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ABSTRACT 

KIR3DL1 is a polymorphic inhibitory receptor on natural killer (NK) cells that recognizes HLA class 

I allotypes. While the Bw4 motif spanning residues 77–83 is central to this interaction, structural 

studies have shown that polymorphisms elsewhere in the HLA molecule also influence binding. To 

address the challenge of predicting interactions across the extensive diversity of both KIR3DL1 and 

HLA, we developed a machine learning model trained on binding data from nine KIR3DL1 tetramers 

tested against a panel of HLA class I allotypes. Multiple models were evaluated using different subsets 

of HLA sequence features, including the full α1/α2 domains, the Bw4 motif, and α-helical residues 

excluding loop regions. The best-performing model, using Multi-Label-Vector Optimization (MLVO) 

and trained on α-helix positions, achieved AUC scores ranging from 0.74 to 0.974 across all KIR3DL1 

allotypes. The model effectively distinguished high and low binders, revealing that residues beyond 

the Bw4 motif contribute to binding strength in a nonadditive manner. These findings demonstrate that 

binding affinity cannot be accurately captured by binary classifiers or single-motif rules. Our approach 

offers a more nuanced framework for modeling KIR3DL1-HLA interactions, with broad applicability 

to immunogenetic research and clinical decision-making.  
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INTRODUCTION 

Host genetic variation plays a critical role in shaping immune responses and disease susceptibility. 

Among the most polymorphic and clinically relevant gene families are the Human Leukocyte Antigens 

(HLA), which present peptides to the immune system1. For example, HLA-B*57:01 offers protection 

against HIV but also predisposes individuals to abacavir hypersensitivity2,3. Over 27,000 HLA class I 

alleles have been identified, encoding more than 15,000 distinct allotypes4. While this diversity 

enhances adaptive immune responses at the population level5, it poses a challenge to the innate immune 

system, which also relies on HLA for immune surveillance. 

 

Natural killer (NK) cells, key effectors of innate immunity6, recognize subsets of HLA class I 

molecules via the Killer-cell Immunoglobulin-like Receptor (KIR) family. KIR genes exhibit 

considerable diversity both in gene content and allelic variation; individuals may carry between 7 and 

14 activating or inhibitory KIR genes7,8 and over 2,200 alleles have been reported4. Both HLA and 

KIR allelic variation can influence the strength of their interaction, which in turn modulates NK cell 

activation9,10. However, predicting the affinity of these highly polymorphic receptor-ligand interactions 

remains difficult. 

 

This complexity is exemplified by the inhibitory receptor KIR3DL1, which binds to HLA class I 

molecules carrying the Bw4 motif11. (residues 77–83 on the α1 helix). Early studies suggested that 

HLA-Bw4 allotypes with isoleucine at position 80 (Bw4-80I) bind KIR3DL1 more strongly than those 

with threonine12 (Bw4-80T). Yet exceptions such as HLA-A*25:01, a Bw4-80I allotype with weak 

KIR3DL1 binding, revealed limitations of this binary classification. Structural studies of KIR3DL1 in 

complex with HLA-B*57:01 demonstrated that residues outside the Bw4 motif—and even the HLA-

bound peptide—also contribute to binding, highlighting a broader structural basis for interaction14–18. 
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KIR3DL1 itself is highly polymorphic, with over 300 alleles encoding 138 distinct protein variants. 

These span three main phylogenetic lineages, including two inhibitory lineages comprising 

KIR3DL1*005-like and *015-like alleles, and a third lineage which is much more constrained at a 

population level and consists primarily of the activating KIR3DS1*013 allele22.  

 

Allotypes differ in cell surface expression and HLA binding capacity; for instance, KIR3DL1*005 

binds a broader set of HLA allotypes than KIR3DL1*0159,16, and some allotypes like 004 are poorly 

expressed on the cell surface10,23. Differences in key residues, such as positions 238 and 283, have been 

associated with functional divergence in HLA recognition15,24–26. These molecular features contribute 

to distinct binding hierarchies, where some HLA-Bw4 allotypes, like B*57:01 are recognized broadly, 

while others, such as A*24:02 are selectively bound by specific KIR3DL1 variants. 

These interactions are functionally important. KIR-HLA combinations influence NK cell education, a 

process that enables discrimination between healthy and diseased cells, especially in contexts like 

infection, cancer, and allogeneic transplantation. Consequently, genetic studies have examined 

KIR/HLA pairings in clinical outcomes, including treatment responses in leukemia27,2830,31 and 

neuroblastoma30,31, as well as disease progression in HIV32. These studies typically use simplified 

metrics—Bw4-80I versus 80T, or KIR3DL1 expression level—to classify interactions as strong or 

weak. However, both experimental and clinical data increasingly reveal exceptions to these 

categorizations. Binding strength exists on a spectrum, and many interactions fall outside binary 

"binder/non-binder" thresholds. 

 

Compounding this complexity is the lack of experimental binding data for many KIR3DL1-HLA 

combinations33. The polymorphism of both genes and the uneven representation of HLA allotypes 

across populations make it impractical to test all possible interactions in vitro. To address these 

limitations, we developed a machine learning model to predict the strength of KIR3DL1 binding to 
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HLA class I allotypes using amino acid sequence features. This continuous, data-driven model enables 

broader and more precise application of KIR-HLA interactions in immunogenetic research and clinical 

outcome prediction. 

 

RESULTS 

Poor population coverage of empirical KIR/HLA binding data 

To first demonstrate the requirement for a KIR/HLA binding prediction tool, the fraction of the 

population covered by the current experimental panel of KIR3DL1 and HLA-I was evaluated (Figure 

1).  At present, the binding of three tetrameric KIR3DL1 allotypes (*001, *005 and *015) and seven 

KIR3DL1-tetramers or -Fc allotypes (*005, *007, *001, *002, *015 and *020) to HLA-coated beads 

has been examined9,34. This panel is here extended, with the additional binding of nine tetrameric 

KIR3DL1 allotypes (*001, *002, *004, *005, *008, *009, *015, *020, *029) measured in an analogous 

manner. Despite this broad panel, based on allele frequencies in the literature, 6–24% of known 

KIR3DL1 alleles20 and 11–23% of HLA-I alleles35 remain untested. On average, 76% of the 

KIR3DL1/HLA-I allele combinations were covered (Figure 1A, green rectangles). This coverage was 

maximal in European and Asian populations and was less in African populations as expected due to 

their greater genetic diversity (Figure 1A).  

The implications of this coverage challenge for KIR3DL1/HLA-I allotypic combinations are worse 

when considering full HLA class I genotypes. Since each individual expresses two HLA-A, -B, and -

C alleles, the proportion fully covered in the experimental panel reduces to 8% in African populations, 

and to 34% in European populations (Figure 1B). Thus, even in the best covered population, two thirds 

of individuals have at least one HLA allele for which experimental data is lacking. To address this gap, 

we developed two types of predictive models: a prediction tool for a KIR3DL1 allotype which has 

been empirically tested (the nine alleles) but not against the HLA in question and a second for when 

there are no experimental data for the KIR3DL1 allotype.  
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HLA-I binding to KIR3DL1 forms three clusters 

Inhibitory KIR share a common binding site on HLA-I spanning residues in both the 𝛼1 and 𝛼2 helices. 

Notably, KIR2DL1/2/3 and KIR3DL1 all bind to residues 145, 146, and 149-151, all of which are 

highly conserved across HLA-A, -B and -C allotypes36,37. The other major KIR docking site spans 

residues 69-84, which incorporates both the C1 and C2 serological determinants as well as the 

determinants of the Bw4 and Bw6 epitopes.38 Position 80 along with residue 77 are considered the 

specificity-determining residues for KIR2DL1 versus KIR2DL2/3 recognition of HLA-C2 and C1 

molecules, respectively39,40, while positions 80 and 83 are important in KIR3DL1 recognition of HLA-

Bw4 molecules16,41. Among the HLA-I bead binding panels, there were five combinations of residues 

80 and 83, two of which corresponded to Bw4 allotypes (I80/R83 and T80/R83), K80/G83 and 

N80/G83 denoted C1 and C2 allotypes respectively while T80/G83 characterized the bulk of HLA-A 

allotypes (Table 1). Notably, HLA-B molecules with the Bw6 motif also exhibit the N80/G83 

combination seen in C2 allotypes. This supports the structural similarity between these subgroups. 

To first broadly compare how the combinations of residues 80 and 83 impact HLA/KIR binding, the 

binding of nine distinct KIR3DL1 allotypes to these 97 HLA-I allotypes was assessed. As expected, 

regardless of KIR3DL1 allotype, HLA-I allotypes that possessed either I80/R83 or T80/R83 exhibited 

superior binding to KIR3DL1 tetramers compared to other 80/83 combinations (Figure 2). 

Interestingly, the K80/G83 (C1) and HLA-C encoded N80/G83 (C2) combinations, while on average 

not binding as well as the Bw4 allotypes, nevertheless showed significant reactivity with KIR3DL1 

compared with the T80/G83 allotypes (Mann Whitney test between K80/G83 or N80/G83 and 

T80/G83 P<0.001 for all KIR3DL1 allotypes). Additionally, there were significant differences in 

recognition patterns across individual KIR3DL1 allotypes, with KIR3DL1*005 being the most distinct, 

as evidenced by a greater capacity to bind N80/G83 allotypes and even several T80/G83 allotypes. 

Nevertheless, HLA allotypes with I80 and T80 (both with R83) were associated with high binding to 

KIR3DL1. K80 and N80 can be either low-level binders (typically on HLA-C allotypes, but some 
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HLA-B allotypes, mainly to KIR3DL1*005) or non-binders (typically on HLA-B allotypes), and 

T80/G83 do not bind to KIR3DL1, except for KIR3DL1*005. The variation in KIR3DL1 binding 

within each of these HLA-I subgroups therefore reinforces the notion that polymorphisms outside of 

regions 77-83 of the 𝛼1 helix can significantly impact HLA class I recognition by KIR3DL1. 

To compare the diversity of binding patterns, we performed hierarchical clustering on KIR allotypes 

in terms of their binding to HLA allotypes. KIR3DL1 allotypes *002, *008, *009, *020 and *029 were 

highly similar in their recognition of HLA-I, while KIR3DL1*005 and *004 were the most divergent 

(Figure 3). These differences only partially matched the sequence phylogeny with KIR3DL1*002, 

*008, *009, *020 and *029 in the *015-like lineage and *004 and *005 in the *005-like lineage20. 

Curiously, KIR3DL1*015 binding to HLA-I sat somewhat apart from the rest of its lineage 

representatives.  

To better define the residues in HLA-A and -B that were responsible for differences in KIR3DL1 

binding clustering of HLA-I allotypes was performed considering their binding by all KIR3DL1 

allotypes (i.e. each HLA-I allotype is represented by its vector of log binding affinities to each 

KIR3DL1 allotype, normalized for each KIR allele between 0 and 100). Three clusters of binding were 

observed based on the top three clusters of average link hierarchical clustering representing high 

binders (such as HLA-B*57:01, -B*58:01 and -A*32:01), low binders (including HLA-B*38:01, -

B*51:01, -B*44:02 and -A*24:02), and non-binders (mostly comprised of HLA-Bw6 and HLA-A 

allotypes, but also including HLA-Bw4 allotypes like HLA-B*27:05, -B*13:01 and -A*25:01) (Figure 

3A).  

All HLA-I allotypes classified as high or low binders (red and green clusters) were next compared to 

the non-binding cluster (blue cluster), and the amino acid residues significantly contributing to the 

binding were computed. When split using a two-population logo plot, where the size of each letter is 

proportional to its contribution to the difference between the populations (Figure 4B), the contribution 

to binding was highest at positions 80-83, with a clear IALR (Bw4) signature motif for binders and 
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NLRG (Bw6) motif for non-binders. However, there were also significant contributions from positions 

extending back to residue 67, which may be due to linkage disequilibrium. Interestingly, not all HLA 

allotypes that bind KIR3DL1 have the full IALR signature (such as HLA-B*44:02 which has a Thr at 

position 80), but each of these residues contributes significantly to the difference between binders and 

non-binders. To further detect the residues associated with the distinction between low and high 

binders, we performed a similar analysis focusing only on the differences between the high and low 

binders (Figure 4C). The amino acid residues that significantly contributed to this distinction were at 

positions 62, 65 and 66 (highlighted in green on Figure 4A), with four of the six high-binding HLA-

Bw4 allotypes possessing Arg65 and Asn66. Notably, these residues all form part of the A pocket that 

accommodates peptides.  

The most significant regions for KIR3DL1 binding were the outward-facing amino acids in the 𝛼1 

helix, particularly the classical Bw4 motif located at the C-terminal end of the 𝛼1 helix (Figure 4A).  

Regions further from the C-terminal end have a lower, yet significant (at the p=0.05 level), influence 

on KIR3DL1 binding. Importantly, all amino acids within the 𝛼1 and 𝛼2 domains were considered in 

the analysis. However, only residues in the 𝛼1 helix had variation substantial enough to produce a 

signal. This does not preclude the impact of unique polymorphisms on the 𝛼2 helix on specific allotypes 

such as positions 145 for HLA-B*13:01 and 149 for HLA-A*25:01 that have been reported to impact 

KIR3DL1 recognition18. Nevertheless, these clustering analyses identified three groups of HLA-I 

binding to KIR3DL1, high, low, and non-binders, with their binding strength influenced by residues 

outside of the Bw4 motif on the 𝛼1 helix. 

A tool to predict KIR3DL/HLA-I binding  

Although the empirical measurements of KIR3DL1/HLA-I binding identify differences in their 

strengths of interaction, they cannot account for the vast polymorphism of both KIR and HLA at a 

population level. Therefore, both linear and non-linear kernel methods were used to predict the strength 
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of interaction between the KIR3DL1 allotypes and any HLA class I allotype. Disease association 

studies attempting to link KIR3DL1/HLA-Bw4 interactions with clinical outcomes have typically only 

considered the presence or absence of the Bw4 motif or the presence of an Ile or Thr at position 80. 

Consequently to assess the broader contribution made by HLA-I residues on this interaction, the 

performance of each model was evaluated using four different options for the inclusion of amino acid 

residue positions: 1) all positions encoding the  𝛼1 and 𝛼2 domains (all), 2) all positions except 

connecting loops (no loops), 3) only positions on the alpha helices (helices), and 4) only the six 

positions that contribute to the Bw4 motif itself (Bw4) (Figure 5A). Since Bw4 binding motifs are 

confined to HLA-A and B molecules12, the models were also evaluated with and without the inclusion 

of HLA-C (A/B/C and A/B).  

While dimensionality reduction for categorical variables is often performed using Multiple 

Correspondence Analysis (MCA), we found that Principal Component Analysis (PCA) yielded better 

model performance, with significantly higher AUC values (t-test p < 0.05). Similarly, both Multi-

Label-Vector Optimization (MLVO) and Support Vector Machine (SVM) classifiers produced higher 

AUCs, with MLVO achieving the best accuracy overall, as measured by the Area Under the Curve 

(AUC), where a score of 1 indicates perfect separation between binding categories (Supporting 

Information Figure 5).  More complex models, including XGBoost and neural networks, were also 

tested but showed lower test set AUCs. The superior performance of linear classifiers suggests that the 

effect of individual residues on binding strength is largely additive when modeled on the logarithmic 

scale. 

The prediction of binders and non-binders was next tested, based on the information from all KIR3DL1 

allotypes (see methods for training/test division) (Figure 5Bi). When comparing different types of 

input, there was a significant difference between the input types (two-way ANOVA p<0.05). There 

was no effect in the comparison between the loci used (A/B vs A/B/C) for the overall binding. 

However, there was an effect depending on the HLA-I amino acid residues included in the model.  Use 
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of the six positions that contribute to the Bw4 motif led to a lower accuracy of the model (AUC value) 

than the alternatives when considering HLA-A and B, and thus reinforced the importance of residues 

beyond this motif in determining KIR3DL1 binding (Tukey test p<0.05, Figure 5Bi).  

A similar analysis was performed to predict the high/low-binder categories, using a linear classifier 

(Figure 5Bii). Overall, the accuracy of the model predicting low from high binders was lower than that 

for the binders and non-binders. Indeed, removing HLA-C from the analysis significantly reduced the 

performance of the high to low binders (ANOVA p<0.05, Tukey test <0.05 on all combinations of 

groups without HLA-C versus groups with HLA-C). This is expected based on the data in Figure 2, 

where many of the low-level binders are HLA-C allotypes. However, even when HLA-C was removed, 

a partial classification could still be obtained, since even within the HLA-A and -B allotypes there are 

differences between high and low-binders. Again, the two-way ANOVA was significant (p<0.05), with 

both the loci (with and without C) and the input type was also significant (p<0.05).  

We further used only positions in the helices (including HLA-C), which was the minimal model with 

the highest accuracy separating binders and non-binders, to predict HLA-I binders versus non-binders 

for each KIR3DL1 allotype separately (Figure 5C) with the training cases (white bars) and test cases 

(black bars). Interestingly, a clear difference was found between allotypes with KIR3DL1*005 

performing worse, and other KIR3DL1 allotypes like *002 having a test set AUC of almost 1, all based 

on the same number of observations (ANOVA p<0.01, p<0.01 Tukey test of KIR3DL1*005 versus 

others). The divergent, broader binding pattern of KIR3DL1*005 likely drove its suboptimal 

performance in the model, although KIR3DL1*004 performed better despite also having a divergent 

binding pattern. The linear classifier was then used to estimate the contribution of each HLA-I amino 

acid position to the binding prediction (Figure 5D). The total contribution of each position was 

normalized to 0, and the average contribution of amino acids in each position calculated. As expected, 

residues comprising the Bw4 motif (77-83) distinguished HLA-I binders from non-binders across all 

KIR3DL1 allotypes, with additional positions across the 𝛼1 and 𝛼2 helices contributing. Notably, 
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residues 67, 71 and 49 in the HLA-I contributed mainly to KIR3DL1*005 and *004 recognition of 

binders and non-binders and is again consistent with the different binding patterns (Figure 3) and 

classifiers for these two allotypes. 

 

Testing the KIR3DL1/HLA-I binding predictor 

To date, over six thousand HLA-B proteins have been described, around a third of which carry the 

Bw4 epitope while about 20% of the almost five thousand HLA-A allotypes reported are Bw4+ 4,41. To 

assess the capacity of the model to assign binder/non-binder and low/high binding classifications to 

additional, untested HLA-I allotypes, the binding scores to all KIR3DL1 allotypes were computed for 

8,000 HLA-A, -B and -C allotypes (Figure 6). Grouping by class I type, non-binders were mostly 

HLA-A allotypes, while the high binders contained both HLA-A and -B allotypes and the low binders 

were mostly HLA-C allotypes (Figure 6A). Overall, HLA-B allotypes tended to have higher predicted 

binding probability than HLA-A allotypes.  When looking at the amino acid composition, binding 

corresponded primarily with the presence of the Bw4-distinguishing residue R83 (Figure 6C), as well 

as I80 and T80-containing motifs (Figure 6B). Notably, both residues at position 80 were predictive 

of high binding, suggesting that segregation of weak and strong KIR3DL1 ligands on the basis of this 

one residue alone is imprecise. Some HLA-A allotypes with I80/R83 were non-binders (e.g. HLA-

A*25:01), yet other HLA-A along with HLA-B allotypes with I80/R83 were regarded as high binders. 

Additionally, other T80 allotypes originating from HLA-A (G83) did not bind at all while C1 

(N80/G83) and C2 (K80/G83) molecules sat in the middle range. Position 66 was additionally assessed 

due to its variation significantly contributing to the distinction of high and low binders in the clustering, 

however, no single amino acid was found associated with high versus low binding (Figure 6D). 

Therefore, beyond the broad distinctions between the main KIR ligands, the current analysis gives a 

much more calibrated representation of KIR3DL1 and HLA-I binding.  
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To further test the accuracy of the predictor on unseen HLA allotypes, we used previously published 

mutation studies examining the recognition of wild type and mutant HLA by KIR3DL1+ NK cells. In 

these studies, HLA-I molecules were mutated at specific residues and transfected into 721.221 (221) 

cells, which lack endogenous HLA-A and -B allotypes. Purified NK cells from healthy blood donors 

typed for KIR3DL1 were then incubated with HLA-expressing 221 target cells and degranulation 

measured after five hours by flow cytometry. The mutations examined included residues comparing 

the recognition of HLA-B*57:01 and -B*13:01 (residue 145), HLA-B*57:01 and -A*24:02 (residues 

144, 151, 116, 113/114/116, 95/97), and HLA-A*24:02 and -A*25:02 (residues 90, 149, 152), and the 

replacement of KIR3DL1 contact residues on HLA-A*24:02 and -B*57:01 with alanine (residues 16, 

17, 18, 72, 76, 79, 80, 83, 84, 89, 142, 145, 146, and 151) or glycine (149 and 150) 18 as well as our 

unpublished data examining residues 62 and 109, and comparing HLA-B*27:04/05/06 recognition42. 

An expected KIR3DL1/HLA-I binding affinity was computed for each HLA-I and mutant based on its 

amino acid sequence. Since individuals can express more than one KIR3DL1 allele, the expected 

binding was computed as the average binding for all the expressed KIR3DL1 alleles in the individual. 

To control for variability across HLA-I mutants and experiments, the observed degranulation of 

KIR3DL1+ NK cells was first normalized to their response towards the HLA-deficient 221 parental 

cell line in each assay (representative of the maximal degranulation). This value was correlated with 

the computed binding affinity for the wild type HLA-I molecules or their respective mutants (Figure 

7A). In both cases, a positive correlation was observed for all KIR3DL1 allotypes with an average of 

0.4. Although the variable sample sizes here contributed to the differences in correlation, a higher 

accuracy was obtained for KIR3DL1 homozygotes. 

 

The model used here presumes a linear contribution of each amino acid to the log of the binding 

strength. As such, mutation of a given amino acid would be expected to have an opposite log ratio 

change upon mutation in the reverse direction (for example,  one could mutate HLA-A*24:02 with a 
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Q->K mutation or  HLA-B*57:01 with a K->Q mutation at position 144 – if each position was 

independent, the two were expected to have precisely opposite effects).  To test how consistent the 

linearity assumption was, the log ratio of the degranulation of KIR3DL1+ NK cells towards a given 

HLA-I mutant (direct mutation) was correlated to the log ratio of the reciprocal mutation (invert 

mutation) (Figure 7B). When assessed by KIR3DL1 allotype, the responses of KIR3DL1*005+ NK 

cells to reciprocal HLA-I mutations showed higher correlation to each other than the response of 

KIR3DL1*015+ NK cells to such mutations. Given that the binding affinity of KIR3DL1*015 

displayed greater variability across HLA-I than KIR3DL1*005 (Figure 2), the sensitivity of 

KIR3DL1*015 to these reciprocal mutations is likely affected by its capacity to bind HLA-I of different 

allotypes. In contrast, the broader recognition of HLA-Bw4 allotypes by KIR3DL1*005, as well as its 

greater peptide tolerance15 may allow for more reflective impacts by individual HLA-I mutations. 

These results highlight both the strength of the general prediction model developed here as well as 

some of its limitations. 

 

Web tool 

A web tool has been developed (https://kir-hla.math.biu.ac.il) that allows input of either an HLA-A, -

B, or -C allele name or the amino acid sequence of an allotype (including novel or hypothetical alleles 

not defined in the nomenclature) and predicts their likely binding to KIR3DL1 allotypes.  The output 

from 11 models is provided as described in the methods along with an indication of how this allele 

performs relative to the full list of HLA-A, -B, and -C alleles evaluated. The matrix of beta values for 

all 11 models is available for download as well as the amino-acid encoding for 15,474 HLA-A, -B, -C 

alleles (as of 2023-04-01). (Supporting Information Figures 1-4) 

 

DISCUSSION  
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The human immune system relies on interactions between two highly variable families of genes: HLA, 

which presents protein fragments to immune cells, and KIR, which helps regulate how natural killer 

(NK) cells respond. These interactions are essential for recognizing infected or cancerous cells, and 

even small genetic differences can influence health outcomes. However, because there are thousands 

of variations in both HLA and KIR genes, it is not feasible to study all possible combinations in the 

laboratory. As a result, many clinical studies rely on simplified models that may overlook meaningful 

variation. Our study addresses this gap by using machine learning to predict how diverse KIR3DL1 

receptors interact with different HLA class I allotypes, including those that have not been 

experimentally characterized. 

 

While binding assays using KIR tetramers or Fc proteins with HLA-coated beads have greatly 

expanded the number of measurable KIR/HLA interactions, the full diversity of HLA and KIR across 

global populations is far too large to be captured through direct testing. In fact, even in well-studied 

populations, fewer than 30% of individuals carry KIR3DL1 and HLA-I allotypes for which direct 

binding measurements are available. To improve coverage, we characterized the binding of nine 

KIR3DL1 allotypes to 97 HLA class I molecules and trained a machine learning model to predict 

binding across all known HLA-I sequences. 

 

From this analysis, three key findings emerged. First, KIR3DL1 binding to HLA-I allotypes falls into 

three categories—high, low, and non-binding—rather than a simple binary classification. Second, 

although the Bw4 motif at positions 77–83 remains a strong predictor of binding, additional residues, 

particularly on the α1 helix, significantly influence interaction strength (Figure 8). Third, while most 

KIR3DL1 allotypes have similar binding profiles, certain variants, such as KIR3DL1*004 and *005 

show distinct patterns. These allotypes recognize a broader range of HLA molecules and rely more 
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heavily on non-Bw4 residues. In contrast, other allotypes such as *015 and *029 are fastidious in 

binding the classical Bw4 motif.  

 

These predictions are consistent with prior studies showing KIR3DL1*005+ NK cells to have broader 

HLA binding capacity and greater peptide tolerance9,15, and likely explains why the simple linear 

predictor obtained higher accuracy on other KIR3DL1 allotypes. The model’s feature coefficients at 

the Bw4 motif are consistent with detailed mutagenesis experiments9,15,16,41, while also capturing added 

predictive value from distal positions. 

 

KIR3DL1 can also interact with the peptides bound by HLA class I molecules, which can further 

influence binding strength14,46. For instance, although HLA-B*57:03 and HLA-B*57:01, differ only at 

positions 114 and 116 in the floor of the peptide binding groove17, they exhibit distinct effects on 

KIR3DL1 engagement due to differences in how the same peptide is presented. Developing models 

that can accommodate these complex peptide sequence/confirmation effects will be challenging. It is 

important to note that the HLA-I molecules used in our binding assays are expressed from recombinant 

cell lines and present diverse, endogenous peptide repertoires47. The observed binding hierarchies in 

these assays correspond with functional NK cell responses, suggesting that the model captures general 

features of KIR recognition. Notably, peptides appear to exert greater influence in weak HLA binders, 

where optimal contact with the HLA scaffold is lacking18 [Saunders, et al in press].   

 

These findings have clear implications for research and clinical applications. KIR3DL1-HLA class I 

interactions influence immune responses in a range of settings, including hematopoietic cell 

transplantation27,28,48,49, viral infection3,32,493,51, cancer immunotherapy54, and even neurological 

disease52,53.  Yet clinical studies often reduce this complexity to the presence or absence of the Bw4 

epitope or specific residues like I80. Our model provides a more detailed understanding. For example, 
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although HLA-A*25:01 carries the I80/R83 motif, it is a poor KIR3DL1 binder—a nuance captured 

by our model but overlooked in binary categorizations.  This enhanced resolution could improve the 

interpretation of prior studies. In transplantation research, for example, KIR3DL1 expression levels 

and Bw4 subtypes have been linked to relapse risk in AML patients. A study by Boudreau et al. found 

that “weaker” KIR3DL1-HLA pairings—defined using expression levels and residue 80—were 

associated with reduced relapse rates27. However, follow-up studies failed to replicate these findings 

consistently55, likely due to genetic and treatment variability across cohorts. Our model allows 

reanalysis of such studies using more precise definitions of KIR-HLA interactions, potentially 

uncovering effects that were previously missed. It also highlights the need to consider HLA-A alleles 

with Bw4 motifs, which are often ignored but can still inhibit NK cell function. 

 

While our predictor performs well, certain limitations remain.  For example, the model correctly 

predicted HLA-A*25:01 as a non-binder despite I80, but misclassified HLA-B*13:01 as a binder 

(Supporting Information Figure 1), even though it failed to engage KIR3DL1 in both binding and 

functional assays18. Future improvements will need to account for structural flexibility and allotype-

specific interaction mechanisms, as shown in recent studies of KIR2DL interactions with peptide-

loaded HLA-C allotypes37. These findings challenge the assumption that a given residue has a uniform 

role across all interactions.  

 

Nonetheless, this model provides a powerful tool for predicting KIR3DL1 binding strength across the 

full range of HLA class I diversity. By offering allele-level resolution—including for under-

characterized or novel variants—it enhances the utility of KIR/HLA genotyping in both research and 

clinical settings. As more experimental data become available, the model can be further refined and 

expanded. In the meantime, it supports more accurate analyses in transplantation studies, disease 

association research, and the design of NK cell-based immunotherapies.  
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 EXPERIMENTAL PROCEDURES 

KIR3DL1/HLA-I binding affinity measurements 

HLA-I recognition by KIR3DL1 allotypes was assessed through binding of KIR3DL1 tetramers to 

beads coated with a panel of 100 different HLA-A, -B, and -C molecules (LABScreen HLA Class I 

Single Antigen; One Lambda). These experiments have been described in detail previously9. KIR 

binding affinity values were determined over a series of 3 runs per KIR3DL1 allotype. The results were 

averaged and normalized against the maximal response to produce a matrix of raw binding values for 

each HLA-I and KIR3DL1 combination, distributed between 0 and 1. 

 

2D-clustering 

The log of the raw matrix above was clustered using hierarchical clustering with average link clustering 

on both the KIR3DL1 and HLA-I allotypes using a Euclidean distance between samples. The results 

presented are ordered following the clustering in both directions. For HLA-I clustering, each HLA-I 

was represented by their nine-dimensional normalized binding vector of affinities to the KIR3DL1 

allotypes. The opposite was performed for the KIR3DL1 allotype representations.  

 

Logo plots 

Logo plots were computed using the Two Sample Logo web tool56. Sequences were grouped into three 

clusters of HLA-I allotypes based on the hierarchical clustering: high, low and non-binding. All 

sequences were then aligned, with the high and low binding levels compared with the non-binder 

clusters, and he low and high binding groups compared one to each other using a binomial test. The 

presented residues represents the amino acids with a significant difference at a 0.05 level with a 

Bonferroni correction57. 

 

Machine learning and regression 
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The amino acid sequences of the different HLA-I allotypes were converted into amino acid-position 

pairs (for example R6 represents an arginine at position 6). Positions for which there was no variability 

in all studied HLA-I allotypes were removed from the samples. Each HLA-I allotype was then 

represented as a binary vector with 1 in the appropriate position if the HLA had the corresponding 

amino acid. For example, an HLA that starts with RA would have values of 1 in positions R1 and A2, 

and 0 in all other amino acid possibilities for position 1 and 2 (e.g., S1 and L2). This is a one-hot 

representation with non-polymorphic encodings removed (further denoted as one-hot vectors). Linear 

or kernel-based predictions were then applied on the log of the binding affinity. Zero values were 

replaced by a minimal value (1% of the minimal positive value to avoid a log of zero values). 

 

The prediction was performed using four different regions and/or residues of the HLA-I:1) all positions 

in the second and third exons of the HLA-I allele; 2) only the six residues associated with the Bw4 

motif (defined as [76:77 80:83]); 3) no loops (where the loops were defined as 

[16:19,39:44,49:56,86:90,106:107,128:131,137:140,151:152,176:179,180:183]); and 4) residues 

encoding only the alpha helices (defined as [57:85,141:175]) or as the exon 2 and 3, without loops. 

When the regression was performed only on the Bw4 positions, the one-hot vectors themselves were 

used. In all cases, first either a Multiple Correspondence Analysis (MCA) 58 or a Principal Component 

Analysis (PCA) were performed over all the one-hot vectors. Then machine learning was performed 

on the projection over the first K MCA vectors (i.e. projection to K dimensions). In the current 

application, K was set to be seven, based on the decrease in the contribution to variance beyond the 7th 

Eigenvector. The results presented for the KIR3DL1 binding prediction are an average over five cross 

validations. In all learning tasks, a 5-fold cross validation was performed where the percentage of 

training and test samples was 80% and 20% respectively, unless explicitly stated otherwise. For each 

cross-validation, each HLA-I allele was either always in the test or always in the training set for all 

KIR3DL1 allotypes. The following classifiers were used: 
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A) Support Vector Classification (SVM) - The implementation of this method was based on libsvm 

59. The penalty parameter of the error term (the “Box Constraint”) was set to 0.01. The kernels tested 

were linear and polynomial and a “balanced” class weight was used, implying that the box constraint 

is normalized to be inversely proportional to the class size.  

B) Multi Label Vector Optimization (MLVO) - Formally assumes samples have binary and 

continuous labels (not necessarily both labels for all samples). We assume that continuous observations 

are monotonically related to the binary classifications. Each sampled point can have either one of the 

two label types or both. When both are used the resulting kernel machines based optimization problem 

has been denoted the Multi-Label-Vector-Optimization41. 

More complex methods, such as Random Forest, XGBoost and Neural networks had lower 

performance scores. The precisions of the classifiers were computed using the Area Under the 

sensitivity-specificity Curve (AUC).  

Phylogeny 

For the comparison between different KIR3DL1 allotypes, the Hamming Distance 60 between their 

sequences was computed using the amino acid sequence over the entire KIR3DL1 coding sequence, 

following gene alignment between all the studied KIR3DL1. 

Web tool 

A web tool (https://kir-hla.math.biu.ac.il/Home) was developed using the python flask framework that 

implements the predictions from the model based on the amino-acid sequence of the input HLA-I allele. 

The output is based directly on the matrix of beta values from 11 models: overall binding, high vs low 

binding, and KIR3DL1 allotype specific models for the 9 training allotypes: KIR3DL1*001, *002, 

*004, *005, *008, *009, *015, *020, *029. Supporting Information Figures 1, 2 and 4 shows the 

response of the tool to an input for specific allotypes. Supporting Information Figure 3 shows the 

response of the tool to an input of an HLA Class I amino acid sequence. The web tool ignores amino 

acids that are missing (‘*’). 
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Statistical Analysis 

A two-sided two population t-test was used to compare the log binding scores between the average of 

the T80/G83 group (minimal binding) and each other 80/83 group, with no multiple measurement 

corrections (Figure 2, black stars). A one-way ANOVA between all groups was always significant at 

the p=0.001 level. A post-hoc Tukey test on each group vs each other group was further performed 

(Figure 2, blue stars), All p values are reported in the Supporting Information Table 1. For 

comparisons between the AUC of modeled HLA regions (Figure 5Bi and Bii) a two-way repeated 

measurement ANOVA with the input type was performed and the loci included as independent 

variables. For the comparison between KIR3DL1 allotypes (Figure 5C), a one-way ANOVA with the 

3DL1 allele as an explaining variable was carried out. For the correlation between the reported 

KIR3DL1+ NK cell degranulation and the predicted score (Figure 7A and B), the expected binding 

score to each HLA and the log normalized degranulation level were computed for each set of 

experiments with the same surface expressed KIR3DL1 allotype, where each degranulation level was 

divided by its baseline, and computed for each such sets the Spearman Correlation Coefficient between 

the predicted score and the normalized degradation level. For the mutation experiments (Figure 7C), 

the log ratio between the degranulation level before and after the mutation was calculated, and in 

parallel the expected score difference, and the correlation between the score difference and the log 

ratios computed. 

Data Availability 

This article contains supporting information. The datasets analyzed for this study can be found in 

Supporting Information Table 2. 
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Figure Captions 

 

Figure 1: Available KIR3DL1/HLA-Bw4 binding data disproportionately covers populations. A). 

The frequency of HLA-A (i), HLA-B (ii) and HLA-C (iii) allotypes, along with KIR3DL1 allotypes 

covered by the present KIR3DL1/HLA-Bw4 binding data among African, Asian, Latin American and 

European populations Green regions represent the fraction of the population where both HLA-I and 

KIR3DL1 binding information are covered, yellow represents only KIR3DL1 coverage and blue only 

HLA-I coverage, while gray is where neither are present in the current datasets. B). Summary of the 

covered HLA-I allotypes along with the fraction of the HLA-I genotypes (two of each HLA-A, HLA-

B and HLA-C) fully covered by the present experimental binding measures. For all populations, 

assuming independence, this fraction is below 0.35. 
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Figure 2: HLA-I residues 80 and 83 impact KIR3DL1 binding patterns. The log binding score plotted 

for each tested HLA-I allotype (yellow HLA-A, green HLA-B and red HLA-C) for nine KIR3DL1 

allotypes. HLA-I are grouped by their amino acid residue combinations at positions 80 and 83 (very 

rare combinations were ignored). Each group is compared to the lowest binding group, T80/G83 (in 

black * p<0.05, ** p<0.01,*** p<0.001,ns Non-Significant). Additionally, the blue stars represent the 

same p value ranges but comparing each residue combination to the one to its right and using a Tukey 

test. 

 

Figure 3: KIR3DL1*005 and *004 are more promiscuous in binding HLA-I. A) Clustering of the 

HLA-I allotypes in terms of their KIR binding behavior. B) 2-dimensional clustering of HLA-I 

allotypes across all nine KIR allotypes revealing high binders (red), low binders (green) and non-

binders (blue). 

 

Figure 4: Residues beyond the Bw4 motif impact KIR3DL1 binding. A) Regions on the a1 domain of 

the HLA class I molecule (PDB accession 6TDQ) contributing to binding. The purple residues 

comprise positions 74-89 which were the most significant in the binding prediction. All colored 

positions are the no-loop regions. Blue residues are positions 59-63, which were significant for the low 

to high binder predictions, and orange residues are 64-73 that were important for both predictors. 

Position 62, 65 and 66 that affect low vs high binding are indicated in green. Positions not colored 

showed no significant enrichment or depletion. B) Logo diagram of the amino acid residues in HLA-

A and HLA-B allotypes with the largest enrichment or depletion associated with binding vs non-

binding (both high and low) and C) high vs low binding allotypes. The size of each letter is proportional 

to its impact.  
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Figure 5: Modeling with the HLA-I helices gives the greatest accuracy. A) Representation of the 

different sets of positions in the HLA-I molecule tested. B) Test AUC of classification into binders and 

non-binders (i) or high and low binders (ii) for each tested HLA-I region and using either all loci 

(A/B/C) or only the HLA-A and HLA-B loci (A/B). All KIR3DL1 allotypes were used simultaneously. 

Each HLA allotype was either in the training or test set for all allotypes. C) AUC of classifier per 

KIR3DL1 allotype using the no-loops and all HLA loci option. All AUC results in plots B and C are 

fivefold cross validation. D) Sum of absolute value of coefficients normalized by min-max (maximal 

value is 1, minimal value is 0). Each row is a classifier, and each column is a position. Only variable 

positions are marked. The allotypes are clustered and ordered according to their clustering (dendrogram 

to the left). 

 

Figure 6: HLA-I type, plus residues at positions 80 and 83, predict the strength of KIR3DL1 binding. 

Prediction was performed for all HLA allotypes of the binder/non binder classifier (x axis) and high-

low binding classification (y axis). HLA-I allotypes were distinguished by type (HLA-A, -B or -C) (A) 

or by the amino acids present at position 80 (B), 83 (C) and 66 (D). Rare combinations were removed. 

 

Figure 7. Predicted binding correlates with KIR3DL1+ NK cell recognition of HLA-I-expressing 

targets. A) Correlation between prediction based on binding data and observed degranulation of 

primary KIR3DL1+ NK cells towards target cells expressing wild type HLA-I molecules and B) HLA-

I mutated at specific residues. For heterozygous KIR3DL1+ NK cells, the average predicted binding 

for the two expressed KIR3DL1 allotypes was computed. C) Comparison of the effect of opposite 

mutations on degranulation. Each symbol represents KIR3DL1+ NK cells expressing a different 

allotype. Each point represents the change in binding affinity of a mutation (e.g. Q->K in position 144) 

and minus the effect of the opposite mutation (K->Q in position 144 on a different allele background). 
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If the contribution of different amino acids was additive, all points would be expected to be on the 

diagonal. 

 

Figure 8. Structure of 3DL1*001 (brown) and HLA-A*24:02 (green) with RYPLTFGW peptide(red) 

(PDB accession 7K80). The Bw4 region is highlighted in pink.  The Bw4 region is directly interacting 

with the 3DL1. However, other positions, distant from Bw4, contact the 3DL1 molecule.  

 

Tables 

Table 1: Class I common polymorphisms at positions 80 and 83 by epitope name and locus 

Pos80 Pos83 C1/C2/Bw4 Loci 

N G C1 B C 

T G - A 

I R Bw4 A B 

T R Bw4 B  

K G C2 C 
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KIR3DL1-001 KIR3DL1-005 KIR3DL1-015 KIR3DL1-004 KIR3DL1-009 KIR3DL1-020 KIR3DL1-002 KIR3DL1-008 KIR3DL1-029
1 2 3 Mean 1 2 3 Mean 1 2 3 Mean 1 2 3 Mean 1 2 3 Mean 1 2 3 Mean 1 2 3 Mean 1 2 3 Mean 1 2 3 Mean

B*57:01 4351.09 4665.16 3220.49 4078.91 B*57:01 3456.40 4070.52 4326.38 3951.10 B*57:01 2818.89 2331.80 2200.98 2450.56 B*57:01 3202.33 2998.14 2470.89 2890.5 B*57:01 3348.509641 3367.789407 2543.386642 3086.56 B*57:01 3485.78 3473.44 3494.26 3484.50 B*57:01 3297.61 5661.31 5590.36 4849.76 B*57:01 3163.42 7516.02 7682.60 6120.68 B*57:01 4010.96 4402.73 3436.43 3950.04

B*58:01 3989.28 4105.98 3036.65 3710.64 B*44:03 3295.34 3085.63 3179.64 3186.87 A*32:01 2084.02 2069.87 2431.36 2195.09 B*58:01 2585.69 1864.05 1970.51 2140.1 B*53:01 3122.473689 3118.636783 2541.566197 2927.56 B*58:01 3093.83 3096.84 3207.45 3132.71 B*53:01 3025.02 5011.77 5314.11 4450.30 B*58:01 2715.38 7029.59 6943.82 5562.93 B*53:01 3849.18 4212.92 3064.92 3709.01
B*57:03 3931.72 4391.69 2691.54 3671.65 B*58:01 2819.89 2855.61 3868.80 3181.43 B*58:01 2572.99 1810.86 1757.59 2047.14 B*57:03 2646.57 1913.85 1821.52 2127.3 B*58:01 2813.192291 2887.679062 2345.957091 2682.28 B*53:01 2992.02 3105.59 3117.87 3071.83 B*58:01 2938.09 5110.24 5176.45 4408.26 B*53:01 2777.15 6570.32 6676.98 5341.48 B*58:01 3830.43 4035.08 2879.40 3581.63
B*49:01 3493.80 3818.70 2699.50 3337.33 B*57:03 2852.29 2725.16 3393.28 2990.24 B*53:01 1849.41 1365.98 2172.46 1795.95 B*53:01 2027.26 1546.33 2292.17 1955.3 A*32:01 2693.224234 2796.751225 2074.345968 2521.44 A*32:01 2890.38 3099.72 2866.78 2952.30 A*32:01 2943.67 4527.78 4530.07 4000.51 B*49:01 2499.03 6370.20 6268.45 5045.89 A*32:01 3301.45 3440.75 2904.85 3215.68
A*32:01 3756.90 3570.59 2589.70 3305.73 B*49:01 2320.91 2929.51 3164.98 2805.13 B*49:01 1960.26 1654.80 1738.16 1784.40 B*38:01 2076.53 1649.43 1071.80 1599.3 B*49:01 2514.214551 2789.859336 2100.367698 2468.15 B*49:01 2853.64 2680.51 2726.07 2753.41 B*49:01 2568.13 4450.56 4515.87 3844.85 B*57:03 2109.77 6019.93 6363.26 4830.98 B*49:01 3251.55 3506.69 2461.82 3073.35
B*53:01 3123.55 3022.52 3248.32 3131.46 B*53:01 2201.76 2190.07 3749.42 2713.75 B*57:03 1981.65 1456.19 1497.06 1644.97 B*44:03 1674.47 1635.84 1295.33 1535.2 B*57:03 2274.262695 2462.904259 1820.768375 2185.98 B*57:03 2400.28 2478.00 2588.92 2489.06 B*57:03 2334.63 4368.18 4486.65 3729.82 A*32:01 2706.93 5346.86 5297.38 4450.39 B*57:03 3130.70 3334.43 2269.74 2911.62
B*38:01 3654.39 3304.36 1525.40 2828.05 B*38:01 2427.34 2620.05 2157.50 2401.63 B*38:01 1662.80 1329.30 741.06 1244.39 B*49:01 1597.28 1580.18 1362.28 1513.2 B*59:01 1517.895892 1714.833154 1419.816465 1550.85 B*15:13 1727.04 1758.62 1759.41 1748.36 B*59:01 1542.80 2787.48 2785.14 2371.81 B*15:13 1193.46 3973.47 3868.48 3011.80 B*59:01 2202.90 2318.10 1317.84 1946.28
B*15:13 2572.45 2290.94 1661.53 2174.97 A*32:01 2061.23 2212.95 2578.28 2284.15 B*15:16 1159.92 864.89 471.89 832.23 A*32:01 1111.58 1216.93 1115.96 1148.2 B*15:13 1556.550097 1666.266356 1405.788906 1542.87 B*59:01 1696.15 1759.98 1762.32 1739.48 B*15:13 1528.13 2802.11 2756.33 2362.19 B*59:01 1080.43 3819.65 3852.34 2917.47 B*15:13 2030.15 2300.88 1414.47 1915.17
B*59:01 2382.32 1870.31 1679.80 1977.48 B*47:01 1799.16 2004.30 2284.92 2029.46 B*15:13 1024.93 731.29 734.86 830.36 B*15:13 1181.06 956.17 900.62 1012.6 B*38:01 1409.485221 1505.305488 1180.75297 1365.18 B*38:01 1538.53 1550.90 1560.94 1550.12 B*38:01 1284.30 2491.33 2515.28 2096.97 B*38:01 1128.98 3654.31 3486.62 2756.64 B*38:01 1805.90 1929.54 1199.30 1644.91
B*15:16 2492.81 2283.46 1020.09 1932.12 A*24:03 1871.91 1963.48 2214.89 2016.76 B*51:02 1083.55 774.88 607.33 821.92 B*15:16 1324.00 1051.60 601.93 992.5 B*47:01 1273.829478 1438.043223 1211.271861 1307.71 B*47:01 1380.96 1430.22 1472.45 1427.88 B*47:01 1234.73 2441.31 2339.65 2005.23 B*47:01 921.94 3532.16 3419.56 2624.55 B*47:01 1713.30 2035.47 1181.56 1643.44

B*44:03 2471.50 1994.55 1274.13 1913.39 B*15:13 1555.60 1762.69 2330.09 1882.80 B*51:01 919.55 729.22 691.05 779.94 B*44:02 1213.79 1007.69 707.87 976.5 B*51:02 1292.694578 1465.775024 1114.978049 1291.15 B*51:02 1393.92 1360.69 1458.05 1404.22 B*51:02 1153.61 2110.96 2140.33 1801.63 B*51:02 976.67 3426.07 3197.35 2533.36 B*51:02 1585.54 1689.08 1118.84 1464.49
B*47:01 2449.70 1884.57 1404.42 1912.89 A*24:02 1895.54 1935.05 1763.32 1864.64 B*59:01 931.51 570.43 725.48 742.47 B*51:01 1036.80 1045.64 728.97 937.1 B*44:03 1188.581497 1313.496113 1030.356317 1177.48 B*44:03 1332.42 1422.51 1426.30 1393.74 B*44:03 1050.80 2108.41 1988.79 1716.00 B*51:01 930.18 3161.98 3025.78 2372.65 B*51:01 1488.90 1704.03 1060.18 1417.71
B*51:02 2260.66 2041.55 1276.47 1859.56 B*44:02 1825.57 1805.21 1796.39 1809.06 B*44:03 931.05 599.15 475.43 668.55 B*47:01 1084.76 933.10 750.69 922.9 B*51:01 1184.002058 1215.730218 1107.390161 1169.04 B*51:01 1261.39 1355.80 1326.39 1314.53 B*51:01 1123.64 1958.63 2012.80 1698.36 B*44:03 829.74 3097.88 3055.49 2327.70 B*44:03 1477.02 1512.60 900.14 1296.59
B*51:01 2019.00 1872.83 1290.79 1727.54 B*59:01 1444.32 1768.89 2091.58 1768.26 B*47:01 732.75 577.10 556.76 622.21 A*24:03 943.71 935.95 693.88 857.9 B*52:01 1109.918095 1268.368997 904.9984195 1094.43 A*24:03 1115.30 1156.47 1239.56 1170.45 B*52:01 914.14 1781.81 1778.00 1491.32 B*52:01 795.30 2810.98 2720.33 2108.87 B*52:01 1366.64 1473.29 935.47 1258.47
A*24:03 1936.32 1361.24 993.29 1430.29 B*51:02 1430.61 1842.44 1760.17 1677.74 B*44:02 1059.01 508.33 224.55 597.30 B*51:02 927.62 915.62 568.69 804.0 B*15:16 985.0534405 1030.996644 978.0451551 998.03 B*52:01 1091.64 1161.72 1190.67 1148.01 B*15:16 920.42 1724.82 1632.15 1425.80 A*24:03 586.10 2638.56 2507.56 1910.74 B*15:16 1200.75 1352.60 843.33 1132.23
B*44:02 1846.75 1311.54 807.21 1321.83 B*15:16 1552.75 1787.16 1441.37 1593.76 A*24:03 540.15 417.53 380.25 445.98 A*24:02 831.96 831.19 412.24 691.8 A*24:03 967.8448949 1045.691661 787.4499841 933.66 B*15:16 946.90 1004.52 1036.45 995.96 A*24:03 848.83 1639.27 1589.87 1359.32 B*15:16 686.03 2504.29 2472.37 1887.56 A*24:03 1108.57 1254.53 686.40 1016.50
A*24:02 2012.51 1254.14 668.77 1311.81 B*51:01 1400.61 1649.57 1707.13 1585.77 B*52:01 352.06 281.30 537.06 390.14 B*37:01 680.20 1034.34 323.72 679.4 B*44:02 892.3524736 963.3065992 863.9708233 906.54 B*44:02 846.44 884.84 920.73 884.00 B*44:02 777.99 1595.22 1501.72 1291.64 A*24:02 318.96 1802.44 1642.96 1254.79 B*44:02 1152.80 1228.76 627.74 1003.10
B*52:01 1315.03 855.98 1151.05 1107.36 B*37:01 1165.38 1499.24 1513.72 1392.78 C*16:01 840.25 311.47 0.00 383.91 B*59:01 667.80 679.97 640.63 662.8 B*37:01 706.3023685 733.4678442 545.5733039 661.78 A*24:02 734.97 753.78 802.67 763.81 B*37:01 621.03 1205.09 1075.30 967.14 B*44:02 369.80 1741.30 1618.59 1243.23 B*37:01 802.89 870.80 456.53 710.08

B*37:01 1579.58 820.60 525.95 975.38 B*52:01 676.50 769.69 1459.58 968.59 C*04:01 722.00 246.00 46.00 338.00 B*52:01 378.81 388.30 461.64 409.6 A*24:02 596.5510465 625.8896226 507.7830472 576.74 B*37:01 663.29 773.46 765.16 733.97 A*24:02 477.69 1005.79 1062.96 848.81 B*37:01 205.25 1438.26 1346.95 996.82 A*24:02 683.06 716.16 316.71 571.98
C*07:02 715.52 485.68 197.02 466.08 A*23:01 728.92 1063.69 1057.87 950.16 C*07:02 560.40 234.72 0.00 265.04 A*23:01 94.10 239.89 82.07 138.7 C*04:01 314 350 382 348.67 C*04:01 190.00 265.00 259.00 238.00 C*04:01 226.00 576.00 572.00 458.00 A*23:01 40.66 453.27 396.80 296.91 C*04:01 384.00 396.00 214.00 331.33
C*04:01 504.00 322.00 233.00 353.00 B*27:05 616.44 857.24 1083.92 852.53 A*24:02 254.86 241.69 178.29 224.94 C*04:01 111.00 205.00 0.00 105.3 C*02:02 290.3784792 265.3458516 254.4983797 270.07 C*02:02 206.10 225.29 208.61 213.33 C*02:02 186.91 380.50 356.30 307.90 B*27:05 38.53 378.59 366.74 261.29 C*02:02 350.46 202.76 202.76 252.00
C*01:02 510.06 239.80 107.37 285.74 B*13:01 158.68 237.62 733.13 376.47 B*37:01 421.22 102.97 57.35 193.85 B*27:05 49.88 118.46 97.80 88.7 C*07:02 255.7129795 254.0361731 220.5000446 243.42 B*27:05 164.48 203.00 231.16 199.55 B*27:05 51.12 334.14 377.85 254.37 C*04:01 62.00 301.00 242.00 201.67 C*17:01 285.87 77.19 109.58 157.55
B*27:05 375.63 206.52 249.68 277.27 C*01:02 200.74 350.72 210.99 254.15 C*14:02 411.36 125.34 29.21 188.64 C*07:02 82.03 183.55 0.00 88.5 B*27:05 223.0064641 194.8528241 239.3059399 219.06 C*07:02 144.21 170.20 211.28 175.23 C*17:01 112.44 241.08 252.52 202.02 C*02:02 50.07 213.61 191.92 151.86 C*07:02 98.09 152.59 87.19 112.63
C*16:01 372.14 273.44 6.46 217.35 C*04:01 306.00 347.00 104.00 252.33 C*02:02 476.51 88.58 0.00 188.36 C*16:01 84.21 141.25 0.00 75.2 C*17:01 220.1210078 202.9687215 230.6029606 217.90 C*17:01 109.58 141.98 164.85 138.81 C*07:02 108.15 238.94 230.56 192.55 C*07:02 40.24 114.86 104.80 86.63 B*27:05 114.10 157.07 0.00 90.39
A*23:01 413.44 106.45 99.39 206.43 C*16:01 323.24 302.42 31.48 219.05 C*17:01 112.27 12.16 0.00 41.48 C*17:01 0.00 137.53 0.00 45.8 C*14:02 211.1553592 187.7863866 169.4250511 189.46 A*23:01 97.13 115.95 158.87 123.98 C*01:02 42.05 239.52 241.78 174.45 B*13:01 10.11 108.06 92.52 70.23 C*06:02 99.72 22.77 95.01 72.50
C*14:02 240.59 213.67 102.66 185.64 C*07:02 305.38 298.07 30.18 211.21 C*01:02 0.00 79.67 0.00 26.56 C*14:02 31.97 105.15 0.00 45.7 C*06:02 166.4632609 173.5300974 201.7974436 180.60 C*14:02 97.65 106.83 121.85 108.78 C*14:02 102.66 200.31 181.11 161.36 C*01:02 5.26 81.84 37.54 41.55 C*14:02 58.42 29.21 86.80 58.14
C*02:02 199.30 146.81 151.86 165.99 C*14:02 253.21 258.26 116.01 209.16 C*18:02 16.55 0.00 0.00 5.52 C*02:02 0.00 119.74 0.00 39.9 C*12:03 127.2846938 82.26937528 152.8968578 120.82 C*06:02 71.45 103.65 113.07 96.06 C*12:03 69.85 177.73 136.60 128.06 C*17:01 31.45 84.81 0.00 38.75 C*12:03 0.00 0.00 38.81 12.94

C*17:01 137.53 165.59 168.66 157.26 C*02:02 173.05 213.24 97.63 161.31 C*01:02 0.00 105.45 0.00 35.1 C*01:02 108.8745306 76.58760086 174.9501079 120.14 B*13:01 48.20 69.97 87.85 68.67 C*06:02 51.82 171.17 154.69 125.89 C*14:02 25.87 39.23 9.18 24.76 B*13:01 12.44 0.00 0.00 4.15
C*06:02 62.10 70.16 71.45 67.90 B*46:01 117.50 214.50 72.88 134.96 C*06:02 0.00 97.58 0.00 32.5 B*13:01 126.7230954 121.2809993 60.64049963 102.88 C*12:03 48.12 55.10 60.54 54.59 B*13:01 0.00 115.84 127.50 81.11 C*06:02 15.70 0.79 0.00 5.50 C*16:01 0.00 0.00 7.27 2.42
B*13:01 0.00 0.00 151.60 50.53 B*13:02 100.98 238.47 64.93 134.79 C*18:02 0.00 79.58 0.00 26.5 C*18:02 93.92427279 110.1181129 75.30135664 93.11 C*01:02 51.81 41.30 57.07 50.06 A*23:01 0.00 65.51 91.11 52.20 C*12:03 7.76 0.00 0.00 2.59
C*12:03 32.28 25.19 74.51 43.99 A*11:01 84.23 176.48 107.79 122.83 C*03:03 0.00 35.22 0.00 11.7 C*16:01 113.0112518 103.3245731 57.31284913 91.22 C*16:01 24.22 38.75 54.08 39.02 C*18:02 0.00 33.20 14.57 15.92 C*16:01 4.04 0.00 0.00 1.35
C*18:02 17.33 81.16 22.67 40.39 C*17:01 116.95 182.44 33.35 110.91 B*13:01 0.00 35.08 0.00 11.7 B*15:11 77.34078463 53.42095433 59.00224807 63.25 C*18:02 21.05 23.48 47.77 30.77 C*16:01 5.65 8.88 29.06 14.53 B*15:11 3.99 0.00 0.00 1.33
C*05:01 0.00 0.00 36.17 12.06 C*18:02 122.92 160.74 17.81 100.49 B*46:01 0.00 33.91 0.00 11.3 C*05:01 44.82403887 36.17378576 33.81462581 38.27 B*15:11 0.00 0.00 31.89 10.63 C*18:02 0.81 0.00 0.00 0.27
B*46:01 0.00 19.71 5.67 8.46 C*06:02 109.68 116.13 49.47 91.76 C*03:02 0.00 32.81 0.00 10.9 A*23:01 57.9759263 45.17604647 0 34.38 C*05:01 0.00 0.00 9.44 3.15

B*15:11 0.00 0.00 19.93 6.64 C*12:03 34.64 124.40 55.10 71.38 C*05:01 0.00 29.80 0.00 9.9 C*03:02 15.13811712 0 0 5.05

B*15:02 26.15 128.37 0.00 51.51 C*03:04 0.00 28.48 0.00 9.5
C*05:01 20.69 84.43 29.88 45.00 C*12:03 0.00 22.05 0.00 7.3
C*03:02 14.84 97.65 9.84 40.78 A*11:01 0.00 10.23 0.00 3.4
B*15:11 25.01 95.05 0.00 40.02 B*54:01 0.00 7.29 0.00 2.4
B*54:01 0.00 51.01 60.42 37.14 C*08:01 0.00 3.15 0.00 1.0
A*69:01 0.00 93.32 16.03 36.45

C*08:01 16.53 75.55 0.00 30.69

A*68:02 0.00 74.67 0.00 24.89

C*03:04 0.00 74.36 0.00 24.79

C*03:03 0.00 0.00 70.15 23.38

B*15:12 3.16 66.42 0.00 23.20

B*35:01 0.00 64.74 0.00 21.58

B*15:03 0.00 44.88 0.00 14.96

B*48:01 0.00 41.09 0.00 13.70

B*15:10 0.79 39.67 0.00 13.49

B*15:01 0.00 37.67 0.00 12.56

B*82:01 0.00 32.47 0.00 10.82

B*14:01 0.00 31.78 0.00 10.59

B*55:01 0.00 19.55 0.00 6.52

A*03:01 0.00 16.49 0.00 5.50

B*45:01 0.00 11.80 0.00 3.93
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