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ABSTRACT

Objective: New Delhi metallo-S-lactamase is endemic in India and the gut may act as a reservoir of
carbapenemase-producing Enterobacterales (CPE). Maternal gut colonisation with blaypy-harbouring CPE
increases the risk of neonatal gut colonisation. This study aimed to assess the vertical transmission of
CPE from pregnant mothers (rectal) to neonates (rectal and blood).
Methods: Rectal samples were collected and processed for the presence of CPE, followed by bacterial
identification and antibiotic susceptibility. Mother-neonate pairs colonised with the same species un-
derwent pulsed-field gel electrophoresis and whole-genome sequencing to examine genetic relatedness.
Detection of blaypy variants and their transmissibility was performed.
Results: Of the pregnant mothers (n = 86) and sick neonates (n = 93) analysed, eight mother-neonate
pairs harboured similar carbapenem-resistant species, predominantly Klebsiella pneumoniae, followed by
Escherichia coli. Pulsed-field gel electrophoresis and whole-genome sequencing revealed that most isolates
from mother-neonate pairs were distinct and distributed within diverse sequence types, including epi-
demic clones (ST11/15/147/405/410). blaxpm-15;7 were detected in CPE and predominantly associated with
conjugative IncFIl and IncFII(K) replicons. Genomic analysis supported one case of vertical transmission
(ST147; blanpm.1-positive K. pneumoniae) from mother to a neonate. Further investigation of exogenous
sources is required to understand the acquisition of bacteria. No evidence of transmission of blaypy-
harbouring plasmids within mother-neonate pairs carrying distinct isolates was observed, indicating the
independent acquisition of bacteria.
Conclusions: Although limited evidence of mother-to-neonate transmission was observed in this study,
screening of the gut is necessary to understand CPE transmission in hospital settings and beyond. Tar-
geted surveillance and infection-prevention policies are needed to curb CPE spread.
© 2025 The Authors. Published by Elsevier Ltd on behalf of International Society for Antimicrobial
Chemotherapy. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

man gut teeming with bacteria acts as a niche for the exchange
of ARGs within a bacterial community [3]. Colonisation of the

Transmission of antimicrobial resistance genes (ARGs) between
human, animal, and environmental bacteria has facilitated the
global emergence of antimicrobial resistance (AMR) [1,2]. The hu-
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neonate begins immediately after birth, although recent evidence
suggests it may also start before birth, in utero [4]. Neonates fol-
lowing birth are exposed to diverse microbial communities, which
may include opportunistic pathogens acquired from the mother
or the hospital environment, increasing the likelihood of neonatal
colonisation with multidrug-resistant (MDR) bacteria [4]. In coun-
tries where the burden of MDR bacteria is high and the mother’s
gut harbours MDR strains, the possibility of transmission of such
bacteria from mother to neonate increases. Colonisation of the
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neonatal gut is a normal phenomenon, but the presence of MDR
strains in their gut may predispose the neonate to sepsis, particu-
larly those who are premature and of low birth weight [5,6]. The
vulnerability of the host is often an advantage for drug-resistant
pathogens to cause diseases that are difficult to treat due to the
diminishing options of active antimicrobials against MDR strains.

Carbapenems remain one of the most potent ‘last-resort’ drugs
for the treatment of sepsis with MDR bacteria, but widespread
non-judicious use of carbapenems has led to the emergence of
carbapenem resistance worldwide. Carbapenem resistance is pri-
marily mediated via the production of carbapenemases, which
are enzymes that hydrolyse most B-lactam antibiotics, including
carbapenems, by Gram-negative bacteria globally. Out of three
classes of carbapenemases—class A (e.g., Klebsiella pneumoniae car-
bapenemase [KPC]), class B (metallo-8-lactamases such as New
Delhi metallo-B-lactamase [NDM]), and class D (e.g., OXA-48-
like carbapenemases)—NDM is the most widely spread carbapen-
emase and is epidemiologically linked to the Indian subcon-
tinent [7]. NDM can hydrolyse most S-lactams, including car-
bapenems, but not monobactams [8]. To date, 75 blaypy vari-
ants have been reported worldwide (https://www.ncbi.nlm.nih.gov/
pathogens/refgene/#NDM). Of the different variants, blaypy-1 is the
globally disseminated variant, followed by blaypy.s and blanpy-7
[7,9]. Transmission of blaypy is associated with different mo-
bile genetic elements such as plasmids (IncX3, IncFIl, IncFlls, In-
cFIA, IncFIB, IncC, IncL/M, IncHI1b, and so on), transposons (Tn125,
Tn3000), and insertion sequences (ISs; ISAbal25, IS1, IS5, 1S26,
1S903, 1S3000, 1SEc33, ISKpn14, and so on), with dominant sequence
types (STs; ST167, ST410, or ST617, ST11, ST14) leading to the suc-
cessful spread of blaypy across the globe [7].

Although there have been several reports of blaypy-possessing
bacteria causing sepsis in neonates both from India [10-13] and
other parts of the globe [14-17], understanding of the mother-to-
neonate transmission of MDR bacteria is limited by several stud-
ies reporting the transmission of extended spectrum S-lactamase
(ESBL)-producing bacteria [18-21]. However, studies inferring the
transmission of blaypy=producing bacteria from mother to neonate
have not been explored extensively. A multi-centric study (Bur-
den of Antibiotic Resistance in Neonates from Developing Soci-
eties; BARNARDS) carried out in low- and middle-income countries
reported the prevalence of blaypy in Southeast Asia and Africa
[22]. The study described the increased carriage of blaypy (42%)
and blagxa-4g (7%) in the neonatal gut compared with the mater-
nal gut (blaypy = 8%, blagxa.4s = 2%) in the Indian population.
Overall carriage of ESBLs and carbapenemase genes has been re-
ported in the BARNARDS study [22]. However, the previous study
did not explore the transmission of blaypy-possessing Enterobac-
terales from mothers to neonates in Indian samples. As an exten-
sion of the BARNARDS study, the present study specifically focused
on the genetic similarity of carbapenem-resistant Enterobacterales
between mothers and their neonates to determine whether trans-
mission could have occurred.

2. Materials and methods
2.1. Study design, site and participants

Isolates analysed here were part of a collaborative study,
BARNARDS, involving seven different countries, including India
(July-November 2017). The present study involved samples col-
lected from the India site (IPGME&R and SSKM hospital, Kolkata),
both from pregnant mothers and sick neonates (period of collec-
tion: July-December 2017). In the BARNARDS study, women in
labour (preferably) or immediately postpartum were enrolled, and
rectal swabs were collected. Rectal swabs and blood samples were
collected from neonates suspected of sepsis, excluding healthy
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neonates, as mentioned in the BARNARDS study [22]. In this study,
only sick neonates were included. As this study focused on un-
derstanding the probability of transmission of carbapenemase-
producing Enterobacterales (CPE) from mother to neonate by as-
sessing isolate similarity, samples from mother-neonate dyads
were included.

2.2. Culture, isolation, and identification of carbapenem-resistant
Gram-negative bacteria

Rectal swabs and blood cultures were processed as described
previously [22,23]. Briefly, rectal swabs were streaked on chrome
agar plates (BD BBL, MD, USA) supplemented with vancomycin
(10 mg/L; MP Biomedicals, CA, USA) and ertapenem (2 mg/L; VE;
Sigma-Aldrich, USA). Chrome agar was used to differentiate bac-
teria in the rectal swabs and further similar bacteria (based on
colour) were picked up from both rectal swabs of the mother and
neonates for further analysis. Carbapenem-resistant Gram-negative
bacteria growing on these plates were screened for the pres-
ence of carbapenemases (blaypy, blagpc, and blagya_ss-iike) bY POly-
merase chain reaction (PCR) [22]. Samples positive for carbapene-
mases (blaypmjoxa-as) Were plated for single colonies to differenti-
ate bacterial species. Following the repeat PCR for blaypwmjoxa-4s,
carbapenem-resistant species were cryopreserved. The clonality
of morphologically similar carbapenemase-producing isolates from
each sample was checked by repetitive extragenic palindromic
elements-PCR [24], and the resulting distinct representative iso-
lates were further identified by Enterosystem 18R (Liofilchem S.r.l.,
Italy) and confirmed using a VITEK2 compact system (BioMérieux,
Marcy I'Etoile, France). Mother-neonate dyads colonised with the
same species of carbapenemase-producing bacteria designated as
CPE, were considered for further analysis to understand the ge-
nomic similarity of the bacteria to determine whether mother-to-
neonate transmission had occurred.

2.3. Antibiotic susceptibility testing of CPE collected from
mother-neonate dyads

Antibiotic susceptibility testing was carried out using the Kirby-
Bauer disk diffusion method (Liofilchem, Italy) [22] for nine dif-
ferent antibiotics (ceftazidime, ertapenem, imipenem, meropenem,
gentamicin, amikacin, ciprofloxacin, tigecycline, trimethoprim-
sulfamethoxazole). For meropenem and colistin, the minimum in-
hibitory concentration (MIC) was determined via the broth mi-
crodilution method. E. coli ATCC 25922 was used as a quality con-
trol, and the results were interpreted according to CLSI (2023)
guidelines. For tigecycline, interpretation was done using EUCAST
guidelines 2023.

2.4. Pulsed-field gel electrophoresis

Mothers and neonates colonised with the same species of
CPE underwent pulsed-field gel electrophoresis (PFGE) follow-
ing the PulseNet standardised procedure (http://www.cdc.gov/
pulsenet/protocols.htm) in a CHEF Mapper apparatus (Bio-Rad Lab-
oratories, CA, USA). Overnight DNA digestion was carried out using
Xbal (New England Biolab, MA, USA) at 37 °C followed by elec-
trophoresis in a 1% pulse field certified agarose gel (Bio-Rad Labo-
ratories) for 19 h. Salmonella serotype Braenderup H9812 was used
as the marker and bands were visually interpreted according to
Tenovar criteria [25].

2.5. Whole-genome sequencing

Genomic DNA was extracted from 16 CPEs (rectal and blood),
and 13 were processed for paired-end sequencing on an Illu-
mina NovaSeq 6000 platform (San Diego, CA, USA), with three
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isolates sequenced on an lon Torrent platform (Thermo Fisher
Scientificc, MA, USA) based on platform availability. Bacterial
whole-genomic DNA was extracted using the Wizard Genomic
DNA purification kit (Promega, Spain) and the Qiagen DNeasy
Ultraclean Microbial Kit, and quantified using Qubit 4.0 (Thermo
Fisher Scientific). Paired-end libraries were constructed using a
Nextera XT Kit (USA) and NEBNext Ultra II DNA Library Prep Kit
(USA) according to the manufacturer’s protocol. Next-generation
sequencing was performed using an Illumina NovaSeq 6000 with
a read length of (2 x 150 bp). Sequencing of a few samples
was carried out on the lon 540 chip with the lon S5 system
(Thermo Fisher Scientific) using the lon Xpress Plus fragment
library kit (Thermo Fisher Scientific) according to manufacturer
instructions. Reads were subjected to quality control and trimming
using fastp (v.0.20.1; https://github.com/OpenGene/fastp). Single
reads produced from Ion Torrent sequencing were assembled
using SPAdes (v.3.15.4; https://github.com/ablab/spades), and
Shovill (v.0.9.0; https://github.com/tseemann/shovill) was used
to assemble paired-end trimmed sequences from Illumina. The
following online databases were used for analysis: MLST (2.0;
https://cge.food.dtu.dk/services/MLST/) for multilocus sequence
typing (MLST), for core genome ST (cgST) cgMLSTFinder (1.2) was
used for E. coli (https://cge.food.dtu.dk/services/cgMLSTFinder/)-
and PathogenWatch for K. pneumoniae (https://pathogen.watch/).
In the case of novel alleles, genomes of K. pneumoniae were
submitted to the BIGSdb-Pasteur website (https://bigsdb.pasteur.fr)
for assignment of new cgST. Phylogroups of E. coli and K
pneumoniae were assessed through ClermonTyping (http:
//[clermontyping.iame-research.center) and BIGSdb-Pasteur
(https://bigsdb.pasteur.fr/cgibin/bigsdb/bigsdb.pl?db=pubmlst_
klebsiella_seqdef&page=sequenceQuery), respectively. Along with
this Resfinder (4.5.0; http://genepi.food.dtu.dk/resfinder) for ARGs,
PlasmidFinder (2.1; https://cge.food.dtu.dk/services/PlasmidFinder/)
for plasmid replicon types, and pMLST (2.0; https://cge.food.dtu.
dk/services/pMLST/) for IncF typing (pMLST) were performed.
The genetic background of blaypy- and blagya-131-harbouring
CPE isolates were assessed through SnapGene viewer (7.1;
https://www.snapgene.com/snapgene-viewer), which was re-
stricted to the size of the contigs harbouring carbapenemase
genes.

Average nucleotide identity (ANI) was performed on genomes
using EZ Biocloud (https://www.ezbiocloud.net/), and mash dis-
tance estimations were generated between pairs using mash dist
(v.2.2) (https://github.com/marbl/mash). Snippy (v.4.6.0) (https:
/|github.com/tseemann/snippy) was performed to detect single-
nucleotide polymorphisms (SNPs) and variants between two bac-
terial isolates using one genome in the pair as the local reference
to map reads against the second bacterial isolate of the pair.

2.6. Phylogenetic analysis

CSI Phylogeny version 1.4 (https://cge.food.dtu.dk/services/
CSIPhylogeny/) was used to call SNPs and perform genome align-
ment. The complete genome sequence of E. coli K-12 strain
MG1655 (GCF_904425475.1) and K. pneumoniae strain HS11286
(GCF_000240185.1) were used as references for the construction of
phylogenetic trees for E. coli and K. pneumoniae study isolates, re-
spectively, and visualised by iTOL. Details of resistance genes were
annotated in the phylogenetic trees using iTOL editor v1_1.

2.7. Analysis of transmission of blaypy variants by conjugation
Conjugal transfer of different variants of blaypy to sodium

azide-resistant E. coli J53 was carried out using a solid mating
assay at 37 °C. Isolates co-harbouring blagya 131 were also tested
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for conjugal transfer. The transconjugants were recovered from
Luria Bertani agar plates supplemented with either: i) sodium
azide (100 mg/L) and ertapenem (0.5 mg/L) or ii) sodium azide
(100 mg/L) and cefoxitin (10 mg/L) (Sigma-Aldrich) and confirmed
for the presence of blaypy along with other resistance genes by
PCR using primers based on earlier reports [11,12]. Plasmid types
in transconjugants were identified by PCR-based replicon typ-
ing (DIATHEVA, Italy). The transconjugants that harboured simi-
lar plasmid incompatibility groups with the same/different blanpy
variants within mother-neonate pairs were processed for plas-
mid DNA isolation using a PureYield plasmid Midiprep System kit
(Promega Corporation, USA) according to the manufacturers’ pro-
tocol and run on 0.8% agarose gel.

3. Results

3.1. Carriage and characterisation of CPE in mother-neonate pairs:
identification, antibiotic susceptibility profile, and STs

A total of 86 pregnant mothers giving birth to 93 neonates
who were clinically diagnosed with sepsis (twin deliveries; n = 7)
were included in the study (Fig. 1). Of them, 44 maternal rectal
samples (MR) and 58 neonatal rectal samples (BR) exhibited the
presence of carbapenem-resistant Gram-negative bacteria in VE-
supplemented chrome agar plates. Twenty MR and 42 BR sam-
ples were positive for carbapenemases (blaypmjoxa-4g) by PCR. Out
of 14 Gram-negative bacteria isolated from neonatal blood sam-
ples (BB), 11 were carbapenem-resistant. The overall prevalence of
blanpmjoxa-4s-positive MR and BR samples was found to be 23%
(n = 20/86) and 45% (n = 42/93) respectively. Carbapenemase-
positive Gram-negative bacteria (n=29) isolated from 20 MR sam-
ples showing the presence of blaypmjoxa-as Dy PCR were dis-
tributed as: E. coli (n = 13), K. pneumoniae (n = 8), and Acine-
tobacter baumannii complex (n 6). Similarly, carbapenemase-
positive Gram-negative bacteria (n=51) isolated from 42 BR sam-
ples found positive for blaypmjoxa-4s by PCR exhibited a preva-
lence of E. coli (n = 21), K. pneumoniae (n = 15), and A. baumannii
(n = 7). The distribution of blaypwmjoxa-4g Producing Gram-negative
bacteria primarily found in blood were as follows: K. pneumo-
niae (n 5), A. baumannii (n 3), E. coli (n 2), and Pseu-
domonas aeruginosa (n 1). Apart from these organisms, other
carbapenem-resistant (blanpmjoxa-4g-Positive) Gram-negative bac-
teria were also detected (Fig. 1). Eight pairs of mothers and their
neonates were found to be colonised with the same carbapenem-
resistant species (seven with the same species in their rectal swabs
and one involving a swab and the blood of a neonate), suggest-
ing probable mother-to-neonate transmission. Among the CPEs,
organisms found among these eight pairs of mother-neonates
with the same carbapenem-resistant species were E. coli and K.
pneumoniae. Among these mother-neonate pairs, five pairs were
colonised with K. pneumoniae (n 10) and three pairs had E.
coli (n = 6). These isolates (n = 16) were resistant to carbapen-
ems and other antibiotics viz. cephalosporins, aminoglycosides, flu-
oroquinolones, and sulfonamides except tigecycline and colistin.
The MIC of meropenem was distributed between 4 and 128 mg/L.
Isolates belonging to pairs MR/BR434, MR/BR548, and MR/BR774
showed differences in susceptibility toward gentamicin, tigecycline,
and trimethoprim/sulfamethoxazole, while the other pairs exhib-
ited similar susceptibility profiles (Table 1).

MLST revealed the presence of diverse STs in E. coli (ST156,
ST405, ST410, ST648, and ST2851) and K. pneumoniae (ST11, ST15,
ST147, ST567, ST889, and ST1310). K. pneumoniae were distributed
into the Kp1 phylogroup and E. coli belonged to phylogroups B1
(n=1),C(n=2),D(n=2),and F (n = 1) (Table 1). Within these
study isolates, presence of epidemic clones (E. coli- ST156, ST405,


https://github.com/OpenGene/fastp
https://github.com/ablab/spades
https://github.com/tseemann/shovill
https://cge.food.dtu.dk/services/MLST/
https://cge.food.dtu.dk/services/cgMLSTFinder/
https://pathogen.watch/
https://bigsdb.pasteur.fr
http://clermontyping.iame-research.center
https://bigsdb.pasteur.fr/cgibin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef&page=sequenceQuery
http://genepi.food.dtu.dk/resfinder
https://cge.food.dtu.dk/services/PlasmidFinder/
https://cge.food.dtu.dk/services/pMLST/
https://www.snapgene.com/snapgene-viewer
https://www.ezbiocloud.net/
https://github.com/marbl/mash
https://github.com/tseemann/snippy
https://cge.food.dtu.dk/services/CSIPhylogeny/

691

Table 1

Genetic characterisation of carbapenemase-producing Enterobacterales (CPE) isolated from eight mother-neonate pairs.

Other carbapenem-
resistant
Gram-negative

Carbapenemase- bacteria isolated
producing from rectal swab
organism Antibiotic Carbapenemase [R] and blood [B] of
Patient ID isolated ST Phylogroup susceptibility MIC (mg/L) present Resistance genes Replicon types cgMLST and pairwise neonates
m SNP distance
IN-MR16 Klebsiella 1 Kp1 CAZ, ETP, IMP, MEM, 64 0.25 blanpp-1, aac(6')-1b3, aph(3')-VI, ColKP3, ColRNAI, 747 E. coli [R]
pneumoniae CN, AK, CIP, TGC, blagxa-181 blactx_m-15. blacmy-g. IncC, IncFIB(K),
(IN-MR16KP) SXT-NS dfrA14, fosA6, ogxA, ogxB,  IncFII(K)
qnrB1, rmtC, blagyy.11,
sull, tet(A)
IN-BR16 Klebsiella 1310 Kp1 CAZ, ETP, IMP, MEM, 128 0.25 blanypm-7 aph(6)-Id, aac(6')-Ib-cr, Col4401, ColpVC, 39640* P. mosselii [R]
pneumoniae CN, AK, CIP, TGC, aac(3)-Iid, aph(3"’)-Ib, IncFIB(K)(pCAV1099- NF [B]
(IN-BR16KP) SXT-NS catB3, blactx_m-15. 114),
dfrA30, fosA5, fosA7, IncFIB(pNDM-Mar),
blagya-1, 0gXA, 0gxB, IncHI1B(pNDM-
qnrB1, blagyy. 13, sul2, MAR),
blatgy_1p. tet(B) IncX3
IN-MR42 E. coli 2851 C CAZ, ETP, IMP, MEM, 64 0.25 blanppm-s. aadA2, blacyry.42, ColKP3, IncFIA, 57686 NF [R]
(IN-MR42EC) CN, AK, CIP, SXT-NS; blagya-181 blactx_m-15. dfrA12, IncFIl, Incl(Gamma),
TGC-S mph(A), qnrS1, rmtB, IncX3
sull, blatgy-1g. tet(A)
IN-BB42 E. coli 410 C CAZ, ETP, IMP, MEM, 4 2 blanpm-s aadA2, dfrA12, rmtB, sull,  Col(IRGK), Col156, 149299 A. baumannii [R]
(IN-BB42EC) CN, AK, CIP, SXT-NS; blatgp_1p. tet(A) IncFIA, IncFIB, IncFIl,
TGC-S IncFII(29), IncX4
IN-MR434 E. coli 648 F CAZ, ETP, IMP, MEM, 64 0.5 blanpm-s aadA2, dfrA12, mph(A), IncFIA, IncFIB, IncFII 192000 NF [R]
(IN-MR434EC) AK, CIP, SXT- NS; CN, sull, blatgy_1p, tet(A)
TGC- S
IN-BR434 E. coli 405 D CAZ, ETP, IMP, MEM, 64 0.5 blanpm-s aadA2, blacyyy.gp, dfrA12, Col(MG828), 141146 K. pneumoniae [B]
(IN-BR434EC) CN, AK, CIP, SXT-NS; rmtB, sull, blatgy1 IncFIB(H89-
TGC-S PhagePlasmid),
IncFll, Incl(Gamma)
IN-MR548 Klebsiella 15 Kp1 CAZ, ETP, IMP, MEM, 64 0.5 blanpm-s aadA2, aac(6')-Ib-cr, Col(BS512), ColpVC, 39641* NF [R]
pneumoniae CN, AK, CIP, SXT-NS; blactxm-1s. catB3, Col4401, IncFIA(HIT),
(IN-MR548KP) TGC (S) dfrA12, dfrA14, ermB, IncFll, IncFII(K)
fosA6, mph(A), blagxa_1,
0gxA, 0gxB, rmtB,
blagyy_og., sull,
blarg.1g. tet(D)
IN-BR548 Klebsiella 889 Kp1 CAZ, ETP, IMP, MEM, 64 1 blanpm-1 aac(6')-Ib, aac(6’)-Ib-cr, IncR, IncFIB(K), 39642* E. coli [R]
pneumoniae CN, AK, CIP- NS; aadAl, aph(3’)-VI, IncFIB(pQil), IncFII(K) NF [B]
(IN-BR548KP) TGC, SXT-S blacrx_m-15. fosAG,
blagya.-g, 0gXA, 0qxB,
qnrs1, blaspy-10g
IN-MR598 E. coli 405 D CAZ, ETP, IMP, MEM, 32 2 blanpm-s. aph(6)-1d, aph(3"’)-Ib, Col156, ColKP3, 194425 NF [R]
(IN-MR598EC) CN, AK, CIP, SXT-NS; blagxa-181 aadA5, blacyry.qp, dfrA17, IncFIA, IncFIB,
TGC-S mph(A), qnrS1, rmtB, IncFII(pRSB107),
sull, sul2, blatgy1p. Incl(Gamma), p0111
tet(A)
IN-BR598 E. coli 156 B1 CAZ, ETP, IMP, MEM, 128 2 blanpm-s aadA2, blacry_-15. IncFIA, IncFII, IncX4 91838 K. pneumoniae [B]

(IN-BR598EC)

CN, AK, CIP, SXT- NS;
TGC-S

catAl, dfrA12, dfrB4,
qepA8, rmtB, sull,
blargy-1g. tet(A)

(continued on the next page)
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Table 1
(continued)

Other carbapenem-
resistant
Gram-negative

Carbapenemase- bacteria isolated
producing from rectal swab
organism Antibiotic Carbapenemase [R] and blood [B] of
Patient ID isolated ST Phylogroup susceptibility MIC (mg/L) present Resistance genes Replicon types cgMLST and pairwise neonates
m SNP distance
IN-MR774 Klebsiella 147 Kp1 CAZ, ETP, IMP, MEM, 64 1 blaypm-7 aph(6)-Id, aph(3"’)-Ib, IncC, IncFIB(K), 39643* E. coli [R]
pneumoniae CN, AK, CIP, SXT- NS; aac(6')-1b3, aph(3’)-Ia, IncFII(K)
(IN-MR774KP) TGC-S armA, aadA2,
blacrx-m-15. blacwy-6,
catA2, dfrA12, fosA,
mph(A), mph(E), msr(E),
0gxA, 0gxB, qnrB1, rmtC,
blagyy_11, sull, sul2,
blatgm-1a. tet(A)
IN-BR774 Klebsiella 567 Kp1 CAZ, ETP, IMP, MEM, 32 2 blaypm-1 aph(3')VI, aph(6)-1d, IncFIB(K), 39644* NF [B]
pneumoniae CN, AK, CIP, TGC, aph(3"’)-Ib, aadAl, IncFIB(pQil),
(IN-BR774KP) SXT- NS aac(6')-Ib, blacrx_m-15 IncFII(K),
fosA6, blagyp._g, 0GXA, IncFII(pKP91), IncR
oqxB, qnrS1, blagyy_11,
sul2, blatgp.1p
IN-MR1137 Klebsiella 147 NF CAZ, ETP, IMP, MEM, 32 15 blaypm-1 ARR-3, aadAl, IncFIB(pKPHS1), ND 1 SNP (27 NF [R]
pneumoniae CN, AK, CIP, TGC- aac(6')-1b3, aph(3’)-VI, IncFIB(pQil), IncR insertions or
(IN-MR1137KP) NS; SXT- S blacrx_n-15. catB3, fosA, deletions)
blagxp_1, blagya-g, 0GXA, among each
oqxB, qnrS1, blagyy._11, other
sull, blatgp-1a
IN-BR1137 Klebsiella 147 NF CAZ, ETP, IMP, MEM, 16 1.5 blanpm-1 ARR-3, aadAl, IncFIB(pKPHS1), ND NF [B]
pneumoniae CN, AK, CIP, TGC- aac(6')-Ib-cr, aac(6’)-Ib3, IncFIB(pQil), IncR
(IN-BR1137KP) NS; SXT- S aph(3’)-VI, blactyx_m-15.
catB3, fosA, blagya_1,
blagya-g, 0gXA, 0gXB,
qnrS1, blasyy_11, sull,
blatgm-1a
IN-MR1225 Klebsiella 15 Kp1 CAZ, ETP, IMP, MEM, 4 2 blaypm-1 aph(6)-1d, aph(3"’)-Ib, Col440I, ColpVC, 39645* 3904 SNP A. baumannii [R]
pneumoniae CN, AK, CIP, TGC, aac(3)-Ila, aac(6')-1b3, IncFIB(K), variants
(IN-MR1225KP) SXT- NS armA, aadAl, IncFIB(pKPHS1), among each
blacrx_m-15. dfrA14, IncFII(K), IncHI1A, other
blapyp-1, mph(E), msr(E), IncHI1B(R27)
blagyp_g, 0gXA, 0gxB,
qnrB1, blagyy._og, sull,
sul2, blagy-1p, tet(A)
IN-BR1225 Klebsiella 15 Kp1 CAZ, ETP, IMP, MEM, 32 2 blanpm-s aadA2, aac(6')-Ib-cr, Col(BS512), ColpVC, 39646* NF [B]
pneumoniae CN, AK, CIP, TGC, blacrx_m-15. catB3, Col440I, IncFIA(HI1),

(IN-BR1225KP)

SXT- NS

dfrA12, dfrA14, fosA6,
blagya-1, 0GXA, 0gxB,
rmtB, blagyy.pg, sull,
blagy.1p. tet(D)

IncFll, IncFII(K), IncR

Differences in the susceptibility pattern of antibiotics within individual mother-neonate pairs are marked in bold (IN-MR/BR434EC, IN-MR/BR548KP and IN-MR/BR774KP.).
Sequence typing (ST) schemes: the Warwick scheme for E. coli, Pasteur scheme for K. pneumoniae were used.
*A novel cgMLST (core genome multilocus sequence typing) values for K. pneumoniae. Pairwise single-nucleotide polymorphism distance was performed for mother-neonate pairs with the same ST only. For IN-MR/BR1137KP pair,

cgMLST value could not be obtained, as few loci were missing from the complete genome assemblies.

AK: Amikacin; BB: Neonatal blood samples; BR: Neonatal rectal samples; CAZ: Ceftazidime; CIP: Ciprofloxacin; CN: Gentamicin; COL: Colistin; ETP: Ertapenem; IMP: Imipenem; IN: India; MEM: Meropenem; MIC: Minimum
inhibitory concentration; MR: Maternal rectal samples; ND: Not determined; NF: Not found; NS: Non-susceptible; S: Susceptible; SXT: Trimethoprim/sulfamethoxazole.
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Pregnant mothers whose babies were suspected with
sepsis
(n=86)

Neonates who were suspected with sepsis
(blood culture-positive & negative) (n=93)

Blood culture-positive neonates
(n=23):-
Gram-Negative bacteria (GNB)= 14,

>

Samples with positive growth on VE plates [chrom agar
plate supplemented with vancomycin (10 mg/L) &
ertapenem (2 mg/L)]= 44

Carbapenemase-positive samples (NDM/OXA-48)
(n=20)

Carbapenemase-positive (NDM/OXA-48)

Gram-Positive bacteria= 6,
Fungus=3
Samples with positive growth on VE plates [chrom
agar plate supplemented with vancomycin (10 mg/L)
& ertapenem (2 mg/L)]= 58
Out of 14 GNB,
l Achromobacter xylosoxidans
(n=1),
Carbapenemase-positive samples (NDM/OXA-48) Acinetobacter baumannii (n=3),
(n=42) Enterobacter cloacae dissolvens
(n=1),
I Escherichia coli (n=2),
Klebsiella pneumoniae (n=5),

Carbapenemase-positive (NDM/OXA-48)
Gram-negative bacteria found (n=51):

Pantoea calida (n=1) and
Pseudomonas aeruginosa (n=1)

Gram-negative bacteria found (n=29): Acinetobacter baumannii cplx (n=7), it
Acinetobacter baumannii cplx (n=6), Enterobacter cloaceae cplx (n=5), / \
Citrobacter freundii (n=1), Enterobacter hormacheii (n=1), Escherichia coli (n=21),
Escherichia coli (n=13), Klebsiella pneumoniae (n=15), OXA-48-like
Klebsiella pneumoniae (n=8) Shewanella putrefaciens (n=2), NDM-positive positive isolates
Spinghomonas paucimobilis (n=1) isolates co-harboring
(n=8; 57%) NDM
/ \ / (n=1; 7%)
NDM-positive OXA-48-like O'X'A-4?I-I|ke NDM-positive OXA-48-like OXA48-like
isolates positive isolates pi?;:’;;i?:it;s isolates positive pOSitfi]Ve gso!ates
R csariacss - i co-harborin
[n=28;97%) (n=1; 3%) NDM (n=5; 17%) (n=48; 94%) (:15:()3'?;2) NDM (n=4; sg%)

@

Eight mother- d same cark

pairs p

p

But no such pairs were found to harbor OXA-48

pecies harboring NDM

Fig. 1. Flowchart representing the enrolment of pregnant women and respective neonates, isolation of carbapenem-resistant Gram-negative bacteria and selection of mother-
neonate pairs harbouring carbapenemase-producing Enterobacterales (CPE) for further analysis.

ST410 and K. pneumoniae- ST15, ST147) were mostly found in BR
isolates (Table 1).

3.2. Resistance determinants and diversity of plasmid replicons
among mother-neonate pairs

CPE isolates exhibited two types of carbapenemases: blanpy
(n = 16; blanpm-1 [n = 6], blanpms [n = 8], blanpm 7 [n = 2])
and blagxp-1g1 (n = 3). None of them harboured blagpc. K. pneu-
moniae (n = 10) showed diverse blaypy variants (blaypy-1 [n = 6],
blaypm-s [n = 2], and blaypy-7 [n = 2]), while E. coli (n = 6) har-
boured only blaypu.s. blacrx_m-15 (n = 12) was the dominant ESBL
detected in the isolates. Additionally, blagya.1g;7 was detected in
blaypy-harbouring K. pneumoniae (n = 1) and E. coli (n = 2). Other
resistance determinants such as genes conferring resistance to flu-
oroquinolones, aminoglycosides, phenicols, sulphonamides, and so
on were present in different combinations in E. coli and K. pneu-
moniae (Table 1).

Various replicons were detected in CPEs (Table 1). The predomi-
nant plasmid types detected were IncFIl and IncFII(K) (n = 7) > In-
CFIA, IncFIB(K), and IncR (n = 5) > IncFIB (pQIL) (n = 4). IncFII(K)
(n = 7) and IncFIB(K) (n = 5) were prevalent in K. pneumoniae,
whereas IncFIA-IncFIl (n = 5) and IncFIB (n = 3) were prevalent in
E. coli. Isolates possessing blagxa.1g1 co-existing with blaypy (IN-
MR16KP, IN-MR42EC, and IN-MR598EC) additionally harboured the
ColKP3 plasmid (Table 1).

17

3.3. Genetic context of blaypy and blagya-1g1 in CPE

All blaypw.1/5-positive CPEs throughout this study showed a
similar genetic context around the blaypy gene, whereas the ge-
netic environment of blaypy.; was different. Isolates revealed a
conserved genetic environment of blaypy.15 comprising ISAba125
(full or truncated) (upstream) and bleyg; -trpF-dsbD (downstream).
Additionally, 1S630-tnpA was identified at the 5’-end of blaypy-;
in the IN-MR1137/BR1137 pair and in IN-BR774KP. In blanpy.5-
possessing E. coli, dsbD was followed by IS91-like ISCRI tnpA,
whereas various IS elements, such as ISCR27 or IS6-like 1S26
tnpA or 1S91-like ISCR1 tnpA, were found downstream of blaypp.1
in K. pneumoniae. sull-qacE-aadA-DUF1010-dfrA12-intl1 present on
blaypm-s-harbouring plasmids implied the presence of class 1 inte-
grons. blaypy.7 was preceded by intact/truncated IS5-tnpA (Fig. 2a).

For isolates possessing blagxa-1s1, the ARGs were bracketed be-
tween ISEcp1 (full) upstream, while AereA and Col replicase (repA)
was downstream, except for one isolate (IN-MR598EC) where Tn3-
like 1S3000 was located upstream of blagxa.1g1 (Fig. 2b).

3.4. Genetic relatedness of blaypy-positive CPEs and assessment of
similarity within mother-neonate isolate pairs

PFGE showed mostly distinct pulsotypes within eight mother-
neonate isolate pairs, of which IN-MR1137KP and IN-BR1137KP
were clonal (Fig. 3a). The PFGE data of these clonal isolates was
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IN-MR-16KP N\
ISAba125 blayow.y bleyg, trpF dsbD cutA 9roES grol |gcpp7  RHS
protein
= '
> N .
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¥ A \
e ISkrad-like | Plasmid 15Aba125 | Plowowmye oo gcpn cuta
1SKpn19 pRiAGb| aph(3')-VI 15630 family
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E. coli: IN-MR42EC, IN-BBA2EC, P e il
S IN-MR434EC, IN-BRA34EC, 4/3:H:">< :I/ ?4\::}@-*
H IN-MRS548KP, IN-MR598EC, blaypy. A ke, |
harboring ) iN-BRSOSEC ISAba125 HNowsple, . trpF  dsbp IS91-like  syi1 gace aadA  pUF dfra12 Inti1
K. pneumoniae: IN-BR1225KP fISCi‘?ll 1010
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tnpA
A
NDM-7 Ll 1530 155 ke 155 Blanom.ableys, trpF  dsbD
harboring family famil A
isolates amily tnp.

K. pneumoniae:
IN-BR16KP

b)

ISAba125 p

1
AIS5 blaypy bleyg troF  dshD  hyp

= (e 2 ey -
IN-MR-16KP
ISEcp1 blagy, 5, DereA ColKP3 Antitoxin ~ mobC mobA
replicase vbhA
OXA-181
harboring E. coli : IN-MR42EC :F
isolates :
ISECpT  blaoxas: AereA COIKP3  ISKrad-like plasmid DUF4158 hyp  qnrsi
replicase  |SKpn19 pRiA4b
family tnpA ORF.-3 |
Recombinase amily Recombinase
family protein family
protein protein
E. coli : IN-MR598EC B
- )
ATn3  Tn3dike  pig o perea ColkP3  ISKrad-like plasmid DUF4158 hyp  Gnrs1
family ~ element replicase  1SKpn19 PRiA4L
tnpA 153000 family tnpA ORF-3
family tnpA q family Recombinase
Recombinase protein family
family g
- protein
protein

Fig. 2. Schematic diagram of the genetic environment of carbapenemase genes found in the study isolates. (a) blaypm.1/5;7 and (b) blaoxa-1s1. Coloured arrows represent
open reading frames. Genes are abbreviated according to their corresponding proteins—trpF: N-(5'-phosphoribosyl) anthranilate isomerase; dsbD: thiol:disulfide interchange
protein; cutA: divalent-cation tolerance protein; groES, groEL: heat-chaperonin protein; tnpA: transposase; IS: insertion sequence; sull: dihydropteroate synthase; qacE: qua-
ternary ammonium compound-resistance protein; aadA: aminoglycoside (3”") (9) adenylyl transferase; dfr: dihydrofolate reductase; intl1: class 1 integrase; mph(A): macrolide
2’-phosphotransferase; aph(3’)-VI: aminoglycoside 3’-phosphotransferase; armA: 16S rRNA (guanine(1405)-N(7))-methyltransferase; mobA, mobC: mobilization relaxosome
proteins; vbhA: antitoxin; AereA: truncated erythromycin esterase; qnrS1: quinolone resistance determinant; bleyp : bleomycin resistance gene; hyp: hypothetical protein;
A: truncation. Due to the constraint of contig size because of short-read sequencing, we could not explore the other regions of the plasmid harbouring the carbapenemase

genes.
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b) Clonal mother-to-neonate vertical transmission (paired isolates)

IN-MR1137KP;

K. pneumoniae; ST147_NDM-1
Plasmid replicons:
IncFIB(pKPHS1), IncFIB(pQil),
IncR

Mother-baby
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(IN-
MR/BR1137)

IN-BR1137KP;

K. pneumoniae; ST147_NDM-1
Plasmid replicons:
IncFIB(pKPHS1), IncFIB(pQil),
IncR

| -
?@i <
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ISKpn19 family PRiA4b | aph(3')-VI like

¢) Clonal transmission from a mother to a neonate (unpaired isolates)

IN-MR548KP; K. pneumoniae;
ST15_NDM-5
Plasmid replicons: Col(BS512),
ColpVC, Col440l, IncFIA(HI1),

Unrelated IncFll, IncFlI(K), IncR,
mother repB(R1701)
& neonate

IN-BR1225KP; K.pneumoniae;
ST15_NDM-5
Plasmid replicons: Col(BS512),
ColpVC, Col440l, IncFIA(HIL),
IncFll, IncFII(K), IncR,
repB(R1701)

(IN-MR548KP/
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Fig. 3. Molecular typing of similar carbapenemase-producing Enterobacterales (CPE) isolated from mother-neonate pairs and genomic comparison of pairs exhibiting prob-
able transmission events using (a) pulsed-field gel electrophoresis fingerprint pattern of Xbal digested bacterial DNA of eight mother-neonate pair CPE isolates. Lanes 1 and
18: Salmonella serotype Braenderup H9812 as the reference standard (band sizes are denoted in kilobases); Lane 2-17: isolates of individual mother-neonate pairs (Pair 1:

MR16KP and R16KP; Pair 2: MR42EC and BB42EC; Pair 3: MR434EC and

BR434EC; Pair 4: MR548KP and BR548KP; Pair 5: MR598EC and BR598EC; Pair 6: MR774KP and

BR774KP; Pair 7: MR1137KP and BR1137KP; Pair 8: MR1225KP and BR1225KP); *Mother-neonate pairs that are clonal or have indistinguishable band pattern. (b) Schematic
representation of genetic environment of blanpy.1-possessing K. pneumoniae in a clonal mother-neonate pair (IN-MR1137 and IN-BR1137). (¢) Schematic representation of
the genetic environment of blanpy.s-possessing K. pneumoniae in an unrelated mother and neonate (IN-MR548KP and IN-BR1225KP). Genes and their transcription orienta-
tions are indicated by horizontal arrows. trpF: N-(5'-phosphoribosyl) anthranilate isomerase; dsbD: thiol:disulfide interchange protein; cutA: divalent-cation tolerance protein;
IS: insertion sequence; sull: dihydropteroate synthase; qgacE: quaternary ammonium compound-resistance protein; aadA: aminoglycoside (3”") (9) adenylyl transferase; dfr:
dihydrofolate reductase; intl1: class 1 integrase; aph(3’)-VI: aminoglycoside 3’-phosphotransferase; bleyp : bleomycin resistance gene; tnpA: transposase; A: truncation.
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Fig. 4. Core genome phylogeny of blaypy-positive E. coli and K. pneumoniae isolated from rectal swabs (IN-MR/BR) and blood (IN-BB) of mother-neonate pairs. The sequence
types of E. coli (Warwick scheme) and K. pneumoniae (Pasteur scheme) are mentioned for all isolates. The presence (red colour) or absence (white colour) of acquired
resistance genes is depicted in the figure. Branch lengths have been depicted in the figure indicating evolutionary relationships between the isolates. Star shapes indicate a
close relationship between mother-neonate pair isolates (IN-MR/BR1137KP) and unpaired isolates (IN-MR548KP and IN-BR1225KP). E. coli K12-MG1655 and K. pneumoniae

HS11286 are used as references.

validated by comparison of the genomes; that is, both isolates be-
longed to ST147 and were 1 SNP distant from each other and had
27 insertions/deletions. The ANI and mash distance between the
two genomes was found to be 99.98% and 996/1000, respectively,
suggesting a high degree of genomic similarity. They also showed
similar resistance (blaNDM_1, blaCTx,M_]s, SHV-11» OXA-1» TEM-1A» OGXA,
0gxB, qnrS1) and replicon profiles: IncFIB (pQil), IncFIB (pKPHS1),
and IncR. Furthermore, the genetic context of blaypy.1 (IS630-like
transposase preceded by ISAba125 [5'-end] and bleyp -trpF-dsbD-
cutA [3’-end]) was similar in both the isolates (Fig. 3b and Table 1).
These findings suggest acquisition of the same strain by vertical
transmission to the neonate from the mother.

Aside from this, two unpaired isolates (IN-MR548KP and IN-
BR1225KP) were noted that belonged to ST15, exhibited indistin-
guishable PFGE band patterns, showed a similar resistance and
replicon profile, and also displayed an identical genetic background
for blanpm.s (Fig. 3a, ¢ and Table 1). These isolates were 25
SNPs distant across the genome with a genomic mash distance
of 1000/1000, perhaps suggesting circulation of the same strain
within the hospital environment. Additionally, the MR sample (IN-
MR42) whose species matched with the species of the neonatal
blood sample (IN-BB42) was analysed and found to be distinct as
per PFGE (Fig. 3a). Hence, no evidence of transmission was noted
in this pair.

The core genome phylogenetic tree (Fig. 4) represents diversity
among NDM-containing E. coli and K. pneumoniae isolates. Within
the K. pneumoniae phylogenetic clade, two different clusters were
observed- i) the mother-neonate paired cluster- IN-MR/BR1137KP
(ST147) forming a subclade with IN-MR774KP (ST147); ii) unpaired
cluster—IN-MR548KP and IN-BR1225KP (ST15) forming subclade
with IN-MR1225KP (ST15) (Fig. 4a). These clusters matched with
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the band patterns of PFGE (Fig. 3). Among the E. coli clades, IN-
MRA42EC (ST2851) with BB42EC (ST410) and IN-MR598EC (ST405)
with IN-BR434EC (ST405) exhibited phylogenetic relatedness, cor-
roborating with PFGE results (Fig. 3 and Fig. 4b).

3.5. Comparison of blaypy-possessing plasmids among mothers and
neonates

A comparison of the blaypy-harbouring plasmids was under-
taken as most of the isolates between the individual mother-
neonate pairs were distinct (except for one pair). Initially, conjuga-
tion and plasmid replicon typing were carried out to evaluate the
transmissibility and similarity of plasmid replicon types between
individual pairs. All plasmids possessing blaypy variants in E. coli
and K. pneumoniae were found to be conjugative except for one,
which was non-conjugative (IN-MR42EC) (Table 2). The blanpy
variants (blaypm.1/5/7) were compared and of the eight pairs, three
pairs harboured blaypy.s in E. coli and one pair carried blaypp-1
in K. pneumoniae. The remaining pairs had different blaypy vari-
ants; that is, blayppy.1 and blaypym.s in two pairs and blaypy.q and
blaypy-7 in two pairs in K. pneumoniae (Table 1). A variety of plas-
mid incompatibility types, such as IncFll, IncFIIK, IncFIBKQ, IncFIA,
IncFIB, IncA/C, IncX3, and IncR, were detected in blaypy transcon-
jugants. In blaypp.s-possessing transconjugants, IncFIl (n = 7) was
predominant while IncFIIK (n = 4) was predominant in blanppy-1-
carrying transconjugants. IncX3 (n = 1) and IncA/C (n = 1) were
found in blaypy.7-harbouring transconjugants (Table 2).

To understand the similarity of blaypy-possessing plasmids
within individual pairs, plasmids were characterised via repli-
con types, pMLST-IncF type and plasmid size. Plasmid replicon
types and pMLST of IncF plasmids varied in the majority of pairs.
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Characteristics of carbapenemase-producing Enterobacterales (CPE) and its transconjugants among mother-neonate pairs harbouring different NDM variants.

Mother-neonate Isolate ID Carbapenemase Other resistance genes Plasmid replicon types Plasmid MLST Plasmid DNA
pair present present/transferred present (WGS) (pMLST) (FAB isolated from
(PCR) [transferred (PBRT) formula) transconjugants
with the same
incompatibility
groups within the
pairs
Pair 1 IN-MR42EC blanpm-s, blargy, blagyr, qnrs, IncFIA, IncFII, [F2:A-:B-]
blaoxa-181 rmtB Incl(Gamma), IncX3
Conjugation unsuccessful
IN-BB42EC blanpm-s blargy, rmtB, armA, Col (IRGK), Col156, [F31:A4:B1]
0gxB, qnrB, gqnrS IncFIA, IncFIB, IncFIl,
IncFII(29), IncX4
IN-BB42EC.TC1 blanpm-s blargy, rmtB IncFII Not done No
Pair 2 IN-MR434EC blanpm-s blatgym, blac IncFIA, IncFIB, IncFIl [F36:A1:B1]
IN-MR434EC.TC1 blanpm-s blargy IncFIA, IncFIB, IncFII Not done Yes
IN-BR434EC blanpm-s blargm, rmtB Col (MG828), [F2:A-:B-]
IncFIB(H89-
PhagePlasmid), IncFII,
Incl(Gamma)
IN-BR434EC.TC1 blanpm.s blargy, rmtB IncFIl Not done Yes
Pair 3 IN-MR598EC blanpm-s, blargm, blacr, rmtB, Col156, ColKP3, [F1:A1:B16]
blaoxa-181 qnrS IncFIA, IncFIB,
IncFII(pRSB107),
Incl(Gamma), p0111
IN-MR598EC.TC1 blanpm-s, blargy, rmtB, qnrS IncFIA, IncFIB, IncFIl, Not done Yes
blaoxa-181 ColKP3
IN-BR598EC blanpm-s blacrx_m, blargm, rmtB IncFIA, IncFIl, IncX4 [F2:A4:B-]
IN-BR598EC.TC1 blanpwm.s blargy, rmtB IncFIl Not done Yes
Pair 4 IN-MR16KP blanpm-1, blacrx_wm, blacyr, rmtC, ColKP3, ColRNAI, IncC, [K1:A-:B-]
blaoxa-181 0gxAB, qnrB, IncFIB(K), IncFII(K)
aac(6')-1b-cr
IN-MR16KP.TC1 blanpm-1, blacrx_m, blacrr, rmtC, IncA/C, IncFIBKN, Not done No
blaoxa-181 0qxAB, aac(6’)-Ib-cr IncFII(K), ColKP3
IN-BR16KP blanpm-7 blacrx_m, blargm, Col440I, ColpVC, [F-:A-:B-]
blaoxa-1, 0qXAB, qnrB, IncFIB(K)(pCAV1099-
aac(6')-1b-cr 114),
IncFIB(pNDM-Mar),
IncHI1B(pNDM-MAR),
IncX3
IN-BR16KP.TC1 blanpm-7 blatgm, blaoxa-1 IncX3 Not done No
Pair 5 IN-MR548KP blanpm-s blargm, blasuy, blaoxa-1, Col (BS512), ColpVC, [F2:A13:B-]
aac(6’)-1b-cr Col4401, IncFIA(HI1),
IncFIl, IncFII(K), IncR
IN-MR548KP.TC1 blanpm-s blargm, blaspy, blaoxa-1, IncFIl, IncFII(K), IncR Not done Yes
aac(6')-1b-cr
IN-BR548KP blanpm-1 blacrx_m, 0gxAB, gnrs, IncFIB(K), IncFIB(pQil), [K2:A-:B-]
aac(6')-1b IncFII(K)
IN-BR548KP.TC1 blanpm-1 blacrx_w, aac(6’)-1b IncFII(K) Not done Yes
Pair 6 IN-MR774KP blanpm-7 blacrx_m, blargm, IncC, IncFIB(K), [K2:A-:B-]
blasyy, blacir, armA, IncFII(K)
rmtC, 0gxAB, qnrB,
qnrS
IN-MR774KP.TC1 blanpm-7 blatgm, blacr, rmtC, IncA/C Not done No
0gxAB
IN-BR774KP blanpm-1 blacrx_m, blargm, IncFIB(K), IncFIB(pQil), [K2:A-:B-]
0gXxAB, qnrS IncFII(K), IncFII
(pKP91), IncR
IN-BR774KP.TC1 blanpm-1 blactx_w, blargm, qnrS IncFIBKQ, IncFII(K), Not done No
IncFIl
Pair 7 IN-MR1137KP blanpm-1 blacrx_m, blargwm, IncFIB(pKPHS1), [F-:A-:B-]
blasyy, blaoxa-1, 0GXAB, IncFIB(pQil), IncR
qnrs, aac(6’)-Ib,
aac(6')-1b-cr
IN-MR1137KP.TC1 blanpm-1 blargm, blaoxa-1, qnrs, IncFIBKQ, IncR Not done No
aac(6')-1b, aac(6')-1b-cr
IN-BR1137KP blanpm-1 blacrx_m, blargwm, IncFIB (pKPHS1), [F-:A-:B-]
blasyy, blagxa-1, 0gXAB, IncFIB(pQil), IncR
qnrs, aac(6’)-1b,
aac(6')-1b-cr
IN-BR1137KP.TC1 blanpm-1 blargm, blaoxa-1, qnrs, IncFIBKQ, IncR Not done No

aac(6')-1b, aac(6’)-Ib-cr
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Table 2 (continued)
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Mother-neonate Isolate ID Carbapenemase Other resistance genes Plasmid replicon types Plasmid MLST Plasmid DNA
pair present present/transferred present (WGS) (pMLST) (FAB isolated from
(PCR) [transferred (PBRT) formula) transconjugants
with the same
incompatibility
groups within the
pairs
Pair 8 IN-MR1225KP blanpm-1 blacrx_m, blargm, Col440I, ColpVC, [K7:A-:B-]
blasyy, blapya, armaA, IncFIB(K),
0gxAB, qnrB, IncFIB(pKPHS1),
aac(6')-1b-cr IncFII(K), IncHI1A,
IncHI1B (R27)
IN-MR1225KP.TC1 blanpm-1 blargm, 0gXAB, IncFII(K) Not done Yes
aac(6')-1b-cr
IN-BR1225KP blanpm.s blargm, blaspy, blaoxa-1, Col (BS512), ColpVC, [F2:A13:B-]
rmtB, aac(6’)-1b-cr Col440I, IncFIA(HI1),
IncFIl, IncFII(K), IncR
IN-BR1225KP.TC1 blanpm-s blatgym, blasyy, blaoxa-1, IncFIl, IncFII(K), IncR Not done Yes

rmtB, aac(6’)-1b-cr

blargy is present in E. coli 53, which was used as a recipient in conjugation experiments. Thus, the presence of blargy in transconjugants (in this table) does not necessarily
represent the true transmission of blargy from donor to recipient (E. coli J53) and it may also represent the intrinsic blargy of E. coli J53.
EC: Escherichia coli; FAB formula: F refers to IncFIl, A and B refers to IncFIA, and IncFIB respectively; KP: Klebsiella pneumoniae; MLST: Multilocus sequence typing; PBRT:

PCR-based replicon typing ; TC: Transconjugants; WGS: Whole-genome sequencing.

For most pairs, the distribution of resistance genes in mother—
neonate pairs was different (Table 2). Plasmids were isolated from
the transconjugants of those pairs that harboured similar plas-
mid incompatibility groups and carried the same blaypy variants
(IN-MR434EC/BR434EC, IN-MR598EC/BR598EC) or different blaypy
variants (IN-MR548KP/BR548KP, IN-MR1225KP/BR1225KP). Differ-
ences in plasmid size as well as in pMLSTs were noted within the
pairs irrespective of blaypy variant (Table 2 and Fig. 5a, b). No
plasmid transmission was observed, indicating the independent ac-
quisition of plasmids.

Aside from a comparison of plasmids between individual
mother-neonate pairs, analysis of pMLST using whole-genome se-
quencing (WGS) data suggested that F2:A-:B-/F2:A13:B- and K2:A-
:B- (FAB formula) were the common plasmid types associated with
blaypm-s and blaypy.1/7, respectively (Table 2).

4. Discussion

The blaypy gene is endemic in India [7], and with the gut being
a potential reservoir of the prevailing antibiotic resistance genes
[3], gut samples were evaluated for the presence of carbapenem-
resistant organisms. This study assessed the similarity of CPE from
samples collected from mothers and their neonates, with eight
mother-neonate pairs having similar bacterial species. However,
further molecular (PFGE) and genomic analysis revealed that the
majority of carbapenemase-producing maternal and neonatal gut
isolates were distinct. PFGE and whole-genomic analysis herein
support one case of vertical transmission from mother to neonate
at birth in a pre-term very low-birth-weight neonate. However,
it is also plausible that the acquisition occurred from exogenous
sources that have not been investigated.

Similar studies performed either in developing countries
[22,26-28] or in developed countries [21,29-31] have assessed
the vertical transmission of drug-resistant (ESBL/carbapenemase-
producing/MDR) bacteria from mother to newborn. Some studies
assessed the similarity of the mother or neonatal isolate by com-
parison of AMR profiles [32,33] and others evaluated isolates us-
ing genomic [19,20,22,26,28,34] or molecular analysis [31,35-38]. A
meta-analysis by Bulabula et al. [18] reported 27% transmission of
MDR Gram-negative bacteria from colonised mothers to neonates.
However, most studies published later have found a low prevalence
of vertical transmission of maternal gut colonisation in mother—
neonate pairs [20,22,26,28]. The present study also noted a single
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case where the organism isolated from mother and neonate was
similar. The present study was a part of the BARNARDS study [22],
where carriage of carbapenem-resistant bacteria in mothers and
neonates from this study site was high (blanypy [42%] and blagya-ag
[7%] in neonates; blaypy [8%] and blagya-4g [2%] in mothers. De-
spite the high carriage of carbapenemases in individual mothers
and neonates, transmission was limited. Out of 86 mothers in this
study, 67% had undergone caesarean deliveries and the rest had
vaginal deliveries (33%). We hypothesise that fewer cases of vaginal
delivery could have reduced the transmission of flora from mother
to neonate as the vaginal mode of delivery predisposes the neonate
to acquisition of maternal flora as the baby passes through the
birth canal [39]. In addition, the study focused on the transmis-
sion of CPEs, excluding all isolates (or their transmission thereof)
that were not resistant to carbapenems.

As most of the isolates within mother-neonate pairs were di-
verse, we also tried to understand the transmission of blaypy-
possessing plasmids between the isolates within the pairs. No sim-
ilarity in the plasmids was observed as per pMLST (IncF) through
WGS analysis in the majority of the pairs. Additionally, the plas-
mid sizes isolated from the transconjugants with the same plas-
mid incompatibility groups, irrespective of blaypy variants within
the pairs, varied. Thus, plasmid transmission within individual
mother-neonate pairs was not observed. Although in individual
pairs the plasmid backbone was different, overall the three com-
monly identified blaypy variants were blaypwm.1/5/7- blanpm-s was
predominant followed by blaypy.; and blaypy.7. These blanpm
variants were detected in different plasmid scaffolds predomi-
nantly residing in the IncFII and IncFII(K) conjugative plasmids. Ad-
ditionally, IncFIA, IncFIB(K), IncFIB (pQIL), and IncR were common
in the isolates. Also, few replicons such as IncX3, IncFIA, IncFIB,
IncFIl, Incl (gamma), IncFIB(K), IncFIB (pQil), IncFII(K), IncR, repB,
and different Col replicons were common between mothers and
neonates. Analysis of blaypy transconjugants revealed a probable
association of blaypy variants with predominantly IncFIl and Inc-
FIIK plasmids. IncFIl and IncFIIK are large, self-transmissible con-
jugative plasmids, prevalent in Southeast Asia and have the po-
tential to disseminate resistance genes across diverse species, as
reported in earlier studies [12,40]. The genetic context of blanpy
variants and the replicon types detected in the study isolates were
similar to blaypy-harbouring isolates reported in previous studies
[7,41]. Some isolates possessed blagya.1g7 in addition to blaypy,
were found to be associated with the ColKP3 plasmid, and had a
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Fig. 5. Comparison of plasmid profiles of transconjugants from mothers and neonates harbouring NDM variants within the same plasmid incompatibility groups in (a) E. coli
and (b) K. pneumoniae. (a) Lane 1: ECM-Escherichia coli K12 V517 marker; lane 3 and 4: plasmid DNA isolated from transconjugants of E. coli harbouring blaxpy.s in mother
(MR434EC: IncFIA-FIB-FII) and neonate (BR434EC: IncFlII); lane 6 and 7: plasmid DNA isolated from transconjugants of E. coli harbouring blaxpym.s in a mother (MR598EC:
IncFIA-FIB-FII) and neonate (BR598EC: IncFIl); lane 9: SFM: The Shigella flexneri YSH6000 marker was used as a guide to molecular size. (b) Lane 1: ECM-Escherichia coli K12
V517 marker; lane 2 and 3: plasmid DNA isolated from transconjugants of K. pneumoniae harbouring blaypy.1 in a mother (MR1225KP: IncFIIK) and blaypy.s in a neonate
(BR1225KP: IncFII-FIIK-R); lane 4 & 5: plasmid DNA isolated from transconjugants of K. pneumoniae harbouring blaxpy.s in a mother (MR548KP: IncFII-FIIK-R) and blanpw.1
in a neonate (BR548KP: IncFIIK); lane 6: Shigella flexneri YSH6000 marker was used as a guide to molecular size.

similar genetic background surrounding blagxa-1g1, as reported pre-
viously [42].

Aside from an understanding of carbapenem-resistant genomes
and their similarities, our study also elucidated the diversity of
E. coli and K. pneumoniae. In this study, the majority of K. pneu-
moniae isolates detected within the gut of mothers and neonates
were of diverse STs (ST11 [n = 1], ST15 [n = 3], ST147 [n = 3],
ST567 [n = 1], ST889 [n = 1], and ST1310 [n = 1]) and belonged
to the Kp1 phylogroup, including high-risk AMR clones [43] such
as ST11, ST15, and ST147. This finding aligns with previous reports
indicating that Kp1 is the dominant phylogroup among K. pneumo-
niae strains colonising the human gut [44]. Previous studies have
reported the colonisation of high-risk K. pneumoniae clones (ST11,
ST15, and ST147) in the human gut, with ST15 recognised as an ef-
ficient coloniser [20,45-47]. The association between the Kp1 phy-
logroup and ST15 had been observed in pregnant women from
low-income countries in a previous study [45]. These results sug-
gest that the carriage of Kp1 K. pneumoniae is more common in
the human gut and its association with high-risk AMR clones in-
creases the likelihood of infections. Colonisation of neonates with
such epidemic clones may predispose neonates to subsequent in-
fections.

In the case of E. coli, five different STs (ST156 [n = 1], ST405
[n = 2], ST410 [n = 1], ST648 [n = 1], and ST2851 [n = 1]) were
detected in the gut of mothers and neonates. Of them, ST156,
ST405, ST410, and ST648 are epidemic clones reported world-
wide [48] and found to be associated with blaypy.s in this study.

177

These high-risk clones disseminate globally, are often associated
with resistance and virulence genes, and are able to colonise
or persist within hosts, causing recurrent infections [48]. In this
study ST2851 was found in one maternal gut sample, a rarely re-
ported ST, which was previously detected in a urinary tract sam-
ple from India [49]. Previous studies have also reported carriage of
carbapenem-resistant genes (blanppm.s, blagpc) in epidemic clones
of E. coli in the gut of healthy adults [50,51]. E. coli belonged to
diverse phylogroups (A, B1, B2, C, D, E, F), of which A and B1 are
predominantly found in the gut as commensals [52]. Previous stud-
ies had also reported the presence of phylogroups B1, C, D, E, and
F in the human gut [53-56]. Similarly, the carbapenem-resistant E.
coli isolates in this study belonged to four phylogroups (B1 [n = 1],
Cn=2],D[n=2],and F [n = 1]).

As discussed above, there are differences in the rates of mother-
to-neonate transmission in different studies. These differences may
arise because of sampling strategy, the carriage of resistant bac-
teria, the predominant mode of delivery, and so on. Our dataset
was limited as we evaluated only the transmission of carbapenem-
resistant bacteria. Isolates were pre-selected from bacteria cultured
in the presence of ertapenem, thus they may not represent a true
population survey. Although we isolated the plasmids for analy-
sis, we did not have access to long-read sequencing to allow the
construction of plasmid sequences and plasmid similarities were
based on pMLST. The findings suggest the presence of genetically
similar bacteria in mothers and unpaired neonates which indicates
that the hospital environment might be the source of transmission
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of CPE. However, local hospital surface swabs were not collected to
compare the bacteria colonising surfaces to determine an alterna-
tive source of acquisition.

Although some studies have implicated a higher rate of
mother-neonate transmission through vaginal delivery [57,58] the
single case of similar maternal and neonatal bacterial strain (ANI
99.98%, one SNP) identified in this study was from a neonate de-
livered via caesarean section. Similar types of observations were
made in some studies where no mother-neonate transmission was
noted [27,34]. A cumulative PFGE and WGS approach has enhanced
the clarity of our data by increasing the discriminatory interpreta-
tion of results [59]. Future research should collect data to allow
deeper analyses that incorporate appropriate transmission mod-
elling approaches with microbial genomics.

5. Conclusion

Despite having a high carriage of blaypy-producing
carbapenem-resistant bacteria in the gut of mothers and neonates,
only limited evidence supporting mother-to-neonate transmission
was identified. Although neonates carried the same carbapenem-
resistant species as that of their mother, they were genetically
different, which indicated that these bacteria are mostly acquired
from the environment. Diverse STs of E. coli and K. pneumoniae
were identified with the presence of different NDM variants, and
extensive AMR genes suggested that hospital and other external
sources might be responsible for acquisition of CPE in the gut.
The presence of CPE, some being epidemic clones, in maternal
and neonatal rectal samples increases the probability of spread of
such organisms within a hospital setting and later on discharge
in environments beyond the hospitals. Gut specimens thus need
screening for such organisms to mitigate the risk of infections in
vulnerable neonates.
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