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Background:  Genetic studies have shown associations be-
tween genetic risk for schizophrenia and brain imaging 
phenotypes. However, prior studies focused on a single 
neuroimaging modality and/or employed methods that do 
not fully elucidate the shared genetic architecture between 
them, limiting our understanding of their complex genetic 
relationship.
Study Design:  We used genome-wide association study 
summary statistics for schizophrenia alongside 37 brain 
measurements, selected based on adequate SNP-based her-
itability and representing structural, microstructural, and 
functional brain features derived from T1, diffusion tensor 
imaging (DTI), and resting-state functional magnetic res-
onance imaging (rs-fMRI). These were integrated with a 
clinical cohort (1065 cases, 1037 controls) to examine the 
polygenic overlap between schizophrenia and brain meas-
urements. Polygenic overlap was assessed at genome-wide 
and individual locus levels through linkage disequilib-
rium score regression, polygenic scoring (PGS), bivariate 
MiXeR, and conjunctional false discovery rate.
Study Results:  Schizophrenia showed weak genetic cor-
relations with all brain measures (rg = −0.131 to 0.146; 
PFDR = .069 to .019), and no significant correlation with 
brain PGS. Nonetheless, a substantial proportion of causal 
variants with mixed effect direction were shared between 
schizophrenia and brain traits. Genetic correlations and 
polygenic scores showed significant positive associations 
with the proportion of shared variants with concordant ef-
fect direction. Additionally, we identified 218 loci shared 
with schizophrenia in T1, 138 in DTI, and 24 in rs-fMRI 
measures.

Conclusions:  Our findings indicate shared genetic under-
pinnings between schizophrenia and brain structure and 
functional connectivity, emphasizing the necessity for 
complementary methodologies to investigate the genetic 
overlap between complex polygenic traits.

Key words: schizophrenia; genetics; brain MRI; genome-
wide association study; pleiotropy; genetic overlap.

Introduction

Schizophrenia is a highly heritable brain disorder (60%-
80% in twin studies) with a complex genetic architec-
ture,1 impacting about 24 million people worldwide.2,3 
The prevailing “neurodevelopmental” model of schizo-
phrenia posits that disrupted brain development in early 
life, influenced by genetic and environmental risk fac-
tors, is an important vulnerability factor for developing 
schizophrenia.4

Neuroimaging research consistently reports structural 
brain differences in individuals with schizophrenia, in-
cluding widespread thinner cortex, reduced intracranial 
volume (ICV), smaller total surface area, and decreased 
volume of certain subcortical structures, such as the hip-
pocampus and thalamus.5–8 Diffusion tensor imaging 
(DTI) studies highlight pronounced white matter micro-
structure abnormalities across various brain regions, espe-
cially reduced fractional anisotropy (FA).9–11 Additionally, 
large-scale functional network dysfunction correlates 
with clinical features of schizophrenia.12,13 Most of these 
brain phenotypes are not only heritable and polygenic14–18 
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but are also observed in high-risk individuals and unaf-
fected relatives of those with schizophrenia,19 suggesting 
that genetic risk factors for schizophrenia may be associ-
ated with brain structure and function.

Exploring the shared genetic architecture of schizo-
phrenia and brain phenotypes could shed light on the un-
derlying pathological mechanisms of schizophrenia, yet 
previous studies have shown inconsistent findings. For in-
stance, Franke et al. reported no significant genetic cor-
relations between schizophrenia and subcortical volume,20 
while others observed genetic overlap.21–23 These inconsist-
encies may be partly due to the fact that there are multiple 
methods to estimate genetic overlap between 2 traits, which 
differ in the way this overlap is quantified. Linkage disequi-
librium score regression (LDSC) quantifies genome-wide 
genetic correlation,24–26 depending on consistent effect dir-
ections of shared genetic variants. However, schizophrenia 
and brain phenotypes have complex polygenic architectures, 
where some shared variants have a concordant effect direc-
tion (ie, increasing or decreasing schizophrenia risk and 
brain measures in both), while others have discordant effect 
direction (ie, increasing schizophrenia risk while decreasing 
brain measures, or in the opposite direction). Shared vari-
ants with mixed effect directions generate opposing genetic 
correlations, which may cancel out genome-wide, poten-
tially leading to an underestimation of genetic correlation 
estimates.27,28 Polygenic score (PGS) assesses individual 
genetic predisposition by aggregating effects of genetic 
variants across the genome, reflecting the polygenic basis 
of traits like schizophrenia. Higher schizophrenia PGS 
has been correlated with lower global cortex thickness,29,30 
difference in regional brain volumes,31,32 and difference in 
functional connectivity.33,34 Brain imaging-derived PGS 
could identify individuals at high risk for schizophrenia.35 
Furthermore, Mendelian randomization analyses suggest 
that structural brain measures causally influence schizo-
phrenia risk.36,37 Yet, similar to LDSC, PGS is limited by 
the fact that the impact of shared variants with mixed effect 
directions gets lost when summed together.

Another approach, bivariate Gaussian mixture mod-
eling, implemented by the MiXeR tool, addresses these 
limitations by estimating the overall amount of shared 
causal variants, regardless of the effect directions.38,39 
This approach estimates the amount of shared and trait-
specific causal variants and the proportion of shared vari-
ants with concordant effect direction. The application of 
MiXeR has found subcortical brain volumes and average 
brain FA share causal variants with schizophrenia.26 
However, above methods do not pinpoint the location of 
shared variants. The conjunctional false discovery rate 
(conjFDR) approach leverages pleiotropy,40,41 where a 
single variant is associated with multiple distinct pheno-
types, to enhance the power of genome-wide association 
study (GWAS) summary statistics and facilitate the iden-
tification of shared genetic loci. Applying conjFDR to 
schizophrenia has identified overlapping variants with 

brain phenotypes, including subcortical volume, ICV, 
and functional connectivity.42

These approaches offer complementary insights into 
the shared genetic architecture of complex traits, yet 
most studies have used a limited range of methods and 
focused on a single imaging modality. Combining mul-
tiple modalities, such as T1, DTI, and resting-state 
functional magnetic resonance imaging (rs-fMRI), can 
provide modality-specific genetic signals43 and deepen 
our understanding of the shared genetic architecture be-
tween schizophrenia and brain phenotypes. Our study 
combines these methodologies to explore the genetic 
overlap between schizophrenia and brain imaging pheno-
types from T1, DTI, and rs-fMRI, using LDSC, PGS, 
and MiXeR to assess genome-wide genetic overlap and 
conjFDR to identify local genetic loci.

Methods

GWAS Datasets

We utilized GWAS summary statistics for schizophrenia 
from the Psychiatric Genomic Consortium wave 3.1 
Specifically, we used data from a meta-analysis of 53 386 in-
dividuals with schizophrenia and 77 258 healthy controls of 
European ancestry. GWAS data for multimodal brain im-
aging phenotypes were acquired from the UK Biobank via 
the Oxford Brain Imaging Genetics Server (BIG40, https://
open.win.ox.ac.uk/ukbiobank/big40/).44 This dataset in-
cluded 33 224 healthy individuals with White European 
ancestry, with slight variations across different phenotypes. 
For T1 brain phenotypes, we selected global brain pheno-
types and subcortical volumetric phenotypes generated 
using FreeSurfer software44 to compare our results with 
previous research. We also included the weighted-mean 
FA of white matter tracts from probabilistic tractography 
for DTI phenotypes. Last, we incorporated brain rs-fMRI 
measures derived from independent component analysis 
of brain functional network nodes at a dimensionality of 
25. As our focus was on comparing statistical methods for 
estimating genetic overlap, and bilateral brain phenotypes 
are typically highly correlated both phenotypically and ge-
netically in healthy individuals,14,45 we restricted analyses 
to the left hemisphere phenotypes to reduce the burden 
of multiple testing. We screened the above brain meas-
ures with an additive genetic heritability (h2) greater than 
0.1 and a significance threshold below 0.05,46,47 resulting in 
the inclusion of 11 T1, 15 DTI, and 11 rs-fMRI pheno-
types (Table 1 and Figure S1). All the GWAS utilized in this 
study were approved by relevant ethics committees, with 
detailed genotyping and phenotype data processing details 
documented in the respective publications.44,48

Individual-Level Datasets for PGS Calculation

For the PGS analysis, we employed genotype and phe-
notype data from a clinical cohort within Work-package 
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6 (WP6) of the European Network of National 
Schizophrenia Networks studying Gene-Environment 

Interactions (EU-GEI).49,50 This dataset comprised 1525 
healthy controls, 1261 individuals with schizophrenia, 
and 1282 healthy siblings of these patients. Our analysis 
focused solely on the group of healthy controls and in-
dividuals with a diagnosis of schizophrenia. The inclu-
sion criteria for all individuals were (1) White European 
ancestry, (2) complete genetic and phenotype data, (3) 
originating from different families, and (4) genetically un-
related to each other (see below). Following these criteria, 
our final sample included 1065 individuals with schizo-
phrenia (mean [SD] age 33.703 [8.650] years, 32.3% fe-
male) and 1037 healthy controls (mean [SD] age 34.187 
[10.419] years, 48.5% female). The EU-GEI project re-
ceived approval from the Medical Ethics Committees of 
25 participating sites in 15 countries and was conducted 
in accordance with the Declaration of Helsinki. All par-
ticipants in this study provided their written informed 
consent.51

GWAS Data Preprocessing

In this study, we focused exclusively on autosomal SNPs. 
Therefore, for GWAS that included sex chromosome 
SNPs, all such SNPs were removed from the analysis. 
Furthermore, SNPs within the extended major histo-
compatibility complex (MHC) region (chr6: 26000000-
34000000) were removed from all GWAS data to mitigate 
potential bias arising from the intricate disequilibrium 
(LD) patterns.

Global-Level Genetic Overlap

Linkage Disequilibrium Score Regression For each pair 
of schizophrenia and brain imaging measures, we em-
ployed LDSC to evaluate the genome-wide genetic cor-
relation,24,52 using pre-computed LD scores from 1000 
Genomes European populations. Our analysis was re-
stricted to markers overlapping with 1.2 million SNPs 
identified in the HapMap Project Phase 353 to minimize 
bias due to variable imputation quality. The Benjamini-
Hochberg false discovery rate (FDR) procedure was ap-
plied to adjust for multiple comparisons across genetic 
correlations between schizophrenia and all examined im-
aging measures.

Polygenic Score PGS analysis was conducted utilizing 
the SBayesRC (v0.2.6) toolbox.54 Duplicate and ambig-
uous SNPs were removed from each UKB brain GWAS 
dataset. Comprehensive details regarding imputation 
and quality control processes of  the EU-GEI WP6 gen-
otype data were documented in a previous publication.49 
We excluded variants with minor allele frequency below 
0.01, and removed 1 individual from each pair of  par-
ticipants with a genetic relatedness coefficient greater 
than 0.125. After these quality control steps, 9 278 968 

Table 1. Brain Phenotypes Included in the Study.

Mo-
dality Brain phenotypes

h2 
(mean)

h2 
(SE)

T1 Volume of Thalamus-Proper (L) 0.278 0.024
T1 Volume of caudate (L) 0.349 0.027
T1 Volume of putamen (L) 0.321 0.027
T1 Volume of pallidum (L) 0.303 0.022
T1 Volume of hippocampus (L) 0.264 0.023
T1 Volume of amygdala (L) 0.224 0.019
T1 Volume of accumbens-area (L) 0.237 0.022
T1 Volume of ventral DC (L) 0.312 0.028
T1 Estimated total intracranial volume 0.175 0.022
T1 Total surface area (L) 0.314 0.024
T1 Global mean thickness (L) 0.211 0.021
DTI Weighted-mean FA in tract acoustic 

radiation (L)
0.214 0.021

DTI Weighted-mean FA in tract anterior tha-
lamic radiation (L)

0.284 0.024

DTI Weighted-mean FA in tract cingulate 
gyrus part of cingulum (L)

0.192 0.020

DTI Weighted-mean FA in tract 
parahippocampal part of cingulum (L)

0.150 0.019

DTI Weighted-mean FA in tract corticospinal 
tract (L)

0.194 0.021

DTI Weighted-mean FA in tract forceps 
major

0.223 0.023

DTI Weighted-mean FA in tract forceps 
minor

0.327 0.028

DTI Weighted-mean FA in tract inferior 
fronto-occipital fasciculus (L)

0.264 0.027

DTI Weighted-mean FA in tract inferior lon-
gitudinal fasciculus (L)

0.270 0.028

DTI Weighted-mean FA in tract middle cere-
bellar peduncle

0.112 0.021

DTI Weighted-mean FA in tract medial 
lemniscus (L)

0.146 0.023

DTI Weighted-mean FA in tract posterior 
thalamic radiation (L)

0.222 0.023

DTI Weighted-mean FA in tract superior lon-
gitudinal fasciculus (L)

0.328 0.027

DTI Weighted-mean FA in tract superior 
thalamic radiation (L)

0.250 0.025

DTI Weighted-mean FA in tract uncinate 
fasciculus (L)

0.232 0.023

fMRI Net25 node 1 (default mode network 
incl. cerebellum)

0.119 0.017

fMRI Net25 node 3 (temporal network) 0.105 0.017
fMRI Net25 node 5 (right lateral network) 0.127 0.018
fMRI Net25 node 6 (left lateral network) 0.140 0.017
fMRI Net25 node 9 (temporoparietal network) 0.109 0.018
fMRI Net25 node 13 (left ventral network) 0.168 0.020
fMRI Net25 node 15 (cerebellar network) 0.113 0.016
fMRI Net25 node 16 (prefrontal network) 0.104 0.019
fMRI Net25 node 18 (subcortical network) 0.103 0.015
fMRI Net25 node 20 (default mode network) 0.107 0.017
fMRI Net25 node 21 (right ventral network) 0.110 0.018

Abbreviations: h2 = SNP heritability; SE = standard error; L = 
left hemisphere of the brain; FA = fractional anisotropy; Net25 = 
25-dimensional network; DTI = diffusion tensor imaging; fMRI 
= functional magnetic resonance imaging.
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SNPs remained for PGS calculation in 2176 samples. 
SBayesRC was then employed to compute PGS for in-
dividuals in the EU-GEI WP6 dataset, based on the 
UKB brain GWAS. This method integrates functional 
genomic information with GWAS effect size to improve 
the estimation of  SNP effect size and enhance the pre-
dictive performance of  PGS. We utilized the functional 
genomic information for approximately 8 million SNPs, 
as provided by the developer, to refine the signal. Finally, 
logistic regression was performed to estimate the asso-
ciation between brain-based PGS and schizophrenia 
diagnosis. Sex, age, and the first 20 genetic principal 
components were included as covariates to control for 
potential confounding factors. The regression coefficient 
was used to assess the relationship between PGS and the 
diagnosis of  schizophrenia.

Bivariate MiXeR The bivariate MiXeR analysis was ap-
plied to evaluate the polygenic overlap between schizo-
phrenia and each brain imaging phenotype, regardless of 
genetic correlation.39 MiXeR modeled the genetic effect 
on 2 traits through 4 bivariate Gaussian components, 
representing variants with no effect on either trait, vari-
ants with effect only on one trait, variants with effect on 
the other trait, and variants with effect on both traits. 
Through this model, MiXeR estimates the total number 
of shared and trait-specific causal variants, and the pro-
portion of shared variants with concordant effect direc-
tions, meaning these variants simultaneously increase or 
decrease both traits. The Akaike Information Criterion 
(AIC) serves as a criterion for model fitting, with a pos-
itive AIC indicating that the Gaussian mixture model 
better fits the input data than a baseline infinitesimal 
model.

Local Genetic Overlap

To assess local genetic overlap and identify shared ge-
netic loci between schizophrenia and brain imaging 
phenotypes, we utilized the conjFDR method from the 
pleioFDR toolbox.40 This approach integrates condi-
tional FDR (condFDR) analyses across 2 phenotypes 
to pinpoint specific genetic variants associated with both 
traits. For each schizophrenia-brain phenotype pair, it 
re-ranks the test statistics of variants for one phenotype 
based on their association strength with the other phe-
notype, and vice versa. The conjFDR value, defined as 
the maximum of the 2 condFDR statistics, represents an 
estimate of the posterior probability that a given SNP is 
not associated with either trait, under the condition that 
the P-values for that SNP in both traits are as small or 
smaller than the observed. This method is agnostic to 
the detection of the effects of overlapping SNP associ-
ations. Variants within the MHC region were excluded, 
and shared genetic variants were identified at a conjFDR 
threshold of P < .05.

Gene Mapping and Enrichment Analysis

For each shared locus identified by conjFDR, we selected 
the lead variant with the most significant conjFDR value. 
Subsequently, using the Variant-to-Gene pipeline from 
Open Targets Genetics,55 these lead variants were as-
signed to genes based on the strongest evidence from 4 
main data sources: molecular phenotypes from quantita-
tive trait loci experiments, chromatin interaction experi-
ments, in silico functional prediction, and proximity of 
each variant to the canonical transcription start site of  
genes. We conducted enrichment analysis on a subset 
of unique genes selected from all identified genes, com-
paring them against Gene Ontology (GO) terms56,57 and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways.58–60 To assess the significance of enrichment, 
we employed a hypergeometric distribution test using 
an R package “limma.”61 Furthermore, we applied the 
Benjamini-Hochberg FDR procedure to adjust for mul-
tiple tests. We also performed tissue specificity anal-
ysis through the Functional Mapping and Annotation 
GENE2FUNC module.62 Specifically, hypergeometric 
tests were employed to assess whether the identified 
unique genes were significantly enriched with the differ-
entially expressed genes across the 54 tissue types profiled 
in the Genotype-Tissue Expression (GTEx) v8 database.63

Statistical Analysis

To examine the relationship between global genetic corre-
lation metrics, we calculated Pearson correlations among 
the genetic overlap metrics obtained from LDSC, PGS, 
and MiXeR. To determine which neuroimaging modal-
ities have greater genetic overlap with schizophrenia, we 
compared the number of shared variants and loci across 
T1, DTI, and rs-fRMI using the Wilcoxon rank-sum test. 
A sensitivity analysis was performed on brain measures 
with positive AIC values from bivariate MiXeR analysis. 
The Benjamini-Hochberg FDR method was applied to 
correct for multiple comparisons. All statistical analyses 
were performed using R version 4.3.1, and the ggplot2 
package was used for the visualization of all results.64

Results

Global-Level Genetic Overlap

Linkage Disequilibrium Score Regression We first in-
vestigated the global genetic correlation between schiz-
ophrenia and various brain measures using LDSC. For 
T1 measures, genetic correlation ranged from −0.081 
for the volume of ventral DC (PFDR = .069) to 0.029 for 
total surface area (PFDR = .657). For the DTI brain meas-
ures (mean FA), the correlations ranged from −0.099 
for the forceps major (PFDR = .069) to 0.031 for the 
parahippocampal part of the cingulum (PFDR = .711). 
Functional MRI correlations spanned from −0.131 for 
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the subcortical network (PFDR = .069) to 0.146 for the left 
lateral network (PFDR = .019) (Figure 1A and Table S1). 
Overall, we found small correlations and only the left lat-
eral network passed multiple comparisons correction.

Polygenic Score The logistic regression analysis revealed 
that the PGS for all the brain measures showed no sig-
nificant associations with schizophrenia (Figure 1B). 
The regression coefficient for T1 structural brain meas-
ures ranged from −0.285 (PFDR = .788) for the volume 
of amygdala to 0.370 (PFDR = .462) for the global mean 
thickness. For DTI brain measures, mean FA in the middle 
cerebellar peduncle and medial lemniscus exhibited the 
strongest negative and positive correlation with schizo-
phrenia, respectively (β = −.620, PFDR = .757; β = 3.666, 
PFDR = .677). Regarding the functional network, the 
PGS of the right lateral network and temporoparietal 
network displayed the strongest negative (β = −4.931, 
PFDR = .757) and positive (β = 8.417, PFDR = .383) corre-
lation with schizophrenia (Table S2).

Bivariate MiXeR The bivariate MiXeR analysis uncov-
ered a substantial amount of overlap of variants associ-
ated with schizophrenia and brain measures, as illustrated 
in Figure 1C and D, and Table S4. For the T1 brain meas-
ures, the global mean thickness measure demonstrated 
the most substantial overlap with schizophrenia, with 
95.5% of variants shared (1243 out of 1302 variants), 
in contrast to total ICV, which had the least overlap at 
11.4% (84 out of 737 variants). For DTI brain measures, 
the shared variant proportion ranged from 93.1% in the 
cingulate gyrus part of the cingulum (1658 out of 1780 
variants) to 12.1% in the medial lemniscus (252 out of 
2075 variants). For rs-fMRI measures, the proportion of 
shared variants with schizophrenia variants varied from 
93.3% in the default mode network (735 out of 788 vari-
ants) to 24.8% in the prefrontal network (418 out of 1690 
variants). Across 3 neuroimaging modalities, we also ob-
served a varied proportion of shared variants with con-
cordant effect directions (Figure 1C and Table S4). This 
proportion ranged between 0.317 and 0.520 (mean 0.460) 
for T1, and from 0.237 to 0.502 for DTI, with a mean 
of 0.392. The most variability was seen in rs-fMRI brain 
measures, ranging from 0.144 to 0.814, averaging 0.542. 
These findings highlight substantial genetic overlap 
among all the brain measures, although the shared vari-
ants show mixed directions of effect.

We calculated correlations between genetic overlap 
metrics across all examined brain measures. Notably, 
we observed a significant positive correlation between 
global genetic correlation and the regression coefficient 
of brain PGS with schizophrenia diagnosis (r = 0.563, 
PFDR = .001) (Figure 2A). These 2 genetic overlap met-
rics both showed a significant positive correlation with 
the proportion of shared variants with concordant effect 
direction (r = 0.779, PFDR < .001; r = 0.394, PFDR = .032) 

(Figure 2D and E). Additionally, T1 brain measures ex-
hibited a significantly higher number of shared variants 
with schizophrenia compared to DTI brain measures 
(PFDR = .038) (Figure S2). Excluding brain measures 
with negative AIC value, we still found a positive corre-
lation between global genetic correlation and the sign-
concordant rate of shared variants, and more shared 
variants with schizophrenia in T1 brain measures than 
in DTI (Table S5), underscoring the robustness of these 
findings.

Local-Level Genetic Overlap

ConjFDR analysis was used to identify specific shared 
variants between schizophrenia and brain measures. 
Based on conjFDR < 0.05, we identified 380 loci shared 
between schizophrenia and all the brain measures. The 
number of shared loci was between 4 and 37 for T1 meas-
ures (total of 218), between 2 and 22 for DTI measures 
(total of 138), and between 0 and 4 for rs-fMRI meas-
ures (total of 24) (Figure 3 and Table S6). Among these 
shared loci, 36 lead variants were jointly associated with 
schizophrenia and at least 2 brain measures (Table S7), 
resulting in 320 unique lead variants. Among the 3 neu-
roimaging modalities, T1 brain measures showed the 
greatest number of shared loci, whereas functional MRI 
had the fewest (Figure S2).

Gene Mapping and Enrichment Analysis

We conducted functional annotation by mapping the 
overlapping loci, identified through conjFDR, to genes 
through OpenTargets. This process identified 372 genes 
common to schizophrenia and each brain measure (Table 
S6), with 219 being unique. Specifically, schizophrenia 
shared 151 unique genes with T1 brain measures, 57 with 
DTI, and 11 with rs-fMRI measures. Of these shared 
genes, 62 were linked to schizophrenia and at least 2 brain 
measures, with 22 associated with both schizophrenia 
and the T1 and DTI brain measures (Table S8). In sub-
sequent enrichment analysis, genes uniquely associated 
with both schizophrenia and T1 brain measures showed 
significant enrichment in the intracellular anatomical 
structure category (PFDR = .022) (Table S9). However, 
genes uniquely shared between schizophrenia and DTI 
or rs-fMRI brain measures did not show enrichment in 
any GO categories and KEGG pathways. Conversely, 
genes common to schizophrenia and all studied brain 
measures were enriched for the GO domains molecular 
function and cellular components, specifically molecular 
function (PFDR = .047), protein binding (PFDR = .038), 
cell adhesion molecule (CAM) binding (PFDR = .047), 
and postsynaptic density (PFDR = .047) (Figure 4A and 
Table S10). Furthermore, the tissue-specific expression 
of all mapped genes was primarily concentrated in brain 
tissues, particularly in the putamen, hippocampus, and 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data


Page 6 of 14

Schizophrenia Bulletin, 2025, Vol. XX, No. XX

Figure 1. Genetic Overlap Between Schizophrenia and Brain Phenotypes at the Global Level. (A) Genetic correlation estimates. Using 
LDSC, we calculated the genetic correlation between schizophrenia and brain phenotypes. (B) Regression analysis. Estimated regression 
coefficients between polygenic scores for brain phenotypes and the diagnosis of schizophrenia. (C) The proportion of sign-concordant 
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Figure 2. Correlation Between Metrics of Genetic Overlap. We calculated the correlation between different genetic overlap metrics, 
obtained from LDSC, polygenic score, and bivariate MiXeR. Each point represents an individual pairwise analysis between 
schizophrenia and a brain phenotype. The P-values adjusted for multiple comparisons (PFDR) are shown. Abbreviations: FDR = false 
discovery rate; LDSC = linkage disequilibrium score regression.

shared variants. We estimated the proportion of shared variants with concordant effect direction between schizophrenia and brain 
phenotypes using bivariate MiXeR. (D) The number of trait-specific and shared causal variants. Bivariate MiXeR modeling the shared 
(green) and brain phenotypes-specific (blue) causal variants. Error bars reflect standard error in plot A, and reflect standard deviation 
in plots B, C, and D. Asterisks (*) in plot A signify statistical significance (P < .05) after multiple comparisons correction for 37 brain 
measures. The vertical gray dashed lines separate the brain measures according to the modalities. Specific brain measures from T1 
and DTI are located in the left hemisphere; refer to Table S1 for details. Complete details of this figure are provided in Tables S1-S4. 
Abbreviations: DTI = diffusion tensor imaging; LDSC = linkage disequilibrium score regression.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaf096#supplementary-data
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Figure 3. Shared Genetic Loci Between Schizophrenia and Brain Imaging Phenotypes. The x-axis reflects the chromosomal position, 
and the y-axis shows the −log10 transformed conjunctional false discovery rate (conjFDR). Each dot represents an SNP; lead SNPs of 
shared loci are indicated by a bold border. Different colors correspond to different brain imaging phenotypes. The horizontal dotted 
line marks the significant threshold (−log10(0.05)). Panels A, B, and C illustrate the shared loci identified with T1, DTI, and fMRI, 
respectively. Abbreviations: DTI = diffusion tensor imaging; fMRI = functional magnetic resonance imaging.
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caudate, as well as in several nonbrain tissues, including 
the pancreas, heart, and liver (Figure 4B). This expression 
pattern is consistent with expectation, given that these 
genes were identified based on shared relevance to both 
schizophrenia and brain phenotypes.

Discussion

We investigated the shared genetic architecture between 
schizophrenia and 37 brain neuroimaging phenotypes 
from T1-weighted, diffusion MRI, and rs-fMRI and 
found a substantial number of shared variants. Using 
multiple statistical methods, we provide complementary 
insights into the intricate genetic overlap with mixed ef-
fect direction at both genome-wide and individual locus 
levels. While this complex shared genetic architecture is 
not fully discernible using LDSC and PGS alone, the ob-
served positive correlations among LDSC-derived genetic 
correlation, PGS regression coefficients, and MiXeR-
derived proportion of sign-concordant shared variants 
underscored the continued value of these approaches in 
exploring genetic overlap. These findings highlight the ne-
cessity of a multifaceted approach for comprehensively 

characterizing genetic overlap between polygenic pheno-
types. Furthermore, our gene-level analysis of mapped 
genes revealed significant enrichment in molecular func-
tion gene sets, including protein binding, CAM binding, 
and postsynaptic density, as well as brain-specific expres-
sion profiles.

Using MiXeR and conjFDR, we found extensive ge-
netic overlap between schizophrenia and all brain imaging 
phenotypes at genome-wide and individual locus levels. 
This overlap, coupled with previous neuroimaging evi-
dence demonstrating distinct group differences in brain 
measures,8,9,13 suggests that the genetic architecture of 
schizophrenia and brain phenotypes is not independent 
and that at least some of the group differences in brain 
phenotypes are genetically determined. Additionally, 
the extensive genetic overlap was observed in scenarios 
of weak genetic correlation, concordant with earlier 
studies,20,21 implying a balance of shared genetic variance 
with both consistent and opposing effect directions on 
schizophrenia and brain phenotypes. Consequently, the 
shared genetic variants that are involved in brain pheno-
types may have both risk-enhancing and risk-reducing 
effects on schizophrenia.28 Overall, building on prior 

Figure 4. Enrichment Analysis and Tissue Specificity Analysis for Genes Mapped to Conjunctional FDR Loci. (A) Enrichment analysis 
of the mapped genes. The left bar shows the count of genes overlapping between schizophrenia and all brain phenotypes. The right 
bar indicates the proportion of the number of overlapped genes and the total genes in the gene sets. All depicted results have survived 
correction for multiple comparisons. (B) Tissue-specific expression of the mapped genes. The y-axis represents the −log10(P-value) of 
differential gene expression in each tissue type, and the x-axis represents the 54 tissues from the GTEx v8 database, grouped into brain 
and nonbrain tissues. The horizontal dashed line indicates the significance threshold after Bonferroni correction (PFDR = .05/54 tissues). 
Abbreviation: FDR = false discovery rate.
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findings, we expand the scope to include T1, DTI, and 
rs-fMRI brain neuroimaging phenotypes, demonstrating 
that schizophrenia shares a genetic basis with the brain’s 
morphology, white matter microstructure, and resting-
state functional activity.

Diverse methodologies allow us to dissect the shared ge-
netic architecture between schizophrenia and brain imaging 
phenotypes from different perspectives. LDSC captures av-
erage genetic signals across the genome and reveals weak 
or no genetic correlations between schizophrenia and brain 
phenotypes—findings consistent with prior studies.21,23,25,26 
These results underscore LDSC’s limitations in addressing 
the complexity of mixed effect directions among shared 
variants. PGS, which aggregates genome-wide causal 
variants to infer genetic relationships between 2 traits,65,66 
showed insignificant associations between brain measures 
and schizophrenia, likely due to its struggles in detecting 
genetic overlap when shared variants have opposing effects. 
In contrast, bivariate MiXeR is unaffected by the direction-
ality of effects in shared variants39 and identified numerous 
brain- and schizophrenia-specific and shared variants, 
noting a significant proportion of sign-concordant shared 
variants consistent with earlier studies.21,22,26,28 Importantly, 
global genetic correlation and regression coefficient of PGS 
had a significant positive correlation with the proportion of 
sign-concordant shared variants, rather than the number of 
shared variants. This finding challenges the traditional as-
sumption that higher genetic correlation or regression coef-
ficient of PGS necessarily implies greater genetic overlap,20 
suggesting instead that these 2 methodologies capture only 
or mainly part of the genetic overlap with consistent effects 
on both traits. Finally, conjFDR identified hundreds of 
loci shared between schizophrenia and brain phenotypes, 
offering insights into the biological mechanisms underlying 
their shared genetic basis.

While there was extensive genetic overlap between 
schizophrenia and all examined brain measures, the ex-
tent of shared causal variants and loci varied across dif-
ferent imaging modalities. Specifically, T1 brain measures 
demonstrated more shared genetic variants and loci with 
schizophrenia than DTI and rs-fMRI. This observation 
could be attributed to the higher SNP-based heritability 
of T1 brain measures observed in our study, in line with 
previous research,43 indicating a stronger genetic influence 
on the brain’s morphological structure. Additionally, T1 
measurements typically exhibit lower noise levels com-
pared to DTI and rs-fMRI, potentially leading to more 
reliable genetic associations. Furthermore, our observa-
tion aligns with findings from multivariate GWAS ana-
lyses of brain imaging phenotypes, which indicated few 
loci and genes associated with rs-fMRI and DTI brain 
measurements compared to T1.43 Based on these find-
ings, we speculate that structural aspects of the brain, 
especially morphological features captured by T1 struc-
ture, may be more closely related to the genetic under-
pinnings of schizophrenia than brain functions captured 

by rs-fMRI. However, further investigation is necessary 
to confirm this speculation and explore the underlying 
mechanisms.

Among the genes mapped via shared SNPs identified 
by conjFDR, several have been previously associated with 
schizophrenia. Notably, ACTR1B encodes a subunit of 
dynactin complex involved in microtubule remodeling and 
neuronal migration,67 and has been associated with mean 
cortical thickness.18 Its overlap with both schizophrenia and 
mean cortical thickness, and mean FA across multiple white 
matter tracts, suggests a potential involvement in cortex 
structural organization and white matter integrity, which 
are commonly implicated in schizophrenia-related neuropa-
thology.7,9 BCL11B is a zinc-finger transcription factor essen-
tial for establishing and maintaining neuronal connections 
during central nervous system development.68 CACNA1C, 
encoding a subunit of L-type calcium channel,69 is crucial 
for neuronal excitability, synaptic plasticity, and normal 
brain development.70 GATAD2A encodes a component of 
the NuRD (nucleosome remodeling and deacetylase) com-
plex involved in regulating cell-cycle progression, genome 
integrity, and cellular differentiation.71 The above 3 genes 
have all been implicated in neurodevelopmental processes. 
Our findings provide additional cues that these genes may 
affect cortical architecture and functional connectivity 
during brain development and thus contribute to schiz-
ophrenia pathology. EPN2 was mapped through shared 
variants between schizophrenia and multiple functional 
networks. It has been prioritized in schizophrenia GWAS 
using fine-mapping and protein-protein interaction inte-
grated analyses, supporting its potential causal role.72 Given 
EPN2’s role in synaptic vesicle endocytosis,73 genetic varia-
tions in this gene may disrupt efficient neurotransmission, 
potentially leading to altered large-scale brain network con-
nectivity observed in schizophrenia.12,13

The enrichment analysis of GO and KEGG revealed 
that genes shared between schizophrenia and all brain 
measures were enriched for protein binding, particularly 
CAM binding, implicating their roles in synaptic plas-
ticity and function.74 Altered CAM levels and the PGS 
of the CAM pathway have been associated with impair-
ments in memory and attention in schizophrenia.75–77 
Our findings thus add support to the hypothesis that 
CAM plays a key role in the pathophysiology of schiz-
ophrenia. Additionally, enrichment of the postsynaptic 
density gene set aligns with prior evidence of reduced 
postsynaptic density in schizophrenia78 and reinforces the 
hypothesis that schizophrenia may fundamentally involve 
disruptions in brain connectivity.12 Tissue-specific expres-
sion analysis showed significant enrichment in brain tis-
sues, especially subcortical regions such as the putamen, 
caudate, and hippocampus, consistent with known struc-
tural abnormalities in schizophrenia.8,79 Enrichment in 
cortical regions, including the frontal cortex and anterior 
cingulate cortex, further supports the view that schizo-
phrenia involves widespread disruptions across multiple 



Page 11 of 14

Schizophrenia Bulletin, 2025, Vol. XX, No. XX

brain networks.13 Additionally, the observed enrichment 
in nonbrain tissues, such as the heart and liver, may re-
flect broader gene regulatory networks or developmental 
co-expression patterns, wherein neurodevelopment genes 
are also active in other tissues during early development.21

This study has several limitations. First, our analyses were 
limited to samples of European ancestry, and brain pheno-
types are from the UK Biobank, a cohort with participants 
aged 45-76. Thus, the generalizability of our findings to 
other age groups and populations remains to be established. 
Second, the limited statistical power in some brain GWAS did 
not warrant the use of the bivariate MiXeR model. However, 
excluding brain phenotypes with negative AIC values did not 
alter the significant correlations between MiXeR-derived 
and other genetic overlap metrics, supporting the robustness 
of our findings. Third, conjFDR and PGS association ana-
lyses depend on the power of input GWASs, which is largely 
determined by sample size. Similarly, previously inconsistent 
genetic correlation results may also be attributed to limited 
GWAS sample size.20,21,23 Larger cohorts will improve preci-
sion and power to detect genetic overlap through these ap-
proaches. Fourth, the brain GWAS summary statistics used 
were not uniformly adjusted for ICV or other global brain 
measures, potentially confounding region-specific associ-
ations with global brain size effects. Future work using raw 
imaging data and GWAS conditioned on global measures is 
needed. Fifth, we examined a limited set of brain measures 
and restricted analyses to the left hemisphere for bilateral 
brain phenotypes, which may limit the detection of addi-
tional shared variants with schizophrenia. Broader pheno-
typic coverage is warranted in further studies. Finally, other 
methods, such as colocalization analysis,80 could further test 
shared causal variants between 2 traits, while multivariate 
approaches like the Multivariate Omnibus Statistical Test81 
may enhance the discovery of genetic variants with distrib-
uted effects across a set of related measures.43,82–84 Applying 
these approaches may provide deeper insights into the ge-
netic overlap between schizophrenia and brain phenotypes, 
and could be extended to other disease-related traits, such as 
psychiatric or behavioral phenotypes, as a valuable avenue 
for future investigation.

To conclude, we found extensive polygenic overlap with 
mixed effect direction between schizophrenia and the 
brain neuroimaging phenotypes at the genome-wide and 
individual locus levels. Our findings highlight the impor-
tance of exploring different methodologies in studying 
the genetic overlap of complex traits and provide com-
plementary insight into the shared genetic basis between 
schizophrenia and brain morphology, white matter mi-
crostructure, and functional connectivity.
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