)

where Tg denotes the governor time constant. The coefficients 0.8 and − 0.2
π in the numerator

quantitatively characterize the dead band’s asymmetric influence on valve displacement
dynamics, as rigorously derived in Ref. [34]. This nonlinear element is intentionally
embedded within the governor block architecture of the system presented in Figure 1
to systematically assess controller performance under non-ideal operational constraints,
thereby validating robustness against realistic electromechanical disturbances.

2.3. Power System Two

To evaluate the practical feasibility of the proposed control strategy, the controller is
integrated into two distinct experimental testbed systems, thereby enhancing the realism
and robustness of the assessment while providing empirical validation of the paradigm’s
efficacy. As depicted in Figure 2, the second testbed system comprises a two-area inter-
connected power grid integrated with a non-reheat thermal generation unit. The system’s
critical parameters, such as nominal frequency (Fi, Hz), regulation coefficient (Ri, Hz/unit),
speed governor time constant (Tgi, s), turbine time constant (Tti, s), and power system time
constant (Tpi, s), are rigorously defined to reflect operational dynamics. The model further
integrates key dynamic components, including area control error (ACEi), load demand
perturbation (∆PDi), speed changer positional adjustment (∆Pci), governor valve displace-
ment (∆Pgi), power system gain (KPi), and tie-line power exchange deviation (∆Ptie). A
comprehensive summary of these parameters and their corresponding values is provided
in Appendix B [35].

Figure 2. The second power system under study.
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2.4. Generation Rate Constraint (GRC) Modeling and Integration

The generation rate constraint (GRC) refers to the physical limitation on the rate at
which a power-generating unit can increase or decrease its output. These constraints arise
because of the inherent thermal dynamics, mechanical inertia, and safety considerations of
the turbine system. The GRC is typically expressed as upper and lower bounds on the rate
of change in the turbine output, ensuring that the unit operates within safe and realistic
operational margins. Ignoring GRCs in dynamic simulations can result in unrealistically
fast power adjustments that do not reflect the behavior of actual power plants.

To account for this practical limitation, the linear non-reheat turbine model depicted
in Figure 2 is replaced with a nonlinear representation shown in Figure 3, which explicitly
incorporates GRCs bounded at (α = ±0.025) per unit per second. This nonlinear model
includes a saturation function that enforces rate limits on the turbine’s power response,
effectively capturing the delayed behavior caused by physical inertia and thermal lag. As
highlighted in Ref. [35], this modeling approach ensures that turbine output changes adhere
to feasible dynamic trajectories, avoiding artificial performance gains in simulation studies.

Figure 3. Nonlinear turbine model with GRCs.

Moreover, as emphasized in Ref. [36], incorporating GRCs is crucial for accurately
assessing the performance of load frequency control strategies. Its omission can lead to
overly optimistic evaluations of controller response times and stability. By integrating
GRCs directly into the turbine block, the model provides a more realistic and credible
framework for analyzing system frequency behavior and tie-line power exchanges under
dynamic conditions.

3. The Proposed Controller and Tuning Tool
3.1. The Fuzzy FOPID Enhanced by Classical PI

Figure 4 illustrates the architecture of the proposed hybrid control strategy, integrating
three core components: a fuzzy logic controller (FLC), a fractional-order proportional–
integral–derivative (FOPID) controller, and a conventional proportional–integral (PI) con-
troller. The FLC is configured with two normalized input variables—the ACE and its
derivative ACE˙—scaled via gains K1 and K2, respectively. A single output signal gener-
ated by the FLC serves as the input to the FOPID controller.

Figure 4. The configuration of the proposed LFC system.
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To optimize computational efficiency and ensure real-time applicability, the FLC
employs triangular membership functions (MFs) for fuzzification, with five linguistic
categories assigned to both inputs and outputs, including Negative Big (NB), Negative
Small (NS), Zero (Z), Positive Small (PS), and Positive Big (PB), as depicted in Figure 5. A
rule base of 25 expert-defined fuzzy rules (Table 2 governs the inference system, formulated
to align with the dynamic behavior of the target system. The Mamdani inference mechanism
is utilized for mapping crisp inputs to fuzzy sets, while defuzzification is executed via the
centroid method to produce a deterministic control signal.

Figure 5. The membership functions of the fuzzy controller.

Table 2. The rule base of the FLC component.

Error
Change of Error

NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z BS PB
PS NS Z PS PB PB
PB Z PS PB PB PB

The FOPID controller extends the classical PID framework by incorporating fractional-
order operators for integration (λ) and differentiation (µ), enhancing adaptability to com-
plex system dynamics. Its transfer function is expressed as:

FOPID Controllerc(S) = KP1 + KI1S−λ + KD1Sµ (4)

where KP1, KI1, andKD1 denote proportional, integral, and derivative gains, respectively,
while λ and µ represent the fractional orders. Concurrently, a parallel PI controller processes
the same error signal, with its transfer function defined as:

PI Controllerc(S) = KP2 +
KI2

S
(5)

The hybrid control action is synthesized by aggregating the outputs of the Fuzzy
FOPID and PI controllers. This synergistic integration leverages the FLC’s nonlinear
adaptability, the FOPID’s extended tuning flexibility, and the PI controller’s steady-state
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precision, collectively achieving superior dynamic response, robust disturbance rejection,
and high-accuracy trajectory tracking under heterogeneous operating conditions.

The proposed hybrid controller addresses intractable load frequency control chal-
lenges nonlinear dynamics, parametric uncertainties, and rapid disturbance rejection
requirements in interconnected power systems. Its fuzzy logic layer dynamically ad-
justs control gains through real-time error mapping, enabling adaptive compensation
during transients. The FOPID component enhances the transient response via fractional-
order operators, providing superior tuning flexibility and memory-effect approximation
over classical PID. Parallel PI action guarantees steady-state error elimination. Fuzzy
rules are synthesized from system responses to step-load perturbations, capturing both
large-signal and small-signal behaviors. Triangular membership functions and Mamdani
inference ensure computationally efficient implementation while preserving expressive
control logic.

3.2. The Suggested Tuning Tool: Catch Fish Optimisation Algorithm

The Catch Fish Optimization Algorithm (CFOA) is a novel, human behavior-inspired
metaheuristic algorithm that emulates traditional fishing strategies employed in rural set-
tings. It combines the principles of independent search, group collaboration, and collective
encirclement to balance global exploration and local exploitation within an optimization
process [37]. The CFOA is particularly suited for solving complex nonlinear problems and
is adopted in this study to optimally tune the parameters of the proposed fuzzy controller
for LFC in power systems. The CFOA’s selection is further supported by its demonstrated
success in solving complex, nonlinear, and high-dimensional problems in other domains,
such as enhancing surface quality and microhardness in laser cladding processes [38] and
achieving stable convergence in solar thermal system optimization under uncertainty [39],
validating its robustness and global search efficacy for LFC design.

Mechanism and Design Philosophy
CFOA operates through two main phases:
Exploration Phase: The exploration phase simulates early fishing behavior, where

individual “fishermen” (search agents) disturb the water to locate fish independently and
later collaborate in small groups to encircle fish-rich zones. This phase allows for extensive
global search capabilities.

Exploitation Phase: The exploitation phase resembles a coordinated collective en-
circlement, where all agents converge strategically toward the best-known solution. A
Gaussian distribution is used to model agent positioning, encouraging convergence to the
global optimum while maintaining diversity.

These mechanisms are dynamically managed using a capture rate parameter that
transitions agents from exploratory to exploitative behaviors as iterations progress.

Algorithm Workflow
The Catch Fish Optimization Algorithm (CFOA) is conceptually grounded in the core

behavioral patterns of traditional fishing practices. Following a concise exposition of its
theoretical basis, the algorithm’s essential operational procedures are comprehensively
delineated [37]. The CFOA operates through two principal stages: the exploration phase,
which entails cooperative fishing behavior and spatially diversified search to maximize
the identification probability of advantageous regions within the solution space, and the
exploitation phase, defined by strategically coordinated encirclement that utilizes collective
dynamics to intensify the search proximate to promising areas [37]. Throughout the
optimization process, the algorithm sustains an adaptive global search strategy, wherein
multiple agents—each representing an individual fisherman—dynamically adjust their
positions within the defined search domain. This coordinated behavior enables effective
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equilibrium between diversification and intensification. The mathematical formulation
governing this process is presented in Equation (6), with each fisherman functioning as an
autonomous optimization agent.

Fisher =


Fisher1,1 Fisher1,2 . . . Fisher1,d

Fisher2,1 Fisher2,2 . . . Fisher2,d
...

...
. . .

...
Fisher1,1 Fisher1,2 . . . Fisher1,d

N × d (6)

Equation (7) represents Fisher’s resetting formulation, which constitutes a comprehen-
sive matrix mathematically encapsulating the positional coordinates of N search agents
within a d-dimensional solution space.

Fisheri,j =
(
ubj − lbj

)
× r + lbj (7)

The upper and lower bounds of the j-th dimension are defined by ubj and lbj, the
position of the i-th fisherman in the j-th dimension is denoted as Fisheri.j, and r represents a
stochastically generated value within the bounded interval [0, 2].

The fitness value assessment functionfobj and current location data compute each
fisherman’s fitness. Equation (8) presents the resulting fitness value matrix.

fit = fobjective(Fisher) =


fit1

fit2
...

fitN

 (8)

3.2.1. Exploration Phase (EFs/MaxEFs < 0.5)

The highest capture rates and maximal fish quantities occur during the initial fishing
season; however, a progressive decline in fish availability correlates with reduced catch
rates. Consequently, fishermen initially prioritize individual search strategies involving
targeted seeking and hydrodynamic disruption to maximize yield. As the hunt progresses,
fishermen gradually acquire environmental dominance over fish populations. This tran-
sition is characterized by increased aquatic turbulence and diminished fish discernibility.
Sustained harvesting during the search operation depletes fish stocks and further reduces
capture rates. When collective encirclement emerges as the dominant survival strategy,
individual advantages become subordinate to collective imperatives. The parameter α,
representing the capture rate, models this behavioral transition in Equation (9).

α =
(
1 − 3 × EFs

2 × MaxEFs

) 3×EFs
2×MaxEFs (9)

Evaluations are quantified as EFs (denoting current evaluation count) and MaxEFs
(representing the maximum evaluation threshold). Fishermen autonomously select between
collective capture and independent search strategies. When the capture rate α is elevated,
individual search tactics are prioritized; conversely, reduced α values prompt a transition to
collective capture. This behavioral shift is modeled using binary stochastic variables (0, 2),
where p denotes a selection probability threshold and α represents a uniformly distributed
random variable within the interval [0, 2]. Collective capture activation occurs when p ≥ α,
while independent search initiation is triggered when p < α.

During independent search (p < α), fishermen generate hydrodynamic disturbances to
induce aquatic turbidity, compelling fish to surface or release gas bubbles that manifest as
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detectable ripple patterns. Based on observed disturbance signatures and capture efficacy,
fishermen dynamically refine their search trajectory, alternating between localized explo-
ration and regional relocation as required. This position update mechanism is formalized
in Equations (10) and (11):

Exp =
fit1 − fitp

fitmaximum − fitminimum
, (10)

R = Dis ×
√
|Exp| ×

(
1 − EFs

MaxEFs

)
, (11)

FisherT+1
i,j = FisherT

i,j +
(
FisherT

pos,j − FisherT
i,j
)
× Exp + rs × s × R. (12)

The empirical evaluation metric Exp, bounded within the interval (−1, 1), quantifies
the significance of heuristic assessments derived by a fisherman when utilizing any posth
fisherman (pos = 1, 2, . . ., N; p ̸= i) as a reference target. Following the T-th complete
position update cycle, fitmin and fitmax represent the optimal and poorest fitness values,
respectively, where T denotes the cumulative count of positional adjustments executed.
The coordinates FisherT

i,j and FisherT+1
i,j correspond to the j-dimensional position of the

i-th fisherman at iterations T and T + 1. The stochastic parameter rs is uniformly distributed
within [0, 2], while Dis measures the Euclidean distance between the reference agent and
the i-th fisherman. A d-dimensional stochastic unit vector is denoted by s.

The primary movement vector (indicating favorable guidance received from peer
fishermen) and displacement magnitude are computed through statistical analysis, con-
strained by R ≤ Dis. Additionally, the exploration radius R is modulated by both the
current evaluation count (EFs) and the absolute value of Exp.

During the exploration phase, the central agent exhibits bidirectional extension relative
to a stochastically selected reference agent. The permissible displacement space is defined
by an exploration radius R, representing the radial distance from the centroid of agent
positions. This radius bounds the maximum allowable movement during position updates.
One agent prepares for positional adjustment, while the reference agent remains fixed to
serve as a coordination target. Movement directions are classified into three categories: ap-
proach vectors (indicating progression toward the reference), retreat vectors (indicating
movement away), and lateral drift vectors (representing autonomous exploratory behavior).
These coordinated and uncoordinated movement modes enable the algorithm to balance
global exploration with local refinement.

Fishermen collectively coordinate in cohorts of three or four agents to encircle candi-
date prey concentrations during group capture (p ≥ α), deploying net-based strategies to
maximize yield. Movement vectors (direction and displacement magnitude) are modu-
lated by environmental conditions, inter-agent relationships, and fitness states. As capture
success increases and agent density intensifies, positional adjustments exhibit progressive
refinement in precision. The operational logic underlying this group coordination behavior
is formally represented by the mathematical model in Equations (13) and (14).

Centrec = mean
(
FisherT

c
)
, (13)

FisherT+1
c,i,j = FisherT

c,i,j + r2(Centrec − FisherT
c,j) +

(
1 − 2 × EFs

MaxEFs

)
× r3. (14)

The group c comprises three or four agents that maintain fixed positional assignments.
The centroid point, denoted as Centrec, serves as the central objective for the collective
encirclement behavior of group c. Following the T-th and (T + 1)-th update cycles, FisherT

c,i,j

and FisherT+1
c,i,j denote the j-dimensional coordinates of the i-th fisherman within group c.



Sustainability 2025, 17, 5966 15 of 40

The convergence pace toward the centroid, represented by r2, exhibits stochastic
variation across agents within the interval [0, 2]. The displacement offset parameter r3 takes
values within the range [−1, 1] and gradually contracts as the number of evaluation counts
(EFs) increases.

The resulting displacement vector defines the fisherman’s updated movement magni-
tude and direction in two-dimensional space.

3.2.2. Exploitation Phase (EFs/MaxEFs ≥ 0.5)

Throughout the harvesting process, partial fish evasion occurs, yet fishermen collec-
tively execute driving and encircling maneuvers to contain fugitive specimens. Agents are
strategically deployed surrounding the prey concentration, with centrally positioned units
focusing on the primary school while peripheral agents intercept escaping individuals. This
cooperative configuration enhances capture efficiency. The spatial distribution is modeled
according to a Gaussian framework, with the formalized mathematical representation
provided in Equations (15) and (16):

σ =

√(
2
(
1 − EFs

MaxEFs

)
/
(
1 − EFs

MaxEFs

)2
+ 1

)
. (15)

FisherT+1
i = Gbest + GD

(
0,

r4 × σ×|Fisher − Gbest|
3

)
(16)

where GD represents the Gaussian distribution function. The variance parameter σ in-
creases with the evaluation count, transitioning from 0 to 2, while the mean µ remains
fixed at 0. The centroid position across all dimensions is mathematically represented as
a matrix corresponding to the i-th fisherman’s coordinates after the (T + 1)-th update
cycle. The global optimum solution (Gbest), which serves as the global reference point for
positional updates, is used as a target during exploitation. Fishermen are partitioned into
three distinct spatial regions determined by r4, a discrete stochastic variable with possible
values {1, 2, 3}.

3.2.3. Implementation Process of the CFOA

The search mechanism diverges from conventional Particle Swarm Optimization (PSO)
through the stochastic selection of distinct regions for comparative scenario evaluation.
When encountering comparable fitness between independently explored and newly evalu-
ated regions, the algorithm maintains its current search domain. Upon identifying superior
fitness elsewhere, it inversely explores peripheral zones; conversely, inferior fitness triggers
relocation to alternative regions. Local exploration occurs via coordinated encirclement,
while individual search transitions to collective mode based on capture rate thresholds.
This dual-strategy approach enhances global search comprehensiveness and efficacy. Final
refinement of the optimal solution is achieved through iterative collective capture. The
CFOA principally emphasizes two interconnected optimization phases: exploratory diver-
sification and exploitative intensification. The complete procedural logic is illustrated in
the flowchart in Figure 6.

In this work, the CFOA was used to optimize the proposed fuzzy control gains
designed for LFC in a multi-area power system. The optimization objective was to minimize
the Integral Time Absolute Error (ITAE) objective function of the ACE, as expressed in
Equation (17), following a disturbance.

ITAEObjective function = |∆F1|+ |∆F2|+ |∆P12|.t .dt (17)
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Figure 6. The flowchart of the Catch Fish Optimization Algorithm.

The CFOA ensured faster convergence to optimal controller parameters, better distur-
bance rejection, and reduced frequency overshoot and settling time compared to classical
tuning methods.

The main advantages of the CFOA in LFC tuning include the following:
Balanced Search Strategy: The staged transition from individual to group behavior

ensures an effective trade-off between exploration and exploitation.
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Dynamic Adaptability: Capture rate-driven strategy adjustment allows the algorithm
to respond dynamically to the search environment.

Robust Performance: The CFOA exhibits consistent convergence and superior ac-
curacy across a wide range of benchmark problems, making it well-suited for power
system optimization.

4. Results and Discussion
4.1. Experiment 1: Power System One Without Nonlinearity

This study evaluates the dynamic performance of the two-area power system pre-
sented in Figure 1 under a 0.2 per unit (pu) step load disturbance applied to area 1, with
the proposed fuzzy control tuned by the CFOA and PSO (PSO is only for comparative
purposes) utilized as an LFC system. Both algorithms were executed over 100 iterations to
derive optimal parameters for the fuzzy controller, with the search space constrained to the
range [0, 2]. The resultant optimal gain values for the FLC, as determined by the CFOA
and PSO, are summarized in Table 3.

Table 3. The optimum values of the Fuzzy FOPID + PI.

Area Controller Algorithm Parameters

Area one

Fuzzy

K1 K2

CFOA 1.9998 1.9992

PSO 1.8901 2

FOPID

Kp Ki Kd λ µ

CFOA 2 1.998 0.302 1 0.41315

PSO 1.6463 1.8904 0.5055 1 0.1598

PI

Kp1 KI1

CFOA 2 1.0079

PSO 1.5524 0.4903

Area two

Fuzzy

K1 K2

CFOA 0.95497 1.8325

PSO 0.1011 2

FOPID

Kp Ki Kd λ µ

CFOA 1.9165 1.9996 0.30887 0.0022093 0.99893

PSO 1.6974 2 1.2743 0.3527 1

PI

Kp1 KI1

CFOA 1.5102 0.10025

PSO 0.3622 1.1093

To assess the efficacy of the proposed FLC, its performance was benchmarked against
established control strategies from the literature, including a TLBO-tuned fuzzy PID con-
troller [33] and an LCOA-optimized classical PID controller [8]. Additionally, comparisons
were made with conventional PID controllers tuned using the CFOA and PSO under iden-
tical test conditions. The corresponding optimal gain parameters for these controllers are
detailed in Table 4.
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Table 4. Different controllers’ optimal gains based on different algorithms.

Controller Parameters

Fuzzy PID
K1 K2 K3 K4 K5 K6 K7 K8

1.9857 1.9968 1.687 1.9876 1.3469 1.5512 0.809 0.5043

PIDs KP1 KI1 KD1 KP2 KI2 KD2

PID-LCOA 0.939 0.7998 0.5636 0.5208 0.4775 0.708

PID-CFOA 1.8147 2 1.1331 0.090157 1.6888 1.9988

PID-PSO 1.9987 1.4469 0.79221 1.5327 0.73122 1.2484

The simulations were conducted in MATLAB/Simulink (2024a), with the CFOA and
the PSO algorithm programmed via .m file scripts. The power system models, including
controller architectures and disturbance scenarios, were developed within the Simulink
environment to ensure reproducibility and alignment with real-time operation practices.
As illustrated in Figures 7–9, the proposed Fuzzy FOPID + PI controllers demonstrate
superior damping capabilities and rapid response characteristics in both frequency areas
and tie-line power deviations.

Specifically, the frequency response in area 1 (Figure 7) shows that the proposed
Fuzzy FOPID + PI controller, especially when optimized using the CFOA, yields the
lowest undershoot and exhibits fast settling behavior compared to conventional PID-based
methods. The controller also ensures smooth convergence with negligible steady-state error.
Similarly, in area 2 (Figure 8), the proposed controllers maintain zero overshoot across all
schemes while achieving significantly faster recovery and improved transient performance.
Notably, the LCOA-PID variant shows the highest peak deviation and the slowest settling
time, confirming the enhanced robustness of fuzzy-augmented approaches under complex
dynamic conditions.
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Figure 7. Frequency deviation in area one.
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Furthermore, the tie-line power deviation profile in Figure 9 underscores the ef-
ficacy of the proposed Fuzzy FOPID + PI controllers in minimizing inter-area power
oscillations. The zero overshoot in tie-line power for all schemes highlights the over-
all system stability. However, the CFOA-optimized fuzzy controller achieves the least
undershoot and fastest stabilization, aligning with its lowest ITAE value of 0.1992 as
presented in Table 5. In contrast, the PID-LCOA controller not only incurs the largest
tie-line deviation but also records the highest ITAE value (0.7842), reflecting ineffi-
cient control. These observations confirm that the hybrid Fuzzy–CFOA configuration
offers a balanced and highly reliable solution for LFC in multi-area power systems,
outperforming traditional and soft computing-based PID strategies across all key dynamic
performance metrics.

Table 5. Characteristics of the testbed system with different control techniques.

Controller
F1 F2 Tie-Line Power

ITAE
OS US ST US ST US ST

Fuzzy–CFOA 4.8696 × 10−5 −2.425 × 10−3 3.9471 −1.897 × 10−4 22.6711 −2.973 × 10−3 23.0381 0.1992

Fuzzy–PSO 4.5279 × 10−5 −2.601 × 10−3 5.4909 −2.325 × 10−4 24.3901 −3.802 × 10−3 24.4230 0.3184

Fuzzy–TLBO 5.942 × 10−5 −3.1422 × 10−3 4.9936 −3.1594 × 10−4 23.5188 −0.0042 23.9377 0.3264

PID-CFOA 2.9454 × 10−4 −5.087 × 10−3 7.8827 −5.398 × 10−4 17.9728 −7.214 × 10−3 19.6328 0.2661

PID-PSO 1.6071 × 10−4 −5.759 × 10−3 9.3374 −6.707 × 10−4 20.2334 −8.015 × 10−5 21.3580 0.4094

PID-LCOA 2.578 × 10−4 −7.147 × 10−3 11.7031 −1.1064 × 10−3 21.0698 −0.0134 21.9780 0.7842

The bar chart in Figure 10 presents the percentage improvement of fuzzy controllers
(Fuzzy–CFOA, Fuzzy–PSO, and Fuzzy–TLBO) compared to the PID-LCOA controller
across selected performance metrics: overshoot and undershoot in area 1, undershoot
in area 2, tie-line undershoot, and the ITAE. These improvements highlight the supe-
rior performance of fuzzy logic controllers, especially Fuzzy–CFOA, in load frequency
control applications. As demonstrated in Figure 10, a comparative analysis of the dy-
namic performance reveals that the fuzzy logic-based controllers demonstrate substantial
improvements over the conventional PID-LCOA controller in key performance indices.
Specifically, in area 1, the Fuzzy–PSO controller achieves the highest reduction in over-
shoot, with an improvement of 82.45%, followed closely by Fuzzy–CFOA at 81.1% and
Fuzzy–TLBO at 76.95%. Similarly, in terms of undershoot in area 1, Fuzzy–CFOA yields
the most significant enhancement (66.0%), indicating a superior damping capability in
frequency deviations. For area 2, all fuzzy controllers report marked reductions in un-
dershoot, with Fuzzy–CFOA again outperforming others at 82.7%, followed by Fuzzy–
PSO and Fuzzy–TLBO with improvements of 78.9% and 71.45%, respectively. When
analyzing the tie-line power undershoot, Fuzzy–CFOA achieves the highest improvement
(77.9%), highlighting its effectiveness in inter-area power regulation. Most notably, the
Integral of Time-weighted Absolute Error (ITAE)—a critical metric reflecting overall control
performance—demonstrates that Fuzzy–CFOA offers the largest improvement (74.6%),
indicating a significantly enhanced transient and steady-state response. These findings
confirm that fuzzy logic controllers, particularly when optimized using the CFOA, offer a
more robust and efficient solution for LFC in interconnected power systems than their
PID-based counterparts.
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Figure 10. Percentage of improvement in overshoot, undershoot, and ITAE with different controllers.

4.2. Experiment 2: Power System One with GDB

This section investigates the influence of GDB nonlinearities on power system stability
by analyzing the GDB component defined in Equation (3) within the framework of the
system illustrated in Figure 1. To isolate and elucidate the specific impact of GDB dynamics,
the controller parameters optimized under nominal conditions (i.e., linear assumptions, ex-
cluding GDB nonlinearity) were retained without retuning. This methodological approach
ensured that observed effects were solely attributable to GDB integration, a novel contribu-
tion to the literature, as prior studies have not systematically examined this interplay.

Figures 11–13 and Table 6 illustrate the dynamic response of the system when incor-
porating the GDB element while retaining the fuzzy controller parameters derived under
GDB-absent conditions. The results reveal that GDB integration into LFC introduces non-
linear dynamics that substantially degrade system performance characteristics. Specifically,
GDB nonlinearities introduce temporal delays in transient responses and induce persis-
tent oscillations following disturbances—phenomena unaccounted for in conventional
linear models. The simulation analyses demonstrate pronounced overshoot magnitudes,
extended settling durations, and marked deterioration of critical performance metrics,
including the ITAE, a pivotal measure of LFC efficacy.

Mechanistically, GBD-induced nonlinearities impede governor response mechanisms
to minor frequency deviations, amplifying dynamic instability and, under severe opera-
tional stresses, precluding convergence to steady-state equilibrium. These destabilizing
effects assume particular significance in multi-area power systems, where frequency stabil-
ity and coordinated inter-area power exchange are paramount. The findings underscore the
necessity of explicitly accounting for GDB nonlinearities during control system synthesis,
as overlooking such dynamics risks suboptimal regulatory performance or operational
instability under load perturbations.

This investigation highlights a critical gap in traditional LFC design paradigms and
provides empirical evidence for the imperative inclusion of GDB dynamics in stability-
oriented controller optimization.
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Figure 11. Frequency deviation in area one.

Figure 12. Frequency deviation in area two.
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Figure 13. Tie-line power deviation.

Table 6. Characteristics of the testbed system with different control techniques under GDB impact.

Controller
F1 F2 Tie-Line Power

ITAE
OS US ST OS US ST US ST

Fuzzy–CFOA 1.23 × 10−3 0.0041 21.2599 1.60 × 10−6 3.2488 × 10−4 26.2991 0.0047 24.3810 0.3058

Fuzzy–PSO 1.758 × 10−3 0.0042 13.0079 0 3.4702 × 10−4 23.3911 0.0051 23.7700 0.383

Fuzzy–TLBO 1.65 × 10−3 0.0047 4.9043 0 4.0913 × 10−4 22.6947 0.0054 24.1230 0.3714

PID-CFOA 4.786 × 10−4 0.0070 7.4226 6.43 × 10−6 8.7313 × 10−4 17.7911 0.0098 19.2478 0.3347

PID-PSO 1.576 × 10−3 0.0078 8.2382 0 0.0011 19.0914 0.0113 21.5307 0.5258

PID-LCOA 3.110 × 10−4 0.0092 11.1872 0 0.0017 20.3068 0.0179 22.7831 1.016

As evidenced by the experimental results depicted in Figures 11–18 and the com-
parative analysis summarized in Table 6, the introduction of GDB nonlinearity markedly
degraded the dynamic performance of the LFC system, manifesting in suboptimal tran-
sient responses and destabilizing oscillations. These findings underscore the imperative of
integrating GDB nonlinearity as a critical design parameter in LFC frameworks to ensure
operational robustness. To mitigate these adverse effects, the controller parameters of the
proposed Fuzzy FOPID + PI hybrid architecture were systematically recalibrated. This
optimization process employed the CFOA and PSO—which explicitly incorporated GDB
nonlinearity constraints into the tuning procedure. The resultant optimized gain parame-
ters, which demonstrate enhanced stability and performance under nonlinear operating
conditions, are comprehensively delineated in Table 7. This methodological refinement
highlights the efficacy of advanced optimization techniques in addressing nonlinear dy-
namics within modern power system control paradigms.
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Figure 14. Frequency deviation in area one.
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Figure 18. Frequency deviation in area two.

Table 7. The returned optimum values of the Fuzzy FOPID + PI with GDB nonlinearity considered.

Area Controller Algorithm Parameters

Area one

Fuzzy

K1 K2

CFOA 1.7932 1.6959

PSO 2 0.29701

FOPID

Kp Ki Kd λ µ

CFOA 0.26328 1.9813 1.4354 0.99354 0.24747

PSO 1.44 1.9985 1.9999 1 0.76295

PI

Kp1 KI1

CFOA 0.60997 1.9956

PSO 0.4705 1.9983

Area two

Fuzzy

K1 K2

CFOA 1.9474 1.0326

PSO 2 1.3405

FOPID

Kp Ki Kd λ µ

CFOA 1.024 1.8695 1.5135 0.43821 0.86257

PSO 1.0004 1.2285 1.9851 0.12825 0.70973

PI

Kp1 KI1

CFOA 1.9456 1.5507

PSO 1.3823 1.0968
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The experimental findings illustrated in Figures 14–16 and quantitatively detailed in
Table 8 elucidate the significant enhancements in dynamic response achieved through the
proposed control strategies under GDB nonlinearities. Specifically, frequency deviations
in both control areas and tie-line power oscillations were markedly attenuated when
utilizing fuzzy-based controllers optimized via the CFOA and PSO. Figure 14 highlights the
minimized frequency deviation in area 1 under CFOA tuning, exhibiting faster settling and
reduced overshoot compared to PSO. Similarly, Figure 15 confirms a smoother frequency
response in area 2 with minimized undershoot and quicker stabilization, particularly under
the CFOA. These improvements underscore the efficacy of nonlinear-aware optimization
in mitigating the destabilizing influence of GDB dynamics, which, as shown in earlier
experiments, significantly degraded LFC performance when not explicitly addressed.

Table 8. Characteristics of the testbed system 2 with the proposed LFC fuzzy controller.

Controller
F1 F2 Tie-Line Power

ITAE
OS US ST OS US ST US ST

Fuzzy–CFOA 9.9816 × 10−4 −5.131 × 10−2 1.0891 7.18 × 10−6 −2.872 × 10−2 3.639 0 −1.01 × 10−2 3.5664

Fuzzy–PSO 4.275 × 10−3 −6.012 × 10−2 2.1084 6.802 × 10−4 −3.758 × 10−2 4.090 1.964 × 10−6 −1.26 × 10−2 3.9972

Table 8 presents a comprehensive comparison of performance indices—overshoot
(OS), undershoot (US), settling time (ST), and the ITAE—for each control configuration. The
Fuzzy–CFOA scheme consistently demonstrated superior performance across all metrics.
In area 1, this configuration achieved a notably low undershoot (0.0039) and settling time
(5.6029 s), while in area 2, the corresponding figures were 0.0034 and 15.9495 s, respectively.
Notably, the tie-line power regulation under Fuzzy–CFOA exhibited the fastest settling
at 17.8633 s and the lowest ITAE of 0.08467, signifying robust damping characteristics
and efficient inter-area coordination. In contrast, the Fuzzy–PSO configuration, while
outperforming traditional PID-based designs, yielded slightly higher deviations and pro-
longed settling periods. These results reinforce the superiority of the CFOA-tuned fuzzy
framework in accommodating the nonlinearity introduced by GDB and maintaining system
resilience under load perturbations.

The comparative analyses of these figures and metrics offer compelling evidence
that incorporating GDB dynamics into the controller tuning phase substantially enhances
the robustness of LFC systems. The observed outcomes reflect a paradigm shift from
traditional linear design assumptions toward nonlinear-aware optimization strategies. By
embedding GDB constraints within the objective functions of the CFOA and PSO, the
controllers exhibit heightened adaptability and precision, effectively suppressing frequency
oscillations and tie-line power fluctuations. These results not only validate the proposed
fuzzy-based hybrid approach as a potent solution for modern power system regulation but
also underscore the critical necessity of nonlinear modeling in the design of next-generation
LFC architectures.

4.3. Experiment 3: Power System Two Without Nonlinearity

To rigorously assess the effectiveness and generalizability of the proposed controller, it
was implemented in an alternative power system configuration distinct from that analyzed
in Section 4.1 and 4.2. Specifically, the dynamic behavior of the two-area power system
depicted in Figure 2 was evaluated in response to a 0.05 per unit (pu) step load disturbance
applied to area 1. In this context, the FLC, optimized using both the CFOA and PSO, was
employed to regulate LFC. Each optimization algorithm was executed over 100 iterations to
identify the optimal controller parameters, with the search space for each gain constrained
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within the interval [0, 2]. The resulting optimal gain values for the FLC, as obtained from
the CFOA and PSO, are comprehensively presented in Table 9.

Table 9. The optimum values of the Fuzzy FOPID + PI.

Area Controller Algorithm Parameters

Area one

Fuzzy

K1 K2

CFOA 0.37564 0.84351

PSO 0.3163 0.4863

FOPID

Kp Ki Kd λ µ

CFOA 1.8576 0.45653 0.36982 0.38209 0.44983

PSO 0.7276 1.1019 0.9564 0.0896 0.3475

PI

Kp1 KI1

CFOA 0.88282 2

PSO 0.7935 1.6199

Area two

Fuzzy

K1 K2

CFOA 1.3611 1.3818

PSO 0.5815 0.8611

FOPID

Kp Ki Kd λ µ

CFOA 0.9252 1.4084 0.36194 0.64056 0.84815

PSO 0.5636 1.6106 1.2139 0.6321 0.0762

PI

Kp1 KI1

CFOA 1.8829 0.5525

PSO 0.4790 1.4447

The results presented in Figures 17–19, along with the corresponding numerical
evaluation in Table 10, demonstrate the dynamic performance of the proposed fuzzy-based
controllers in the power system presented in Figure 2 operating under linear conditions.
The time-domain responses indicate that the Fuzzy–CFOA configuration consistently
outperforms the Fuzzy–PSO across all evaluated metrics. In Figure 17, the frequency
deviation in area 1 is effectively minimized by Fuzzy–CFOA, exhibiting significantly faster
settling time and lower undershoot compared to the PSO-based alternative. Similarly,
Figure 18 illustrates that frequency deviation in area 2 is dampened more efficiently under
CFOA tuning, reflecting a more stable and responsive control profile. These enhancements
underscore the robustness of the CFOA in determining optimal fuzzy controller gains that
enhance transient stability and disturbance rejection.

Table 10. Characteristics of the testbed system with different control techniques considering
GDB nonlinearity.

Controller
F1 F2 Tie-Line Power

ITAE
OS US ST US ST US ST

Fuzzy–CFOA 2.62 × 10−4 0.0039 5.6029 3.3919 × 10−4 15.9495 0.0034 17.8633 0.08467

Fuzzy–PSO 3.435 × 10−4 0.0042 9.1031 4.0081 × 10−4 17.1281 0.0040 19.1061 0.1267
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Figure 19. Tie-line power deviation.

Figure 19 further substantiates the superior performance of the Fuzzy–CFOA con-
figuration in managing tie-line power deviations. Under a 0.05 pu step load disturbance,
the Fuzzy–CFOA controller rapidly stabilizes inter-area power oscillations, achieving a
lower magnitude of deviation and a shorter settling period relative to Fuzzy–PSO. These
characteristics are critical in multi-area systems where tie-line power regulation directly im-
pacts overall system coordination and frequency synchronization. The comparative visual
trends across the three figures confirm the advantage of the CFOA in maintaining system
equilibrium during transients, particularly when operating under ideal linear conditions
devoid of nonlinear disturbances, such as governor dead band effects.

Table 10 quantitatively reinforces the qualitative trends observed in the figures. The
Fuzzy–CFOA controller achieves the lowest Integral of Time-weighted Absolute Error
(ITAE) value of 0.08467, indicating superior control effort and transient accuracy. It also
delivers the shortest settling times across all performance outputs, with values of 5.6029 s
for area 1 frequency, 15.9495 s for area 2 frequency, and 17.8633 s for tie-line power. These
results suggest that the CFOA not only ensures faster convergence but also enhances
stability margins and system reliability. Although Fuzzy–PSO demonstrates competent
performance, its relatively higher overshoot, undershoot, and ITAE values indicate a
less precise tuning capability compared to the CFOA. Overall, the findings validate the
proposed fuzzy–CFOA controller as a highly effective solution for linear LFC environments.

4.4. Experiment 4: Power System Two with GRCs

This section investigates the influence of generation rate constraints (GRCs) on power
system stability by integrating the GRC mechanism, as depicted in Figure 3, into the two-
area power system architecture presented in Figure 2. To explicitly isolate the dynamic
impact of GRCs, the fuzzy controller parameters—previously optimized under nominal,
linear operating assumptions without GRCs—were preserved without further retuning.
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This methodological approach enabled a clear and unbiased evaluation of GRC-induced
effects, offering a novel contribution to the literature, as prior studies have seldom ad-
dressed the interaction between GRC dynamics and pre-optimized fuzzy control structures.
Figures 20–22 illustrate the system’s dynamic responses following the incorporation of
GRCs, while retaining the controller gains optimized for the linear operating conditions
outlined in Table 9.
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Figure 20. Frequency deviation in area one.
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Figure 21. Frequency deviation in area two.
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Figure 22. Tie-line power deviation.

The experimental results presented in Figures 20–22 demonstrate that the incorpora-
tion of GRC nonlinearity significantly compromises the dynamic performance of the LFC
system, ultimately driving it toward instability. These findings highlight the necessity of
accounting for GRC nonlinearity as a fundamental design consideration in LFC systems
to ensure operational reliability. The simulation findings also suggest that LFC strategies
developed without considering GRC effects may fail to perform adequately in real-world
implementations. To address these destabilizing effects, the controller parameters of the
proposed Fuzzy FOPID + PI hybrid control structure were meticulously reoptimized. This
tuning process used the CFOA and the PSO algorithm, with GRC nonlinearity constraints
explicitly integrated into the testbed system. The optimized gain parameters, detailed in
Table 11, exhibit improved stability and control performance under nonlinear operating
conditions, as shown in Figures 23–25. This methodological enhancement underscores the
effectiveness of advanced optimization techniques in managing nonlinear dynamics within
contemporary power system control architectures.
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Figure 23. Frequency deviation in area one.
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Table 11. The optimum values of the Fuzzy FOPID + PI.

Area Controller Algorithm Parameters

Area one

Fuzzy

K1 K2

CFOA 1.998677 0.1283334

PSO 1.5778 1.2389

FOPID

Kp Ki Kd λ µ

CFOA 1.7994 0.32883 1.1732 0.40964 0.55149

PSO 1.3747 0.25468 1.9624 0.41568 0.35223

PI

Kp1 KI1

CFOA 0.51443 0.37854

PSO 0.57469 0.34591

Area two

Fuzzy

K1 K2

CFOA 1.5667 1.712

PSO 1.2814 1.4995

FOPID

Kp Ki Kd λ µ

CFOA 1.9536 0.56448 1.5143 0.014586 0.98738

PSO 1.7496 0.50135 1.3866 0.63994 0.7015

PI

Kp1 KI1

CFOA 0.76396 0.0064206

PSO 0.92753 1.2186
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Figure 24. Frequency deviation in area two.
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Figure 25. Tie-line power deviation.

Figures 23–25 illustrate the dynamic response of a two-area power system equipped
with fuzzy-based controllers under the influence of GRCs, with the controller parameters
optimized using both the CFOA and the PSO algorithm. Figure 23, representing the
frequency deviation in area 1, reveals that the Fuzzy–CFOA controller achieves a faster
settling time and lower overshoot/undershoot relative to the Fuzzy–PSO counterpart.
Similarly, Figure 24, depicting the frequency response in area 2, affirms this trend; the
CFOA-optimized controller exhibits superior damping characteristics and a more stable
trajectory in managing frequency fluctuations post-disturbance. In both cases, the CFOA-
based design ensures improved transient performance, thereby emphasizing the efficacy of
the proposed controller even when considering the impact of the GRC element.

The tie-line power deviations shown in Figure 25 further substantiate the robustness
of the CFOA-optimized controller under nonlinear conditions introduced by GRCs. While
both algorithms manage to stabilize the inter-area oscillations, the Fuzzy–CFOA config-
uration maintains a lower magnitude of oscillatory behavior and achieves equilibrium
significantly faster than its PSO-tuned counterpart. This enhanced performance in tie-line
regulation is critical in maintaining coherent operation across interconnected control areas.
The comparative performance across Figures 23–25 highlights the necessity of considering
nonlinear elements, like GRCs, when designing an LFC system to avoid degradation in
system stability and responsiveness.

Table 12 provides a comprehensive summary of the optimized gain values for the
hybrid Fuzzy FOPID + PI controller under GRCs. It details the parameter sets derived
via the CFOA and PSO for both control areas, capturing the diverse controller structures
and fractional-order terms employed. Notably, the CFOA yields higher accuracy with
improved ITAE values (0.7026) compared to PSO (1.036), alongside better performance
in terms of overshoot, undershoot, and settling time metrics across all outputs—area 1
and area 2 frequencies and tie-line power. These quantitative insights corroborate the
qualitative analysis of Figures 23–25, affirming that the CFOA offers a more reliable and
effective approach for handling nonlinear dynamics in modern LFC frameworks.
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Table 12. Characteristics of the testbed system with different control techniques considering
GRC nonlinearity.

Controller
F1 F2 Tie-Line

ITAE
OS US ST OS US ST OS US ST

Fuzzy–CFOA 5.64 × 10−3 −0.133 4.3160 0.01185 0.1464 3.9078 4.18 × 10−3 0.0350 4.3962 0.7026
Fuzzy–PSO 0.029466 0.1331 5.6289 0.0392 0.1496 4.1170 0 0.0344 8.5264 1.036

4.5. Experiment 5: Robustness Analysis Against Parametric Uncertainty

The parameters within the system—such as the damping coefficient, speed regulator,
system inertia coefficient, and turbine governor time constant—are prone to continuous
fluctuations, which can substantially impair the performance of closed-loop control systems.
Despite their critical influence, research on this issue in the context of LFC remains relatively
limited. For instance, an increase in total system inertia tends to decelerate the system
response, whereas a higher damping ratio reduces frequency deviation. Conversely, an
increase in the governor time constant exacerbates frequency deviation.

In this section, the robustness of the proposed Fuzzy FOPID + PI controller, optimized
using the CFOA, is rigorously evaluated under significant parametric uncertainties within
a two-area interconnected power system that includes GDB nonlinearity. Eight distinct test
cases (Table 13) are formulated by varying critical system parameters—such as the inertia
constant (H), the damping coefficient (D), the speed regulation constant (R), the turbine
time constant (Tt), the governor time constant (Tg), and frequency bias (B)—by ±35% from
their nominal values. Importantly, the optimal gains of the proposed Fuzzy FOPID + PI
controller (presented in Table 3) based on the CFOA, derived under normal operating
conditions, remain fixed and are not retuned despite variations in system parameters.

Table 13. Different investigated scenarios of system parametric uncertainties.

Case No. Parameter Area 1 Area 2 Variation Range Area 1 Area 2

Case 1 H 5 4 +35% 6.75 5.4
Case 2 D 0.6 0.9 −35% 0.39 0.585
Case 3 R 0.05 0.0625 +35% 0.0675 0.0844
Case 4 Tt 0.5 0.6 −35% 0.325 0.39
Case 5 B 20.6 16.9 +35% 27.81 22.815
Case 6 D 0.6 0.9 +35% 0.81 1.215
Case 7 Tg 0.2 0.3 −35% 0.13 0.195
Case 8 R 0.05 0.0625 −35% 0.0325 0.0406

Figures 26–28 illustrate the frequency deviations in area one and area two, as well as the
tie-line power deviations across all eight cases. These graphical results collectively affirm
that the controller maintains stable and bounded responses despite significant parameter
perturbations. Table 14 quantitatively summarizes the system’s dynamic responses under
each test case, reporting metrics such as overshoot (OS), undershoot (US), settling time
(ST), and the ITAE for frequency deviations in both areas and tie-line power.

The analysis reveals that the proposed controller demonstrates commendable robust-
ness. In Case 1, where system inertia is increased by 35%, the controller manages to
suppress overshoots effectively, albeit with a slightly prolonged settling time in both areas.
Cases 2 and 6, which examine variations in damping, exhibit the fastest settling times
(5.6320 s and 5.5843 s in area 1, respectively), confirming that higher damping enhances
system stability. Conversely, Case 5, involving a +35% increase in the frequency bias (B),
results in the highest ITAE (0.2264), indicating that such changes impose a greater burden
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on the control system. Despite this, frequency deviations remain within acceptable limits,
and no instability is observed.
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Figure 26. Frequency deviation in area one.
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Figure 28. Tie-line power deviation.

Table 14. Dynamic response of the system under different parametric uncertainty cases with the
fuzzy controller.

Case No.
F1 F2 Tie-Line

ITAE
OS US ST OS US ST US ST

Case 1 1.898 × 10−3 −4.50 × 10−3 11.0830 1.03 × 10−4 −6.68 × 10−4 16.0275 −7.431 × 10−3 19.2488 0.2225

Case 2 2.591 × 10−4 −3.93 × 10−3 5.6320 0 −3.43 × 10−4 16.0203 −3.432 × 10−3 17.8825 0.08452

Case 3 4.317 × 10−4 −3.91 × 10−3 7.4107 0 −3.55 × 10−4 14.6044 −3.532 × 10−3 17.9442 0.08631

Case 4 6.218 × 10−4 −3.57 × 10−3 6.6621 0 −2.64 × 10−4 17.8677 −4.045 × 10−3 18.5645 0.1177

Case 5 9.253 × 10−4 −5.21 × 10−3 6.6483 0 −3.29 × 10−4 20.7906 −4.801 × 10−3 23.1913 0.2264

Case 6 2.663 × 10−4 −3.90 × 10−3 5.5843 0 −3.35 × 10−4 15.9009 −3.242 × 10−3 17.8491 0.08493

Case 7 6.338 × 10−4 −3.51 × 10−3 7.2140 0 −2.60 × 10−4 17.1571 −3.573 × 10−3 18.2752 0.09975

Case 8 4.86 × 10−4 −3.91 × 10−3 9.6209 6.5 × 10−6 −3.12 × 10−4 19.6390 −3.265 × 10−3 19.1245 0.1007

In summary, the proposed Fuzzy FOPID + PI controller maintains high performance
and resilience under a wide spectrum of parametric uncertainties. These results under-
score its suitability for practical deployment in complex and variable LFC environments,
especially where retuning is impractical or costly. Nonetheless, further exploration incorpo-
rating additional nonlinearities and operational constraints would enrich the comprehen-
siveness of the robustness assessment.

5. Conclusions and Future Work
This study has introduced a robust and adaptive load frequency control (LFC) frame-

work incorporating a hybrid Fuzzy FOPID enhanced by a PI controller optimized us-
ing the Catch Fish Optimization Algorithm (CFOA). The proposed control architecture
demonstrates superior performance in multi-area power systems by effectively integrat-



Sustainability 2025, 17, 5966 37 of 40

ing fractional-order dynamics with fuzzy logic inference and classical PI compensation.
Through comprehensive testing on two benchmark systems—under both linear and nonlin-
ear operating conditions—the controller consistently exhibited excellent damping charac-
teristics, rapid frequency stabilization, and minimal tie-line power deviations. Importantly,
the inclusion and systematic evaluation of critical nonlinearities such as governor dead
band (GDB) and generation rate constraints (GRCs) validated the controller’s resilience
under practical operational constraints. Comparative analyses further affirmed that the
CFOA outperformed conventional algorithms like PSO. Moreover, the proposed Fuzzy–
CFOA controller achieved up to an 82.7% reduction in frequency undershoot, a 77.9%
improvement in tie-line power regulation, and a 74.6% reduction in ITAE compared to
traditional PID-based schemes, confirming its superior dynamic and steady-state per-
formance. While this study focused on the nonlinear impacts of governor dead band
(GDB) and generation rate constraints (GRCs), other nonlinearities, such as actuator sat-
uration, dead-time, backlash, and time delays, are also known to affect control stability
and should be considered in future investigations. Overall, the results underscore the
controller’s effectiveness in ensuring dynamic stability, making it a promising candidate
for deployment in modern, nonlinear power grids. It is also evident that new proposals
for LFC systems should always take into account the nonlinear impact within the system
when designing new controllers.

Building on the promising results of this investigation, future research should focus
on the following trajectories:

1. Hardware-in-the-Loop (HIL) Validation: Integrating the proposed control scheme
into real-time simulation platforms or microgrid testbeds to validate performance
under physical constraints and communication delays.

2. Extension to Multi-Source Renewable Systems: Expanding the controller applica-
tion to multi-area systems comprising wind, solar, and battery storage units to test
robustness under intermittent generation.

3. Cyber–Physical Security and Communication Delays: Incorporating cyber-attack
scenarios and latency in data transmission to assess controller reliability in smart
grid infrastructures.

4. Investigation of Additional Nonlinearities: Incorporating other practical nonlinear ele-
ments, including actuator saturation, backlash, and dead time, to further evaluate the
robustness of the proposed controller in more realistic power system environments.
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Abbreviations
The following abbreviations are used in this manuscript:

LFC load frequency control
FOPID fractional-order proportional–integral–derivative
PI proportional and integral
FLC fuzzy logic controller
CFOA catch fish optimization algorithm
ITAE integral of time-weighted absolute error
GDB governor dead band
GRC generation rate constraint
PSO particle swarm optimization
GA genetic algorithm
ITEA integral of time multiplied error in area
ACE area control error
MF membership function
NB negative big
NS negative small
Z zero
PS positive small
PB positive big
SLP step load perturbation
DG distributed generation
BES battery energy storage
SMES superconducting magnetic energy storage
RES renewable energy sources
AVR automatic voltage regulator
TLBO teaching–learning-based optimization
PIDF proportional, integral, derivative with filter
FOPI fractional-order proportional–integral
FOPD fractional-order proportional—-derivative

Appendix A
The nominal parameters adopted for the two-area power system model 1 are

as follows:
F = 60 Hz; R1 = 0.05 MW/Hz; R2 = 0.0625 MW/Hz; B1 = 20.6 Hz/MW;

B2 = 16.9 Hz/MW; SLP = 0.2 pu; Tg1 = 0.2 s; Tg2 = 0.3 s; Tt1 = 0.5 s; Tt2 = 0.6 s;
H1 = 5; H2 = 4; D1 = 0.6; D2 = 0.9; T = 2.

Appendix B
The nominal parameters adopted for the two-area power system model 2 are

as follows:
F = 60 Hz; R1 = R2 = 0.05 MW/Hz; B1 = B2 = 0.425 Hz/MW; SLP = 0.05 pu;

Tg1 = Tg2 = 0.08 s; Tt1 = Tt2 = 0.3 s; TP1 = TP2 = 20 s; KP1 = KP2 = 120; a12 = −1;
T12 = 0.545.
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