Radical-constructed Intergrown Titanosilicalite Interfaces for Efficient Direct Propene Epoxidation with H₂ and O₂

Dong Lin^{1,2}, Xiang Feng^{1,*}, Yang Xu¹, Richard J. Lewis^{2,*}, Xiao Chen³, Thomas E. Davies², Samuel Pattisson²,

Mark Douthwaite², Defu Yin¹, Qiuming He¹, Xiuhui Zheng¹, De Chen⁴, Chaohe Yang¹ and Graham J.

Hutchings^{2,*}

¹State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China

²Max Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF24 4HQ, United Kingdom

³Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

⁴Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway

Corresponding author

Correspondence to: Xiang Feng (xiangfeng@upc.edu.cn); Richard J. Lewis (lewisr27@cardiff.ac.uk); Graham J. Hutchings (hutch@cardiff.ac.uk)

Table of Contents

1. Reagents	S 3
2. Supplementary Tables	S 4
Total acid density of different TS-1 samples	S 4
The relative content of Si/Ti, bulk Si/Ti ratios and Au contents in different framework topologies	S5
The pore properties of different titanosilicalites before and after Au loading	S5
A comparison of catalytic performance towards the in situ epoxidation of propene	S 6
3. Supplementary Figures	S 8
In-situ UV-vis-NIR system	S 8
XRD patterns of different TS-1 samples	S 9
The FT-IR spectra of different TS-1 samples	S 10
NH ₃ -TPD profiles of different TS-1 samples	S 11
UV-vis spectra of TS-1 different samples	S12
UV-Raman spectra of TS-1 different samples	S13
Py-IR spectra of different TS-1 samples	S14
Typical SEM images of different zeolites	S15
The reaction performance of Au/TS-1-1000W	S16
Typical HRTEM images of different catalysts	S17
The Au 4f spectra of different catalysts	S18
The TGA profiles of different catalysts	S19
The C1s XPS spectra of different catalysts	S20
The reaction performance of different catalysts	S21
Typical STEM images and associated particle count histograms of different catalysts	S22
The productivity of H ₂ O ₂ on different Au/TS-1 catalysts	S23
Free energies of adsorption on TiO ₄ and TiO ₃ sites	S24
In-situ UV-vis spectra of different catalysts	S25
The hydrogen efficiency of different catalysts	S26
The electronic structure of different Ti sites	S27

1. Reagents

Propene (C₃H₆, 99.999 %, Shanghai Shenkai Gases Technology Co., Ltd)

Hydrogen (H₂, 99.999 %, Shanghai Shenkai Gases Technology Co., Ltd)

Oxygen (O2, 99.999 %, Shanghai Shenkai Gases Technology Co., Ltd)

Nitrogen (N2, 99.999 %, Shanghai Shenkai Gases Technology Co., Ltd)

Tetrapropylammonium hydroxide solution (TPAOH, 25 wt%, Sinopharm Chemical Reagent Co., Ltd)

Tetraethyl orthosilicate (TEOS, 98.5 wt%, Sinopharm Chemical Reagent Co., Ltd)

Tetrabutyl titanate (TBOT, 99.0 wt%, Shanghai Aladdin Biochemical Technology Co., Ltd)

Chloroauric acid (HAuCl₄•4H₂O, 99.9 wt %, Sinopharm Chemical Reagent Co., Ltd)

Sodium carbonate (Na₂CO₃, 99.5 wt%, Shanghai Aladdin Biochemical Technology Co., Ltd)

2. Supplementary Tables

Samples	Acid density (mmol/g)
TS-1-200W	2.67×10 ⁻²
TS-1-300W	2.06×10 ⁻²
TS-1-500W	1.84×10 ⁻²
TS-1-1000W	1.58×10 ⁻²

 Table S1 Total acid density of different TS-1 samples.

	SiO ₂ (wt%)	TiO_2 (wt%)	Si/Ti molar ratio ^a	Au loading (wt%) ^b
TS-1-200W	99.30	0.62	211	0.07
TS-1-300W	98.84	0.63	207	0.07
TS-1-500W	99.24	0.68	192	0.07
TS-1-1000W	99.32	0.66	201	0.07

Table S2 The relative content of Si/Ti, bulk Si/Ti ratios and Au contents in different framework topologies.

^aThe bulk Si/Ti ratios were determined by the XRF results.

^bThe bulk Au loadings were determined by the ICP results.

Samples	V _{micro} ^a (cm ³ g ⁻¹) before Au loading	V _{micro} ^a (cm ³ g ⁻¹) after Au loading	$V_{na}{}^{b}$	$V_{na}/V_{support}^{c}$
TS-1-200W	0.194	0.189	0.005	0.974
TS-1-300W	0.191	0.188	0.003	0.984
TS-1-500W	0.189	0.181	0.008	0.958
TS-1-1000W	0.205	0.197	0.008	0.961

^aV_{micro} represent the microporous volume before and after Au loading.

 ${}^{b}V_{na}$ represent the volume not accessible to N_{2} after Au loading. V_{na} is the difference between the micropore volumes of TS-1 support and Au/TS-1 catalyst.

^cV_{na}/V_{support} represent the effect of spatial location of gold for support volume.

The descriptor $(V_{na}/V_{support})$ serves as a tool for estimating the extent to which zeolite channels are occupied by the Au nanoparticles. Here, V_{na} denote the volume inaccessible to probe molecules (N₂). The volume not accessible to N₂ is calculated as the difference between the micropore volumes of the TS-1 support ($V_{support}$) and the Au/TS-1 catalyst.

Catalyst	Reaction conditions	PO formation rate $(g_{PO}h^{-1}g_{Au}^{-1})$	PO formation rate $(g_{PO}h^{-1}kg_{Cat}^{-1})$	Reference
Au/TS-1-500W	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	455.0	318.5	This work
Au/TS-1-B	200°C, 0.15 g of catalyst, $H_2/O_2/C_3H_6/N_2=1:1:1:7$, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	151.5	151.5	[9]
Au/TS-2-B	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 19200 mL·h ⁻¹ ·g _{Cat} ⁻¹	118	131	[46]
0.122Au/TS-1(99)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	69	84	[51]
0.143Au/TS-1(99)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	103	148	[51]
0.146Au/TS-1(99)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	105	154	[51]
Au/HTS-1(NIMG)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	150.3	150.3	[52]
Au-Ti@MFI	300°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 7000 mL·h ⁻¹ ·g _{Cat} ⁻¹	41	205	[53]
Au/TS-1-B	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	267	240	[54]
Au/TS-1-B(4)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	160	144	[55]

Table S4 A comparison of catalytic performance towards the in situ epoxidation of propene.

0.05Au/U-TS-1(119)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:1:7, space velocity: 14000 mL·h ⁻¹ · g_{Cat} ⁻¹	130	65	[56]
0.07Au/U-TS-1(119)	200°C, 0.15 g of catalyst, $H_2/O_2/C_3H_6/N_2=1:1:1:7$, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	127.1	89	[56]
0.09Au/U-TS-1(119)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:17, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	106.7	96	[56]
0.14Au/TS-1(121)Cs	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:17, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	240.7	337	[57]
0.76Au/TS-1(77)Cs	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:17, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	41.3	314	[57]
0.04Au/TS-1(121)Cs	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:17, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	245	98	[57]
Au/TS-1-B (S-Na)	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:17, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	297	89.1	[58]
0.23Na-Au/TS-1	200°C, 0.15 g of catalyst, H ₂ /O ₂ /C ₃ H ₆ /N ₂ =1:1:17, space velocity: 14000 mL·h ⁻¹ ·g _{Cat} ⁻¹	310	210	[58]

3. Supplementary Figures

Figure S1 In-situ UV-vis-NIR system. The schematic diagram of the in-situ UV-vis-NIR system.

Figure S2 XRD patterns of different TS-1 samples. The XRD diffractograms of TS-1-200 W, TS-1-300 W, TS-1-500 W and TS-1-1000 W.

All TS-1 samples exhibit identical diffraction peaks, situated at 20 of 7.9, 8.8, 23.1, 23.9, and 24.3°, thereby confirming the presence of the MFI topological structure. Moreover, in all TS-1 samples, a single peak is observed at $2\theta = 24.3^{\circ}$, affirming the presence of an orthorhombic unit cell in the structure. In the XRD spectra, it is evident that there are no significant peaks at 25.4°, suggesting that all samples either contain minimal or no TiO₂ species.

Figure S3 The FT-IR spectra of different TS-1 samples. The FT-IR spectra of The FT-IR spectra of TS-1-200W, TS-1-300W, TS-1-500W and TS-1-1000W.

The absorption band observed at 550 cm⁻¹ can be attributed to the vibration of the double five-membered ring unit, providing further evidence for the presence of the MFI structure, which aligns with the XRD findings. The bands appearing at 800 cm⁻¹ correspond to the antisymmetrical stretching vibrations of the [SiO₄] units. Additionally, the band observed at 1230 cm⁻¹ is associated with the asymmetrical stretching vibration of the MFI framework structure. The presence of the 960 cm⁻¹ band is often considered as indicative of Ti substitution within the framework, occurring in the form of Ti-O-Si.

Figure S4 NH₃-TPD profiles of different TS-1 samples. NH₃-TPD profiles of different TS-1 samples synthesized with various power levels (ranging from 200 to 1000 W).

The NH_3 -TPD analysis was employed to assess the presence of acid sites in all TS-1 samples. As depicted in Figure S4, only one NH_3 desorption peak at 135 °C is evident across all TS-1 samples, indicating the existence of a minimal quantity of weak acid centers within TS-1 materials.

Figure S5 UV-vis spectra of different TS-1 samples. UV-vis spectra of TS-1-200W, TS-1-300W, TS-1-500W, TS-1-1000W.

The presence of Ti within the TS-1 framework is critical for its catalytic performance, a feature discernible through UV-vis characterization. The observation of a single adsorption peak at approximately 220 nm for all samples distinctly confirms the presence of isolated Ti(IV) species within the MFI framework. Notably, adsorption peaks associated with anatase TiO₂ species were detected at 330 nm in TS-1-200W. No adsorption peaks associated with anatase TiO₂ species were detected at 330 nm in TS-1-300W, TS-1-500W and TS-1-1000W.

Figure S6 UV-Raman spectra of different TS-1 samples. UV-Raman spectra of TS-1-200W, TS-1-300W, TS-1-500W, TS-1-1000W.

It is noteworthy that only TS-1-200W exhibits small peaks at 195, 398, 524 and 645 cm⁻¹, suggesting the presence of anatase TiO₂. These observations align with the results from UV-vis spectroscopy, XPS, and SEM, providing additional evidence that TS-1-200W contains TiO₂ species, whereas other samples do not.

Figure S7 Py-IR spectra of different TS-1 samples. Py-IR spectra of different TS-1 samples synthesized with various power levels: (a) TS-1-200W, (b) TS-1-300W, (c) TS-1-500W and (d) TS-1-1000W.

The peaks at 1447 and 1601 cm⁻¹ are ascribed to Lewis acid sites (LA). Additionally, the peaks at 1550 and 1490 cm⁻¹ were attributed to Brønsted acid sites (BA) and the combination of Brønsted and Lewis acid sites (BA+LA), respectively. It is noteworthy that all titanosilicalites display prominent peaks of Lewis acid sites, linked to the framework Ti sites.

Figure S8 Typical SEM images of different zeolites. Typical SEM images of (a) pure siliceous S-1 and (b) Alcontaining ZSM-5 samples.

Figure S9 The reaction performance of Au/TS-1-1000W. The PO formation rate, propene conversion and reaction selectivity of Au/TS-1-1000W. Direct propene epoxidation with H₂ and O₂ conditions: reaction temperature (200°C), catalyst (0.15 g), $H_2/O_2/C_3H_6/N_2=1:1:17$, space velocity of 14000 mL·h⁻¹·g_{Cat}⁻¹.

Figure S10 Typical HRTEM images of different catalysts. Typical HRTEM images of (a) Au/TS-1-200W, (b) Au/TS-1-300W, (c) Au/TS-1-500W and (d) Au/TS-1-1000W. The insets show the Au size distributions of all catalysts.

Figure S11 The Au 4*f* spectra of different catalysts. The Au 4*f* spectra of (a) Au/TS-1-200W, (b) Au/TS-1-300W, (c) Au/TS-1-500W and (d) Au/TS-1-1000W.

Figure S12 The TGA profiles of different catalysts. The TGA profiles of different (a) fresh catalysts and (b) catalysts after propene epoxidation at 200 °C.

The thermogravimetry analysis combined (TG, Netzsch) was used to reveal the coke content and coke species of the catalyst with a heating speed of 10°C/min from 30 to 1000°C. The weight loss occurring between 200-800°C and below 200°C is attributed to carbonaceous deposits and water, respectively.

The relative content of Si-OH (Q₃/Q₄) decreased from 22.1% to 17.0% (Figure 1f-1i) with the increase of power levels (ranging from 200 to 1000 W). TS-1-200W exhibited the highest Q₃/Q₄ ratio (22.1%), and a higher Q₃/Q₄ ratio indicates lower hydrophobicity, which is considered to hinder the desorption of propylene oxide (PO) molecules and promote the formation of carbonaceous species. As a result, Au/TS-1-200W demonstrated the highest weight loss (~3.61%) after propene epoxidation with H₂ and O₂.

Figure S13 The C1*s* **XPS spectra of different catalysts.** The C1*s* XPS spectra of (a) Au/TS-1-200W, (b) Au/TS-1-300W, (c) Au/TS-1-500W and (d) Au/TS-1-1000W.

Figure S14 The reaction performance of different catalysts. The (a) PO formation rate and (b) reaction selectivity of different Au/TS-1 catalysts. Direct propene epoxidation with H₂ and O₂ conditions: reaction temperature (200°C), catalyst (0.15 g), $H_2/O_2/C_3H_6/N_2=1:1:17$, space velocity of 14000 mL·h⁻¹·g_{Cat}⁻¹.

Figure S15 Typical STEM images and associated particle count histograms of different catalysts. Typical STEM images and associated particle count histograms of (a) Au/TS-1-200W, (b) Au/TS-1-300W, (c) Au/TS-1-500W and (d) Au/TS-1-1000W after reaction. Direct propene epoxidation with H₂ and O₂ conditions: reaction temperature (200°C), catalyst (0.15 g), H₂/O₂/C₃H₆/N₂=1:1:1:7, space velocity of 14000 mL·h⁻¹·g_{Cat}⁻¹.

Post-reaction HRTEM analysis of the different Au/TS-1 catalysts revealed that their Au particle sizes (~2.4 nm) remained nearly unchanged before and after propene epoxidation (Figure S15).

Figure S16 The productivity of H_2O_2 on different Au/TS-1 catalysts. The productivity of H_2O_2 by direct synthesis between H_2 and O_2 on different Au/TS-1 catalysts. H_2O_2 synthesis conditions: Catalyst (0.01g), H_2O (2.9 g), MeOH (5.6 g), 5% H_2/CO_2 (420 psi), 25% O_2/CO_2 (160 psi), reaction time 0.5 h, reaction temperature 2 °C, stirring speed 1200 rpm.

Figure S17 Free energies of adsorption on TiO₄ and TiO₃ sites. Calculated free energies of adsorption for different intermediates on TiO₄ and TiO₃ sites.

Figure S18 In-situ UV-vis spectra of different catalysts. In-situ UV-vis spectra of Au/TS-1-300W (traditional framework sites) and Au/TS-1-500W (intergrown interface sites) after contact with performed H_2O_2 . Experimental conditions: 0.15 g of TS-1 samples were used in conjunction with 0.01 g of H_2O_2 , while maintaining a temperature range from 20 to 200°C, with data points collected every 20-degree interval.

Figure S19 The hydrogen efficiency of different catalysts. The hydrogen efficiency of Au/TS-1-200W, Au/TS-1-300W, Au/TS-1-500W and Au/TS-1-1000W. Direct propene epoxidation with H₂ and O₂ conditions: reaction temperature (200 °C), catalyst (0.15 g), $H_2/O_2/C_3H_6/N_2=1:1:1:7$, space velocity of 14000 mL•h⁻¹•g_{cat}⁻¹.

Figure S20 The electronic structure of different Ti sites. (a) The differential charge density plots of H_2O_2 adsorbed on traditional framework sites. (b) The total density of states (DOS) of Ti- atoms on traditional framework and intergrown interface sites.