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Abstract—Audio-driven talking face generation from a single
source image is a popular research topic. There still exist many
challenges for its practical applications, e.g., diverse motion
generation, effective emotional control, and large view angle
changes. In this work, we propose a novel one-shot emotion-
controllable audio-driven 3D talking face generation framework,
which creates free-view talking videos from one reference image.
Firstly, to synchronize the motion with the input audio, we use
a transformer-based motion generator to capture the context of
the input audio and predict motion coefficient sequences, which
are leveraged by a motion encoder to extract motion codes.
Meanwhile, to reconstruct a 3D portrait from one reference
image, an identity encoder is utilized to extract an identity
code and generate emotion-dependent appearance with a specific
emotion label. Finally, we introduce an emotion-controllable 3D
portrait video generator to synthesize free-view talking videos
using the disentangled motion and identity codes. Thanks to
the audio-synchronized motion codes and emotion-aware identity
code, we can render a talking face with realistic emotional
expressions in novel views. Extensive experiments show that our
method is capable of maintaining superior visual performance
and motion accuracy in both front view and novel views.

Index Terms—3D Face Reconstruction, Face Animation, Ex-
pression Editing, Neural Radiance Fields

I. INTRODUCTION

Recently, talking head generation from a static portrait
image has spawned abundant applications in digital human
animation, visual dubbing, short video creation, etc. Creating a
realistic talking face video from a single image and audio input
is challenging due to the intricate relationship between audio
and lip movements. Furthermore, a single image lacks suffi-
cient information to support vivid head movements, especially
when talking head animations involve substantial changes in
the head pose. Moreover, the creation of a lifelike talking head
requires an abundance of detailed expressions. To tackle these
challenges, it is imperative to take into account a wide range
of knowledge, such as vocal-visual multi-modalities, human
face models, and emotions.

Previous 2D works [1], [2] mainly focused on syncing lip
movements with speech. Certain studies further considered
head pose [3] and emotions [4], [5]. However, these studies
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Fig. 1. Given a reference image and a driving audio, our method generates
free-view talking videos with vivid emotional expressions.

struggled with the video quality and the expression accuracy
amid large changes in the head pose. In contrast, 3D methods
handle pose changes better by rendering 3D portraits. As
neural rendering has achieved remarkable progress in 3D
reconstruction, several works [6], [7] utilized neural radiance
fields (NeRFs) [8] to render dynamic faces. Regrettably, these
methods either overfit to a single identity or lack stable
movements and detailed emotional expressions.

In this work, we propose a novel one-shot emotion-
controllable audio-driven 3D talking face generation frame-
work, which creates an audio-synchronized talking video with
diverse emotions in novel views from a single speaker image,
as illustrated in Fig. 1. To achieve this goal, we design a 3D
portrait video generator with a two-branch encoder, namely
a motion encoder and an identity encoder to disentangle
the audio-driven motion control and emotion-aware identity
reconstruction. Specifically, we first leverage an audio-driven
motion generator to synthesize realistic motion sequences.
Then, with a reference portrait image, an identity encoder
extracts a feature pyramid from the reference image and



fuses each level’s features into the identity code. An emotion-
aware mapper adapts the identity code using the user-specified
emotion label. Finally, with the audio-synthesized motion
codes and emotion-aware identity code, the 3D portrait video
generator predicts tri-planes [9] as a compact 3D-aware repre-
sentation and renders free-view 3D portrait videos via neural
rendering. As shown by extensive experiments, thanks to the
well-designed audio-driven motion generator and 3D portrait
video generator with the two-branch encoder, our method
is capable of generating audio-synchronized emotion-aware
portrait videos with superior visual performance in novel
views.

Our contributions are summarized as follows:
• We propose the first method for one-shot (i.e., sin-

gle reference image-based) emotion-controllable audio-
driven 3D talking face generation, which creates audio-
synchronized talking videos with diverse emotions in
novel views from one target speaker image;

• We present a controllable 3D portrait video generator
with a two-branch encoder to disentangle motion and
identity control so that the generated videos contain not
only temporally consistent dynamics but also emotion-
aware appearance.

II. RELATED WORK

A. Audio-Driven Talking Face Generation

A number of investigations have significantly advanced the
performance of audio-driven talking head animation. Existing
methods can be divided into two principal categories: person-
specific and person-agnostic approaches.

Person-specific studies [10]–[12] employed neural networks
to establish a correlation between audio input and lip motion,
generating higher-quality results by leveraging a target indi-
vidual’s video data. Despite enhanced animation quality, these
methods are constrained by the demanding data requirements.

In contrast, person-agnostic strategies aim to generate high-
quality talking face videos in a one-shot setting. Initial ap-
proaches [1], [2], [13] focused primarily on synchronizing lip
movements with the audio content. SadTalker [3] introduces
two modules that provide controllable eye blink and stylized
head pose effects. And some works [4], [5], [14] embedded
emotional information into generated talking faces for vivid
video. While these methods are capable of generating face
images with novel poses, they lack a 3D-aware representa-
tion, leading to noticeable artifacts in the synthesized results,
particularly when significant head pose changes are involved.

B. Talking NeRF Face Generation

The advancement of NeRFs has laid the foundation for
numerous studies [11], [16], [17] that utilize dynamic NeRFs
to simulate the speaking motion of a specific individual in a
3D-aware manner, at the cost of extensive target video data.
Following works [18], [19] applied lightweight or generic
mechanisms to reduce the video data requirements and the
convergence time cost. These studies exhibit exceptional multi-
view consistency due to the use of NeRFs. However, the

necessity for person-specific data and optimization remains a
substantial constraint on practical applications.

Regarding the general animation of arbitrary individuals,
several studies [6], [20] use facial blendshape coefficients
to control a tri-plane generator explicitly. However, these
methods often fail to maintain temporal stability and produce
flickering videos due to the lack of consideration for tempo-
ral information. OTAvatar [7] attempted to ensure temporal
stability by using a window of temporally adjacent motion
coefficients as input. Unfortunately, this method struggles to
generate intricate expressions, such as eye blinking or frown-
ing. Real3D-Portrait [21] introduced an image-to-plane model
with a motion adapter to achieve high-quality reconstruction
and reenactment. Our method also incorporates NeRF for
audio-driven 3D-aware talking face video generation. Further,
it attains emotion control and temporal consistency.

III. METHODOLOGY

Now we introduce our novel framework, a 3D portrait video
generator with a two-branch encoder, illustrated in Fig. 2, for
generating emotion-aware photo-realistic 3D talking faces. The
motion encoder branch leverages a pre-trained audio encoder
and an audio-synchronized motion generator Gm to convert the
input audio into a sequence of 3DMM expression coefficients,
which is encoded as motion code by a Motion Encoder Em.
Meanwhile, to achieve 3D facial animation using only a single
image, we design an emotion-aware identity encoder Eid,
which encodes a reference image into an emotional identity
code. Finally, with the input of the identity code and motion
code, a controllable 3D portrait video generator G synthesizes
tri-planes [9] as a 3D-aware representation, followed with
a volume renderer and a super-resolution module to obtain
the video clip in any novel view. Below, we introduce the
motion generator and controllable 3D portrait video generator
in Sec. III-A and Sec. III-B, respectively. And the training
strategy of both modules is described in Sec. III-C.

A. Audio-Synchronized Motion Generation

To produce accurate facial movements based on audio input,
we initially employ an audio encoder to extract contextualized
audio features from the audio data. Subsequently, the audio
features are converted into a motion sequence by a motion
generator. Our system employs the expression coefficients
of 3D Morphable Models (3DMMs) [22] as an intermediate
representation, which provides crucial 3D information to im-
prove the realism of generated 3D portrait videos and ensures
identity independence owing to its well-disentangled structure.

1) Audio Encoder: Our audio encoder adopts the architec-
ture of the state-of-the-art pre-trained speech model, wav2vec
2.0 [15], which consists of an audio feature extractor and a
multi-layer transformer encoder. With audio input A, the audio
feature sequence is extracted as a1:T = Ea(A).

2) Motion Generator: With audio feature sequence a1:T ,
the motion generator Gm, a stack of several transformer
encoder layers, predicts 3DMM motion sequence m̂1:T =
Gm(a1:T ) to control tri-plane synthesis for final speech video
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Fig. 2. The framework of our method. Our method first encodes audio clips A into contextualized features using Wav2Vec 2.0 [15] and then feeds
the resulting features into a transformer-based motion generator Gm to obtain an audio-synchronized 3DMM coefficient sequence m̂1:T . Subsequently, this
coefficient sequence is encoded into a motion code zm sequence by a motion encoder. Concurrently, the feature pyramid extractor processes a reference image
Iref to derive an identity code wid. Furthermore, utilizing an emotion label e, the emotion-aware mapper translates the identity code into an emotion-aware
identity code. Finally, employing both the motion codes and the identity code, the tri-plane synthesis network generates tri-planes, which are used to obtain
a free-view and emotion-manipulated video using a volume renderer and a super-resolution module.

rendering. Considering temporal consistency, the audio fea-
tures are inputted as time windows, a′i = ai−δa:i+δa and
δa = 2 in our experiments.

B. Controllable 3D Portrait Video Generation

After generating the realistic 3D motion coefficients, we
animate the 3D portrait constructed from a target image
through a well-designed two-branch encoder, motion encoder
and identity encoder. Utilizing the tri-plane synthesis of PV3D
[23] as backbone, we introduce the Motion Encoder module Em

to learn the relationship between the explicit 3DMM expres-
sion coefficients and the implicit motion code. Meanwhile, we
utilize an additional Emotion-Aware Identity Encoder, denoted
as Eid, to extract the identity code from the reference image.
This identity code is then adapted to generate appearance
dependent on the emotion. During the inference stage, we
utilize several inversion steps to enhance identity faithfulness.

1) Motion Encoder: In contrast to PV3D, which utilizes
a latent code and timestamps to represent motion dynamics,
we build a motion encoder Em(·) to map 3DMM expression
coefficients m to the motion code zm of the generator. Specifi-
cally, the motion encoder is built via several 1D convolutional
layers followed by a network composed of multiple residual
blocks. To ensure temporal consistency, the motion encoder
uses the temporal adjacent coefficients from a window δm as
input, where δm = 11.

2) Emotion-Aware Identity Encoder: The emotion-aware
identity encoder is composed of a basic identity encoder Eid(·)
and an emotion-aware mapping network Me(·|e). Given a
single reference image, the basic identity encoder Eid(·) uses a
feature pyramid network to produce three hierarchical layers of
feature maps, from which the identity code is extracted using a
simple, intermediate mapping layer. As for emotion-dependent
appearance, we use a multi-level mapping network Me to
adjust each channel of the identity code wid, whose outputs are
summed with weights assigned corresponding to the emotion

label e. We further define wid to be the average identity code of
the pre-trained generator. Given an input image I and emotion
label e, the output of the emotion-aware identity encoder Eid(·)
is defined as Eid(I|e) =Me(Eid(I) + wid|e).

C. Training Strategy

Due to the high memory usage of video rendering gradients,
we avoid an end-to-end training strategy. In our experiments,
we train the audio-synchronized motion generator Gm in-
dependently. And the training objectives are introduced in
Sec. III-C1. Additionally, as described in Sec. III-C2, we joint
train the identity encoder Eid, motion encoder Em, and tri-
plane generator G with super-resolution module R frozen. As
for the emotion-aware mapping module Me for the identity
encoder, we isolate this module by freezing the remainder
of the network and conduct training exclusively on it, as
elaborated in Sec. III-C3.

Some detailed formulae and diagrams are presented in the
supplementary material.

1) Audio-synchronized Motion Generator: We train the
motion generator Gm utilizing a pre-trained wav2vec 2.0 to
extract audio features a1:T from audio clip A. Drawing inspi-
ration from SelfTalk [24], we attached a lip-reading module,
which translates the lip motions of a 3DMM sequence to a
sentence, behind the motion generator, thereby supervising
the alignment between audio clips and motion sequences.
Initially, we employ pre-trained wav2vec 2.0 to extract latent
features Slatent1:T and text tokens Stext1:T as pseudo-truth values
from audio clip A. Concurrently, a sequence of lip vertices is
segmented from head meshes, reconstructed from the predicted
motion coefficient sequence. The lip-reading module map
these lip vertex sequences to latent features Ŝlatent1:T and extract
text sequence Ŝtext1:T . With the pseudo-truth values, a MSE loss
Llat for latent consistency and CTC loss Lctc for temporal
aligment are introduced. Moreover, we use a reconstruction



term LMSE for motion coefficient directly. During the motion
generator training phase, the total loss is

L = Llat + λctcLctc + λMSELMSE , (1)

where the weights of loss terms are λctc = 0.1 and λrec = 10.
2) Controllable 3D Portrait Video Generator: We use the

pre-trained parameters of the PV3D generator for proper
initialization and then train the two-branch encoder (Motion
Encoder Em and Identity Encoder Eid) and Tri-plane Synthesis
module. Noticeably, the emotion-aware mapping network Me

is trained separately.
To effectively decouple motion and identity, we employed a

cross-contrastive training strategy. Given a pair of source and
driving image Is, Id from a video, we extract their 3DMM
coefficients ms,md and motion code zsm = Em(m

s), zdm =
Em(m

d), respectively. Further, we reconstruct the source im-
age Îs = R(G(wsid, zsm), cs) and predict the driving image
Îd = R(G(wsid, zdm), cd), where the shared identity code
wsid = Eid(I

s) is extracted from the source image Is.
The reconstruction term Ls = L(Is, Îs) and the animation

term Ld = L(Id, Îd) are utilized to ensure the proper appear-
ance reconstruction and decouple the identity code and motion
code, where the total loss L(I, Î) is a weighted sum of the
following loss terms: a perceptual loss LVGG using VGG-19
network, a MAE of pixel Lpixel, a regularization loss Lreg for
the motion code and identity code and an identity consistency
loss LID. The total loss function is

L(I, Î) = λVGGLVGG + λpixelLpixel + λregLreg + λIDLID, (2)

where the parameter values we use for the examples in this
paper are λVGG = 0.8, λpixel = 1, λreg = 0.1, λID = 0.2.

3) Emotion-Aware Mapping Network: For the emotion-
aware mapping network Me, we design a training strategy
using CLIP loss term. With randomly sampled identity code
wid, we first render the original image Iorigin. Then, we ran-
domly choose emotion label e and obtain emotion-manipulated
image Ie with the adjusted emotion-aware identity code weid.
Instead of pixel loss Lpixel used in the above training, we use
CLIP loss LCLIP to guide the mapper to minimize the cosine
distance between the emotional image and text description
in the CLIP latent space. Since the emotion-aware mapping
network adjusts the appearance for the given identity, we use
the histogram loss Lsim [25] to maintain the coarse style of
emotion-manipulated image Ie, which measures the similarity
between the histograms representing color distributions. The
total loss function is a weighted combination of these losses:

L(Iorigin, Ie) =λVGGLVGG + λCLIPLCLIP + λregLreg+
λidLid + λsimLsim,

(3)

where the parameter values are λVGG = 0.05, λCLIP = 1,
λreg = 0.7, λID = 1, λsim = 1.

IV. EXPERIMENTS

A. Datasets and Metrics

1) Datasets: To learn a universal audio-driven motion
generator, we construct our dataset based on the widely used

dataset MEAD [26]. We split the dataset into training and
test parts following EAT [5], which utilizes all data of four
identities as the test part and the others for training.

2) Evaluation Metrics: We demonstrate the superiority
of our method on multiple metrics that have been widely
used in previous studies. We adopt Peak-Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM)
, Learned Perceptual Image Patch Similarity (LPIPS) and
Fréchet Inception Distance score (FID) to evaluate the visual
quality. To measure the audio-visual synchronization, we use
the Landmark Distance around mouths (M-LMD) and the
confidence score of SyncNet [27] (Syncconf ). To assess the
emotional accuracy of the generated emotions, we fine-tune
the Emotion-Fan [28] using the training set of MEAD.

B. Results

1) Emotion Manipulation: We display some emotion ma-
nipulation results in Fig. 3 in different views. No existing
methods can achieve such emotion control for one-shot audio-
driven 3D-aware talking face generation. The first column
contains the reference images, which are selected from the
test set of HDTF [29]. For the remaining columns, there are
three images in each cell, corresponding to three different
views of each result. As shown in these images, our method
is capable of synthesizing emotion details (such as upturned
lips, tear-stained eyes and bulging eyes) and maintaining these
expressions in novel views.

Ref Neutral Happy Sad Surprise

Fig. 3. The qualitative results of one-shot emotion manipulation.

C. Comparisons

1) Quantitative Evaluation: We compare our method with
state-of-the-art 2D methods including: PC-AVS [30], EAMM
[14], SadTalker [3], StyleTalk [4] and EAT [5]. Meanwhile, we
also compare it with 3D animation methods, Next3D [6] and
OTAvatar [7]. We conduct the experiments in the self-driven
setting on the test set of MEAD, using the same test identities
and audio clips as EAT [5]. We employ the first frame of each
video clip as the reference image and the corresponding audio
clip as the audio input for generating videos from two views
(front and left 60 respectively) to verify the effectiveness of
our method. Regarding emotion accuracy, we compare our
method with EAT [5] and StyleTalk [4].



As presented in Tables I, II and III, our method achieves
the best performance in most metrics. Our method achieves
the best synchronization and visually much better results for
novel views than 2D methods. Since PC-AVS and EAT are
trained using SyncNet as a supervision, it is reasonable for
these methods to obtain higher confidence score of SyncNet,
even though the mouths and faces are blurry in their results.
Compared with 3D methods, our method achieves better
synchronization, along with better visual quality. As shown
in Table IV, our method exhibits highest overall emotion
accuracy on the entire test dataset.

TABLE I
QUANTITATIVE COMPARISON WITH 3D BASELINES.

PSNR/SSIM ↑ LPIPS↓ FID ↓ M-LMD ↓ Syncconf↑

OTAvatar 21.12/0.75 0.33 74.21 0.12 1.93
Next3D 21.18/0.78 0.31 80.57 0.13 3.82
Ours 23.51/0.80 0.29 59.06 0.09 4.61

TABLE II
QUANTITATIVE COMPARISONS WITH 3D METHODS(LEFT 60 VIEW).

PSNR/SSIM ↑ LPIPS↓ FID ↓ M-LMD ↓ Syncconf↑

OTAvatar 16.97/0.72 0.40 81.77 0.16 1.54
Next3D 17.03/0.70 0.39 73.69 0.17 3.72
Ours 17.36/0.73 0.39 69.46 0.13 4.49

TABLE III
QUANTITATIVE COMPARISONS WITH 2D METHODS(LEFT 60 VIEW).

*PC-AVS, EAT USE SYNCNET AS SUPERVISION FOR HIGHER SYNCconf .

PSNR/SSIM ↑ LPIPS↓ FID ↓ M-LMD ↓ Syncconf ↑

PC-AVS* 16.06/0.52 0.43 137.90 0.23 7.01
EAMM 14.00/0.54 0.47 107.61 0.21 2.79
SadTalker 15.99/0.57 0.48 115.96 0.18 3.92
StyleTalk 15.59/0.56 0.42 119.87 0.13 4.39
EAT* 16.84/0.63 0.39 113.83 0.14 6.63
Ours 17.36/0.73 0.39 69.46 0.13 4.49

TABLE IV
EMOTION ACCURACY COMPARISONS.

EAT StyleTalk Ours GT

Avg. Acc. 0.59 0.56 0.63 0.87

2) Qualitative Evaluation: We first compare our method
with NeRF-based animation methods. The results are dis-
played in Fig. 4 in three views (front, left 30 and left
60). Our method can reconstruct more vivid and detailed
identities and motions, such as blinks. OTAvatar [7] hardly
handles the mouth motion and lacks details. Next3D [6] has
fine reconstruction per frame but cannot guarantee temporal
consistency, leading to flickering results (please refer to the
supplementary video).

Fig. 5 compares our method with 2D methods PC-AVS [30],
EAT [5], SadTalker [3] and StyleTalk [4], which use warping
fields for reenacting faces and pose control. Our method can
handle extreme pose change and maintain identity consistency.

D. Ablation Study

1) Emotion-Aware Identity Encoder: Given that the stan-
dard loss functions of our dual-branch encoder are adapted
from PV3D [23], we embarked on an ablation study focusing

GT

Ours

OTAvatar

Next3D

Fig. 4. The qualitative results of the one-shot self-reenactment cases,
compared with 3D methods. Note that these methods mainly differ in
motions and dynamics. For more noticeable differences, please refer to the
supplementary videos.

GT

Ours

PC-AVS

EAT

SadTalker

StyleTalk

Fig. 5. The qualitative results of the one-shot talking-head generation
cases, compared with 2D methods. As our method reconstructs the entire
scene, artifacts appear in the background at the left-60 view, whereas the
region of the human face remains stable.

Fig. 6. The ablation study about the loss terms of the emotion mapper.



specifically on the contributions of the histogram loss Lsim

and the CLIP loss LCLIP. The two configurations considered
are: (1) w/o Lsim, where the histogram loss is not utilized,
and (2) w/ simple LCLIP, where CLIP loss is employed
using simple text prompts such as ‘realistic face with sad
emotion’. Fig. 6 shows that employing the histogram loss
markedly improves video quality, whereas using the CLIP loss
with detailed prompts significantly enhances the generation of
accurate emotional expressions.

V. CONCLUSION

A. Conclusion

In this paper, we propose a one-shot 3D face reconstruction
with audio-driven and emotion-controllable rendering for talk-
ing head video generation. With well-designed modules, we
can generate audio-synchronized talking videos with diverse
emotions in novel views from one target speaker image.
Experimental evaluations validate the superior performance of
our proposed framework. Given the use of CLIP for emotion
manipulation, our methodology presents a potential extension
to other applications, such as portrait stylization.

B. Limitations and Future Work

We have demonstrated that our method can generate audio-
synchronized, emotion-aware talking videos. However, our
technique, in its current form, is unable to generate a complete
head structure due to the absence of necessary geometric
priors, such as the back of the head. Therefore, with more
priors in both geometry and data, the method’s usability will
be further enhanced. And limited by volume rendering in
NeRF, our method cannot synthesize videos in real-time. The
integration of 3D Gaussian Splatting representations [31]–[33]
presents a promising avenue for future research.
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