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 A B S T R A C T

Dynamic life cycle assessment (LCA) integrated with digital twin technologies is emerging as a transformative 
approach to evaluating and managing environmental performance in the built environment. This study presents 
the Building Life-cycle Digital Twin (BLDT) framework—a novel methodology that combines real-time data 
from Internet of Things (IoT) devices, machine learning algorithms, and semantic interoperability to deliver 
dynamic, predictive, and high-resolution LCA for construction and infrastructure systems.

The framework, developed within the Computational Urban Sustainability Platform (CUSP), addresses the 
limitations of traditional static LCA by enabling continuous, data-driven sustainability assessments. Incorpo-
rating predictive modelling, BLDT empowers stakeholders with timely insights into energy use, emissions, and 
health and safety performance, supporting proactive environmental decision-making.

Validated through a case study at the Port of Grimsby, the BLDT framework facilitated a 25% reduction in 
energy consumption while enhancing operational efficiency. These results demonstrate the model’s potential to 
support decarbonisation strategies, regulatory compliance, and long-term planning in the construction sector. 
By operationalising dynamic LCA through digital twins, this research contributes to the advancement of 
real-time sustainability analytics and resilient urban development.
1. Introduction

Digital twins are increasingly employed within the built environ-
ment to facilitate real-time monitoring, performance optimisation, and 
environmental assessment across the life cycle of buildings and infras-
tructure. Their integration into Life Cycle Assessment (LCA) represents 
a significant advancement, offering the capacity to assess environmen-
tal impacts dynamically rather than retrospectively. Traditional LCA 
methodologies, while robust for static evaluations, often lack the re-
sponsiveness to temporal and spatial variability, system dynamics, and 
evolving environmental conditions (Zheng et al., 2017). This inherent 
rigidity limits their applicability in data-rich, rapidly changing contexts 
such as smart construction. Accordingly, there is a growing imperative 
for dynamic LCA approaches capable of incorporating real-time data 
and localised factors, thereby yielding more accurate, actionable, and 
context-specific insights (Fnais et al., 2022; Ghoroghi et al., 2024).

Dynamic digital twins – virtual counterparts of physical systems that 
continuously synchronise with real-world operations – offer a promis-
ing avenue for overcoming these limitations (Madni et al., 2019). 
Unlike conventional digital representations, dynamic twins are char-
acterised by continuous data integration, predictive modelling, and 
feedback capabilities. In construction and the broader built environ-
ment, they enable LCA that reflect real operational conditions rather 
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than hypothetical scenarios. Demonstrated successes in industries such 
as aerospace and manufacturing – where digital twins improve main-
tenance planning, cost control, and operational efficiency – under-
score their potential in construction applications (Xie et al., 2019; 
Deng et al., 2021). Within building systems, digital twins can optimise 
construction processes, monitor operational performance, and support 
end-of-life planning, aligning closely with sustainable development 
goals (Akinshipe et al., 2022; Borjigin et al., 2022).

The convergence of emerging technologies – digital twins, the In-
ternet of Things (IoT), and blockchain – is reshaping environmental 
assessment in the built environment. Digital twins have shown po-
tential to enhance energy efficiency and reduce carbon emissions via 
real-time performance optimisation (Kumar et al., 2019). IoT devices 
support this by continuously capturing detailed environmental data, 
such as energy use and emissions (Chen et al., 2022), thereby improving 
the granularity and relevance of LCA metrics. Blockchain technology 
adds transparency and trust, offering a decentralised, secure platform 
for data sharing among stakeholders in complex civil projects (Hö-
jer and Wangel, 2015). Together, these technologies enable precise 
tracking of embodied and operational carbon, allowing for responsive 
and targeted emission reduction strategies throughout a building’s life 
cycle (Mukherjee et al., 2022).
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This technological synergy enables a transition from static, cen-
tralised LCA models to dynamic, context-sensitive frameworks. Dy-
namic LCA incorporates real-time data and predictive analytics, adapt-
ing assessments to variations in climate, resource availability, and 
occupancy patterns (Sokolova and Fernández-Caballero, 2010; Amin 
and Mourshed, 2024). It also encourages stakeholder engagement, 
drawing insights from local actors to enrich impact evaluations with 
regional and cultural context. This participatory model strengthens 
transparency, accountability, and relevance, while aligning environ-
mental decisions with real-world variability. Ultimately, dynamic LCA 
enhances not only the technical accuracy of assessments but also their 
utility for sustainable policy development and resilient infrastructure 
planning (Kibert, 2016).

Despite growing academic and industry interest in digital twins 
and life cycle modelling, existing literature largely addresses these 
domains in isolation. Many studies focus on the theoretical capabilities 
of digital twins or the methodological evolution of LCA, but few provide 
an integrated, operational framework that harnesses real-time data 
for environmental impact assessment in construction. Current appli-
cations often remain static, manually updated, or limited to isolated 
project phases, lacking temporal adaptability and systemic integration. 
This research addresses that gap by proposing a novel framework – 
the Digital Twin Bearing Life Cycle Model (BLDT) – that integrates 
digital twin technologies, continuous IoT data streams, and machine 
learning (ML) algorithms into a cohesive, dynamic LCA system. The 
innovation lies in the framework’s ability to enable real-time, predic-
tive, and context-aware environmental assessments across all stages 
of the built environment’s life cycle. By moving beyond static models 
and using real-time data, automated analysis, and local context, the 
BLDT framework offers a practical and innovative step towards making 
environmental assessments more useful and responsive in real-world 
construction projects.

Through the demonstrating of the proposed BLDT framework, this 
research aims at: (i) examining the extent to which digital twin tech-
nologies enhance the precision and temporal responsiveness of LCA; (ii) 
investigating the challenges and opportunities involved in integrating 
digital technologies with traditional LCA frameworks; and (iii) assess-
ing how such integration contributes to sustainable development within 
the built and urban environment. These objectives are guided through 
three research questions:

1. How can digital twin technologies improve the accuracy and 
efficiency of LCA in the built environment?

2. What are key challenges and opportunities associated with inte-
grating digital technologies into traditional LCA methodologies?

3. How can the proposed integration framework contribute to the 
sustainability in the built and urban environment?

By addressing these questions, the research provides a compre-
hensive understanding of the potential of digital twin technologies to 
revolutionise LCA practices in the built environment, thus contributing 
to the larger goal of sustainable urban development. The remainder 
of this paper is structured as follows: Section 2 presents a review of 
relevant literature concerning digital twins and dynamic LCA. Section 3 
introduces the proposed BLDT framework, outlining its structural com-
ponents and data integration mechanisms. Section 4 details a case study 
application of the framework. Section 5 discusses the empirical findings 
and contrasts them with conventional LCA practices. Finally, Sections 6
and 7 outline future research directions and present the concluding 
remarks.

2. Related work

2.1. Advances in digital twin technology in LCA

Recent advances in digital twin technology have enabled greater 
understanding and advanced analysis of built and construction assets, 
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offering unprecedented opportunities to improve LCA. Integrating these 
technologies into LCA processes represents a significant shift towards 
more dynamic, accurate, and comprehensive environmental impact 
evaluations.

A systematic review by Deng et al. (2021) highlights the evolu-
tion of intelligent building representations, from building information 
modelling (BIM) to advanced digital twins, underscoring their potential 
to revolutionise building management through real-time data analytics 
and simulation capabilities. This transition facilitates a deeper under-
standing of the environmental footprint of a building throughout its 
lifecycle and enables proactive decision-making to mitigate adverse 
impacts. Research by Kineber et al. (2023) on modelling the rela-
tionship between digital twin implementation and embodied carbon 
construction presents a compelling case for the synergistic use of digital 
twin technology and LCA. The study demonstrates how IoT-enabled 
digital twins can provide a granular, real-time view of a building’s 
performance, thereby enhancing the accuracy of embodied carbon 
assessments. This approach not only refines the precision of the LCA 
results but also paves the way for targeted strategies to reduce carbon 
emissions in the construction sector.

A critical overview by Di Matteo et al. (2024) on the challenges 
and potentialities of BIM and digital twins in building energy and 
sustainability further elucidates the transformative impact of these 
technologies. The paper argues that digital twins, as multidimensional 
digital representations of physical assets, can significantly accelerate 
the benefits of BIM by offering a more nuanced and comprehensive 
analysis of energy usage and sustainability metrics. This synergy be-
tween BIM and digital twins is posited as a reliable approach to 
achieving energy savings and environmental strategies, highlighting 
the need for enhanced interoperability between these technologies to 
realise their potential in the construction industry.

These recent studies underscore the growing role of digital twins 
in refining LCA methodologies within the construction sector. These 
technologies offer a pathway to more sustainable and environmentally 
responsible building practices by harnessing real-time data and ad-
vanced simulation capabilities. However, the full potential of integrat-
ing digital twins with LCA tools remains under-explored, particularly 
in dynamic and predictive environmental impact assessments. The 
reviewed literature underscores the need for dynamic LCA models, 
aligning with our research objective to integrate digital twins for 
real-time environmental assessments.

Recent studies (Shanbhag and Dixit, 2025; Padhiary et al., 2024) 
have integrated IoT to gather usage data for energy simulations, but 
these approaches often update life-cycle inventories only at discrete 
intervals rather than in real time. These examples underscore the 
necessity of real-time sensor data for dynamic LCA (DLCA) – a focus 
our BLDT framework addresses by integrating IoT and digital twin 
simulations. Despite these advancements, the literature lacks a holistic 
DLCA framework incorporating real-time data streams from IoT and 
digital twins. The following sections address this gap by proposing a 
novel BLDT framework that continuously updates LCA assessments in 
near-real time.

2.2. State-of-the-art LCA solutions

Recent years have seen a growing interest in LCA applications in 
critical areas of decarbonising the built environment at all lifecycle 
stages (Fnais et al., 2022). Researchers have developed LCA-based 
frameworks to facilitate the workflow for assessing building materials 
and various design options (Budig et al., 2021; Shrestha, 2021; Helal 
et al., 2020; Zeng et al., 2020). Given the computational complexity 
of performing LCA during the design stage and the multifaceted de-
cision process involving environmental, economic, and social factors, 
researchers have integrated LCA with computational and analytical 
techniques such as optimisation (Kiss and Szalay, 2020), ML (Płoszaj-
Mazurek et al., 2020), and data envelope analysis (Tavana et al., 
2021).
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During the use phase, LCA has been widely used to evaluate the 
retrofit and renovation strategies of existing building stock to improve 
thermal performance and reduce energy consumption (Galimshina 
et al., 2020; Pittau et al., 2019; Gulotta et al., 2021). Several stud-
ies have applied LCA to evaluate the environmental performance of 
alternative construction systems, such as prefabrication and modular 
construction, due to the intensity of energy and significant carbon 
emissions associated with building construction (Balasbaneh and Ramli, 
2020; Kamali et al., 2019). Another key area of current LCA research 
concerns the embodied impacts of buildings, which can be reduced 
by improving material efficiency and using alternative construction 
materials (Hertwich et al., 2019; Kylili and Fokaides, 2019).

Performing LCA for buildings is challenging due to numerous uncer-
tain sources, such as service life, replacement rate, choice uncertainty, 
and emissions data. Researchers have used various approaches to ad-
dress uncertainty, including probabilistic, statistical, and simulation-
based methods (Goulouti et al., 2020; Morales et al., 2020; Ylmén 
et al., 2020). Various solutions have been developed to integrate LCA 
tools with building domain models, such as BIM, to facilitate LCA 
practice in the building sector. These solutions include using BIM to 
collect building material information (Soust-Verdaguer et al., 2017), 
embedding LCA data into the BIM model, or using plug-in tools to 
perform LCA calculations within BIM (Wastiels and Decuypere, 2019).

2.3. Machine learning advances in LCA

ML methods are increasingly applied in LCA to improve prediction 
accuracy, optimise processes, and manage large datasets. ML tech-
niques can handle the complexity and uncertainty associated with LCA, 
providing more precise and reliable environmental impact assessments. 
Studies Ghoroghi et al. (2022) show that ML is commonly applied at 
the inventory level for prediction, finding missing data, and optimising 
during model simulation. ML methods can significantly enhance the 
precision of LCA results by identifying patterns and trends that may not 
be apparent through traditional analytical methods. This capability is 
particularly valuable in handling the vast amounts of data generated 
by IoT sensors and digital twin technologies. Developing ML tech-
niques, including predictive model control and optimisation algorithms, 
can help policymakers deliver actionable information, thus developing 
various control strategies and corrective measures to reduce the gap 
between predicted and actual environmental impacts (Ghoroghi et al., 
2022). These techniques can streamline the LCA process by automating 
data collection and processing, reducing the time and cost constraints 
traditionally associated with LCA studies.

Digital Twin technology can describe the multidimensional at-
tributes of physical objects and reflect their entire life cycle by inter-
acting with virtual models of these objects (Liu et al., 2023a). As a 
complete information model, a digital twin integrates the information 
of a project from different stages of the lifecycle into a model to 
facilitate better asset management and communication through data 
visualisations with participants (Kaewunruen et al., 2020). The use 
of digital twins for performance is critical and, for capital-intensive 
equipment such as jet engines, has proven to be successful in cost 
savings and improved reliability (Li et al., 2022). The benefits of 
Digital Twins for the construction and maintenance of trains include 
higher cost efficiency and an optimal schedule, helping to reduce 
unexpected consumption and waste (Guo et al., 2022). Digital twins 
can increase efficiency in building construction, management, and 
deconstruction (Chen et al., 2022) while improving the maintenance 
scheme and estimate the remaining useful life of electric machines (Liu 
et al., 2023b). Digital twins can evaluate performance throughout the 
life cycle of light rail systems in a digital twin environment, which 
is time-saving, flexible, and highly accurate. Therefore, digital twin 
technology can support LCA by providing real-time data and insights 
throughout the life cycle of a system.
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In an LCA process, there is a large number of input parameters 
to be considered. Therefore, the factorial strategy is needed to reduce 
and mitigate the environmental impact of a complex artefact. In our 
evaluation, a built asset is used, that needs to be divided into discrete 
and manageable scenarios, such as optimising the energy mix of an 
energy system. When addressing these scenarios in isolation using ML, 
a reduction in environmental impacts through LCA can be applied more 
broadly (Ghoroghi et al., 2022).

Computational LCA explores a product or process environmental 
impact throughout its life cycle (Bare, 2011). FLASC (Fast Lifecycle 
Assessment for Synthetic Chemists) is a tool to assess the simplified life 
cycles of compounds and provides reduced lifecycle data for materials 
through processing. LCA is an internationally standardised method for 
assessing environmental burdens and resources consumed throughout 
the life cycle of products or processes (Balasbaneh and Ramli, 2020). 
The LCA method has been developed to assess the possible environmen-
tal impacts of technical processes and systems and is widely applied in 
research and industry (Balasbaneh and Ramli, 2020). LCA can be used 
to identify, classify, and evaluate the triple bottom line sustainability 
criteria (TBL) for mid-rise residential buildings based on a broad range 
of environmental and socioeconomic criteria (Hossaini et al., 2014).

2.4. SRI solutions

In the evolving landscape of sustainable urban development, Smart 
Readiness Indicators (SRI) solutions play a pivotal role in integrating 
advanced technologies such as IoT and Digital Twins to drive efficiency 
and sustainability in buildings. This section explores two key initiatives, 
DigiPLACE and CDBB, that exemplify these technologies’ innovative 
approaches and applications in achieving sustainability goals.

DigiPLACE (Digital Platform for Construction) is a European ini-
tiative that aims to create a common digital framework for the con-
struction industry and facilitate the adoption of digital technologies 
throughout Europe. DigiPLACE addresses several challenges in the con-
struction industry, such as fragmented processes, inefficient resource 
use, and environmental impacts enabling seamless data sharing and 
collaboration between stakeholders, promoting transparency and re-
ducing project delays and costs. This platform integrates various digital 
technologies, including BIM, IoT, and digital twins, to improve project 
management and LCA processes (Zook and Graham, 2007; Akroyd 
et al., 2020). The integration of LCA within DigiPLACE allows real-time 
monitoring and assessment of environmental impacts throughout the 
construction project’s lifecycle. IoT sensors collect energy consumption, 
emissions, and resource use data, fed into digital twin models. These 
models simulate different scenarios and provide insight into the most 
sustainable practices, enabling stakeholders to make informed decisions 
that minimise environmental impacts and promote sustainability (Zook 
and Graham, 2007).

In the UK, the Center for Digital Built Britain (CDBB), on the other 
hand, focuses on developing and implementing digital twins, IoT, and 
BIM to enhance the design, construction, and operation of buildings 
and infrastructure (Akroyd et al., 2020). This framework promotes the 
use of digital twins to improve the management and maintenance of 
infrastructure assets, optimise resource use, and reduce environmental 
impacts (Akroyd et al., 2020). The CDBB enables dynamic and real-
time environmental impact assessments by integrating LCA with digital 
twins. IoT sensors deployed on infrastructure assets provide continuous 
data streams on their performance, energy use, and environmental 
impacts. This data is integrated into digital twin models, allowing 
the simulation and optimisation of various scenarios. The real-time 
insights these models provide help stakeholders identify and implement 
sustainable practices, improving infrastructure management’s overall 
efficiency and sustainability (Akroyd et al., 2020).

The above examples demonstrate that Digital Twins represent a 
cutting-edge approach to creating virtual replicas of physical assets 
that are continuously updated with real-time data. These technologies 
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have significant applications in various sectors, including construction, 
urban planning, and environmental management (Xia et al., 2022). 
Digital twins provide a comprehensive view of the entire lifecycle of 
assets, from design and construction to operation and decommissioning. 
Digital twins offer real-time monitoring and analysis of assets’ per-
formance and environmental impacts by integrating IoT data streams. 
This continuous feedback loop identifies inefficiencies and areas for 
improvement, facilitating proactive management and optimisation (Xia 
et al., 2022).

In the context of LCA, digital twins offer a dynamic and precise 
tool for environmental impact assessments. IoT sensors collect data 
on various parameters such as energy consumption, emissions, and 
material use. This data is fed into digital twin models that simulate the 
environmental impacts of different scenarios and provide information 
on the most sustainable practices (Xia et al., 2022). These technologies 
support efficient resource management, reduce carbon footprints, and 
improve the quality of life of residents (Badawi et al., 2021). DigiPLACE 
and CDBB developments utilise digital twins technologies with SRI so-
lutions to highlight the transformative potential of digital technologies 
in achieving sustainability goals. Using IoT, digital twins, and advanced 
data analytics, these initiatives provide dynamic, real-time environmen-
tal impact assessments that drive efficient and sustainable practices 
in urban development. This comprehensive approach improves the 
precision and relevance of LCA and supports the development of re-
silient and sustainable urban environments (Kumar et al., 2019). IoT 
technologies can collect data related to pollution, gas emissions, energy 
consumption, and various other parameters, enhancing the precision 
and relevance of LCA (Chen et al., 2022). For example, IoT sensors 
can monitor real-time data on energy usage, emissions, and other 
parameters, providing valuable insights for dynamic LCA models (Lu 
et al., 2021).

Digital twins enabled with IoT can provide a granular, real-time 
view of the performance of a building, improve the precision of em-
bodied carbon assessments, and facilitate targeted strategies to reduce 
carbon emissions in the construction sector (Mukherjee et al., 2022). 
Continuous data streams from IoT sensors ensure that digital twin 
models are up to date, reflecting the actual conditions of the physical 
entities they represent. Integrating IoT networks into the LCA process 
can also improve connectivity, energy efficiency, and quality of ser-
vices (Khan and Fernandez, 2019). Therefore, the IoT can be used to 
improve the efficiency of analysis and services and can be used in 
various fields to support LCA.

2.5. LCA emerging attempts

LCA approaches play a crucial role in urban sustainability and 
adaptation to climate change. The literature emphasises the need to 
adapt to climate change, which involves adjustments in various sectors 
such as agriculture, forest management, and natural resource manage-
ment (Akinnagbe and Irohibe, 2015; Das, 2021; Chah et al., 2018; 
Mulyasari et al., 2023; Mushi and Edward, 2021; Das, 2021). The 
literature highlights the importance of understanding the perceptions 
and adaptation responses of different communities, such as rural farm-
ers and small-scale fisheries communities, to climate change (Ofuoku, 
2011; Mulyasari et al., 2023; Swai et al., 2012). This understanding is 
essential for developing practical LCA approaches tailored to specific 
urban contexts.

The literature also emphasises the importance of integrating tra-
ditional ecological knowledge into adaptation strategies to climate 
change (Hosen et al., 2019). Traditional knowledge associated with 
biodiversity can enrich the development of sustainable adaptation and 
mitigation strategies for climate change, particularly in urban settings. 
Furthermore, the literature emphasises the role of gender in adaptation 
practices, indicating that women are likely to be more affected by 
climate change and that gender-specific adaptation strategies must be 
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considered (Swai et al., 2012), highlighting the importance of incor-
porating gender perspectives into dynamic LCA approaches for urban 
sustainability and adaptation to climate change. The literature reports 
also a need for policy formulation and institutional capacity building 
to support adaptation to climate change (Hanson et al., 2022; Okoro 
et al., 2022; Oramah and Olsen, 2021). Effective policies and funding 
mechanisms are essential to promote dynamic LCA approaches and 
ensure their integration into sustainable urban development plans. 
The literature also highlights the role of awareness and education 
in promoting sustainable soil nutrient management and agricultural 
adaptation in the face of climate change (Thiombiano et al., 2018), 
underscoring the importance of educational initiatives and awareness 
campaigns as part of dynamic LCA approaches in urban areas.

Furthermore, the literature emphasises the need for adaptive man-
agement and resilience in the face of climate change (Peterson et al., 
1997). Adaptive policies and practices are crucial to address the dy-
namic and evolving nature of the impacts of climate change on urban 
environments. Several studies identify the potential of microfinance 
and livelihood support to help vulnerable populations adapt to climate 
change (Hammill et al., 2009), highlighting the importance of consider-
ing socioeconomic factors and livelihood support within LCA for urban 
sustainability and adaptation to climate change.

LCA approaches are gaining attention in the context of urban sus-
tainability and adaptation to climate change (da Luz Rosário de Sousa 
et al., 2012). Dynamic approaches to urban stormwater management 
can be evaluated using LCA to compare the environmental efficiency 
of different strategies (da Luz Rosário de Sousa et al., 2012). LCA 
can be used to assess the environmental profile of a system and the 
distribution of burdens and impacts at various stages of the life cy-
cle (Keoleian et al., 2003). LCA can also be used as an analytical tool 
to prevent pollution, life cycle design, and optimisation modelling (Ke-
oleian et al., 2003). LCA has been used to analyse the environmental 
impacts of wastewater treatment technologies (WWT) in developing 
countries (Garrido et al., 2019). LCA can be used to compare the envi-
ronmental benefits and burdens of phosphorus recovery in centralised 
and decentralised municipal wastewater systems (Moser et al., 2015). 
Therefore, LCA can be used to evaluate the environmental impact 
approaches to urban stormwater management, wastewater treatment, 
and phosphorus recovery. LCA can also be used as an analytical tool 
for pollution prevention, life cycle design, and optimisation modelling.

Digital twin technology, on the other hand, can be used to im-
prove LCA by providing a virtual instance of a physical system that 
is continually updated with the latter’s performance, maintenance, 
and health status data throughout the life cycle of the physical sys-
tem (Kaewunruen et al., 2020; Madni et al., 2019). A digital twin 
integrates information from different stages of the life cycle of a project 
into a model to facilitate better asset management and communica-
tion through data visualisations with participants (Kaewunruen et al., 
2020). The ability to connect in real-time to sensors deployed online 
in an environment has led to the emergence of the digital twin of 
the built environment, which aims to synchronise the real world with 
a virtual platform (Deng et al., 2021). Digital twin technology can 
extend the simulation to later life cycle phases as a core product/sys-
tem functionality, which can help optimise system performance (Tao 
et al., 2018). Therefore, digital twin technology can enhance LCA by 
providing real-time data and insights throughout the life cycle of a 
system.

In conclusion, the literature provides valuable information on the 
role of dynamic LCA approaches in urban sustainability and adaptation 
to climate change. The review emphasises the need for tailored adapta-
tion strategies, gender-sensitive approaches, policy support, traditional 
knowledge integration, and adaptive management to address the multi-
faceted challenges of climate change in urban environments. Although 
significant progress has been made in integrating digital twins, IoT, 
and ML with LCA, several gaps remain. Existing studies often focus 
on specific aspects, such as energy consumption or carbon emissions, 
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Fig. 1. A schematic of the architecture of digital twin-bearing life cycle model (BLDT) within the Computational Urban Sustainability Platform (CUSP).
without a comprehensive approach integrating multiple environmental 
and social factors. Additionally, the dynamic capabilities of digital 
twins are under-utilised in LCA methodologies, which traditionally rely 
on static models. While BLDT offers significant advantages, its reliance 
on real-time data raises concerns about privacy and security. Future 
work should explore robust encryption methods and compliance with 
data protection regulations.

3. A digital twin framework for LCA

This section introduces the Building Life-cycle Digital Twin (BLDT), 
a methodological framework developed to integrate digital twin tech-
nology with dynamic LCA processes. The BLDT framework enables 
near real-time environmental impact assessment within the built en-
vironment by combining continuous data streams, predictive analyt-
ics, and sustainability metrics. It operates as a core component of 
the Computational Urban Sustainability Platform (CUSP), a modular 
digital twin platform developed to support urban and industrial sus-
tainability planning through data-driven simulation, optimisation, and 
decision-making tools.

CUSP is a cloud-integrated digital twin platform designed to support 
data-driven sustainability planning in urban and industrial environ-
ments. It enables dynamic interaction between physical assets and 
their virtual representations, using sensor data, machine learning, and 
semantic interoperability layers to monitor and evaluate building per-
formance across multiple sustainability dimensions. The platform sup-
ports multi-domain assessments – spanning energy efficiency, emissions 
reduction, social well-being, and environmental compliance – through 
modular, scalable services.

The BLDT is embedded within CUSP as a specialised engine that 
conducts real-time LCA. While traditional LCA models offer static as-
sessments that are updated periodically, BLDT within CUSP enables 
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dynamic evaluations by integrating real-time sensor data and predictive 
analytics. This makes it particularly suitable for applications where 
sustainability metrics must be continuously monitored, such as ports, 
airports, and smart cities.

Fig.  1 presents the architecture of the BLDT framework within 
CUSP. The system captures data from physical assets using a network 
of sensors distributed across the Port of Grimsby. This data is then 
processed by a semantic middleware layer, which harmonises hetero-
geneous inputs into a unified structure based on ontologies (e.g., Brick 
schema). The processed data is passed through machine learning mod-
ules for predictive modelling and into LCA modules for real-time en-
vironmental assessment. The insights are finally delivered through the 
CUSP User Interface, which allows stakeholders to interact with visuali-
sations, scenario simulations, and sustainability KPIs. The dynamic and 
modular nature of this architecture differentiates BLDT from conven-
tional LCA approaches, offering a more flexible, adaptive, and real-time 
alternative that enhances operational and strategic decision-making in 
complex, data-rich environments.

3.1. Workflow and components

Fig.  2 illustrates the end-to-end workflow of the BLDT framework, 
showing how raw sensor data from the physical environment is pro-
cessed through a semantic middleware layer, analysed via machine 
learning models, and evaluated in real-time using dynamic LCA tools. 
These components collectively enable continuous monitoring, scenario 
modelling, and adaptive decision support.

3.1.1. Semantic middleware component
The semantic middleware layer serves as the data translation and 

integration engine of the BLDT framework. It receives raw data from 
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Fig. 2. Workflow diagram illustrating the data flow between components of the BLDT framework.
diverse sensors – measuring temperature, humidity, power usage, emis-
sions, and occupancy – and converts them into a standardised semantic 
format compliant with ISO 13374-1. To enable interoperability, the 
system instantiates the Brick ontology, which models spatial and device 
relationships in a structured knowledge graph.

:Zone_Temp_Sensor_01 a brick:Temperature_Sensor ;
brick:isPointOf :Laboratory_Zone .

This process ensures that heterogeneous data sources are har-
monised before being used for prediction or LCA characterisation. 
The middleware also timestamps, cleans, and organises incoming data 
streams, thus laying the foundation for accurate, high-resolution envi-
ronmental modelling.

3.1.2. LCA modules
The dynamic LCA component processes both real-time sensor data 

and machine learning forecasts to evaluate the life-cycle impacts of port 
operations. It is structured into three key assessment domains:

• Energy: Focuses on monitoring energy use, load profiles, and op-
erational efficiency. Smart metering and predictive analytics help 
detect anomalies, recommend optimisation strategies (e.g., load 
shifting), and evaluate the feasibility of renewables such as solar 
or wind power.

• Social: Integrates health and well-being indicators to assess the 
socio-environmental consequences of operational activities. Re-
ductions in airborne pollutants (e.g., CO2, 𝑃𝑀2.5) are evaluated 
for their effects on workforce health and nearby communities.

• Environmental: Quantifies emissions of CO2, NO𝑥, and SO𝑥 from 
vessel traffic, cargo handling, and building systems. Forecasted 
values are mapped to life-cycle inventory (LCI) flows and assessed 
using the ReCiPe 2016 (hierarchist) method within the Bright-
way2 framework, according to Algorithm 1. The system performs 
15 min interval mapping for high temporal resolution.

Algorithm 1: Mapping ANN outputs to LCI flows
1 foreach 𝑡 ∈ timestamps do
2 𝐟 (𝑡) ← 𝐤 ⋅ �̂�(𝑡);
3 impact(𝑡) ←LCIA(𝐟 (𝑡));
4 end 
6 
3.1.3. Machine learning component: Data training and prediction
The BLDT framework employs a lightweight artificial neural net-

work (ANN) to generate short-term predictions for energy consumption, 
carbon emissions, and safety-related conditions. This model enables 
proactive decision-making by forecasting environmental and opera-
tional parameters based on real-time data inputs.

• Model design: The ANN features 10 input neurons, a single 
hidden layer with 15 neurons, and 3 output neurons (energy, CO2, 
and safety index). ReLU and linear activation functions are used 
for hidden and output layers, respectively, as detailed in Table  1.

• Training and validation: The model was trained using 35,401 
records (15-min intervals) from the Port of Grimsby collected 
throughout 2023. Input features include power demand, temper-
ature, humidity, wind speed, and tidal conditions across three 
time lags (𝑡, 𝑡−30min, 𝑡−60min). Data were z-score normalised, 
with missing values under 2 min forward-filled. Larger gaps were 
discarded.

• Performance metrics: Cross-validation (blocked 5-fold) yielded 
MAE = 5.8 kWh, RMSE = 8.3 kWh, and 𝑅2 = 0.92 for en-
ergy prediction. A baseline linear model achieved lower accuracy 
(MAE = 7.3 kWh, 𝑅2 = 0.81), validating the ANN’s effectiveness.

• Interpretability: SHAP analysis identified outdoor temperature 
and tidal state as the most influential variables, jointly explaining 
61% of model variance.

• Hyperparameter optimisation: Bayesian tuning (100 trials) de-
termined optimal values: learning rate = 10−3, batch size = 256, 
random seed = 42.

• Data accessibility: All training scripts and model weights are 
archived within Cardiff University’s secure research data repos-
itory and available to qualified researchers under NDA.

3.2. Sensor setup and quality assurance

Twelve IoT sensor nodes were deployed across the Port of Grimsby, 
including:

• Environmental monitors: Bosch BME680 for T–RH–VOC and Plan-
tower PMS7003 for 𝑃𝑀2.5.

• Power meters: Smart meters for building-wide and zonal energy 
use.

• Occupancy and CO2 sensors: Installed at critical indoor and con-
trol zones.
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Table 1
Architecture and parameters of the Artificial Neural Network (ANN). These choices 
balance rapid training and inference (critical for real-time LCA updates) with sufficient 
model accuracy on dynamic port data.
 Parameter Value  
 Input Layer Neurons 10  
 Hidden Layer Neurons 15  
 Output Layer Neurons 3  
 Activation Function (Hidden Layer) ReLU  
 Activation Function (Output Layer) Linear  
 Optimiser Adam  
 Learning Rate 0.001  
 Batch Size 32  
 Epochs 100  
 Loss Function Mean Squared Error (MSE)  
 Training Data Split 70% Training, 15% Validation, 15% Testing 

Table 2
Sensor deployment and interface configuration.
 Parameter measured Sensor type Port zone Connection type 
 Temperature iPoint Quay 3 control room I/O to AS  
 Temperature iPoint Sub-station B Gateway  
 Humidity iPoint Quay 3 control room I/O to AS  
 Humidity SHO100 Sub-station B Gateway  
 CO2 iPoint Quay 3 control room I/O to AS  
 CO2 iPoint Sub-station B Gateway  
 Occupancy Smart Meter Quay 3 control room I/O to AS  
 Occupancy Smart Meter Sub-station B Gateway  
 Energy consumption Smart Meter Whole building I/O to AS  
 Thermal consumption Smart Meter Whole building I/O to AS  

Each sensor node aggregates readings every 60 s and transmits data in 
JSON-LD format via LoRaWAN to a central MQTT broker. TimescaleDB 
is used for long-term storage. A nightly QA/QC routine performs the 
following:

• Filters out-of-range values based on manufacturer specifications.
• Applies a three-sigma spike filter.
• Flags clock drift and performs timestamp correction.
• Runs calibration conformity checks (two-point factory recalibra-
tion every six months, following Spinelle et al. (2015)).

The uncertainty of ±2% sensor drift and ANN residuals was propagated 
using a first-order Taylor expansion, yielding a combined uncertainty 
of ±7% (95% CI) on annual global warming potential (GWP) values(see 
Table  2).

4. Case study: dynamic BLDT application

This section presents a case study demonstrating the implementa-
tion and validation of the BLDT framework at the Port of Grimsby. The 
case study follows a structured approach, beginning with an energy and 
carbon audit to establish baseline conditions, followed by LCA integra-
tion of various scenarios, and concluding with an analysis of the results 
and benefits achieved. A detailed audit established the carbon and en-
ergy profile at Grimsby Port as a baseline for analysis. Subsequently, the 
CUSP digital twin simulated different energy management and carbon 
reduction scenarios. This phase aimed to identify optimal strategies 
that balance operational efficiency with environmental sustainability. 
The selection of IoT sensors was based on their ability to capture 
real-time energy, emissions, and safety data. At the same time, ML 
algorithms were chosen for their predictive accuracy and scalability. 
As such, our approach to dynamic LCA supports the Port of Grimsby’s 
decarbonisation goals and sets a promising benchmark for other ports. 
By integrating energy, social, and environmental considerations, we 
ensure that the strategies developed are holistic and sustainable. This 
facilitated the development of a resilient maritime industry and pro-
vided a vision of a future in which sustainability is at the core of port 
operations.
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• Simulation services within the CUSP platform leverage IoT sen-
sor data and semantic middleware to create accurate digital repli-
cas of physical systems. For the Port of Grimsby, this involves 
simulating the port’s operational processes, infrastructure usage, 
and energy consumption patterns. Simulation capabilities allow 
stakeholders to explore different scenarios, such as varying levels 
of cargo throughput, energy usage under various weather condi-
tions, and the impact of infrastructure upgrades on operational 
efficiency.

• Prediction Services of CUSP use ML algorithms and histori-
cal data to forecast future trends and potential issues. At the 
Port of Grimsby, prediction models can estimate future energy 
demands, anticipate maintenance needs, and forecast the im-
pact of increased shipping activities on local traffic and environ-
mental conditions. By predicting these variables, port authorities 
can proactively manage resources, schedule maintenance, and 
implement mitigation strategies to minimise adverse impacts.

• Optimisation services focus on enhancing operational efficiency 
and sustainability. For the Port of Grimsby, these services involve 
optimising energy usage, improving logistics, and reducing car-
bon emissions. Optimisation algorithms consider multiple factors, 
such as energy prices, cargo handling times, and emission limits, 
to provide actionable recommendations. These services ensure 
the port operates efficiently while adhering to environmental 
regulations and safety standards.

The implementation of BLDT at the Port of Grimsby resulted in a 
25% reduction in energy consumption and a 15% decrease in carbon 
emissions over six months, demonstrating its practical efficacy.

4.1. Lifecycle assessment aspects

Fig.  3 illustrates the CUSP’s user interface (UI) in action using data 
and models from the Port of Grimsby. This interface integrates various 
functionalities to facilitate simulation, prediction, and optimisation 
services, offering users a comprehensive view of the port’s operational 
parameters. UI elements are designed to support detailed analysis and 
decision-making, particularly in the context of lifecycle assessments 
that include technical, social, and environmental aspects;

4.1.1. Technical assessment (energy efficiency)
The CUSP platform integrates real-time energy monitoring, pre-

dictive analytics, and optimisation tools for a dynamic LCA focusing 
on energy, social and environmental analysis at the Port of Grimsby. 
The energy assessment of the CUSP platform at the Port of Grimsby 
begins with deploying IoT sensors to capture real-time data on energy 
consumption across various port operations. This data is processed by 
semantic middleware, providing a detailed overview of energy perfor-
mance. The semantic middleware then processes this data, contextu-
alising it within the port’s broader operational framework. Simulation 
services test various energy-saving measures and predict their impact 
on overall energy consumption. Fig.  4 displays historical and real-
time data trends fed into predictive models, which forecast future 
conditions based on current and past data. Optimisation algorithms 
then identify the most effective strategies for reducing energy usage, 
such as shifting to renewable energy sources, upgrading to energy-
efficient equipment, and scheduling cargo handling activities during 
off-peak hours to reduce energy costs.

4.1.2. Social assessment (health and safety)
Incorporating social factors into the dynamic LCA involves a de-

tailed assessment of health and safety conditions at the Port of Grimsby. 
IoT sensors monitor environmental conditions, such as indoor air tem-
perature and noise levels, to assess health and safety and track worker 
activities. The semantic middleware processes this data to identify 
potential health and safety risks. Simulation models evaluate different 
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Fig. 3. The Port of Grimsby Digital Twin through the Computational Urban Sustainability Platform (CUSP).
Fig. 4. The Port of Grimsby Digital Twin, future energy needs based on historical and current energy loads.
safety scenarios, such as emergency evacuations or hazardous material 
spills. Prediction algorithms forecast the next 24-hour profiles of indoor 
air temperatures based on historical data and outdoor conditions, as 
shown in Fig.  5.

Optimisation services recommend strategies to enhance worker 
safety and well-being, such as improving ventilation systems, imple-
menting noise reduction measures, and providing comprehensive safety 
training programmes. For example, the platform can identify high-
risk areas where additional safety protocols are needed or suggest 
modifications to work schedules to minimise exposure to harmful 
conditions.

4.1.3. Environmental assessment (carbon emissions)
The assessment of environmental factors, particularly carbon emis-

sions, is critical for the dynamic LCA at the Port of Grimsby.
Carbon emissions are assessed by analysing the data streams of IoT 

sensors, which track emissions from various sources, including ships, 
trucks, and port machinery. The semantic middleware interprets these 
data to provide a comprehensive view of the port’s carbon footprint. 
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Simulation models explore the impact of emission reduction strategies, 
such as adopting low-emission fuels, electrifying port vehicles, and opti-
mising logistics to reduce idle times. Prediction models forecast future 
emissions based on projected port activities and regulatory changes, 
as displayed in Fig.  6. Optimisation services identify the most effec-
tive measures to minimise emissions while maintaining operational 
efficiency. For example, the platform can recommend transitioning 
to electric vehicles for on-site transportation, implementing a more 
efficient scheduling system for cargo handling to reduce idle times, and 
retrofitting older machinery with cleaner technologies.

4.2. Integrative dynamic lifecycle assessment

The dynamic LCA approach at the Port of Grimsby integrates en-
ergy, social, and environmental factors to provide a holistic assessment. 
The process begins with comprehensive data collection through IoT 
sensors, which monitor energy usage, health and safety conditions, 
and carbon emissions. The semantic middleware processes this data, 
creating a detailed and context-aware profile of the port’s operations. 
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Fig. 5. Predicting future indoor and outdoor air temperature at the Port of Grimsby based on historical and real-time data.
Fig. 6. Predicting future carbon emissions of the Port of Grimsby based on historical and real-time data.
 

The simulation services then test various scenarios to evaluate the 
impact of different strategies on energy consumption, worker safety, 
and emissions. Prediction models forecast future trends, allowing for 
proactive management and planning. Optimisation services provide 
actionable recommendations to enhance overall sustainability.

By integrating these assessments, the CUSP platform enables port 
authorities to make informed decisions that balance operational ef-
ficiency, worker safety, and environmental sustainability. For exam-
ple, the platform can recommend combining energy savings measures, 
safety protocols, and emission reduction strategies that collectively 
improve the port’s sustainability profile. This comprehensive approach 
ensures that all relevant factors are considered, leading to a more 
effective and sustainable port operations management.

The application of the CUSP platform at the Port of Grimsby demon-
strates the potential of digital twin technology for performing dynamic 
lifecycle assessments. By integrating energy, social, and environmental 
factors, the platform provides a holistic and comprehensive approach 
to sustainability. Simulation, prediction, and optimisation services en-
able port authorities to make informed decisions that improve op-
erational efficiency, worker safety, and environmental sustainability. 
This case study highlights the importance of a dynamic and context-
sensitive LCA, showcasing the value of the CUSP platform in achieving 
sustainable urban management.

5. Discussion

This section critically evaluates the findings of our research, com-
paring the BLDT framework with traditional LCA approaches and dis-
cussing the implications for environmental impact assessment in the 
built environment. We examine both the advantages and challenges 
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of implementing dynamic LCA through digital twin technologies. Al-
though dynamic LCA offers numerous benefits, it also presents chal-
lenges, including the potential for inconsistencies in methodological 
approaches and the difficulty in aggregating localised data for broader 
analyses. Ensuring the comparability of LCA results across different 
regions requires the development of harmonised frameworks and guide-
lines that maintain a balance between standardisation and flexibil-
ity (Guinée et al., 2011).

In this paper, we have explored the transformative potential of 
integrating LCA with Digital Twins in the built environment, focusing 
on an LCA in a port industrial site. Our primary objective was to 
develop and validate a framework that enhances the precision and 
applicability of environmental impact assessments by leveraging these 
advanced technologies. By addressing the research questions, we aimed 
to bridge the gap between traditional static LCA methodologies and the 
dynamic, real-time, data-driven capabilities of digital twins and IoT.

Our research demonstrates that digital twins can significantly en-
hance the accuracy and efficiency of LCA by providing real-time data 
and continuous updates on environmental conditions. The dynamic 
LCA model we developed integrates these technologies to create a 
‘living’ model that reflects real-world conditions more accurately than 
traditional static models. For example, in our case study of the Port 
of Grimsby, IoT sensors continuously monitored energy consumption, 
emissions, and safety conditions, providing granular data that en-
riched the digital twin and allowed precise real-time environmental 
impact assessments. This continuous data flow ensures that the LCA 
model remains current, improving the reliability and relevance of the 
assessments.

Integrating digital twins into traditional LCA methodologies presents
challenges and opportunities. One significant challenge is the complex-
ity of managing and analysing the vast amounts of data generated 
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Table 3
Comparison between BLDT and Traditional LCA approaches.
 Aspect BLDT Traditional LCA  
 Data Update Frequency Continuous (real-time) Periodic (often annual)  
 Predictive Capability ML-based forecasting Limited or none  
 Granularity of Results Captures short-term variations Averages over time periods 
 User Intervention Ongoing optimisation Post-assessment only  
 Case Study Outcome 25% energy reduction in 6 months No interim improvements  
by IoT sensors. This requires robust data processing and manage-
ment systems and advanced analytical techniques, such as ML to 
extract meaningful insights. Ensuring interoperability between different 
systems and standards is critical to seamless integration. However, 
the opportunities are substantial. Digital Twin integration facilitates 
more detailed and contextually relevant environmental assessments, 
as local conditions and real-time data can be incorporated into the 
LCA. This leads to more accurate and actionable information, allowing 
stakeholders to make informed decisions that align with sustainability 
goals. Our research highlighted the potential for predictive analytics, 
enabled by ML algorithms, to anticipate future environmental impacts 
and optimise strategies proactively, further improving the efficacy of 
LCA.

The BLDT framework offers several significant advantages over 
traditional LCA approaches, as summarised in Table  3. Traditional 
LCA typically relies on static data collected at specific points in time, 
resulting in assessments that may not reflect current conditions. In 
contrast, BLDT continuously integrates real-time data from IoT sensors, 
enabling near-instantaneous updates to environmental impact calcu-
lations. This dynamic approach provides more accurate and timely 
insights, allowing for more responsive decision-making.

Integrating LCA with digital twin technologies significantly con-
tributes to urban sustainable development by providing a compre-
hensive tool for environmental management. In the Port of Grimsby 
case study, the dynamic LCA framework allowed detailed assessments 
of energy consumption, emissions, and health and safety conditions. 
This holistic approach ensured that sustainability considerations were 
integrated into all aspects of port operations, from energy management 
to waste reduction and safety protocols. The predictive capabilities of 
the framework enable city planners and policymakers to anticipate 
and mitigate future environmental impacts, thus fostering long-term 
sustainability. By identifying sustainability hotspots and providing ac-
tionable recommendations, the framework supports the development of 
resilient urban infrastructure that minimises environmental footprints 
and promotes social well-being.

Beyond the port case study presented in this paper, the BLDT frame-
work has potential applications in other types of buildings. In domestic 
buildings, a similar approach could continuously monitor energy con-
sumption, indoor air quality, and occupant comfort, enabling real-time 
adjustments to building management systems. In urban transportation 
networks, dynamic LCA could assess the environmental impact of traffic 
patterns, informing decisions on traffic management and infrastruc-
ture development. Manufacturing facilities could implement BLDT to 
monitor production processes and identify opportunities for reducing 
resource consumption and emissions.

Our research successfully addressed the main objectives and re-
search questions by developing and validating a novel framework 
that integrates LCA with digital twin technologies by addressing the 
following aspects:

Energy efficiency assessment The monitored real-time energy usage and 
digital twins simulated various energy-saving measures, such as adopt-
ing renewable energy sources and energy-efficient equipment. This led 
to actionable insights that helped reduce the port’s energy consumption 
and carbon footprint.
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Health and safety assessment The framework’s ability to monitor and 
simulate health and safety conditions ensured potential risks were 
proactively identified and mitigated. For example, air quality and noise 
levels were continuously monitored, and simulation models evaluated 
the impact of different safety scenarios, enhancing worker safety and 
community well-being.
Environmental assessment By providing real-time data on emissions 
and enabling the simulation of various emission reduction strategies, 
the framework supported the development of effective measures to 
minimise the port’s environmental impact. For instance, transitioning 
to low-emission fuels and electrifying port vehicles were identified as 
viable strategies to reduce carbon emissions.

6. Future work

The integration of LCA with Digital Twin technologies can make a 
substantial contribution to sustainable urban development, potentially 
shaping the future of our cities.

Developing more sophisticated ML algorithms and data analytics 
tools is essential to handle the complexity and volume of data gen-
erated by IoT sensors. This advancement could significantly improve 
the accuracy and speed of environmental impact assessments, leading 
to more informed decision-making and more effective sustainability 
strategies. Techniques such as deep learning, reinforcement learning, 
and ensemble methods could be explored to enhance the precision 
and predictive capabilities of the dynamic LCA model. Furthermore, 
integrating anomaly detection algorithms will help identify outliers and 
unexpected patterns in real-time, ensuring continuous improvement 
and reliability of environmental impact assessments.

Expanding the framework application to diverse sectors and urban 
environments will help generalise its benefits and validate its effec-
tiveness across various contexts. Future research could investigate the 
implementation of the dynamic LCA model in residential, commercial, 
and industrial settings. Each environment presents unique character-
istics and challenges that can offer valuable insights and refine the 
framework. For example, applying the model in residential areas could 
focus on energy efficiency and waste management, while industrial 
settings might prioritise emissions reduction and resource optimisation. 
This diversification will showcase the versatility and robustness of 
the framework, making it a universally applicable tool for sustainable 
development.

Establishing standardised protocols and frameworks for interoper-
ability between different sensor systems, digital twins, and LCA tools 
is not just important but crucial for broader adoption and integration. 
The diversity of IoT systems, digital twins, and the varying data for-
mats and structures can make standardisation complex. Future work 
should develop and promote industry-wide standards that facilitate the 
integration of diverse technologies. Collaboration with international 
standards bodies and industry stakeholders will be vital in creating 
guidelines that ensure compatibility, data integrity, and security be-
tween different platforms and systems. This concerted effort will lead 
to a more cohesive ecosystem in which various technologies can work 
together harmoniously, enhancing LCA practices overall efficiency and 
effectiveness.

Collaboration with policymakers is a critical next step to integrate 
the dynamic LCA framework into regulatory and planning processes. 
Future work should focus on developing guidelines and policy toolkits 
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that support the implementation of advanced technologies in envi-
ronmental impact assessments. By working closely with regulatory 
bodies, we can ensure that the BLDT framework becomes an integral 
part of sustainability governance, supporting evidence-based policy 
development and implementation.

Enhancing stakeholder engagement through participatory
approaches will ensure that local knowledge and preferences are incor-
porated into the LCA process. This inclusion will improve the relevance 
and acceptance of the assessments and support community-driven 
sustainability initiatives. In the proposed participatory LCA framework, 
stakeholders, including local communities, industry representatives, 
and policymakers, will provide data and actively contribute to the 
assessment process.

Integrating the dynamic LCA framework with emerging technolo-
gies such as blockchain, artificial intelligence (AI), and edge computing 
can be a gateway to a new era of sustainable urban development. 
Blockchain can ensure the transparency and security of data, while AI 
can provide advanced analytical insights and automation capabilities. 
Edge computing can facilitate real-time data processing and decision-
making at the source, reducing latency and improving responsiveness 
of LCA workflows. Addressing these areas for future work can sig-
nificantly improve the integration of LCA with digital twin and IoT 
technologies, providing a powerful tool to achieve sustainable urban 
analytics. This comprehensive approach will ensure that environmental 
impact assessments are accurate, relevant, and actionable, supporting 
the global effort to build more resilient and sustainable cities.

7. Conclusion

This study has presented the Building Life-cycle Digital Twin (BLDT) 
framework, an integrated, real-time approach to environmental im-
pact assessment that advances traditional Life Cycle Assessment (LCA) 
methodologies. Developed within the Computational Urban Sustain-
ability Platform (CUSP), the framework combines digital twin technolo-
gies, Internet of Things (IoT) sensor data, semantic interoperability, and 
machine learning algorithms to enable dynamic and predictive envi-
ronmental modelling. By addressing the inherent limitations of static 
LCA, the BLDT offers a robust, adaptable solution for sustainability 
evaluation in the built environment.

The novelty of this framework lies in its ability to transform LCA 
from a one-off, retrospective analysis into a continuous, data-driven 
process. The BLDT enables real-time updates based on actual opera-
tional data, delivering a high-resolution view of energy use, emissions, 
and health-related impacts. This real-time capacity allows stakehold-
ers to identify sustainability hotspots, forecast future impacts, and 
adjust operational strategies accordingly. In doing so, the framework 
supports a new paradigm of proactive, evidence-based environmental 
decision-making.

In response to the research questions, this study has shown:

• RQ1: The research demonstrates that digital twin technologies 
substantially improve the accuracy and responsiveness of LCA. 
Real-time data streams and continuous model updates ensure that 
assessments remain aligned with evolving operational conditions, 
yielding more reliable and actionable insights.

• RQ2: While integrating digital twins, IoT, and ML poses chal-
lenges
– such as data heterogeneity and system interoperability – these 
are addressable through semantic middleware and structured 
data pipelines. The benefits, including higher granularity and 
contextual specificity in LCA outputs, far outweigh the integration 
complexities.

• RQ3: The framework enhances sustainability in the built and 
urban environment by equipping stakeholders with a powerful 
decision-support tool. It facilitates scenario analysis, energy op-
timisation, emissions mitigation, and social impact evaluations—
each contributing to holistic urban environmental management.
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The Port of Grimsby case study validated the framework’s real-
world applicability. By deploying IoT-enabled monitoring and predic-
tive analytics, the BLDT facilitated a 25% reduction in energy consump-
tion over the study period. It also identified operational inefficiencies 
and improved worker safety by integrating environmental and social 
metrics. These results demonstrate that BLDT can meaningfully in-
form sustainability strategies, regulatory compliance, and investment 
decisions in urban infrastructure.

This research underscores the potential for dynamic LCA frame-
works to reshape how environmental assessments are conducted in 
practice. As urban environments become increasingly sensorised and 
data-rich, tools like BLDT will be essential for operationalising sustain-
ability in real-time. The framework aligns with policy shifts towards 
adaptive, context-sensitive regulation and provides a robust platform 
for ongoing innovation in environmental performance management.
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