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A B S T R A C T 

Many applications need access to background knowledge about how different concepts and entities are related. Although Large Language Models 
(LLM) can address this need to some extent, LLMs are inefficient and difficult to control. As an alternative, we propose to extract relation embeddings 
from relatively small language models. In particular, we show that masked language models such as RoBERTa can be straightforwardly fine-tuned for 
this purpose, using only a small amount of training data. The resulting model, which we call RelBERT, captures relational similarity in a surprisingly 
fine-grained way, allowing us to set a new state-of-the-art in analogy benchmarks. Crucially, RelBERT is capable of modelling relations that go well 
beyond what the model has seen during training. For instance, we obtained strong results on relations between named entities with a model that 
was only trained on lexical relations between concepts, and we observed that RelBERT can recognise morphological analogies despite not being 
trained on such examples. Overall, we find that RelBERT significantly outperforms strategies based on prompting language models that are several 
orders of magnitude larger, including recent GPT-based models and open source models.1

1. Introduction

Recognizing the lexical relationship between two words has long been studied as a fundamental task in natural language processing 
(NLP) [1]. As a representative early example, DIRT [2] first collects sentences in which two given target words co-occur (e.g. London 
and U.K.) and then uses the dependency paths between the two words to model their relationship. Along similar lines, Latent Relational 
Analysis (LRA [1]) relies on templates expressing lexical patterns to characterise word pairs (e.g. [head word] is the capital of [tail 
word]), thus again relying on sentences where the words co-occur. After the advent of word embeddings [3–5], most approaches for 
modelling relations relied on word vectors in one way or another. A common strategy to model the relation between two words was to 
take the vector difference between the embeddings of each word [3,6,7]. For example, the relationship between “King” and “Queen” 
is the gender difference, which can be captured by 𝗐𝗏(King)−𝗐𝗏(Queen), where 𝗐𝗏(𝑋) denotes the embedding of word 𝑋. Although 
the vector difference of word embeddings quickly gained popularity, it has been shown that the latent space of such relation vectors is 
noisy, with nearest neighbours often corresponding to different relationships [8–10]. The limitations of word embedding differences 
can also clearly be seen on SAT [11], a well-known benchmark involving word pair analogies (see § 4.1), where the accuracy of word 
vector differences is particularly disappointing [12].

Knowledge graphs (KGs) such as Wikidata [13] and ConceptNet [14] are also closely related to the study of relation understanding. 
In contrast to the aforementioned methods, KGs rely on symbolic representations. They use a fixed relational schema to explicitly 
encode the relationships between words or entities. KGs are more interpretable than embeddings, but they usually have the drawback 
of being highly incomplete. Moreover, due to their use of a fixed relational schema, KGs are inherently limited in their ability to capture 
subtle and fine-grained differences between relations, which is essential for many knowledge-intensive tasks. For example, Table 1
shows two instances of the SAT analogy task, where the relationships found in the query are abstract. When trying to solve such 
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Table 1
Two examples of analogy task from the SAT dataset, where the candidate in bold characters is 
the answer in each case.

Query: wing:air 
Candidates: (1) arm:hand 

(2) lung:breath 
(3) flipper:water 
(4) cloud:sky 
(5) engine:jet 

Query: perceptive:discern 
Candidates: (1) determined:hesitate 

(2) authoritarian:heed 
(3) abandoned:neglect 
(4) restrained:rebel 
(5) persistent:persevere 

questions with a KG, we may have access to triples such as (wing, UsedFor, air), but this kind of knowledge is not sufficient to solve 
the given question, e.g. since all of (lung, UsedFor, breath), (engine, UsedFor, jet), and (flipper, UsedFor, water) make sense. The issue 
here is that the relationship UsedFor is too vague and does not describe the relationship between wing and air accurately enough to 
solve the task. Such limitations of KGs have recently been tackled with pre-trained language models (LMs) [15–17], which have been 
shown to implicitly capture various forms of factual knowledge [18–20]. In particular, some researchers have proposed to extract 
KG triples from LMs [21–23], which offers a compelling strategy for automatically enriching existing KGs. However, the resulting 
representations are still too coarse-grained for many applications. LLMs are also inefficient and difficult to control.

In this paper, we propose a framework to distill relational knowledge from a pre-trained LM in the form of relation embeddings. 
Specifically, we obtain the relation embedding of a given word pair by feeding that word pair to the LM using a fixed template 
and by aggregating the corresponding contextualised embeddings. We fine-tune the LM using a contrastive loss, in such a way 
that the relation embeddings of word pairs that have a similar relationship become closer together, while moving further away 
from the embeddings of unrelated word pairs. Our main models, which we refer to as RelBERT, are based on RoBERTa [24] as 
the underlying LM and are fine-tuned on a modified version of a dataset about relational similarity from SemEval 2012 Task 2 
[25]. Despite the conceptual simplicity of this approach, the resulting model outperforms all the baselines including LRA [1], word 
embeddings [3–5], and large scale language models such as OPT [26,27] and T5 [17,28] in the zero-shot setting (i.e. without any task-
specific validation or additional model training). For example, RelBERT achieves 73% accuracy on the SAT analogy benchmark, which 
outperforms the previous state-of-the-art by 17 percentage points, and GPT-3 [16] by 20 percentage points (in the zero-shot setting). 
The strong performance of RelBERT is especially remarkable given the small size of the considered training set. Moreover, being 
based on relatively small language models, RelBERT is surprisingly efficient. In fact, the version of RelBERT based on RoBERTaBASE
has 140 million parameters, but already outperforms GPT-3, which has 175 billion parameters, across all the considered benchmarks. 
Overall, we test RelBERT in nine diverse analogy benchmarks and find that it achieves the best results in all cases. Crucially, the 
fixed-length vector formulation of RelBERT enables a flexibility not found in standard language models, and can be leveraged for 
multiple applications. For instance, RelBERT proves competitive to the state-of-the-art in lexical relation classification, outperforming 
all previous embedding approaches.

To further understand the capability of RelBERT, we analyse its performance from various perspectives. One important finding 
is that RelBERT performs strongly even on relation types that are fundamentally different from the ones in the training data. For 
instance, while the training data involves standard lexical relations such as hypernymy, synonymy, meronymy and antonymy, the 
model is able to capture morphological relations, and even factual relations between named entities. Interestingly, our standard 
RelBERT model, which is trained on the relation similarity dataset, achieves similar or better results for the latter type of relations 
than models that are trained on relations between named entities. Moreover, even if we remove all training examples for a given lexical 
relation (e.g. hypernymy), we find that the resulting model is still capable of modelling that relationship. These findings highlight 
the generalisation ability of RelBERT for recognizing word pairs with unseen relation types by extracting relation knowledge from 
the pre-trained LM, rather than merely generalising the examples from the training data.

Motivation. Relations play a central role in many applications. For instance, many question answering models currently rely on 
ConceptNet for modelling the relation between the concepts that are mentioned in the question and a given candidate answer [29–31]. 
Commonsense KGs are similarly used to provide additional context to computer vision systems, e.g. for generating scene graphs 
[32,33] and for visual question answering [34]. Many recommendation systems also rely on knowledge graphs to identify and 
explain relevant items [35,36]. Other applications that rely on knowledge graphs, or on modelling relationships more broadly, 
include semantic search [37,38], flexible querying of relational databases [39], schema matching [40], completion and retrieval 
of Web tables [41] and ontology completion [42]. Many of the aforementioned applications rely on knowledge graphs, which are 
incomplete and limited in expressiveness due to their use of a fixed relation schema. Relation embeddings have the potential to address 
these limitations, especially in contexts which involve ranking or measuring similarity, where extracting knowledge by prompting 
large language models (LLMs) cannot replace vector-based representations. Relation embeddings can also provide a foundation for 
systems that rely on analogical reasoning, where we need to identify correspondences between a given scenario and previously 
encountered ones [43]. Finally, by extracting relation embeddings from LMs, we can get more insight into what knowledge is captured 
by such models, since these embeddings capture the knowledge from the model in a more direct way than what is possible with 
prompting based methods [18,19]. Indeed, the common prediction-based model probing techniques [18,19] can easily be manipulated 
by adversarial inputs, e.g. involving negation [44]. Accordingly, recent studies have focused on identifying language model parameters 
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that represent factual knowledge about named entities [45]. We believe that relation embeddings can be seen in a similar light, offering 
the potential for more direct analysis of the knowledge captured by language models.

Structure of the paper. After discussing the related work in § 2, we first introduce RelBERT, our framework for extracting relation 
embeddings from fine-tuned LMs, in § 3. We then describe our two main evaluation tasks in § 4: analogy questions and lexical relation 
classification. § 5 presents our experimental setup. Subsequently, § 6 compares the results of RelBERT with baselines, including a large 
number of recent LLMs. To better understand the generalisation ability of RelBERT, in § 7.1 we conduct an experiment in which certain 
relation types are excluded from the training set and then evaluate the model on the excluded relation type. In addition to the main 
experiment, we compare RelBERT with conversational LMs and few-shot prompting strategies in § 7.2. As the learning process of 
RelBERT can be affected by many factors, we provide a comprehensive analysis of RelBERT fine-tuning in § 7.3. Finally, we provide 
a qualitative analysis of the relation embedding space of RelBERT § 7.4.

Difference from earlier work. This paper extends our earlier conference paper [46] in several ways: 1) we now consider two additional 
losses for training RelBERT; 2) we evaluate on four additional benchmarks; 3) we consider several alternative training sets; 4) we 
extensively compare against recent language models of sizes up to 30B parameters; 5) we analyse the role of training data in the 
RelBERT fine-tuning process. We find that our new RelBERT with contrastive loss outperforms the version of RelBERT from our earlier 
work, which was based on the triplet loss. Moreover, we find that RelBERT performs surprisingly well for named entities, despite 
only having been trained on concepts. Finally, for analogies between concepts, we find that even the smallest RelBERT model, with 
140M parameters, substantially outperforms all the considered LMs.

2. Related work

2.1. Unsupervised relation discovery

Modelling how different words are related is a long-standing challenge in NLP. An early approach is DIRT [2], which encodes 
the relation between two nouns as the dependency path connecting them. The idea is that two such dependency paths are similar 
if the sets of word pairs with which they co-occur are similar. Along the same lines, [47] cluster named entity pairs based on the 
bag-of-words representations of the contexts in which they appear. In [48], a generative probabilistic model inspired by LDA [49] 
was proposed, in which relations are viewed as latent variables (similar to topics in LDA). Turney [1] proposed a method called 
latent relational analysis (LRA), which uses matrix factorization to learn relation embeddings based on co-occurrences of word pairs 
and dependency paths. Matrix factorization is also used in the Universal Schema approach from Riedel et al. [50], which represents 
entity pairs by jointly modelling (i) the contexts of occurrences of entity pairs in a corpus and (ii) the relational facts that are asserted 
about these entities in a given knowledge base. After the introduction of Word2Vec, several approaches were proposed that relied on 
word embeddings for summarising the contexts in which two words co-occur. For instance, [51] introduced a variant of the GloVe 
word embedding model, in which relation vectors are jointly learned with word vectors. In SeVeN [52] and RELATIVE [53], relation 
vectors are computed by averaging the embeddings of context words, while pair2vec [54] uses an LSTM to summarise the contexts in 
which two given words occur, and [55] learns embeddings of dependency paths to encode word pairs. Another line of work is based 
on the idea that relation embeddings should facilitate link prediction, i.e. given the first word and a relation vector, we should be 
able to predict the second word [56,57].

2.2. Language models for relational knowledge

The idea of extracting relational knowledge from pre-trained LMs has been extensively studied. For instance, [18] uses BERT for 
link prediction. They use a manually defined prompt for each relation type, in which the tail entity is replaced by a <mask> token. 
To complete a knowledge graph triple such as (Dante, born-in, ?) they create the input “Dante was born in <mask>” and then look at 
the predictions of BERT for the masked token to retrieve the correct answer. The results of this analysis suggest that BERT captures a 
substantial amount of factual knowledge, a finding which has inspired a line of work in which LMs are viewed as knowledge bases. 
Later, the analysis from [18] has been improved by adding instances with negation in [44], and extended to non-English languages 
in [58]. Some works have also looked at how relational knowledge is stored. In [59], it is argued that the feed-forward layers of 
transformer-based LMs act as neural memories, which would suggest that e.g. “the place where Dante is born” is stored as a property 
of Florence. Some further evidence for this view is presented in [60]. What is less clear is whether relations themselves have an explicit 
representation, or whether transformer models essentially store a propositionalised knowledge graph. The results we present in this 
paper suggest that common lexical relations (e.g. hypernymy, meronymy, has-attribute), at least, must have some kind of explicit 
representation, although it remains unclear how they are encoded. In [61], they analyse the ability of BERT to identify word pairs 
that belong to a given relation. In our earlier work [12], we have evaluated the ability of LMs to directly solve analogy questions. 
The main finding was that LMs are poor at solving analogy questions with a vanilla perplexity based approach, although results can 
be improved with a carefully-tuned scoring function. In [62], they extended this analysis by evaluating the sensitivity of language 
models to the direction of a word pair (e.g. by checking whether the model can distinguish the word pair London:U.K. from the word 
pair U.K.:London), the ability to recognize which entity type can form a specific relation type (e.g. the head and tail entity of the 
born-in relation should be person and location) and the robustness to some adversarial examples. Their main findings were that LMs 
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are capable of understanding the direction and the type of a relationship, but can be distracted by simple adversarial examples. For 
instance, both Paris:France and Rome:France were predicted to be instances of the capital-of relation.

Given the observation that LMs capture an extensive amount of relational knowledge, LMs have been used for tasks such as KG 
completion, and even for generating KGs from scratch. For instance, in [63], a triple is first converted into a sentence, by choosing a 
template based on the log-likelihood estimates of a causal language model (CLMs). The resulting sentence is then fed into a masked 
LM to estimate the plausibility of the triple based on the log-likelihood of the masked token prediction of the head and tail words. 
However, this approach is inefficient to use in practice, since all the candidate triples have to be tested one by one. To avoid such 
issues, [64] proposed to directly extract plausible triples using a pre-trained LM. Given a large corpus such as Wikipedia, they parse 
every sentence in the corpus to find plausible triples with a pre-trained LM. First, a single sentence is fed to an LM to obtain the 
attention matrix, and then for every combination of two words in the sentence, they find intermediate tokens in between the two 
words, which contribute to predict the two words, by decoding the attention matrix. In the end, the word pairs are simply filtered by 
the corresponding attention score, and the resulting word pairs become the triples extracted from the sentence, where the intermediate 
tokens of each pair are regarded as describing the relationship. Instead of extracting triples from a corpus, [65] proposed to use LMs 
to complete a triple by generating a tail word given a head word and a relation. They manually create a number of templates for each 
relation type, where a single template contains a placeholder to be filled by a head word. Each template is fed to a pre-trained LM to 
predict the tail word. As a form of post-filtering, they use a pre-trained LM to score the factual validity of the generated triples with 
another prompt to enhance the precision. Unlike the method proposed in [64], which extracts an entire triple, [65] assumes that the 
head and the relation are given, so it is more suited to KG completion, while [64] is rather aimed at constructing KGs from scratch. 
Recently, [66] proposed a two-step process for learning a KG in which relations are represented as text descriptions. In the first step, 
sentences in Wikipedia that explicitly describe relations between entities are identified. To improve the coverage of the resource, in 
the second step, T5 [17] is used to introduce additional links. Specifically, they use a fusion-in-decoder [67] to generate descriptions 
of the relationship between two entities, essentially by summarising the descriptions of the paths in the original KG that connect the 
two entities.

Where the aforementioned works extract KGs from LMs, conversely, there has also been a considerable amount of work on infusing 
the knowledge of existing KGs into LMs. Early approaches introduced auxiliary tasks that were used to train the LM alongside the 
standard language modelling task, such as entity annotation [68] and relation explanation [69] based on KGs. ERNIE [70] is a masked 
LM similar to BERT, but they employ a masking strategy that focuses on entities that are taken from a KG, unlike BERT, which randomly 
masks tokens during pre-training. In addition to the entity-aware masking scheme, LUKE [71] conditions internal self-attention by 
entity-types. It achieved better results than vanilla LMs in many downstream tasks. Since it is computationally demanding to train 
LMs from scratch, there is another line of work that relies on fine-tuning existing LMs. For instance, [72] fine-tuned BERT based on 
the cross-attention between the embeddings from BERT and an entity linking model. Their model learned a new projection layer to 
generate entity-aware contextualized embeddings.

2.3. Modelling analogy

Modelling analogies has a long tradition in the NLP community. The aforementioned LRA model [1], for instance, was motivated 
by the idea of solving multiple-choice analogy questions. Despite its simplicity, LRA achieved a strong performance on the SAT 
benchmark, which even GPT-3 is not able to beat in the zero-shot setting [16]. The idea of using word vector differences for identifying 
analogies was popularised by [3]. The core motivation of using word embeddings for modelling analogies dates back to connectionism 
theory [73], where neural networks were thought to be capable of learning emergent concepts [74,75] with distributed representations 
across a semantic embedding space [76]. More recent works have proposed mathematical justifications and experiments to understand 
the analogical reasoning capabilities of word embeddings, by attempting to understand their linear algebraic structure [77–79] and 
by explicitly studying their compositional nature [80–83].

Recently, the focus has shifted to modelling analogies using LMs. For instance, [84] proposed E-KAR, a benchmark for analogy 
modelling which essentially follows the same multiple-choice format as SAT, except that an explanation is provided for why the 
analogy holds and that some instances involve word triples rather than word pairs. In addition to the task of solving analogy questions, 
they also consider the task of generating explanations for analogies. Both tasks were found to be challenging for LMs. In [85], they 
used prompt engineering to generate analogies with GPT-3. They consider two analogy generation tasks: (i) generating an explanation 
with analogies for a target concept such as “Explain Bohr’s atomic model using an analogy”, and (ii) generating an explanation of 
how two given concepts are analogous to each other such as “Explain how Bohr’s atomic model is analogous to the solar system”. 
They argue that GPT-3 is capable of both generating and explaining analogies, but only if an optimal prompt is chosen, where 
they found the performance to be highly sensitive to the choice of prompt. In [86], they used LMs to find analogies between the 
concepts mentioned in two documents describing situations or processes from different domains. To improve the quality of analogies 
generated by LMs, [87] proposed an LM based scoring function to detect low-quality analogies. They start from manually-crafted 
templates that contain the information of the domain (e.g. “Machine Learning”) and the target concept (e.g. “Language Model”). The 
templates are designed so that LMs can generate explanations of the target concept involving analogies. Once they generate analogies 
with the templates, they evaluate the generated analogies from the perspectives of analogical style, meaningfulness, and novelty, to 
identify which analogies to keep. The evaluation of the analogies is then used to improve the templates, and the low-quality analogies 
are re-generated with the improved templates. The evaluation relies on automatic metrics, and the template re-writing is done via 
prompting to edit the current template with the feedback, so the process can be iterated to repeatedly improve low-quality analogies. 
In [88], they fine-tuned masked LMs to solve analogy questions. The embedding for a given word pair (𝑤1,𝑤2) is obtained as the 
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Fig. 1. Schematic overview of the RelBERT model. A word pair is presented to an LM encoder using a prompt. A relation vector, capturing how the two input words 
are related, is then obtained by aggregating the contextualised embeddings from the output layer.

contextualised representation of the <mask> token with the prompt “𝑤1 <mask> 𝑤2”. To fine-tune LMs on analogy questions, they 
convert the task into a binary classification of 𝐴:𝐵::𝐶 :𝐷 as an analogy or not, where (𝐴,𝐵) is the query word pair and (𝐶 ,𝐷) is a 
candidate word pair. With the binary analogy classification formulation, they fine-tune an LM with a linear layer on top of the word 
pair embeddings of query and candidate word pairs. They use the resulting fine-tuned model to annotate more instances as a form of 
data augmentation and continue to fine-tune the model on the generated pseudo dataset.

3. RelBERT

We now introduce our proposed RelBERT model, a fine-tuned LM encoder of the BERT family for modelling relational similarity. 
The input to RelBERT consists of a word pair, which is fed to the LM using a prompt. The LM itself is fine-tuned to map this input to 
a vector that encodes how the two given words are related. We will refer to this vector as a relation embedding. A schematic overview 
of the RelBERT model is shown in Fig. 1. Our overall strategy is explained in more detail in § 3.1, while the details of the fine-tuning 
process are provided in § 3.2.

3.1. Overall strategy

To obtain the relation embedding of a word pair (ℎ, 𝑡), we need to construct a suitable input for the language model. While it is 
possible to simply use the pair (ℎ, 𝑡) as input, similar to what is done by COMET [89], better results can be achieved by converting 
the word pair into a more or less naturally sounding sentence. This is true, in particular, because the amount of high-quality data 
that is available for training RelBERT is relatively limited, as we will see in § 3.3. We thus need to manually create a template with 
placeholders for the two target words, which somehow expresses that we are interested in modelling the relationship between the two 
words. Such a strategy has already been proven effective for factual knowledge probing [18] and text classification [90–92], among 
many others. Since we will rely on fine-tuning the LM, the exact formulation of the prompt matters less than in zero-shot settings. 
However, we found that performance suffers when the prompt is too short, in accordance with [61] and [19], or when the prompt 
is nonsensical (i.e. when it does not express the idea of modelling a relationship). With this in mind, we will use the following five 
templates for our main experiments2:

1. Today, I finally discovered the relation between [h] and [t]: [h] is the <mask> of [t]

2. Today, I finally discovered the relation between [h] and [t]: [t] is [h]’s <mask>
3. Today, I finally discovered the relation between [h] and [t]: <mask>
4. I wasn’t aware of this relationship, but I just read in the encyclopedia that [h] is the <mask> of [t]

5. I wasn’t aware of this relationship, but I just read in the encyclopedia that [t] is [h]’s <mask>

where <mask> is the LM’s mask token, and [h] and [t] are slots that are filled with the head word ℎ and tail word 𝑡 from the given 
word pair. As a final step, we construct the relation embedding 𝐱(ℎ,𝑡) from the contextualised representation of the prompt in the LM’s 
output layer. In particular, we have experimented with the following three strategies:

• We take the contextualised representation of the <mask> token as the relation embedding (average).
• We average the contextualised embeddings across all tokens from the prompt (mask).

2 In our previous paper [46], we evaluated different types of prompts, including automatically-generated ones. For this paper, we tried to extend this initial analysis 
but the results were inconclusive. This suggests that the choice of prompt may be somewhat less important than we had initially assumed. This view is also supported 
by the recent analysis in [93], which showed that the LM can be successfully fine-tuned to learn relation embeddings with short and uninformative prompts, with 
only a very small degradation in quality. We will come back to the analysis of prompt importance in § 7.3.4.
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Table 2
Statistics of the training sets that are considered for RelBERT, including the number of relations, the average number 
of triples per relation in the training / validation / test sets, and the number of unique positive triples; we also specify 
whether the relations are organised in a hierarchy, the domain from which the entities are coming.

Dataset RelSim ConceptNet NELL T-REX 
#relations (train/val/test) 89/89/- 28/18/16 31/4/6 721/602/24 
Average #positive examples per relation 14.7/3.7/- 20,824/66/74 177/219/225 1,767/529/4 
Relation Hierarchy True False False False 
Domain Concepts Concepts Named entities Named entities 

• We average the contextualised embeddings across all tokens from the prompt except for the <mask> token (average w.o. mask).

In the following we explain the training objectives and how the model is trained.

3.2. Training objective

The LM encoder used in RelBERT is initialised from a pre-trained RoBERTa model, which was shown to be more effective than 
BERT in our previous work [46]. It is then fine-tuned using a contrastive loss, based on the idea that word pairs which belong to 
the same relation should have a relation embedding that is similar, whereas word pairs belonging to different relations should have 
embeddings that are further apart. To this end, we assume access to a set of positive training examples 𝑟 and a set of negative 
examples 𝑟, for a number of relations 𝑟 ∈. In particular, 𝑟 contains word pairs (ℎ, 𝑡) which belong to relation 𝑟, whereas 𝑟

contains examples of word pairs which do not. We consider three different loss functions to implement the proposed idea.

Triplet loss. The triplet loss [94] relies on training data in the form of triples (𝑎, 𝑝, 𝑛), where 𝑎 is called the anchor, 𝑝 is a positive 
example, and 𝑛 is a negative example. The aim of this loss is to ensure that the distance between 𝑎 and 𝑝 is smaller, by some margin, 
than the distance between 𝑎 and 𝑛. In our case, the elements 𝑎, 𝑝 and 𝑛 correspond to word pairs, where 𝑎, 𝑝 ∈ 𝑟 and 𝑛 ∈𝑟 for 
some relation 𝑟. Let us write 𝒙𝑎 for the relation embedding of a word pair 𝑎. We then have the following loss:

𝐿tri =
∑
𝑟∈

∑
(𝑎,𝑝,𝑛)∈𝑟×𝑟×𝑟

max
(
0,‖𝒙𝑎 − 𝒙𝑝‖− ‖𝒙𝑎 − 𝒙𝑛‖+Δ

)
(1)

where Δ > 0 is the margin and ‖ ⋅ ‖ is the 𝑙2 norm.

InfoNCE. Information noise contrastive estimation (InfoNCE) [95] addresses two potential limitations of the triplet loss. First, while 
the triplet loss only considers one negative example at a time, InfoNCE can efficiently contrast each positive example to a whole 
batch of negative examples. Second, while the triplet loss uses the 𝑙2 norm, InfoNCE relies on the cosine similarity, which tends to 
be better suited for comparing embeddings. The InfoNCE loss can be defined as follows:

𝐿nce =
∑
𝑟∈

∑
(𝑎,𝑝)∈𝑟×𝑟

⎛⎜⎜⎜⎝−log
exp

( cos(𝒙𝑎,𝒙𝑝)
𝜏

)
exp

( cos(𝒙𝑎,𝒙𝑝)
𝜏

)
+
∑

𝑛∈𝑟
exp

(
cos(𝒙𝑎,𝒙𝑛)

𝜏

)⎞⎟⎟⎟⎠ (2)

where 𝜏 is a temperature parameter to control the scale of the exponential and cos is the cosine similarity.

InfoLOOB. Info-leave-one-out-bound (InfoLOOB) [96] is a variant of InfoNCE, in which the positive example is omitted from the 
denominator. This is aimed at preventing the saturation of the loss value, which can occur with InfoNCE due to dominant positives. 
Applied to our setting, the loss is as follows:

𝐿loob =
∑
𝑟∈

∑
(𝑎,𝑝)∈𝑟×𝑟

⎛⎜⎜⎜⎝−log
exp

( cos(𝒙𝑎,𝒙𝑝)
𝜏

)
∑

𝑛∈𝑟
exp

(
cos(𝒙𝑎,𝒙𝑛)

𝜏

)⎞⎟⎟⎟⎠ (3)

3.3. Training data

As described in § 3.2, to train RelBERT we need positive and negative examples of word pairs belonging to particular relations. 
In this section, we describe the four datasets that we considered for training RelBERT. The main properties of these datasets are 
summarised in Table 2. We now present each dataset in more detail. For each dataset, we have a training and validation spit, which 
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Table 3
Examples of word pairs from each parent relation category in the RelSim dataset.

Relation Examples 
Case Relation [designer, fashions], [preacher, parishioner], [hunter, rifle] 
Meronym (Part-Whole) [building, wall], [team, player], [movie, scene] 
Antonym (Contrast) [smooth, rough], [difficult, easy], [birth, death] 
Space-Time [refrigerator, food], [factory, product], [pool, swimming] 
Representation [diploma, education], [groan, pain], [king, crown] 
Hypernym (Class Inclusion) [furniture, chair], [furniture, chair], [flower, daisy] 
Synonym (Similar) [couch, sofa], [sadness, melancholia], [confident, arrogance] 
Attribute [steel, strong], [glass, shattered], [miser, greed] 
Non Attribute [empty, full], [incomprehensible, understood], [destitution, abundance] 
Cause-Purpose [tragedy, tears], [fright, scream], [battery, laptop] 

are used for training RelBERT and for selecting the hyperparameters. In addition, for most of the datasets, we also select a test set, 
which will be used for evaluating the model (see § 4.1).

RelSim. The Relational Similarity Dataset (RelSim)3 was introduced for SemEval 2012 Task 2 [25]. It contains crowdsourced judge-
ments about 79 fine-grained semantic relations, which are grouped into 10 parent categories. Table 3 shows word pairs randomly 
sampled from the highest ranked word pairs in each parent category of RelSim. For each semantic relation, a list of word pairs is 
provided in RelSim, with each word pair being assigned a prototypicality score.4 To convert this dataset into the format that we need 
for training RelBERT, we consider the 79 fine-grained relations and the 10 parent relations separately. For the fine-grained relations, 
we choose the 10 most prototypical word pairs, i.e. the word pairs with the highest scores, as positive examples, while the 10 lowest 
ranked word pairs are used as negative examples. For the parent relations, the set of positive examples contains the positive word 
pairs of each of the fine-grained relations that belong to the parent relation. The negative examples for the parent relations are taken 
to be the positive examples of the other relations. This is because the parent relations are mutually exclusive, whereas the semantic 
distinction between the fine-grained relations is often very subtle. From the resulting dataset, we randomly choose 80% of the word 
pairs for training, and we keep the remaining 20% as a validation set.

ConceptNet. ConceptNet5 [97] is a commonsense knowledge graph. It encodes semantic relations between concepts, which can be 
single nouns or short phrases. The knowledge graph refers to a total of 34 different relations. Since the original ConceptNet contains 
more than two millions of triples, we employ the version released by [98], where the triples are filtered by their confidence score. We 
use the test set consisting of the 1200 most confident tuples as an evaluation dataset, the dev1 and dev2 sets consisting of the next 1200 
most confident tuples as our validation set, and the training set consisting of 600k tuples as our training set.6 We have disregarded 
any triples with negated relations such as NotCapableOf or NotDesires, because they essentially indicate the lack of a relationship. The 
positive examples for a given relation are simply the word pairs which are asserted to have this relation in the knowledge graph. The 
negative examples for a given relation are taken to be the positive examples for the other relations, i.e. 𝑟 = {(𝑎, 𝑏) ∈ �̂�|�̂� ∈⧵{𝑟}}.

NELL-one. NELL [99] is a system to collect structured knowledge from web. The authors of [100] compiled and cleaned up the latest 
dump file of NELL at the time of publication to create a knowledge graph, called NELL-One7 for one-shot relational learning. We 
employ NELL-One with its original split from [100], which avoids any overlap between the relation types appearing in the test set, 
on the one hand, and the relation types appearing in the training and validation sets, on the other hand. Similar as for ConceptNet, 
the positive examples for a given relation are the word pairs that are asserted to belong to that relation in the training set, whereas 
the negative examples for a relation are the positive examples of the other relations in the training set.

T-REX. T-REX8 [101] is a knowledge base that was constructed by aligning Wikipedia and Wikidata. It contains a total of 20 million 
triples, all of which are aligned with sentences from introductory sections of Wikipedia articles. We first remove triples if either their 
head or tail is not a named entity, which reduces the number of triples from 20,877,472 to 12,561,573, and the number of relations 
from 1,616 to 1,470. Then, we remove relations with fewer than three triples, as we need at least three triples for each relation type 
to enable fine-tuning § 5.1, which reduces the number of triples to 12,561,250, and the number of relations to 1,237. One problem 

3 Our preprocessed version of this dataset is available at https://huggingface.co/datasets/relbert/semeval2012_relational_similarity; the original dataset is available 
at https://sites.google.com/site/semeval2012task2/download.

4 We used the platinum ratings from the original dataset.
5 Our preprocessed version of this dataset is available at https://huggingface.co/datasets/relbert/conceptnet_relational_similarity; the original dataset is available 

at https://conceptnet.io/.
6 The filtered version of ConceptNet is available at https://home.ttic.edu/~kgimpel/commonsense.html.
7 Our preprocessed version of this dataset is available at https://huggingface.co/datasets/relbert/nell_relational_similarity; the original dataset is available at https://

github.com/xwhan/One-shot-Relational-Learning.
8 Our preprocessed version of this dataset is available at https://huggingface.co/datasets/relbert/t_rex_relational_similarity; the original dataset is available at 

https://hadyelsahar.github.io/t-rex/.

https://huggingface.co/datasets/relbert/semeval2012_relational_similarity
https://sites.google.com/site/semeval2012task2/download
https://huggingface.co/datasets/relbert/conceptnet_relational_similarity
https://conceptnet.io/
https://home.ttic.edu/~kgimpel/commonsense.html
https://huggingface.co/datasets/relbert/nell_relational_similarity
https://github.com/xwhan/One-shot-Relational-Learning
https://github.com/xwhan/One-shot-Relational-Learning
https://huggingface.co/datasets/relbert/t_rex_relational_similarity
https://hadyelsahar.github.io/t-rex/
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Table 4
An example from each domain of the analogy question benchmarks.

Dataset Domain Example 
SAT College Admission Test [beauty, aesthete, pleasure, hedonist]

U2

Grade4 [rock, hard, water, wet] 
Grade5 [hurricane, storm, table, furniture] 
Grade6 [microwave, heat, refrigerator, cool] 
Grade7 [clumsy, grace, doubtful, faith] 
Grade8 [hidden, visible, flimsy, sturdy] 
Grade9 [panacea, cure, contagion, infect] 
Grade10 [grain, silo, water, reservoir] 
Grade11 [thwart, frustrate, laud, praise] 
Grade12 [lie, prevaricate, waver, falter]

U4

Low Intermediate [accident, unintended, villain, evil] 
Low Advanced [galleon, sail, quarantine, isolate] 
High Beginning [salesman, sell, mechanic, repair] 
High Intermediate [classroom, desk, church, pew] 
High Advanced [erudite, uneducated, fervid, dispassionate]

BATS

Inflectional Morphology [neat, neater, tasty, tastier] 
Derivational Morphology [available, unavailable, interrupted, uninterrupted] 
Encyclopedic Semantics [Stockholm, Sweden, Belgrade, Serbia] 
Lexicographic Semantics [elephant, herd, flower, bouquet]

Google
Encyclopedic Semantics [Canada, dollar, Croatia, Kuna] 
Morphological [happy, happily, immediate, immediately]

SCAN
Metaphor [grounds for a building, solid, reasons for a theory, rational] 
Science [conformance, breeding, adaptation, mating]

NELL Named Entities [Miami Dolphins, Cam Cameron, Georgia Tech, Paul Johnson]

T-REX Named Entities [Washington, Federalist Party, Nelson Mandela, ANC]

ConceptNet Concepts [bottle, plastic, book, paper] 

with this dataset is that it contains a number of distinct relations which intuitively have the same meaning. For example, the relations 
band and music by both represent “A song played by a musician”. Therefore, we manually mapped such relations onto the same type. 
Note that this is useful because the strategy for selecting negative examples when training RelBERT implicitly assumes that relations 
are disjoint. For the same reason, we manually removed relations that subsume more specific relations. For example, the relationship 
is a refers to “hypernym of”, but T-REX also covers more specific forms of hypernymy such as fruit of, religion, and genre. Another 
example is is in, which models the relation “located in”, but T-REX also contains finer-grained variants of this relation, such as town, 
state, home field, and railway line. We thus remove triples involving relations such as is a and is in. This filtering resulted in a reduction 
to 12,410,726 triples with 839 relation types. We use this dataset, rather than Wikidata itself, because the fact that a triple is asserted 
in the introductory section of a Wikipedia article suggests that it expresses salient knowledge. This is important because our aim in 
fine-tuning RelBERT is to distill relational knowledge from the pre-trained LM itself, rather than to learn the knowledge from the 
training set. We thus ideally want to limit the training data to word pairs whose relationship is captured by the pre-trained LM. The 
number of times an entity appears in this dataset can be used as an estimate of the salience of that entity. With this in mind, we 
removed all triples involving entities that appear less than five times in the dataset, which further reduces the number of triples to 
1,616,065. To create a test set, we randomly chose 34 relation types and we manually selected around 100 verified triples from those 
relation types. The training and validation set is created by splitting the remaining relations 80:20 into a training and validation set.

4. Evaluation tasks

We evaluate RelBERT on two relation-centric tasks: analogy questions (unsupervised), and lexical relation classification (super-
vised). In this section, we describe these tasks and introduce the benchmarks included in our evaluation.

4.1. Analogy questions

Analogy questions are multiple-choice questions, where a given word pair is provided, referred to as the query pair, along with a 
set of candidate answers. Then, the task consists of predicting which is the word pair that is most analogous to the query pair among 
the given candidate answers. In other words, the task is to find the word pair whose relationship best resembles the relationship 
between the words in the query [11].
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To solve this task using RelBERT, we simply predict the candidate answer whose relation embedding is most similar to the 
embedding of the query pair, in terms of cosine similarity.9 For our evaluation, first, we consider the following six analogy question 
datasets 10:

SAT The SAT exam is a US college admission test. Turney [11] collected a benchmark of 374 word analogy problems, consisting 
primarily of problems from these SAT tests. Each instance has five candidates. The instances are aimed at college applicants, and 
are thus designed to be challenging for humans.

U2 Following [102], who used word analogy problems from an educational website,11 we compiled analogy questions from the same 
resource.12 They used in particular UNIT 2 of the analogy problems from the website, which have the same form as those from 
the SAT benchmark, but rather than college applicants, they are aimed at children in grades 4 to 12 from the US school system 
(i.e. from age 9 onwards). We split the dataset into 24 questions for validation and 228 questions for testing. Each question has 
4 answer candidates.

U4 We have collected another benchmark from the UNIT 4 problems on the same website that was used for the U2 dataset. These 
UNIT 4 problems are organised in 5 difficulty levels: high-beginning, low-intermediate, high-intermediate, low-advanced and 
high-advanced. The low-advanced level is stated to be at the level of the SAT tests, whereas the high-advanced level is stated to 
be at the level of the GRE test (which is used for admission into graduate schools). The resulting U4 dataset has 48 questions for 
validation and 432 questions for testing. Each question has 4 answer candidates.

Google The Google analogy dataset [103] has been one of the most commonly used benchmarks for evaluating word embeddings.13

This dataset contains a mix of semantic and morphological relations such as capital-of and singular-plural, respectively. The dataset 
was tailored to the evaluation of word embeddings in a predictive setting. We constructed word analogy problems from the Google 
dataset by choosing for each correct analogy pair a number of negative examples. To obtain sufficiently challenging negative 
examples, for each query pair (e.g. Paris-France) we extracted three negative instances:

1. two random words from the head of the input relation type (e.g. Rome-Oslo);
2. two random words from the tail of the input relation type (e.g. Germany-Canada);
3. a random word pair from a relation type of the same high-level category (i.e. semantic or morphological) as the input 

relation type (e.g. Argentina-peso).

The resulting dataset contains 50 validation and 500 test questions, each with 4 answer candidates.
BATS The coverage of the Google dataset is known to be limiting, and BATS [6] was developed in an attempt to address its main 

shortcomings. BATS includes a larger number of concepts and relations, which are split into four categories: lexicographic, en-
cyclopedic, and derivational and inflectional morphology.14 We follow the same procedure as for the Google dataset to convert 
BATS into the analogy question format. The resulting dataset contains 199 validation and 1,799 test questions, each with 4 answer 
candidates.

SCAN The relation mapping problem [104] is to find a bijective mapping between a set of relations from some source domain and 
a corresponding set of relations from a given target domain. SCAN15 [105] is an extension of the problems that were collected 
in [104]. Where [104] contains 10 scientific and 10 metaphorical domains, SCAN extends them by another 443 metaphorical 
domains and 2 scientific domains. A single SCAN instance contains a list of the source and the target words (𝒂 = [𝑎1,… , 𝑎𝑚] and 
𝒃 = [𝑏1,… , 𝑏𝑚]). We convert such an instance into an analogy question, where the query is [𝑎𝑖, 𝑎𝑗 ] and the ground truth is [𝑏𝑖, 𝑏𝑗 ]
and the negative candidates are [𝑏𝑖, 𝑏𝑗 ] for {(𝑖, 𝑗) ∈ {1,… ,𝑚} × {1,… ,𝑚}|(𝑖, 𝑗) ≠ (𝑖, 𝑗)}. This results in 178 and 1,616 questions 
for the validation and test sets, respectively. The number of answer candidates per question is 74 on average, which makes this 
benchmark particularly challenging.

In addition, we also converted the validation and test splits of T-REX, NELL and ConceptNet, which were introduced in § 3.3, into 
the format of analogy questions. Note that the validation split is used in our ablation study to compare RelBERT training sets, but 
not used in the main experiment, where we solve analogy questions in the zero-shot setting. Thus, we do not consider approaches 
that require validation as well as training data, such as [12]. These analogy questions were constructed by taking two word pairs 
from the same relation type, one of which is used as the query while the other is used as the correct answer. To create negatives for 
each positive pair, we take 𝑁 pairs from each of the other relations. We also add the reversed answer pair to the negative (i.e. for 
the positive pair (ℎ, 𝑡) we would add (𝑡, ℎ) as a negative), so the number of the negative pairs is || ×𝑁 + 1 in each split. To create 

9 More details about how to solve the task with RelBERT can be found in the experimental setting section (§ 5).
10 Preprocessed versions of the datasets are available at https://huggingface.co/datasets/relbert/analogy_questions except for SAT, which is not publicly released 

yet. To obtain the SAT dataset, the author of [11] should be contacted.
11 https://www.englishforeveryone.org/Topics/Analogies.html.
12 We use the dataset from the website with permission limited to research purposes.
13 The original data is available at https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)#cite_note-1.
14 The original data is available at https://vecto.space/projects/BATS/.
15 The original dataset is available at https://github.com/taczin/SCAN_analogies.

https://huggingface.co/datasets/relbert/analogy_questions
https://www.englishforeveryone.org/Topics/Analogies.html
https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)#cite_note-1
https://vecto.space/projects/BATS/
https://github.com/taczin/SCAN_analogies
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benchmarks with different characteristics, we used 𝑁 = 2 for T-REX and 𝑁 = 1 for Nell and ConceptNet. Table 4 shows an example 
from each category and dataset.16

4.2. Lexical relation classification

We consider the supervised task of relation classification. This task amounts to classifying word pairs into a predefined set of 
possible relation types.17 To solve this task, we train a multi-layer perceptron (MLP) with one hidden layer, which takes the RelBERT 
relation embedding of the word pair as input. The RelBERT encoder itself is frozen, since our focus is on evaluating the quality of the 
RelBERT relation embeddings. We consider the following widely-used multi-class relation classification benchmarks: K&H+N [106], 
BLESS [107], ROOT09 [108], EVALution [109], and CogALex-V Subtask 2 [110]. The hyperparameters of the MLP classifier are tuned 
on the validation split of each dataset. In particular, we tune the learning rate from [0.001,0.0001,0.00001] and the hidden layer size 
from [100,150,200]. CogALex-V has no validation split, so for this dataset we employ the default configuration of Scikit-Learn [111], 
which uses a 100-dimensional hidden layer and is optimized using Adam with a learning rate of 0.001.

5. Experimental setting

In this section, we explain the RelBERT training details (§ 5.1) and we introduce the baselines for analogy questions (§ 5.2) and 
lexical relation classification (§ 5.3). Throughout this paper, we rely on the weights that were shared by HuggingFace [112] for all 
pre-trained LMs. A complete list of the models we used can be found in Appendix B.

5.1. RelBERT training

In our experiments, we consider a number of variants of RelBERT, which differ in terms of the pre-trained LM that was used for 
initialising the model, the loss function § 3.2, and the training data § 3.3. In each case, RelBERT is trained for 10 epochs. Moreover, we 
train one RelBERT model for each of the five prompt templates § 3.1. The final model is obtained by selecting the epoch and prompt 
template that achieved the best performance on the validation split, in terms of accuracy.18 The default configuration for RelBERT 
is to fine-tune a RoBERTaBASE or RoBERTaLARGE model using InfoNCE on the RelSim dataset. We will refer to the resulting models 
as RelBERTBASE and RelBERTLARGE respectively. The other hyper-parameters are fixed as follows. When using the triplet loss, we set 
the margin Δ to 1, the learning rate to 0.00002 and the batch size to 32. When using InfoNCE or InfoLoob, we set the temperature 
𝜏 to 0.5, the learning rate to 0.000005 and the batch size to 400. In all cases, we fix the random seed as 0 and we use ADAM [113] 
as the optimiser. To select the aggregation strategy, as a preliminary experiment, we fine-tuned RelBERTBASE with each of the three 
strategies suggested in § 3.2. As we found that average w.o. mask achieved the best accuracy on the validation set of RelSim, we used 
this as the default aggregation strategy.

Another possibility would be to fine-tune RelBERT on recent LLMs such as, for instance, those from the Llama family.19 While this 
is likely to lead to somewhat better results, we omit fine-tuning such models from the scope of our analysis. Doing this would carry 
a significant computational overhead, not only for training the model but also when using them in downstream tasks. In settings 
where computation time is not a concern, prompting the largest available models, such as GPT-4, is arguably a simpler solution than 
fine-tuning, while often giving the best results. Indeed, in Section § 7.2.1 we will see that GPT-4 outperforms our best RelBERT model. 
Our focus is therefore on studying to what extent smaller models can be fine-tuned to achieve similar levels of performance, to enable 
applications where large numbers of relation vectors need to be computed with a limited compute budget.

5.2. Baselines for analogy questions

We now introduce the baselines we considered for solving analogy questions.

Latent relation analysis. Latent Relation Analysis (LRA) [1] takes inspiration from the seminal Latent Semantic Analysis (LSA) model 
for learning document embeddings [114]. The key idea behind LSA was to apply Singular Value Decomposition (SVD) on a document-
term co-occurrence matrix to obtain low-dimensional vector representations of documents. LRA similarly uses SVD to learn relation 
vectors. In particular, the method also constructs a co-occurrence matrix, where the rows now correspond to word pairs, and the 
columns correspond to lexical patterns. Each matrix entry captures how often the corresponding word pair appears together with the 
corresponding lexical pattern in a given corpus. To improve the quality of the representations, a PMI-based weighting scheme is used, 
and the method also counts occurrences of synonyms of the words in a given pair. To solve an analogy question, we can compute the 
LRA embeddings of the query pair and the candidate pairs, and then select the answer whose embedding is closest to the embedding 
of the query pair, in terms of cosine similarity. For LRA, we only report the published results from [1] for the SAT dataset.

16 More detail of the statistics for each dataset can be found in Appendix A.
17 Preprocessed versions of the datasets are available at https://huggingface.co/datasets/relbert/lexical_relation_classification.
18 The best template and epoch for each model is specified in Appendix C.
19 https://huggingface.co/meta-llama.

https://huggingface.co/datasets/relbert/lexical_relation_classification
https://huggingface.co/meta-llama
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Word embedding. Since the introduction of the Word2Vec models [3], word analogies have been a popular benchmark for evaluating 
different word embedding models. This stems from the observation that in many word embedding models, the relation between two 
words 𝐴 and 𝐵 is to some extent captured by the vector difference of their embeddings. Letting 𝗐𝗏(𝐴) be the word embedding of 
a word 𝐴, we can thus learn relation embeddings of the form 𝐱(𝐴,𝐵) = 𝗐𝗏(𝐵) − 𝗐𝗏(𝐴). Using these embeddings, we can solve word 
analogy questions by again selecting the answer candidate whose embedding is most similar to that of the query pair, in terms of 
cosine similarity. Since some of the analogy questions include rare words, common word embedding models such as word2vec [3] and 
GloVe [4] suffer from out-of-vocabulary issues. We therefore used fastText [5] trained on Common Crawl with subword information, 
which can handle out-of-vocabulary words by splitting them into smaller chunks of characters.20

Language models. To solve analogy questions using a pre-trained language model, we proceed as follows. Let (𝐴,𝐵) be the query 
pair. For each answer candidate (𝐶,𝐷) we construct the sentence “A is to B what C is to D”, following [16]. We then compute the 
perplexity of each of these sentences, and predict the candidate that gives rise to the lower perplexity. The exact computation depends 
on the type of language model that is considered. For CLMs [16,115,116], such as those in the GPT family, the perplexity of a sentence 
𝒔 can be computed as follows:

𝑓 (𝒔) = exp

(
−1
𝑡 

𝑡 ∑
𝑗=1 

log𝑃clm(𝑠𝑗 |𝒔𝑗−1)) (4)

where 𝒔 is tokenized as [𝑠1...𝑠𝑡] and 𝑃clm(𝑠|𝒔) is the likelihood from an CLM’s next token prediction. For masked language models 
(MLMs), such as those in the BERT family [15,24], we instead use pseudo-perplexity [117], which is defined as in (4) but with 
𝑃mask(𝑠𝑗 |𝒔∖𝑗 ) instead of 𝑃clm(𝑠𝑗 |𝒔𝑗−1), where 𝒔∖𝑗 = [𝑠1… 𝑠𝑗1

⟨mask⟩𝑠𝑗+1… 𝑠𝑡] and 𝑃mask(𝑠𝑗 |𝒔∖𝑗 ) is the pseudo-likelihood [118] that 
the masked token is 𝑠𝑗 . Finally, for encoder-decoder LMs (ED LMs) [17,119], we split the template in two parts: the phrase “A is to 
B” is fed into the encoder, and then we use the decoder to compute the perplexity of the phrase “C is to D”, using the probability 𝑃clm
of the decoder, conditioned by the encoder. We compare GPT-2 [116], GPT-J [120], OPT [26], OPT-IML [27] as CLMs, BERT [15] 
and RoBERTa [24] as MLMs, and T5 [17], Flan-T5 [28], Flan-UL2 [121] as ED LMs.

OpenAI models. OpenAI21 released a commercial API to provide access to their private in-house models such as GPT-3, GPT-4, and 
ChatGPT (GPT-3.5-turbo). We have used this API to obtain results for those models. For GPT-3, we use the May 2023 endpoint of 
davinci, the largest GPT-3 model, and follow the same approach as for the public LMs, as explained above (i.e. choose the candidate 
with the lowest perplexity). We also include the zero-shot results of GPT-3 that were reported in the original GPT-3 paper [16], which 
we refer as GPT-3original. Note that the models that can be accessed via the OpenAI API are subject to be changed every six months, 
which unfortunately limits the reproducibility of the reported results. For the conversational LMs, i.e. ChatGPT and GPT-4, the API 
does not allow us to compute perplexity scores. We therefore do not include them in our main experiments, but an analysis of these 
models will be provided in § 7.2.1.

5.3. Baselines for lexical relation classification

LexNet [122] and SphereRE [123] are the current state-of-the-art (SotA) classifiers on the considered lexical relation classification 
datasets. Both methods rely on static word embeddings [3,124]. LexNet trains an LSTM [125] on the word pair by considering it as 
a sequence of two words, where each word is mapped to its feature map consisting of a number of lexical features such as part-of-
speech and the word embedding. SphereRE employs hyperspherical learning [126] on top of the word embeddings, which is to learn 
a feature map from word embeddings of the word pairs to their relation embeddings, which are distributed over the hyperspherical 
space. In addition to those SotA methods, we use a simple baseline based on word embeddings. Specifically, we train an MLP with a 
hidden layer in the same way as explained in § 4.2. As possible input representations for this classifier, we consider the concatenation 
of the word embeddings (cat) and the vector difference of the word embeddings (diff ), possibly augmented with the component-
wise product of the word embeddings (cat+dot and diff+dot), which has been shown to provide improvements in lexical relation 
classification tasks [127]. We experiment with word embeddings from GloVE22 [4] and fastText.23 Finally, we include the results of 
pair2vec [54], which is a relation embedding model that was trained by aligning word pair embeddings with LSTM-based encodings 
of sentences where the corresponding word pairs co-occur.

6. Experimental results

We report the experimental results for the analogy questions benchmarks in § 6.1 and for lexical relation classification in § 6.2.

20 The embedding model is available at https://fasttext.cc/.
21 https://openai.com/.
22 The embedding model is available from https://nlp.stanford.edu/projects/glove/.
23 We use the same embedding model used in § 5.2.

https://fasttext.cc/
https://openai.com/
https://nlp.stanford.edu/projects/glove/
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Table 5
The accuracy on each analogy question dataset and the averaged accuracy across datasets, where the best model in each dataset is 
shown in bold. * is added if the difference between the best model and the 2nd best model is statistically significant; otherwise we 
add ** if the difference between the best model and the 3rd best model is statistically significant. The results in italics were taken 
from the original paper, and the model with †are private models.

Model SAT U2 U4 BATS Google SCAN NELL T-REX CN Average 
Random 20.0 23.6 24.2 25.0 25.0 2.5 14.3 2.1 5.9 15.8 
LRA 56.4 - - - - - - - - -
fastText 47.1 38.2 38.4 70.7 94.6 21.7 59.8 23.0 15.2 45.1 

M
LM

BERTBASE 34.5 35.1 35.2 48.4 67.6 14.5 25.2 9.8 9.4 31.1 
BERTLARGE 32.9 36.0 36.6 59.4 79.8 14.1 32.0 14.2 14.0 35.4

RoBERTaBASE 36.4 42.1 43.3 61.8 81.0 10.6 29.0 14.8 16.6 37.3 
RoBERTaLARGE 40.6 50.4 49.8 69.9 88.8 12.1 38.2 36.1 16.7 44.7 

C
au

sa
l L

M

GPT-2SMALL 32.1 38.2 36.8 43.6 56.8 5.1 28.5 7.1 8.1 28.5 
GPT-2BASE 34.8 42.5 40.5 58.3 75.8 7.0 43.8 6.6 11.6 35.7 
GPT-2LARGE 36.1 42.1 42.6 60.1 75.4 8.8 39.0 12.6 12.8 36.6 
GPT-2XL 36.9 43.0 44.0 62.0 80.4 8.2 40.2 11.5 12.6 37.6

GPT-J125M 34.0 36.8 35.6 46.6 52.8 5.6 31.8 10.9 8.4 29.2 
GPT-J1.3B 36.6 42.1 42.1 63.1 77.0 8.8 47.3 13.1 11.7 38.0 
GPT-J2.7B 38.5 44.7 43.5 63.8 83.0 8.8 40.0 16.9 14.1 39.3 
GPT-J6B 45.5 48.7 47.0 67.9 87.4 9.5 43.8 20.2 14.0 42.7 
GPT-J20B 42.8 47.8 53.7 71.3 86.4 10.0 37.2 31.7 15.7 44.1

GPT-3original† 53.7 - - - - - - - - -
GPT-3davinci† 51.8 53.5 53.2 70.8 86.0 0.84 37.8 20.7 14.2 43.9

OPT125M 33.7 37.3 35.4 46.1 60.0 7.1 39.7 10.4 10.8 31.2 
OPT350M 34.0 36.8 39.1 54.8 74.2 8.2 44.7 10.9 10.6 34.8 
OPT1.3B 38.5 40.4 43.5 62.8 83.4 8.8 46.3 11.5 14.8 38.9 
OPT30B 47.1 52.2 51.9 71.5 88.2 10.5 45.2 20.8 19.1 45.2

OPT-IML1.3B 41.4 42.5 44.9 63.1 82.4 8.1 42.0 7.7 14.8 38.5 
OPT-IML30B 48.9 50.2 49.0 70.8 88.3 10.8 44.4 23.2 17.5 44.8 
OPT-IMLM-1.3B 40.6 40.8 44.0 64.1 85.4 9.0 45.7 8.2 15.9 39.3 
OPT-IMLM-30B 48.9 50.2 49.0 70.8 88.3 10.8 44.4 23.2 17.5 44.8 

E
nc

od
er

 D
ec

od
er

 LM

T5SMALL 28.9 32.9 30.6 41.0 55.4 17.0 38.0 15.8 5.8 29.5 
T5BASE 26.7 34.6 39.8 43.0 41.4 9.9 27.8 6.0 7.7 26.3 
T5LARGE 30.2 35.5 40.0 48.9 51.4 13.7 25.2 11.5 9.1 29.5 
T53B 34.8 35.1 35.4 41.6 45.8 10.2 25.3 20.8 9.0 28.7 
T511B 35.6 43.0 47.5 59.9 74.6 17.9 40.8 27.3 13.8 40.0

Flan-T5SMALL 26.7 36.4 41.7 42.7 49.0 11.6 35.5 16.9 8.3 29.9 
Flan-T5BASE 31.8 38.6 42.1 51.4 63.6 13.7 38.8 20.8 9.6 34.5 
Flan-T5LARGE 36.1 40.8 43.5 52.6 63.8 13.4 38.0 20.8 11.3 35.6 
Flan-T5XL 42.0 49.6 50.7 66.8 86.8 17.6 46.0 30.6 17.0 45.2 
Flan-T5XXL 52.4 55.7 55.6 74.7 91.2 16.3 43.8 26.8 17.9 48.3

Flan-UL2 50.0 53.1 57.2 74.9 91.8 13.4 53.8 36.1 16.8 49.7 
RelBERTBASE 59.9 59.6 57.4 70.3 89.2 25.9 62.0 66.7** 39.8 59.0 
RelBERTLARGE 73.3* 67.5* 63.0* 80.9* 95.2** 27.2* 65.8* 64.5 47.5* 65.0* 

6.1. Results on analogy questions

Table 5 shows the results for each analogy question benchmark in terms of accuracy. We can see that RelBERT substantially 
outperforms the baselines in all cases, where RelBERTBASE is the best for T-REX, and RelBERTLARGE is the best for the remaining 
datasets. Remarkably, in the case of SAT, none of the pre-trained LMs is able to outperform LRA, a statistical baseline which is 
almost 20 years old. Moreover, on the Google, SCAN and NELL datasets the LM baselines are outperformed by fastText, a static word 
embedding model. This clearly shows that LMs struggle with identifying analogies in the zero-shot setting. SCAN and ConceptNet 
overall emerge as the most challenging benchmarks, which can be largely explained by the large number of answer candidates. Even 
with the best model, RelBERTLARGE, the accuracy is only 27.2% on SCAN and 47.5% on ConceptNet. For T-REX, which also involves a 
large number answer candidates, we can see that the LM baselines are clearly outperformed by RelBERT. Comparing the LM baselines, 
we find that ED LMs such as Flan-T5XXL and Flan-UL2 achieve the best overall results, although CLMs such as GPT-J and OPT20B are 
also competitive among the larger models.

For the LM baselines, unsurprisingly there is a strong correlation between model size and performance. To see this impact more 
closely, Fig. 2 plots the accuracy of each LM in function of model size. We can see that the RelBERT models achieve the best result 
despite being two orders of magnitude smaller than Flan-T5XXL and Flan-UL2. Interestingly, RoBERTa usually outperforms the other 
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Fig. 2. The accuracy on each analogy question dataset in function of the number of parameters in each LM. 

LM baselines of comparable size, except on NELL and SCAN. This suggests that the strong performance of RelBERT is at least in part 
due to the use of RoBERTa as the underlying model. Our analysis in § 7.3.3 will provide further support for this hypothesis. The CLMs 
(GPT-2, GPT-J, OPT, and OPT-IML) behave rather similarly. They improve as the model size increases, but they are generally worse 
than the ED LMs and MLMs. The graphs in Fig. 2 make it particularly clear how much the LMs are struggling to compete with fastText 
in some of the datasets. For example, Flan-T5 and OPT-IML generally outperform fastText only for the largest models, while none of 
the LMs outperform fastText in SCAN and NELL. Given the superior performance of LMs in many downstream tasks, it is surprising 
to see LMs underperforming a static word embedding model. Finally, we can confirm that RelBERT outperforms GPT-3davinci in all 
the datasets.24

6.2. Lexical relation classification

Table 6 shows the micro F1 score for the lexical relation classification datasets. We can see that RelBERTLARGE is in general 
competitive with the SotA approaches. For two (EVALution and ROOT09) out of the four lexical relation classification datasets that 
have SotA results,25 RelBERTLARGE achieves the best results. Moreover, for these two datasets, even RelBERTBASE outperforms the SotA 
methods. In terms of reproducible word and pair embedding baselines, RelBERTLARGE provides better results in all datasets except 
for BLESS (word embeddings) and K&H+N (pair2vec). We see a consistent improvement in accuracy when going from RelBERTBASE
to RelBERTLARGE.

7. Analysis

In this section, we analyse the capability of RelBERT from different aspects. We investigate the generalisation ability of RelBERT 
for unseen relations in § 7.1. In § 7.2, we compare RelBERT with conversational LMs and few-shot learning. Then, we analyse the 

24 Appendix D shows the prediction breakdown per sub categories in some analogy datasets.
25 These SotA results are reported from the original papers, and thus we could not reproduce in similar conditions.
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Table 6
Micro F1 score (%) for lexical relation classification.

Model BLESS CogALexV EVALution K&H+N ROOT09 
pair2vec 81.7 76.9 50.5 96.9 82.9

GloVe

cat 93.3 73.5 58.3 94.9 86.5 
cat+dot 93.7 79.2 57.3 95.1 89.0 
cat+dot+pair2vec 92.6 81.1 59.6 95.7 89.4 
diff 91.5 70.8 56.9 94.4 86.3 
diff+dot 92.9 78.5 57.9 94.8 88.9 
diff+dot+pair2vec 92.2 80.2 57.4 95.5 89.4

fastText

cat 92.9 72.4 57.9 93.8 85.5 
cat+dot 93.2 77.4 57.8 94.0 88.5 
cat+dot+pair2vec 91.5 79.3 58.2 94.3 87.8 
diff 91.2 70.2 55.5 93.3 86.0 
diff+dot 92.9 77.8 57.4 93.6 88.9 
diff+dot+pair2vec 90.8 79.0 57.8 94.2 88.1

SotA
LexNET 89.3 - 60.0 98.5 81.3 
SphereRE 93.8 - 62.0 99.0 86.1

RelBERTBASE 90.0 83.7 64.2 94.0 88.2 
RelBERTLARGE 92.0 85.0 68.4 95.6 90.4 

effect of different design choices in the model architecture in § 7.3. Finally, in § 7.4 we present a qualitative analysis, where among 
others we show a visualization of the latent representation space of relation vectors.

7.1. Generalization ability of RelBERT

RelBERT, when trained on RelSim, achieves competitive results on named entities (i.e. Nell-One and T-REX), despite the fact that 
RelSim does not contain any examples involving named entities. This is one of the most interesting aspects of RelBERT, as it shows 
that the model learns to infer the relation based on the knowledge from the LM, instead of memorizing the word pairs from the 
training set. To understand the generalisation ability of RelBERT in more depth, we conduct an additional experiment, where we 
explicitly exclude a specific relation from RelSim when training RelBERT. Specifically, we train RelBERT on a number of variants of 
RelSim, where each time a different relation type is excluded. We then test the resulting model on the lexical relation classification 
datasets. We focus this analysis on the Antonym, Attribute, Hypernym, Meronym, and Synonym relations, as they are covered by both 
RelSim (see Table 3) and at least one of the lexical relation classification datasets.26 We train RelBERTBASE with InfoNCE on the 
different RelSim variants. Table 7 shows the results. It can be observed that the performance reduces by at most a few percentage 
points after removing a given target relation. In some cases, we can even see that the results improve after the removal. Hypernym is 
covered by all the datasets except K&H+N, and the largest decrease can be seen for CogALexV, which is around 3 percentage points. 
Meronym is covered by all the datasets except ROOT09. After removing the Meronym relation from the training data, the F1 score 
on meronym prediction increases in three out of four datasets. A similar pattern can be observed for the synonym relation, where the 
model that was trained without the synonym relation achieves better results than the model trained on the full RelSim dataset. On 
the other hand, for antonym and attribute, we can see that removing these relations from the training data leads to somewhat lower 
results on these relations. The average F1 scores over all the relation types are also competitive with, and often even better than those 
for the full model. These results clearly support the idea that RelBERT can generalise beyond the relation types it is trained on.

7.2. Additional baselines

We now analyse the performance of two types of additional methods: the conversational LMs from OpenAI in § 7.2.1 and using 
multiple-choice question answering prompt in § 7.2.2.27

7.2.1. ChatGPT and GPT-4

GPT-4 and ChatGPT are two conversational LMs released by OpenAI.28 As for GPT-3, these models are private and can only be 
accessed through the OpenAI API. Unlike GPT-3 however, we cannot obtain perplexity scores (or raw model output that would allow 
us to compute perplexity) through the API. Therefore, we instead ask those models directly to choose the best answer candidate, 
using the following two text prompts:

26 More detail about the dataset can be found in Appendix A.
27 The analysis of relying on few-shot demonstrations can be found in Appendix G.
28 https://openai.com/.

https://openai.com/
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Table 7
F1 score for each relation type of all the lexical relation classification datasets from RelBERTBASE models 
fine-tuned on the RelSim without a specific relation. The Full model on the right most column is the original 
RelBERTBASE model fine-tuned on full RelSim. The result of the relation type where the model is fine-tuned 
on RelSim without it, is emphasized by underline.

Dataset\Excluded Relation Antonym Attribute Hypernym Meronym Synonym Full 
BLESS 
- Attribute 91.6 90.7 90.6 91.6 90.9 91.5 
- Co-hyponym 94.6 95.3 95.5 94.0 93.8 93.5 
- Event 84.1 84.2 84.0 82.2 84.1 83.6 
- Hypernym 92.6 93.5 93.5 91.3 93.1 93.1 
- Meronym 85.7 86.8 87.5 85.3 86.7 85.0 
- Random 92.1 92.5 92.1 91.7 91.6 91.9 
- Average (macro) 90.1 90.5 90.5 89.3 90.0 89.8 
- Average (micro) 90.6 90.9 90.8 89.9 90.3 90.2

CogALexV 
- Antonym 60.5 64.0 62.9 67.9 63.3 68.2 
- Hypernym 56.6 55.5 56.2 56.7 56.4 59.3 
- Meronym 70.3 69.5 65.4 70.3 70.5 64.5 
- Random 91.9 92.7 92.3 93.2 91.6 92.4 
- Synonym 39.0 44.0 42.5 44.4 42.2 45.4 
- Average (macro) 63.7 65.1 63.9 66.5 64.8 66.0 
- Average (micro) 82.4 83.5 83.0 84.2 82.7 83.7

EVALution 
- Attribute 80.7 81.7 80.4 80.3 81.6 82.7 
- Antonym 72.0 74.3 73.3 75.2 73.8 73.6 
- Hypernym 57.7 59.3 58.5 60.3 59.1 57.5 
- Meronym 68.3 71.6 69.0 64.5 66.9 68.8 
- Possession 66.7 70.3 66.4 66.0 63.5 67.4 
- Synonym 40.6 42.9 37.4 42.9 37.5 41.0 
- Average (macro) 63.6 65.7 63.7 64.3 63.0 64.5 
- Average (micro) 64.1 65.9 64.3 65.3 63.9 65.0

K&H+N 
- Co-hyponym 95.7 96.0 94.2 96.1 94.6 95.1 
- Meronym 63.9 63.9 57.7 59.8 62.4 56.7 
- Random 96.1 95.9 94.9 96.0 95.3 95.3 
- Average (macro) 86.7 86.8 84.0 86.1 85.6 84.5 
- Average (micro) 95.0 95.0 93.6 95.1 94.1 94.3

ROOT09 
- Co-hyponym 96.9 97.3 96.4 97.3 95.9 95.8 
- Hypernym 80.3 80.3 79.0 81.8 79.2 79.5 
- Random 89.7 89.7 89.3 89.8 89.0 88.8 
- Average (macro) 89.0 89.1 88.2 89.7 88.0 88.0 
- Average (micro) 89.2 89.3 88.5 89.7 88.2 88.2 

1. Answer the question by choosing the correct option. Which of the following is an analogy? 
1) A is to B what C1 is to D1
2) A is to B what C2 is to D2
3) A is to B what C3 is to D3
. . . 
𝜅) A is to B what C𝜅 is to D𝜅

The answer is
2. Only one of the following statements is correct. Please answer by choosing the correct option. 

1) The relation between A and B is analogous to the relation between C1 and D1
2) The relation between A and B is analogous to the relation between C2 and D2
3) The relation between A and B is analogous to the relation between C3 and D3
. . . 
𝜅) The relation between A and B is analogous to the relation between C𝜅 and D𝜅

The answer is

where (A,B) is the query word pair, and [𝐶𝑖,𝐷𝑖]𝑖=1,…,𝜅 are the candidate word pairs. We manually parse the outputs returned by the 
model. As GPT-4 is the most expensive endpoint at the moment, we only report the accuracy on the SAT analogy question dataset. 
Table 8 shows the result, and we can see that GPT-4 achieves state-of-the-art results with one of the prompts, with ChatGPT being 
considerably worse. However, the gap between two prompts is more than 15 percentage points, which shows that choosing the right 
prompt is critical when using GPT-4.
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Table 8
The accuracy on SAT analogy ques-
tion for ChatGPT and GPT-4 with the 
different prompts.

ChatGPT GPT-4 
Prompt 1 34.7 62.5 
Prompt 2 45.7 79.6 

Table 9
The accuracy with multiple-choice prompting compared to the vanilla prompting strategy 
with the analogical statement (𝐴 is to 𝐵 what 𝐶 is to 𝐷) on SAT.

Flan-T5XXL Flan-UL2 OPT-IML30B OPT-IMLM-30B

Analogical Statement 52.4 50.0 48.9 48.9 
Multi-choice QA 35.8 40.6 27.3 31.3 

7.2.2. Multiple-choice prompt

In our main experiment, we compute perplexity separately on each candidate, but the task can be formatted using a multiple-
choice question answering prompt as well. Such a prompt provides more information to the LMs, but it requires them to understand 
the question properly. Following a typical template to solve multiple-choice question answering in the zero-shot setting [16,28], we 
use the following text prompt

Which of the following is an analogy? 
1) A is to B what C1 is to D1
2) A is to B what C2 is to D2
3) A is to B what C3 is to D3
. . . 
𝜅) A is to B what C𝜅 is to D𝜅

The answer is

where (A,B) is the query word pair, and [𝐶𝑖,𝐷𝑖]𝑖=1,…,𝜅 are the candidate word pairs. Table 9 shows the accuracy on SAT, for the four 
best performing LMs on SAT in the main experiment. We can see that the multiple-choice prompt is substantially worse for all the 
LMs.

7.3. Ablation analysis

In this section, we analyse how the performance of RelBERT depends on different design choices that were made. We look at the 
impact of the training dataset in § 7.3.1; the loss function in § 7.3.2; the base language model in § 7.3.3; the prompt templates in 
§ 7.3.4.29 Throughout this section, we use RoBERTaBASE for efficiency.

7.3.1. The choice of datasets

RelSim is relatively small and does not cover named entities, although the RelBERT model trained on RelSim still performed the 
best on T-REX and NELL-One in the main experiments. Here we present a comparison with a number of alternative training sets, to 
see whether better results might be possible. We are primarily interested to see whether the performance on NELL and T-REX might 
be improved by training RelBERT on the training splits of these datasets. We fine-tune RoBERTaBASE on three datasets introduced 
in § 3.3: NELL-One, T-REX and ConceptNet. We use InfoNCE in each case. The results are summarised in Table 10. We can see that 
training RelBERT on RelSim leads to the best results on most datasets, and the best result on average by a large margin. This is despite 
the fact that RelSim is significantly smaller than the other datasets (see Table 2). It is particularly noteworthy that training on RelSim 
outperforms training on ConceptNet even on the ConceptNet test set, even though ConceptNet contains several relation types that are 
not covered by RelSim. However, when it comes to the relationships between named entities, and the NELL and T-REX benchmarks 
in particular, training on RelSim underperforms training on NELL or T-REX.

7.3.2. The choice of loss function

In this section, we compare the performance of three different loss functions for training RelBERT. In particular, we fine-tune 
RoBERTaBASE on RelSim, and we consider the triplet loss and InfoLOOB, in addition to InfoNCE (see § 3.2 for more in detail). 
Table 11 shows the result of RelBERT fine-tuned with each of the loss functions. We can see that none of the loss functions consistently 
outperforms the other. On average, InfoNCE achieves the best results on the analogy questions. The difference with InfoLOOB is small, 

29 The analysis for the impact of random variations and the number of negative samples for the InfoNCE loss can be each found at Appendix E and Appendix F each 
additionally.
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Table 10

The results on analogy questions (accuracy) and lexical relation 
classification (micro F1 score) of RelBERT with different train-
ing datasets, where the best result across models in each dataset 
are shown in bold.

Dataset RelSim NELL T-REX ConceptNet 
Analogy Question 
SAT 59.9 36.1 46.8 44.9 
U2 59.6 39.9 42.5 42.5 
U4 57.4 41.0 44.0 41.0 
BATS 70.3 45.5 51.0 62.0 
Google 89.2 67.8 75.0 81.0 
SCAN 25.9 14.9 19.6 21.8 
NELL 62.0 82.5 72.2 66.2 
T-REX 66.7 69.9 83.6 44.8 
ConceptNet 39.8 10.3 18.8 22.7

Average 59.0 45.3 50.4 47.4 
Lexical Relation Classification 
BLESS 90.0 88.6 89.3 88.8 
CogALexV 83.7 78.6 82.8 82.8 
EVALution 64.2 58.7 64.7 62.8 
K&H+N 94.0 94.8 95.2 95.0 
ROOT09 88.2 86.6 88.2 88.8

Average 84.0 81.5 84.1 83.6 

Table 11

The results on analogy questions (accuracy) and lexi-
cal relation classification (micro F1 score) with differ-
ent loss functions, where the best result in each dataset 
is shown in bold.

Dataset Triplet InfoNCE InfoLOOB 
Analogy Question 
SAT 54.5 59.9 58.8 
U2 55.3 59.6 57.5 
U4 58.6 57.4 56.3 
BATS 72.6 70.3 67.6 
Google 86.4 89.2 83.8 
SCAN 29.5 25.9 27.0 
NELL 70.7 62.0 67.5 
T-REX 45.4 66.7 65.6 
ConceptNet 29.4 39.8 40.0

Average 55.8 59.0 58.2 
Lexical Relation Classification 
BLESS 88.7 90.0 91.0 
CogALexV 80.5 83.7 83.3 
EVALution 67.7 64.2 65.8 
K&H+N 93.1 94.0 94.9 
ROOT09 90.3 88.2 89.3

Average 84.1 84.0 84.9 

which is to be expected given that InfoNCE and InfoLOOB are closely related. While the triplet loss performs worse on average, it 
still manages to achieve the best results in four out of nine analogy datasets. For the relation classification experiments, the results 
are much closer, with InfoNCE now performing slightly worse than the other loss functions.

7.3.3. The choice of language model

Thus far, we have only considered RoBERTa as the base language model for training RelBERT. Here we compare RoBERTa with 
two alternative choices: BERT [15] and ALBERT [128]. We compare BERTBASE, ALBERTBASE, and RoBERTaBASE, fine-tuned on RelSim 
with InfoNCE. Table 12 shows the result. RoBERTaBASE is found to consistently achieve the best results on analogy questions, by a 
surprisingly large margin. RoBERTaBASE also achieved the best result, on average, for lexical relation classification, although in this 
case it only achieves the best results in two out of five datasets. ALBERT consistently has the worst performance, struggling even on 
the relatively easy Google dataset. These results clearly show that the choice of the LM is of critical importance for the performance 
of RelBERT. RoBERTa, compared to BERT and ALBERT, has been pre-trained on a larger and more diverse text corpus. This makes 
an important difference for RelBERT, because it is distilling the knowledge that the LM obtained via pre-training, instead of learning 
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Table 12

The results on analogy questions (accuracy) and lexical relation 
classification (micro F1 score) of RelBERT with different LMs, 
where the best results across models in each dataset are shown 
in bold.

BERTBASE ALBERTBASE RoBERTaBASE

Analogy Question 
SAT 44.7 40.4 59.9 
U2 36.8 35.5 59.6 
U4 40.0 38.7 57.4 
BATS 54.9 59.2 70.3 
Google 72.2 56.4 89.2 
SCAN 23.7 21.2 25.9 
NELL 56.7 47.7 62.0 
T-REX 49.2 32.8 66.7 
ConceptNet 27.1 25.7 39.8

Average 45.0 39.7 59.0 
Lexical Relation Classification 
BLESS 90.9 88.0 90.0 
CogALexV 80.7 78.3 83.7 
EVALution 61.8 58.1 64.2 
K&H+N 95.5 92.9 94.0 
ROOT09 88.7 85.6 88.2

Average 83.5 80.6 84.0 

new knowledge via fine-tuning. Furthermore, RoBERTa has been shown to have a better linguistic generalization ability than other 
LMs [129]. Our findings align with such observations, and further demonstrate the superiority of RoBERTa in terms of semantic 
understanding, compared to other popular LMs of a similar size.

7.3.4. The choice of prompt template

Our main experiment relies on the five prompt templates introduced in § 3.1, where we choose the best among these five templates 
based on the validation loss. We now analyse the impact of these prompt templates. We focus this analysis on RelBERTBASE, i.e. 
RoBERTaBASE fine-tuned with InfoNCE on RelSim. For this configuration, the template that was selected based on validation accuracy 
is

Today, I finally discovered the relation between [h] and [t]: [h] is the <mask> of [t]

We experiment with a number of variations of this template. First, we will see whether the length of the template plays an important 
role, and in particular whether a similar performance can be achieved with shorter templates. Subsequently we also analyse to 
what extent the wording of the template matters, i.e. whether similar results are possible with templates that are less semantically 
informative.

The effect of length. We start from the best template chosen for RelBERTBASE, and shorten it while preserving its meaning as much 
as possible. Specifically, we considered the following variants:

A. Today, I finally discovered the relation between [h] and [t]: [h] is the <mask> of [t]

B. I discovered the relation between [h] and [t]: [h] is the <mask> of [t]

C. the relation between [h] and [t]: [h] is the <mask> of [t]

D. I discovered: [h] is the <mask> of [t]

E. [h] is the <mask> of [t]

For each of the templates, we fine-tune RoBERTaBASE with InfoNCE on RelSim. The results are summarised in Table 13. We find 
that template D outperforms the original template A on average, both for analogy questions and for lexical relation classification. In 
general, we thus find no clear link between the length of the template and the resulting performance, although the shortest template 
(template E) achieves by far the worst results. This suggests that, while longer templates are not necessarily better, using templates 
which are too short may be problematic.

The effect of semantics. We now consider variants of the original template in which the anchor phrase “the relation” is replaced by 
a semantically meaningful distractor, i.e. we consider templates of the following form:

Today, I finally discovered <semantic phrase> between [h] and [t]: [h] is the <mask> of [t]
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Table 13

The results on analogy questions (accuracy) and lexical relation 
classification (micro F1 score) of RelBERT fine-tuned with different 
length of templates, where the best results across models in each 
dataset are shown in bold.

Template A (Original) B C D E 
Analogy Question 
SAT 59.9 58.3 56.7 59.4 46.3 
U2 59.6 57.9 57.9 56.6 44.7 
U4 57.4 57.6 54.9 60.0 46.8 
BATS 70.3 69.6 70.0 73.9 65.6 
Google 89.2 88.0 89.4 93.4 81.8 
SCAN 25.9 24.8 23.9 27.1 25.2 
NELL 62.0 65.5 64.2 65.5 59.2 
T-REX 66.7 62.3 60.1 56.8 48.1 
ConceptNet 39.8 39.0 37.8 39.5 32.4

Average 59.0 59.4 58.8 61.7 51.7 
Lexical Relation Classification 
BLESS 89.9 89.2 89.2 90.5 88.2 
CogALexV 65.7 65.3 66.7 69.6 63.3 
EVALution 65.1 64.8 63.1 64.9 63.0 
K&H+N 85.3 85.3 83.7 86.2 86.9 
ROOT09 89.1 87.6 88.9 89.8 87.8

Average 79.0 78.4 78.3 80.2 77.8 

Table 14

The results on analogy questions (accuracy) and lexical relation classification (micro F1 score) of RelBERT fine-tuned with random phrase to 
construct the template, where the best results across models in each dataset are shown in bold.

Phrase the Napoleon football Italy Cardiff the earth pizza subway ocean Abraham the 
spaceship Bonaparte science Lincoln relation 

Analogy Question 
SAT 57.2 56.7 56.1 58.0 57.2 59.6 57.0 59.6 56.7 59.9 59.9 
U2 55.3 58.3 56.6 55.3 57.5 58.3 55.7 57.0 57.5 56.1 59.6 
U4 56.9 58.1 56.5 56.2 55.1 56.9 56.7 55.3 55.8 57.2 57.4 
BATS 71.2 69.1 69.5 68.8 69.5 69.9 68.5 69.8 68.9 69.5 70.3 
Google 87.2 85.4 87.6 85.2 86.8 89.2 85.6 87.6 86.0 89.2 89.2 
SCAN 25.6 26.8 25.7 26.1 26.2 22.6 25.8 26.6 25.6 24.6 25.9 
NELL 64.8 61.7 63.8 63.5 60.0 64.7 65.8 63.3 63.3 66.2 62.0 
T-REX 63.4 51.9 57.4 59.6 55.7 56.3 59.0 60.1 60.7 60.7 66.7 
ConceptNet 39.6 39.4 38.5 36.9 37.9 39.3 38.5 38.8 38.8 38.3 39.8

Average 57.9 56.4 56.9 56.6 56.2 57.4 57.0 57.6 57.0 58.0 59.0 
Lexical Relation Classification 
BLESS 89.9 89.7 90.0 90.0 89.2 91.4 89.7 89.7 90.6 89.3 89.9 
CogALexV 63.4 64.7 66.5 65.7 66.3 65.3 66.0 65.3 65.3 64.1 65.7 
EVALution 63.6 63.7 64.0 63.8 62.4 63.5 64.5 63.3 63.5 64.0 65.1 
K&H+N 84.8 86.2 86.4 85.9 85.3 84.8 84.7 84.6 85.1 85.0 85.3 
ROOT09 88.5 88.9 89.4 89.0 89.2 88.7 89.1 89.5 88.9 89.6 89.1

Average 78.0 78.6 79.3 78.9 78.5 78.7 78.8 78.5 78.7 78.4 79.0 

where <semantic phrase> is a placeholder for the chosen anchor phrase. We randomly chose 10 phrases (four named entities 
and six nouns) to play the role of this anchor phrase. For each of the resulting templates, we fine-tune RoBERTaBASE with InfoNCE 
on the RelSim dataset. Table 14 shows the result. We can see that the best results are obtained with the original template, both 
for analogy questions and for lexical relation classification. Nevertheless, the difference in performance is surprisingly limited. The 
largest decrease is 2.8 in the average for analogy questions and 1.0 in the average for lexical relation classification, which is smaller 
than the differences we observed when using the shortest template, or when changing the LM § 7.3.3 or the loss function § 7.3.2.

7.4. Qualitative analysis

We qualitatively analyse the latent space of the RelBERT relation vectors. For this analysis, we focus on the test splits of the 
ConceptNet and NELL-One datasets. We compute the relation embeddings of all the word pairs in these datasets using RelBERTBASE
and RelBERTLARGE. As a comparison, we also compute relation embeddings using fastText, in the same way as in § 5.2. First, we 
visualize the relation embeddings, using tSNE [130] to map the embeddings to a two-dimensional space. Fig. 3 shows the resulting 
two-dimensional relation embeddings. The plots clearly show how the different relation types are separated much more clearly for 
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Fig. 3. The tSNE 2-dimension visualization of relation embeddings over the test set of (a) ConceptNet and (b) NELL-One. Colours reflect the relation type of the 
embedded word pairs. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

RelBERT than for fastText. For ConceptNet, in particular, we can see that the fastText representations are mixed together. Comparing 
RelBERTLARGE and RelBERTBASE, there is no clear difference for NELL-One. For ConceptNet, we can see that RelBERTLARGE leads to 
clusters which are somewhat better separated.

Second, we want to analyse whether RelBERT vectors could model relations in a more fine-grained way than existing knowledge 
graphs. We focus on ConceptNet for this analysis. We cluster the RelBERT vectors of the word pairs in each relation type using 
HDBSCAN [131]. We focus on three relation types: AtLocation, CapableOf, and IsA. These are the relation types with the highest number 
of instances, among those for which HDBSCAN yielded more than one cluster. We obtained two clusters for each of these relation 
types. Table 15 shows some examples of word pairs in each cluster. For AtLocation, RelBERT separates the word pairs depending on 
whether the head denotes a living thing. On the other hand, fastText captures a surface feature and forms a cluster where the word 
pairs have “zoo” as tails. All other word pairs are mixed together in the first cluster. For CapableOf, RelBERTLARGE again distinguishes 
the word pairs based on whether the head entity denotes a living thing. For RelBERTBASE, the clusters are not separated as clearly, 
while fastText again focuses on the presence of particular words such as “cat” and “dog” in this case. For IsA, RelBERTLARGE yields 
a cluster that specifically focuses on geolocations. RelBERTBASE puts pairs with the words “sport” or “game” together. In the case of 
fastText, all pairs were clustered together. Overall, fastText tends to catch the surface features of the word pairs. RelBERTLARGE seems 
to find meaningful distinctions, although at least in these examples, they are focused on the semantic types of the entities involved 
rather than any specialisation of the relationship itself. The behaviour of RelBERTBASE is similar, albeit clearly noisier.

8. Conclusion

We have proposed a strategy for learning relation embeddings, i.e. vector representations of pairs of words which capture their 
relationship. The main idea is to fine-tune a pre-trained language model using a relational similarity dataset covering a broad range 
of semantic relations. In our experimental results, we found the resulting relation embeddings to be of high quality, outperforming 
state-of-the-art methods on most analogy questions and relation classification benchmarks, while maintaining the flexibility of an 
embedding model. Crucially, we found that RelBERT is capable of modelling relationships that go well beyond those that are covered 
by the training data, including morphological relations and relations between named entities. Being based on RoBERTaLARGE, our 
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Table 15

Examples of word pairs in the clusters obtained by HDBSCAN for different relation embeddings. For the IsA relation, 
all word pairs were clustered together in the case of fastText.

AtLocation CapableOf IsA 

R
el

B
E
R

T
LA

R
G

E

1
child:school, animal:zoo, dog:bark, cat:hunt mouse baseball:sport, sushi:food, 
prisoner:jail, fish:aquarium, lawyer:settle lawsuit, yo-yo:toy, dog:mammal, 
librarian:library pilot:land plane spanish:language

2
computer:office, book:shelf, knife:spread butter, canada:country, 
coat:closet, food:refrigerator, clock:tell time, comb:part hair, california:state, 
paper clip:desk match:light fire san francisco:city 

R
el

B
E
R

T
B

A
SE 1

animal:zoo, elephant:zoo, dog:bark, student:study, baseball:sport, 
student:classroom, ball:bounce, tree:grow, soccer:sport, 
student:school bomb:explode chess:game

2
computer:office, coat:closet, plane:fly, clock:tell time, dog:mammal, rose:flower, 
mirror:bedroom, notebook:desk, computer:compute, violin:string instrument, 
food:refrigerator knife:spread butter fly:insect, rice:food 

fa
st

T
ex

t 1
fish:water, child:school, cat:hunt mouse, cat:drink water, 
bookshelf:library, feather:bird, dog:guide blind person, 
computer:office dog:guard house 

2
animal:zoo, elephant:zoo, knife:spread butter, 
lion:zoo, weasel:zoo, turtle:live long time, 
tiger:zoo magician:fool audience 

Table A.16

Main statistics of the analogy question datasets, showing the av-
erage number of answer candidates, and the total number of 
questions (validation / test).

Dataset Avg. #Answer Candidates #Questions 
SAT 5/5 - / 374 
U2 4/4 24 / 228 
U4 4/4 48 / 432 
Google 4/4 50 / 500 
BATS 4/4 199 / 1,799 
SCAN 72/74 178 / 1,616 
NELL-One 5/7 400 / 600 
T-REX 74/48 496 / 183 
ConceptNet 19/17 1,112 / 1,192 

main RelBERT model has 354M parameters. This relatively small size makes RelBERT convenient and efficient to use in practice. 
Surprisingly, we found RelBERT to significantly outperform language models which are several orders of magnitude larger.

While many NLP tasks can now be solved by prompting LLMs, learning explicit representations remains important for tasks that 
require transparency or efficiency. For instance, we envision that RelBERT can play an important role in the context of semantic 
search, e.g. to find relevant context for retrieval augmented LMs [132]. Explicit representations also matter for tasks that cannot 
easily be described using natural language instructions, such as ontology alignment [133] and completion [134,135], where relation 
embeddings should intuitively also be clearly useful. More generally, RelBERT has the potential to improve applications that cur-
rently rely on commonsense KGs such as ConceptNet, e.g. commonsense question answering with smaller LMs [29] and scene graph 
generation [33].
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Table A.17

Number of instances for each relation type across training / validation / test sets of all lexical relation classification datasets.

BLESS CogALex EVALution K&H+N ROOT09 
Antonym - 241 / 360 1095 / 90 / 415 - -
Attribute 1892 / 143 / 696 - 903 / 72 / 322 - -
Co-hyponym 2529 / 154 / 882 - - 18134 / 1313 / 6349 2222 / 162 / 816 
Event 2657 / 212 / 955 - - - -
Hypernym 924 / 63 / 350 255 / 382 1327 / 94 / 459 3048 / 202 / 1042 2232 / 149 / 809 
Meronym 2051 / 146 / 746 163 / 224 218 / 13 / 86 755 / 48 / 240 -
Possession - - 377 / 25 / 142 - -
Random 8529 / 609 / 3008 2228 / 3059 - 18319 / 1313 / 6746 4479 / 327 / 1566 
Synonym - 167 / 235 759 / 50 / 277 - -

Table B.18

The language models used in the paper and their corre-
sponding alias on HuggingFace model hub.

Model Name on HuggingFace 
ALBERTBASE albert-base-v2 
BERTBASE bert-base-cased 
BERTLARGE bert-large-cased 
RoBERTaBASE roberta-base 
RoBERTaLARGE roberta-large 
GPT-2SMALL gpt2 
GPT-2BASE gpt2-medium 
GPT-2LARGE gpt2-large 
GPT-2XL gpt2-xl 
GPT-J125M EleutherAI/gpt-neo-125M 
GPT-J1.3B EleutherAI/gpt-neo-1.3B 
GPT-J2.7B EleutherAI/gpt-neo-2.7B 
GPT-J6B EleutherAI/gpt-j-6B 
GPT-J20B EleutherAI/gpt-neox-20b 
OPT125M facebook/opt-125m 
OPT350M facebook/opt-350m 
OPT1.3B facebook/opt-1.3b 
OPT30B facebook/opt-30b 
OPT-IML1.3B facebook/opt-iml-1.3b 
OPT-IML30B facebook/opt-iml-30b 
OPT-IMLM-1.3B facebook/opt-iml-max-1.3b 
OPT-IMLM-30B facebook/opt-iml-max-30b 
T5SMALL t5-small 
T5BASE t5-base 
T5LARGE t5-large 
T53B t5-3b 
T511B t5-11b 
Flan-T5SMALL google/flan-t5-small 
Flan-T5BASE google/flan-t5-base 
Flan-T5LARGE google/flan-t5-large 
Flan-T5XL google/flan-t5-xl 
Flan-T5XXL google/flan-t5-xxl 
Flan-UL2 google/flan-ul2 
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Appendix A. Dataset statistics

Table A.16 summarises the main features of the analogy question datasets, and Table A.17 shows the size of the training, validation 
and test splits for each of these datasets, as well as the kinds of relations they cover for the relation classification datasets.

Appendix B. Model names on HuggingFace

Table B.18 is a list of language models we used in the paper with their names on HuggingFace molde hub, where we take the 
pre-trained model weight.
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Table C.19

The best configuration of the template and the number of epoch.

Language Model Aggregation Dataset Loss Template Epoch Seed Batch 
RoBERTaBASE average w.o. mask RelSim InfoNCE 1 8 0 400 
RoBERTaBASE average w.o. mask RelSim InfoNCE 5 10 1 400 
RoBERTaBASE average w.o. mask RelSim InfoNCE 5 9 2 400

RoBERTaBASE average w.o. mask RelSim InfoNCE 1 10 0 25 
RoBERTaBASE average w.o. mask RelSim InfoNCE 1 6 0 50 
RoBERTaBASE average w.o. mask RelSim InfoNCE 2 6 0 100 
RoBERTaBASE average w.o. mask RelSim InfoNCE 5 8 0 150 
RoBERTaBASE average w.o. mask RelSim InfoNCE 1 8 0 200 
RoBERTaBASE average w.o. mask RelSim InfoNCE 1 9 0 250 
RoBERTaBASE average w.o. mask RelSim InfoNCE 5 10 0 300 
RoBERTaBASE average w.o. mask RelSim InfoNCE 5 9 0 350 
RoBERTaBASE average w.o. mask RelSim InfoNCE 1 8 0 450 
RoBERTaBASE average w.o. mask RelSim InfoNCE 1 9 0 500

RoBERTaLARGE average w.o. mask RelSim InfoNCE 1 8 0 100 
RoBERTaLARGE average w.o. mask RelSim InfoNCE 4 9 1 100 
RoBERTaLARGE average w.o. mask RelSim InfoNCE 4 8 2 100

RoBERTaLARGE average w.o. mask RelSim InfoNCE 4 9 0 400

RoBERTaBASE average w.o. mask RelSim InfoLOOB 1 4 0 400 
RoBERTaBASE average w.o. mask RelSim Triplet 5 1 0 400

RoBERTaBASE average w.o. mask NELL InfoNCE 5 5 0 400 
RoBERTaBASE average w.o. mask T-REX InfoNCE 1 4 0 400 
RoBERTaBASE average w.o. mask ConceptNet InfoNCE 4 5 0 400

RoBERTaBASE average w.o. mask RelSim InfoNCE 1 8 0 400 
BERTBASE average w.o. mask RelSim InfoNCE 1 6 0 400 
ALBERTBASE average w.o. mask RelSim InfoNCE 1 5 0 400 

Table D.20

The accuracy of RelBERT on each domain of three analogy question datasets with random expectation, fastText, and Flan-UL2 
as baselines.

Google BATS SCAN 
Encyclopedic Morphological Encyclopedic Lexical Morphological Metaphor Science 

Random 25.0 25.0 25.0 25.0 25.0 2.4 2.8 
fastText 92.6 96.1 71.6 34.0 88.5 18.9 31.9 
Flan-UL2 94.4 89.8 68.0 60.2 85.8 11.9 18.8

RelBERTBASE 93.0 86.3 57.8 62.9 80.3 23.4 35.0 
RelBERTLARGE 98.6 92.6 71.3 72.4 90.0 24.8 35.6 

Appendix C. Hyperparameters of RelBERT

Table C.19 shows the best combination of the template and the number of epoch for each of the models used in our paper.

Appendix D. Prediction breakdown

Here, we analyse the performance of RelBERT on different categories of analogy questions, considering the categories that were 
listed in Table 4. First, the results for some of the categories are shown in Table D.20, along with some baselines. The results show 
that both RelBERT models can achieve a high accuracy for morphological relationships, despite not being explicitly trained on 
such relations. This ability appears to increase along with the model size, as RelBERTLARGE outperforms RelBERTBASE by around 10 
percentage points on the morphological relations from BATS, and 6 percentage points on the morphological relations from Google. 
Fig. D.4 and Fig. D.5 show the accuracy along with the difficulty level in U2 and U4. Although we cannot see a clear signal in 
U2, we can see that models struggle more when the difficulty level is increased in U4, especially for RelBERTBASE. Note that the 
U2 test is designed for children, while U4 is for college students. As comparison systems, we included the accuracy breakdown of 
fastText as a word embedding baseline, and Flan-UL2 as the best LM baseline. RelBERTLARGE consistently outperforms Flan-UL2 in all 
cases. The performance of fastText is more inconsistent, showing a strong performance on the morphological relations of the Google 
analogy dataset, as well as the encyclopedic portion of BATS, but performing poorly in the lexical portion of BATS (34.0 compared 
to RelBERTLarge’s 72.4) and in the metaphors of SCAN (18.9 compared to 24.8).
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Fig. D.4. The accuracy of RelBERT for each domain of U2 analogy question. 

Fig. D.5. The accuracy of RelBERT for each domain of U4 analogy question. 

Appendix E. The choice of random seed

In this section, we investigate the stability of RelBERT training, by comparing the results we obtained for different random seeds. 
We use a fixed random seed of 0 as default in the main experiments. Here we include results for two other choices of the random 
seed. We train both of RelBERTBASE and RelBERTLARGE. However, different from the main experiments, for this analysis we reduce 
the batch size from 400 to 100 for RelBERTLARGE, to reduce the computation time. Table E.21 shows the result. We observe that 
the standard deviation is higher for RelBERTBASE than for RelBERTLARGE. For example, the accuracy on T-REX differs from 46.4 to 
66.7 for RelBERTBASE, while only ranging between 63.4 and 67.8 for RelBERTLARGE. We can also see that there is considerably less 
variation in performance for lexical relation classification, compared to analogy questions.

Appendix F. The choice of the number of negative samples

The variant of InfoNCE that we considered for training RelBERT relies on in-batch negative samples, i.e. the negative samples for 
a given anchor pair correspond to the other word pairs that are included in the same batch. The number of negative samples that are 
considered thus depends on the batch size. In general, using a larger number of negative samples tends to benefit contrastive learning 
strategies, but it comes at the price of an increase in memory requirement. Here we analyse the impact of this choice, by comparing 
the results we obtained for different batch sizes. We train RelBERTBASE on RelSim with batch sizes from [25, 50, 100, 150, 200, 250, 
300, 350, 400, 450, 500], where the batch size 400 corresponds to our main RelBERTBASE model. The results are shown in Table F.22, 
and visually illustrated in Fig. F.6 and Fig. F.7. Somewhat surprisingly, the correlation between batch size and performance is very 
weak. For analogy questions, there is a weak positive correlation. The Spearman 𝜌 correlation to the batch size for T-REX is 0.6 with 
p-value 0.047, but in other datasets, correlations are not significant (i.e. p-values are higher than 0.05). Indeed, even a batch size of 
25 is sufficient to achieve close-to-optimal results. For lexical relation classification, the Spearman correlation is not significant for 
any of the datasets.
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Table E.21

Result of RelBERTBASE and RelBERTLARGE with three runs with different random seed, and the average 
and the standard deviation in each dataset.

RelBERTBASE RelBERTLARGE

Random Seed 0 1 2 Average 0 1 2 Average 
Analogy Question 
SAT 59.9 54.3 55.9 56.7 ±2.9 68.2 68.4 71.9 69.5 ±2.1 
U2 59.6 51.8 55.7 55.7 ±3.9 67.5 65.4 68.0 67.0 ±1.4 
U4 57.4 53.7 54.4 55.2 ±2.0 63.9 65.0 66.4 65.1 ±1.3 
BATS 70.3 65.3 67.3 67.6 ±2.5 78.3 79.7 80.4 79.5 ±1.1 
Google 89.2 79.4 85.6 84.7 ±5.0 93.4 93.4 94.8 93.9 ±0.8 
SCAN 25.9 25.9 23.3 25.1 ±1.5 25.9 27.0 29.1 27.4 ±1.6 
NELL 62.0 71.0 63.5 65.5 ±4.8 60.5 67.3 66.3 64.7 ±3.7 
T-REX 66.7 55.2 46.4 56.1 ±10.1 67.8 65.0 63.4 65.4 ±2.2 
ConceptNet 39.8 27.4 30.5 32.6 ±6.4 43.3 44.8 48.7 45.6 ±2.8

Average 59.0 53.8 53.6 55.5 ±3.1 63.2 64.0 65.4 64.2 ±1.1 
Lexical Relation Classification 
BLESS 90.0 91.4 90.7 90.7 ±0.7 91.5 92.4 91.7 91.9 ±0.5 
CogALexV 83.7 81.5 81.1 82.1 ±1.4 84.9 86.5 86.4 85.9 ±0.9 
EVALution 64.2 63.3 63.1 63.5 ±0.6 66.9 69.0 67.8 67.9 ±1.0 
K&H+N 94.0 94.7 94.3 94.3 ±0.4 95.1 95.3 95.7 95.3 ±0.3 
ROOT09 88.2 88.3 89.5 88.7 ±0.7 89.2 89.5 91.5 90.1 ±1.3

Average 84.0 83.8 83.7 83.9 ±0.1 85.5 86.5 86.6 86.2 ±0.6 

Table F.22

The results on analogy questions (accuracy) and lexical relation classification (micro F1 score) with different batch 
size (negative samples) at InfoNCE, where the best result across models in each dataset is shown in bold.

Batch Size 25 50 100 150 200 250 300 350 400 450 500 
Analogy Question 
SAT 56.1 59.1 53.2 55.6 56.4 57.2 57.5 58.3 59.9 57.2 57.2 
U2 55.3 56.1 46.1 53.9 56.1 60.1 56.1 56.6 59.6 59.6 55.7 
U4 56.5 57.4 52.5 54.9 57.2 59.0 57.2 54.2 57.4 58.3 56.5 
BATS 71.7 69.6 66.9 72.3 69.7 70.9 72.0 73.7 70.3 69.2 70.8 
Google 88.2 87.4 78.6 88.0 90.2 89.6 86.4 86.2 89.2 86.6 89.8 
SCAN 25.0 27.2 26.2 30.9 26.5 25.3 28.8 31.6 25.9 25.7 25.1 
NELL 67.0 66.5 71.5 77.7 66.0 63.7 75.0 77.7 62.0 62.8 63.5 
T-REX 59.6 60.7 57.9 57.9 62.3 60.1 57.9 60.1 66.7 69.4 62.8 
ConceptNet 36.9 39.3 31.1 29.4 40.5 39.6 31.0 31.4 39.8 38.9 42.8

Average 57.4 58.1 53.8 57.8 58.3 58.4 58.0 58.9 59.0 58.6 58.2 
Lexical Relation Classification 
BLESS 90.3 90.7 90.3 90.6 90.6 89.5 91.3 90.6 89.6 90.4 89.7 
CogALexV 66.0 67.9 65.9 62.5 65.2 64.7 65.4 64.4 65.8 65.4 63.6 
EVALution 64.8 62.1 65.0 62.9 63.6 64.6 63.8 63.2 62.9 62.8 64.6 
K&H+N 86.0 84.8 87.0 87.5 85.3 85.2 85.2 87.2 84.6 85.4 85.1 
ROOT09 87.7 88.8 87.7 88.6 89.4 88.8 88.8 88.6 87.9 88.2 88.0

Average 79.0 78.9 79.2 78.4 78.8 78.6 78.9 78.8 78.2 78.4 78.2 

Table G.23

The accuracy of [1, 5, 10]-shots learning with five different random seeds.

Random Seed 0 1 2 3 4 Average 
1-shot 44.4 44.7 40.1 48.4 46.0 44.7 
5-shots 46.0 47.1 39.8 44.9 49.5 45.5 
10-shots 45.7 48.9 33.7 39.6 45.5 42.7 

Appendix G. Few-shot learning

In the main experiment (§ 6), we used the LM baselines in a zero-shot setting. However, recent LLMs often perform better when a 
few examples are provided as part of the input [16,28]. The idea is to provide a few (input, output) pairs at the start of the prompt, 
followed by the target input. This strategy is commonly referred to as few-shot learning or in-context learning. It is most effective 
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Fig. F.6. The results on analogy questions in function of the batch size. 

Fig. F.7. The results on lexical relation classification in function of the batch size. 

for larger LMs, which can recognize the pattern in the (input, output) pairs and apply this pattern to the target input [26–28]. Since 
RelBERT is fine-tuned on RelSim, for this experiment we provide example pairs to the LM input which are taken from RelSim as well.

We focus on the SAT benchmark and the Flan-T5XXL model, which was the best-performing LM on SAT in the main experiments. 
We consider [1, 5, 10]-shot learning. The demonstrations in each experiment are randomly chosen from the training split of RelSim. 
We use the same template as for the zero-shot learning, both to describe the examples and to specify the target input. For example, 
in the 5-shot learning setting, a complete input to the model with five demonstrations of [�̂�𝑖, �̂�𝑖, �̂�𝑖, �̂�𝑖]𝑖=1…5 and the target query of 
[𝐴,𝐵] is shown as below.

�̂�1 is to �̂�1 what �̂�1 is to �̂�1
�̂�2 is to �̂�2 what �̂�2 is to �̂�2
�̂�3 is to �̂�3 what �̂�3 is to �̂�3
�̂�4 is to �̂�4 what �̂�4 is to �̂�4
�̂�5 is to �̂�5 what �̂�5 is to �̂�5
A is to B what

We run each experiment for five different random seeds (i.e. five different few-shot prompts for each setting). Table G.23 shows 
the results. Somewhat surprisingly, the few-shot models consistently perform worse than the zero-shot model, which achieved an 
accuracy of 52.4 in the main experiment.

Data availability

Codes and datasets are all made publicly available and the links are mentioned in the paper.
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