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ABSTRACT
In weakly collisional, strongly magnetised plasmas such as the intracluster medium (ICM), hot accretion flows and the solar 
corona, the transport of heat and momentum occurs primarily along magnetic field lines. In this paper we present a new scheme 
for modelling anisotropic thermal conduction which we have implemented in the moving mesh code AREPO. Our implementation 
uses a semi-implicit time integration scheme which works accurately and efficiently with individual timestepping, making the 
scheme highly suitable for use in cosmological simulations. We apply the scheme to a number of test-problems including the 
diffusion o f a  hot patch o f gas i n a  c ircular magnetic field, th e progression of  a po int explosion in  th e pr esence of  thermal 
conduction, and the evolution and saturation of buoyancy instabilities in anisotropically conducting plasmas. We use these 
idealised tests to demonstrate the accuracy and stability of the solver and highlight the ways in which anisotropic conduction 
can fundamentally change the behaviour of the system. Finally, we demonstrate the solver’s capability when applied to highly 
non-linear problems with deep timestep hierarchies by performing high-resolution cosmological zoom-in simulations of a 
galaxy cluster with conduction. We show that anisotropic thermal conduction can have a significant impact on the temperature 
distribution of the ICM and that whistler suppression may be relevant on cluster scales. The new scheme is, therefore, well suited 
for future work which will explore the role of anisotropic thermal conduction in a range of astrophysical contexts including the 
ICM of clusters and the circumgalactic medium of galaxies.

Key words: conduction – methods: numerical – plasmas – magnetic fields –  galaxies: clusters: general –  galaxies: clusters: 
intracluster medium

1 INTRODUCTION

Many astrophysical systems, such as hot accretion flows, the intra-
cluster medium (ICM) of galaxy clusters, the solar wind and some
phases of the interstellar medium (ISM), are weakly collisional and
strongly magnetised. Such plasmas are characterised by a hierarchy
of scales whereby the electron and ion gyroradii are much smaller
than the electron mean free path of ion Coulomb collisions, which
itself is smaller than characteristic lengthscale associated with the
system.

As a result of this scale ordering, charged particles gyrate around
magnetic field lines much faster than the rate at which they undergo
Coulomb scattering. This effectively ties charged particles to field
lines, meaning that the transport of heat and momentum occurs pref-
erentially in the direction of the magnetic field and only gradients
oriented along the magnetic field can be relaxed. Such systems are
often well described by Braginskii magnetohydrodynamics (MHD,
Braginskii 1965) which differs from ideal MHD via the addition of
anisotropic heat conduction and viscosity.

★ E-mail: rosie@mpa-garching.mpg.de (RYT)

Anisotropic heat conduction is thought to be important in a wide
range of astrophysical processes in diverse contexts. For example: In
determining the structure of the hot plasma in the solar corona (see
e.g. Yokoyama & Shibata 1997; Bingert & Peter 2011; Bourdin et al.
2013; Ye et al. 2020; Navarro et al. 2022) and in regulating energy
transport in supernova remnants (see e.g. Chevalier 1975; Tilley et al.
2006; Balsara et al. 2008a,b). Thermal conduction also affects the
stability properties of the plasma in the formation and dynamics of
multiphase structure in the ICM, the circumgalactic medium (CGM)
and ISM (see e.g. Sharma et al. 2010a,b; Choi & Stone 2012; Brüggen
& Scannapieco 2016; Armillotta et al. 2017; Jennings & Li 2021;
Brüggen et al. 2023).

Thermal conduction is thought to play a significant role in shaping
the properties and dynamics of the ICM. It may, for example, be im-
portant for distributing energy from active galactic nuclei (AGN) and
offsetting radiative cooling in cool cores of galaxy clusters (Zakam-
ska & Narayan 2003; Voit 2011; Voit et al. 2015; Yang & Reynolds
2016; Jacob & Pfrommer 2017a,b). Anisotropic transport may also
be relevant for explaining features such as cold fronts in the ICM
(Markevitch & Vikhlinin 2007; ZuHone et al. 2015) which exhibit
temperature changes on scales of order (or smaller than) the electron
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(2007) demonstrated, for a Cartesian mesh, how violating this en-
tropy condition can be avoided with appropriate gradient limiters and
Pakmor et al. (2016b) then generalised this procedure for an irregular
mesh.

In this paper, we introduce a scheme for anisotropic thermal con-
duction which we have implemented into the moving-mesh code
AREPO (Springel 2010; Pakmor et al. 2016a; Weinberger et al. 2020).
Our scheme uses a semi-implicit time integration scheme, is compat-
ible with individual timestepping and ensures the entropy condition
is not violated. The underlying method is based on that of Pakmor
et al. (2016b) which concerns itself with the problem of cosmic ray
diffusion and is, itself, based on those of Sharma & Hammett (2007)
and Sharma & Hammett (2011).

The anisotropic thermal conduction solver presented in this work
is fundamentally different from the solver described in Kannan et al.
(2016), which is also implemented in AREPO. Our solver represents
an improvement over this earlier method, primarily due to the fact
that it supports local timestepping; a feature which is crucial for
efficiency and accuracy in cosmological simulations.

This paper is structured as follows. In Section 2, we introduce the
continuous form of the equations of Braginskii MHD and then de-
scribe our algorithm and its numerical implementation in Section 3.
In Section 4, we assess the accuracy of our solver by performing
several test problems including the diffusion of a hot patch of gas
in a circular magnetic field, the progression of a point explosion in
the presence of thermal conduction and the evolution and saturation
of buoyancy instabilities in an anisotropically conducting plasma. In
Section 5, we demonstrate the efficiency and stability of the solver
when used in computationally demanding cosmological zoom sim-
ulations of a galaxy cluster and present some first results. Finally, in
Section 6, we summarise our results and provide a brief outlook.

2 BASIC EQUATIONS

The Braginskii MHD equations can be used to describe transport in
a fully ionised, weakly collisional1 and strongly magnetised plasma.
In such systems the electrons and ions are tied to magnetic field
lines, resulting in the anisotropic transport of heat and momentum,
governed by:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒗) = 0 , (1)

𝜕𝜌𝒗
𝜕𝑡

+ ∇ ·

[
𝜌𝒗𝒗𝑇 + 𝑃totI −

𝑩𝑩𝑇

4𝜋

]
= −∇ · 𝚷 , (2)

𝜕𝐸

𝜕𝑡
+ ∇ ·

[ (
𝐸 + 𝑃tot

)
𝒗 −

𝑩
(
𝒗 · 𝑩

)
4𝜋

]
= −∇ · (𝚷 · 𝒗) − ∇ · 𝑸 , (3)

𝜕𝑩

𝜕𝑡
= ∇ × (𝒗 × 𝑩) , (4)

where we have used Gaussian units. 𝜌, 𝒗 and 𝑩 are the local gas
density, velocity, and magnetic field, respectively. I is the unit rank-
two tensor and 𝑃tot is the total pressure, accounting for thermal gas
and magnetic fields

𝑃tot = 𝑃 + 𝑩2

8𝜋
. (5)

1 By ‘weakly collisional’ we are referring to systems where the gradient
lengthscale is 10 − 103 times larger than the Coulomb-collisional mean free
path.

mean free path. Simulations find that magnetic fields tend to  drape 
around cold fronts (Lyutikov 2006; Asai et al. 2007; Dursi & Pfrom-
mer 2008; Pfrommer & Dursi 2010) which act to insulate them from 
the surroundings and potentially protect their coherence by suppress-
ing mixing (Fabian et al. 2003; Dong & Stone 2009; ZuHone et al. 
2015).

Additionally, when heat transport occurs predominantly along the 
magnetic field, the stability properties of the plasma change markedly. 
The hydrodynamic stability to convection is no longer determined by 
the sign of the entropy gradient (Schwarzschild 1958) but rather by 
that of the temperature gradient, in combination with topology of the 
magnetic field. The resulting instabilities, driven by fast heat conduc-
tion, have the ability to affect the outer regions of galaxy clusters (the 
magneto-thermal instability, MTI; Balbus 2000, 2001) and also the 
innermost regions of cool-core clusters (the heat-flux-driven buoy-
ancy instability, HBI; Quataert 2008). The MTI generates a turbulent 
state driven by the background temperature gradient, consisting of 
density and velocity fluctuations across a  broad range of scales. At 
saturation, the root mean square values of these fluctuations follow 
distinct power-law relationships with thermal diffusivity and the gra-
dients of gas entropy and temperature (Perrone & Latter 2022a,b).

Weakly collisional plasmas where the ratio of thermal-to-magnetic 
pressure is large (𝛽 ∼ 100) are, however, susceptible to kinetic insta-
bilities, driven by pressure anisotropies and heat fluxes (Schekochihin 
et al. 2005; Kunz et al. 2014; Komarov et al. 2016). These microin-
stabilities act to enhance the scattering of charged particles, poten-
tially leading to suppression of the conductivity below the collisional 
(Spitzer 1962) value (Riquelme et al. 2016; Berlok et al. 2021). Alter-
natively, conductivity can be suppressed below the classical Spitzer 
value in a weakly collisional plasma as a result of streaming electrons, 
which resonantly excite whistler waves. These waves frequently scat-
ter electrons, causing a near-isotropisation of the electron distribution 
in the whistler wave frame. As a result, the mean electron transport 
speed along the magnetic field is reduced from its thermal value 𝑣th 
to the whistler phase speed ∼ 𝑣th/𝛽e, where 𝛽e is the electron plasma 
beta (Roberg-Clark et al. 2016, 2018; Komarov et al. 2018; Drake 
et al. 2021), thus, reducing the efficiency of heat conduction. While 
heat conduction is indeed suppressed for strong whistler suppression 
so that the MTI turbulence ceases to exist, externally-driven turbu-
lence can revive the MTI turbulence and reestablish efficient heat 
conduction at a somewhat lower rate because of the intermittency of 
strong magnetic flux tubes along which most of the electron heat flux 
is transported (Perrone et al. 2024a,b).

Structure formation and evolution is a highly complex and non-
linear problem with a vast range of relevant length- and time-scales 
that need to be considered. Numerical simulations therefore play 
a crucial role in exploring anisotropic thermal conduction in such 
contexts. Over the past two decades, a number of works have used 
simulations to investigate the effects o f heat conduction i n galaxy 
clusters (see e.g. Dolag et al. 2004; Jubelgas et al. 2004; Parrish 
et al. 2010; Ruszkowski & Oh 2010, 2011; Yang & Reynolds 2016; 
Kannan et al. 2017; Barnes et al. 2019; Su et al. 2019; Beckmann 
et al. 2022; Pellissier et al. 2023).

Some of these simulations were run with conduction solvers that 
employ explicit time-integration schemes which, for stability, require 
a timestep limit that scales with the square of the cell radius. Implicit 
or semi-implicit schemes are, therefore, preferable as they do not re-
quire this timestep criterion which can markedly reduce the attainable 
spatial resolution.

When constructing such a scheme it is also important to ensure 
that energy is not allowed to flow from lower to higher temperatures, 
which can occur when not explicitly prevented. Sharma & Hammett



𝐸 is the total energy density

𝐸 = 𝜌𝑢 + 1
2
𝜌 𝒗2 + 𝑩2

8𝜋
, (6)

where 𝑢 is the specific internal energy. The anisotropic viscosity
tensor 𝚷 is

𝚷 = −Δ𝑃
(
𝒃𝒃𝑇 − 1

3
I

)
, (7)

where 𝒃 = 𝑩/|𝑩 | and Δ𝑃 = 𝑃⊥ − 𝑃∥ is the pressure anisotropy,
i.e. the difference between the perpendicular and parallel pressures
with respect to the magnetic field direction.

The heat flow vector 𝑸 is given by

𝑸 = −𝜒
[
𝒃(𝒃 · ∇𝑇)

]
, (8)

where 𝜒 is the conductivity along the magnetic field and 𝑇 is the
temperature, which is related to the specific internal energy via 𝑢 =

𝑐v 𝑇 . The specific heat capacity at constant volume is given by 𝑐v =

𝑘B/[(𝛾 − 1)𝜇 𝑚p], where 𝑘B is the Boltzmann constant, 𝜇 is the
mean molecular weight, 𝑚p is the proton mass and 𝛾 is the adiabatic
index.

In a collisional theory of transport processes, the diffusive transfer
of heat is dominated by electrons and mediated by particle-particle
Coulomb collisions. The resulting conductivity is often referred to
as the ‘Spitzer conductivity’ (Spitzer 1962) and is given by

𝜒sp = 1.84 × 10−5 𝑇5/2

ln𝐶
erg s−1 K−1 cm−1 , (9)

where the temperature, 𝑇 , is measured in Kelvin and ln𝐶 ≈ 37 is the
Coulomb logarithm.

High 𝛽, weakly collisional plasmas, however, are susceptible to a
variety of kinetic instabilities which act to alter the mean electron
transport velocity which may, ultimately, lead to a suppression of
electron transport.

At saturation, the whistler instability has been found to establish a
marginal heat flux which is suppressed by a factor of 1/𝛽e, the inverse
of the electron plasma beta (Roberg-Clark et al. 2018; Komarov et al.
2018). To account for this, one can assume a functional form for
the conductivity (Komarov et al. 2018) that smoothly interpolates
between the two regimes

𝜒sat,whist =
𝜒sp

1 + (1/3) 𝛽e 𝜆mfp,e / 𝑙T,∥
, (10)

where 𝑙T,∥ = |𝒃 · ∇ ln𝑇 |−1 is the temperature gradient scale parallel
to the magnetic field and 𝜆mfp,e is the electron mean free path, given
by

𝜆mfp,e =
33/2𝑘2

B𝑇
2

4𝜋1/2𝑛e𝑒4 ln𝐶
, (11)

where 𝑛e is the electron number density and 𝑒 is the electron charge.
One can also construct an analogous form for the conductivity that

incorporates the saturation of the heat flux due to the free-streaming
of electrons (Cowie & McKee 1977)

𝜒sat,free =
𝜒sp

1 + 4.2𝜆mfp,e / 𝑙T,∥
. (12)

In the outskirts of galaxy clusters, however, where the plasma beta
is expected to be high (𝛽 ≳ 100), whistler suppression is likely to be
more relevant.

3 IMPLEMENTATION

We now describe how we implemented the anisotropic thermal con-
duction solver into the AREPO code (Springel 2010; Pakmor et al.
2016a; Weinberger et al. 2020). Note that there is already a first
version of an anisotropic conduction solver implemented in AREPO
(Kannan et al. 2016). The solver presented in this work, however, is
fundamentally different and is compatible with local timestepping.
We discuss these differences in more detail in Section 3.2.4. Note also
that a solver for Braginskii viscosity has already been implemented
in AREPO by Berlok et al. (2020). While the solver described in this
work shares a superficial resemblance to those presented in Pakmor
et al. (2016b) and Kannan et al. (2016), it differs substantially in crit-
ical details, and these differences dramatically change the practical
applicability to the targeted science applications.

AREPO solves the equations of ideal MHD on an unstructured
Voronoi mesh using a second order finite volume scheme (Pakmor
et al. 2011; Pakmor & Springel 2013). The Voronoi mesh is con-
structed from a set of mesh-generating points that can move with
arbitrary velocities, but which are typically set to the local fluid ve-
locity, resulting in quasi-Lagrangian behaviour. AREPO computes
self-gravity using a tree-PM method and couples it to MHD with a
second-order Leapfrog scheme (Springel 2010; Springel et al. 2021).

The anisotropic thermal conduction scheme, described in this
work, is based on that of the cosmic ray diffusion solver presented in
Pakmor et al. (2016b). This approach, itself, generalises and extends
the flux limiting scheme of Sharma & Hammett (2007) and the semi-
implicit time-integration scheme of Sharma & Hammett (2011) for
use with unstructured meshes and local timestepping.

We have implemented this solver in such a way that it can be used
for both cosmological and non-cosmological simulations. For sim-
plicity, however, we will continue below to use physical coordinates
to describe the scheme and explain how to implement the comoving
form of the equations in Section 3.3.

We now focus on the treatment of just the conduction term in
equation (3),

𝜕𝑢

𝜕𝑡
=

1
𝜌𝑐v

∇ ·

[
𝜒 𝒃(𝒃 · ∇𝑢)

]
, (13)

where we have re-cast the equation in terms of the specific internal
energy, assuming 𝑐v is spatially constant.

Our numerical treatment of thermal conduction necessarily differs
from that of cosmic ray diffusion, described in Pakmor et al. (2016b),
in a number of ways. Firstly, the treatment of cosmic ray diffusion
assumes that the diffusivity is spatially and temporally constant and
that 𝜒, therefore, commutes with the gradient operator. This is, how-
ever, not a good assumption for thermal conduction and, therefore,
requires an additional treatment. Note, however, that this also may
not be a good assumption for cosmic ray diffusion (see e.g. Thomas
et al. 2023). Some of the methods described in this paper may, there-
fore, be relevant for future one-moment treatments of cosmic ray
diffusion. In addition to this, there is an extra factor of 1/𝜌 before the
flux term in the thermal conduction equation (equation 13), meaning
that extra care has to be taken in the integration to ensure the scheme
is conservative.

3.1 Spatial discretisation

We now spatially discretise equation (13) and begin by integrating
over volume

𝑉
𝜕𝑢

𝜕𝑡
=

1
𝜌𝑐v

∫
𝑉
∇ ·

[
𝜒 𝒃(𝒃 · ∇𝑢)

]
d𝑉 , (14)



where we have ∫assumed that 𝜌 and 𝑢 are constant throughout the 
volume and that d𝑉 commutes with the time derivative. Using 
Gauss’ theorem then gives

𝜕𝑢

𝜕𝑡
=

1
𝑉𝜌𝑐v

∫
𝜕𝑉

[
𝜒 𝒃(𝒃 · ∇𝑢)

]
· d𝑨 , (15)

where d𝑨 is the area element on the surface 𝜕𝑉 , directed along the
outward normal.

We now take the integral to be over one cell in the simulation,
indexed by 𝑖,

𝜕𝑢𝑖

𝜕𝑡
=

1
𝑚𝑖𝑐v

∑︁
𝑗

[
𝜒𝑖 𝑗 (𝒃𝑖 𝑗 · ∇𝑢𝑖 𝑗 ) (𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
, (16)

where the sum is taken over all faces of the cell, and quantities indexed
by 𝑖 𝑗 are calculated in the interface between cells 𝑖 and 𝑗 which has
area 𝑨𝑖 𝑗 . Note that we have also used the relation 𝜌𝑖 = 𝑚𝑖/𝑉𝑖 , where
𝑚𝑖 and 𝑉𝑖 are the mass and volume of the cell, respectively.

We have also implemented a solver for isotropic conduction. In
this case, the discretised equation that determines the evolution of
the specific internal energy is

𝜕𝑢𝑖

𝜕𝑡
=

1
𝑚𝑖𝑐v

∑︁
𝑗

[
𝜒𝑖 𝑗 (∇𝑢𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
. (17)
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Figure 1. A sketch illustrating the gradient estimate at the corners of the
Voronoi mesh in 2D. Mesh generating points are indicated by turquoise
circles and the centres of mass of cells by blue crosses. The corners of the
mesh are indicated by pink circles and are connected by the faces that form
the Voronoi mesh, shown in black. A quantity at corner 1 (highlighted by the
red circle) is estimated from the values at the centres of mass 𝑎, 𝑏 and 𝑐 of
the three adjacent cells. The values at these three points are indicated by the
colouring of each cross and the shading within the triangle corresponds to
the least-squares estimate of the gradient at the corner 1. Since the corner,
1, lies outside of the triangle, the value predicted at this point (illustrated by
its colouring) is larger than those at 𝑎, 𝑏 and 𝑐 and has been extrapolated,
producing a new extremum. The gradient at corner 2 (highlighted by the green
circle), however, is calculated from the values at the centres of mass 𝑑, 𝑒 and
𝑓 . This corner lies within the triangle 𝑑𝑒 𝑓 and the value predicted by the
least-squares fit lies within the range of values at 𝑑, 𝑒 and 𝑓 , corresponding
to an interpolation.

triangle corresponds to the fit to the gradient at corner 1. As corner
1 lies outside of the triangle 𝑎𝑏𝑐, the predicted value (indicated by
its colouring) is larger than those at points 𝑎, 𝑏 and 𝑐, and has been
extrapolated. The gradient at corner 2, on the other hand, is estimated
from the values at the centres of mass 𝑑, 𝑒 and 𝑓 of its three adjacent
cells. This corner lies within the triangle 𝑑𝑒 𝑓 and the value predicted
by the least-squares fit is within the range of those at 𝑑, 𝑒 and 𝑓 ,
corresponding to an interpolation.

We mark corners where extrapolation has occurred as ‘problem-
atic’ and use a different treatment for the contribution of this corner
to gradient estimates in the interface; we will describe this alternative
treatment shortly.

In the calculation of the fluxes, we split the gradient of the ther-
mal energy into normal ∇𝑢𝑖 𝑗 ,N and tangential ∇𝑢𝑖 𝑗 ,T components
relative to the normal to the interface.

∇𝑢𝑖 𝑗 = ∇𝑢𝑖 𝑗 ,N + ∇𝑢𝑖 𝑗 ,T . (18)

The contributions to the flux from these two components are then
calculated separately and added together to get the total flux across
the interface.

In Fig. 2 we show a sketch illustrating why anisotropic diffusion
schemes are prone to violations of the entropy criterion. Both panels

3.1.1 Estimating quantities in the interface

To evaluate the flux o n t he r ight-hand s ide o f e quation ( 16), the 
gradient of the specific thermal energy, ∇𝑢𝑖 𝑗 , and the magnetic field 
direction, 𝒃𝑖 𝑗 , in the interfaces of all cells need to be determined.

When calculating the gradient of the thermal energy in the inter-
face, care has to be taken to ensure the resulting solution is physical. 
When not explicitly prevented in the gradient estimates, the solution 
may lead to heat flowing from a cold cell to a hot cell. This can, how-
ever, be avoided by using gradient limiters, as described in Sharma 
& Hammett (2007). To calculate the gradients we largely follow the 
procedure described in Pakmor et al. (2016b) which generalises the 
procedure of Sharma & Hammett (2007) for a moving mesh. We now 
briefly summarise the relevant details here.

To estimate the specific thermal energy gradient in the interface, 
we first determine the gradients at the corners of the Voronoi face. 
The interface estimate is then built from these corner estimates. In 
(2D) 3D, every corner of a Voronoi cell corresponds to the centre 
of the (circumcircle) circumsphere of a (triangle) tetrahedron in the 
dual Delaunay tessellation. The corners of a Delaunay (triangle) 
tetrahedron correspond to mesh-generating points in the Voronoi 
mesh, so every corner has (three) four adjacent cells.

To estimate the specific thermal energy gradient at the corner, we 
perform a least-squares fit, using the values of the specific thermal 
energy at the centres of mass2 of these adjacent cells (see section 2.1 
of Pakmor et al. 2016b, for an in-depth explanation).

If a corner lies outside of the (triangle) tetrahedron formed by the 
centres of mass of the (three) four neighbouring cells the gradient 
estimate will be an extrapolation rather than an interpolation. This 
is illustrated in Fig. 1 where, for simplicity, we consider the 2D 
Voronoi mesh. The value of a quantity and its gradient are estimated 
at corner 1 from the values at the centres of mass, 𝑎, 𝑏 and 𝑐, of the 
three adjacent cells. In the figure, the values at these three points are 
indicated by the colouring of the crosses and the shading within the

2 Note that the centre of mass of a Voronoi cell is not necessarily spatially 
coincident with the associated mesh-generating point.
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Figure 2. A sketch illustrating how anisotropic diffusion schemes are prone to violations of the entropy criterion. Mesh generating points are indicated by
turquoise circles and the centres of mass of cells by blue crosses. The corners of the mesh are indicated by pink circles and are connected together by the faces
that form the Voronoi mesh, shown in black. Both panels show the same configuration of the Voronoi mesh, with the only difference being the direction of
the magnetic field estimate in the interface (as indicated by the arrow labelled 𝑩). On the left-hand side, the configuration is such that the projection of the
temperature gradient estimate onto the magnetic field direction and the projection of the magnetic field onto the normal to the face are positive. In this case,
heat will flow across this face from the hot cell to the cold (see equation 16). In the right hand panel, however, the projection of the magnetic field onto the face
normal is now negative, meaning that heat will flow across this face from the cold cell to the hot. This is a result of the numerical discretisation of the diffusion
problem and can lead to extrema being accentuated.

show exactly the same configuration of the Voronoi mesh, with the
only difference being the direction of the magnetic field estimate in
the interface. In the panel on the left, the quantity (𝑩 · ∇𝑻) (𝑩 · �̂�) is
positive (where �̂� is the normal to the face). Inspecting equation (16)
shows that, in this configuration, heat will flow across the face, from
the hot cell to the cold. In the right hand panel, however, the projection
of the magnetic field onto the face normal is now negative, meaning
that heat will flow across this face in the opposite direction.

To ensure that temperature extrema are not accentuated we use
a procedure very similar to that described in Sharma & Hammett
(2007) which requires two steps. First, when estimating the normal
gradient of the thermal energy in the interface (described below),
we ensure that energy associated with the normal flux flows across
a face from the hotter cell to the colder. Second, we slope-limit the
tangential gradient, ∇𝑢𝑖 𝑗 ,T, using a generalised version of the van
Leer limiter (van Leer 1984)

∇𝑢𝑖 𝑗 ,T =
𝑁∑

𝑘 (∇𝑢𝑘,T)−1 , (19)

where the sum runs over all 𝑁 corners (indexed by 𝑘) of the face 𝑖 𝑗 .
If the tangential gradients at the corners ∇𝑢𝑘,T do not all have the
same sign, the tangential gradient in the interface is set to zero.

We calculate the normal component of the gradient in the interface
by taking an average of the values at the corner, weighted by the
fractional area of the Voronoi face that is closest to this corner.
This alone does not, however, guarantee that the result satisfies the
entropy condition. We, therefore, additionally calculate a ‘simple’
finite difference estimate using the values of the specific thermal
energy at the centres of mass of the two cells on either side of the
interface. While the corner averaged normal gradient estimate has a
larger stencil, this ‘simple’ estimate is more robust. We then compare
the signs of these two gradient estimates and, if they disagree, we

use the ‘simple’ finite difference estimate which satisfies the entropy
condition by construction. We, additionally, replace the contribution
of corners that were previously flagged as ‘problematic’ (due to
extrapolation in the gradient estimate at the corner) with this ‘simple’
estimate.

The magnetic field direction in the interface, 𝒃𝑖 𝑗 , is calculated in
a similar way. We use a least-squares fit to get a first estimate at the
corners, and then calculate the interface value by taking a weighted
average of these corner estimates3. We then calculate 𝑐v assuming the
gas is fully ionised with primordial composition. Next, we calculate
the conductivity in the interface, 𝜒𝑖 𝑗 , by taking the arithmetic average
of the conductivities of the two cells on either side of the interface

𝜒𝑖 𝑗 =
1
2
(𝜒𝑖 + 𝜒 𝑗 ) . (20)

For the scheme outlined in Sharma & Hammett (2007) they sug-
gest instead using the harmonic average for numerical stability. In our
scheme, however, we do not observe any stability problems when us-
ing the arithmetic average. Additionally, in Appendix A, we use point
explosion simulations (analogous to those presented in Section 4.2.1)
to explore the effects of these two averaging procedures and show
that, for our scheme, the arithmetic mean best reproduces the analytic
predictions of the speed of advance of the conduction fronts.

Note that, when using the functional form of the conductivity that
interpolates between the whistler suppressed and collisional regimes
(see equation 10), we use the unlimited temperature gradient to cal-
culate the temperature gradient lengthscale. Typically, AREPO stores
the limited gradients that are used in the flux calculations, which

3 The weights are the same as those described above for the thermal energy
gradient in the interface, i.e. the fractional area of the Voronoi face that is
closest to the relevant corner.



can be significantly lower than the t rue gradients in regions where 
the gradients are not well resolved. Using these limited gradients in 
the calculation of 𝑙T, ∥ could lead to underestimates of the level of 
suppression. Additionally, since AREPO uses the single-fluid MHD 
approximation we do not have access to the electron temperature. 
When calculating the whistler suppression factor we, therefore, use 
the bulk plasma temperature to calculate the plasma beta.

For the case of isotropic conduction, only the gradient of the 
specific thermal energy normal to the surface contributes to the flux, 
which we estimate in the same way as for ∇𝑢𝑖 𝑗 ,N.

3.2 Time integration

We implement three different t ime i ntegration s chemes f or the 
anisotropic thermal conduction solver: an explicit solver, a semi-
implicit, linear solver and a semi-implicit, non-linear solver. Note that 
in the descriptions of these methods in the next three sub-sections, 
the equations are strictly only valid when using global timesteps. In 
Section 3.2.4 we discuss the adaptations that need to be made when 
using local timestepping.

3.2.1 Explicit time integration

For the explicit integration scheme, we evolve the specific thermal 
energy using two half timesteps updates which are carried out im-
mediately before and after the first and second gravity kicks, respec-
tively:

𝑢
𝑛+1/2
𝑖

= 𝑢𝑛𝑖 +
Δ𝑡

2𝑚𝑛
𝑖
𝑐v

∑︁
𝑗

[
𝜒𝑛𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛
𝑖 𝑗,T

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
+ Δ𝑡

2𝑚𝑛
𝑖
𝑐v

∑︁
𝑗

[
𝜒𝑛𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛
𝑖 𝑗,N

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
,

𝑢𝑛+1
𝑖 = 𝑢

𝑛+1/2
𝑖

+ Δ𝑡

2𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒
𝑛+1/2
𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛+1/2
𝑖 𝑗 ,T

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
+ Δ𝑡

2𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒
𝑛+1/2
𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛+1/2
𝑖 𝑗 ,N

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
, (21)

where the superscripts 𝑛, 𝑛 + 1/2, and 𝑛 + 1 correspond to the be-
ginning, mid-point and end of a timestep of length Δ𝑡, respectively.
We use the same procedure for the explicit treatment of isotropic
conduction, with the appropriate flux term (equation 17).

For stability, this explicit integration scheme requires a timestep
constraint of the form

Δ𝑡 < 𝜂
(Δ𝑥)2
𝜅

, (22)

where Δ𝑥 is the cell diameter, 𝜂 < 1 is a constant, and

𝜅 =
𝜒

𝑐v𝜌
, (23)

local timestepping in AREPO, and extending them to be capable of
doing so is not straightforward.

3.2.2 Semi-implicit, linear solver

The gradient limiter that ensures the entropy condition is not violated
(equation 19) introduces non-linearities into the tangential flux es-
timate, which significantly increase the numerical complexity when
using an implicit integrator. The normal gradient estimate on the
other hand has an explicit, linear dependence on internal energy. But
it has an additional, implicit dependence on temperature via the con-
ductivity (which is often modelled as being temperature dependent).
In this ‘semi-implicit, linear solver’ we assume 𝜒𝑖 𝑗 for each inter-
face is constant during the determination of the normal flux. In the
following section we discuss an integration scheme that relaxes this
assumption.

When changes to 𝜒𝑖 𝑗 across a timestep are ignored, a semi-implicit
scheme can be formulated which is almost as stable as a fully implicit
scheme and in which only one linear implicit problem is solved per
timestep (see Sharma & Hammett 2011; Pakmor et al. 2016b). To this
end we split the calculation into two parts. First, the flux associated
with the tangential component of the specific thermal energy gradient
is evolved using a forward-Euler method,

𝑢�̃�𝑖 = 𝑢𝑛𝑖 +
Δ𝑡

𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒𝑛𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛
𝑖 𝑗,T

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
, (24)

where the superscript �̃� indicates intermediate values. In the second
step, the thermal energies are advanced due to the flux associated
with the normal component of the specific thermal energy gradient
using an implicit backward-Euler scheme,

𝑢𝑛+1
𝑖 = 𝑢�̃�𝑖 +

Δ𝑡

𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒𝑛𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛+1
𝑖 𝑗 ,N

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
. (25)

To solve this linear system of equations, we use the HYPRE li-
brary (Falgout & Yang 2002) and carry out a two-step procedure,
first using a generalised minimal residual (GMRES) solver (Saad
& Schultz 1986) iteratively until the residual drops below 10−8. If
this condition is not met within 200 iterations, we add an algebraic
multigrid preconditioner (Henson & Yang 2002) to GMRES which
is then iterated until the residual drops below 10−8.

We apply a flux limiter to the first (explicit) part of this calculation
to ensure that cells are not completely drained of thermal energy
during the exchange. Such a limiter is, however, not required in the
second (implicit) part of the calculation.

We find that this scheme does not require a timestep criterion simi-
lar to that required by explicit schemes (see equation 22) and is stable
on much longer timesteps, similar to what was observed in Sharma &
Hammett (2011) and Pakmor et al. (2016b). The implicit part of the
flux calculation is unconditionally stable. As the timesteps become
very long, however, the explicit fluxes may become so large that the
flux limiter activates and the solution becomes more isotropic. We,
however, do not observe such behaviour when cells are integrated on
their MHD timestep.

We also treat the case of isotropic conduction similarly and split
the flux into two steps of size Δ𝑡/2. We integrate the first step using
the explicit scheme and the second using the implicit scheme. This
semi-implicit scheme is fully second-order convergent in the case of
isotropic conduction (Pakmor et al. 2016b). We could in principle
treat isotropic conduction purely implicitly (as only normal gradient
estimates are required which are linear in the specific internal energy
of the cells), though this scheme would only be first-order accurate
in time.

is the thermal diffusivity. When determining this t imestep for each 
cell, we use the maximum value of 𝜒 in any of its interfaces to 
calculate 𝜅.

Note that this timestep criterion can become prohibitively restric-
tive due to its quadratic dependence on the cell size, severely lim-
iting the achievable spatial resolution. It is therefore preferable to 
use semi-implicit or implicit time-integration schemes, which do 
not require this timestep criterion for stability. Note also that super-
timestepping schemes such as that presented in Berlok et al. (2020) 
can be used to somewhat alleviate this timestep constraint. So far, 
however, super-timestepping schemes are not able to deal with the



3.2.3 Semi-implicit, non-linear solver

When the conductivity has a temperature dependence (e.g. Spitzer),
the fluxes of thermal energy associated with conduction will neces-
sarily lead to changes in the conductivity. To test whether taking into
account changes in 𝜒𝑖 𝑗 across each timestep affects our results, we
also implemented a ‘non-linear solver’.

Put simply, this ‘semi-implicit, non-linear solver’ iteratively ap-
plies the procedure described in the previous section for the ‘semi-
implicit, linear solver’ and updates the conductivity and gradients at
each iteration. Specifically, we iteratively calculate

𝑢
�̃�,𝑚
𝑖

= 𝑢
𝑛,0
𝑖

+ Δ𝑡

𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒
𝑛,𝑚−1
𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛,𝑚−1
𝑖 𝑗 ,T

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
,

(26)

𝑢
𝑛,𝑚∗
𝑖

= 𝑢
�̃�,𝑚
𝑖

+ Δ𝑡

𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒
�̃�,𝑚
𝑖 𝑗

(
𝒃𝑖 𝑗 · ∇𝑢

𝑛,𝑚∗
𝑖 𝑗 ,N

)
(𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )

]
,

(27)

where 𝑛 indexes the timestep and 𝑚 indexes the iteration. �̃� denotes
an intermediate quantity, after the tangential flux has been evolved
but before that of the normal flux. We use the intermediate thermal
energies to calculate the conductivity, 𝜒�̃�,𝑚

𝑖 𝑗
, that is used in the normal

flux (equation 27).
𝑢
𝑛,𝑚∗
𝑖

is the specific thermal energy that is predicted at the end of
iteration𝑚. To get the energies used in the conductivity and gradients
at the beginning of the next iteration, we interpolate between this
value and the specific thermal energy at the beginning of this iteration,
𝑢𝑛,𝑚−1, via

𝒖𝑛,𝑚 = 𝜇𝑚 𝒖𝑛,𝑚∗ + (1 − 𝜇𝑚) 𝒖𝑛,𝑚−1 , (28)

where 𝒖 is a vector of thermal energies of all cells being considered
in the calculation. A good choice of the interpolation parameter, 𝜇𝑚,
can speed up the rate at which the non-linear solver converges. We
implemented two different interpolation methods. First, similar to
Kannan et al. (2016), we employ a modified version of the unstable
manifold corrector scheme described in Smedt et al. (2010) in which
the correction vector (i.e. the vector of changes in thermal energy
across the timestep) is adaptively over- or underrelaxed depending on
the relative direction of successive correction vectors. In the second
interpolation method, we take 𝜇𝑚 = 1 but reduce this when necessary
to ensure that the relative change of the thermal energy of all cells
from its value at the beginning of the iteration is not more than 10%.
We found the second procedure to be more robust, while the first
method sometimes took much longer to converge, particularly when
using local-timestepping.

We use two criteria to determine if the solution is converged, both
of which are checked at every iteration. The first criterion we check
is
|𝒖𝑛,𝑚 − 𝒖𝑛,𝑚−1 |

|𝒖𝑛,0 |
< 10−6 . (29)

For the second convergence criterion we begin by estimating the
solution at the end of the iteration using a forward-Euler scheme for
both the tangential and normal components. The first part of this
is identical to the standard treatment of the tangential fluxes (see
equation 26), so only the normal component requires calculating at
each iteration.

The estimate of the solution at the end of the iteration, 𝑢�̂�,𝑚
𝑖

, is
then

𝑢
�̂�,𝑚
𝑖

= 𝑢
�̃�,𝑚
𝑖

+ Δ𝑡

𝑚𝑛+1
𝑖

𝑐v

∑︁
𝑗

[
𝜒
�̃�,𝑚
𝑖 𝑗

(𝒃𝑖 𝑗 · ∇𝑢�̃�,𝑚𝑖 𝑗,N) (𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 )
]
, (30)

where𝑢�̃�,𝑚
𝑖

is given by equation (26). We then calculate the difference
between these predictions, 𝒖�̂�,𝑚, and the internal energies at the
beginning of the iteration 𝒖𝑛,𝑚,

Δ𝒖𝑛,𝑚 = 𝒖𝑛,𝑚 − 𝒖�̂�,𝑚 , (31)

and the second convergence criterion is then

|Δ𝒖𝑛,𝑚 |
|Δ𝒖𝑛,0 |

< 10−3 . (32)

If either of these two conditions are satisfied then we stop the iteration
and accept the internal energies at the end of the final iteration.

We find that convergence typically occurs within the first ∼ 10 it-
erations but can sometimes take many more, particularly when using
local-timestepping (as described below) at synchronisation points
where a significant fraction of gas cells are active. We should note,
however, that these procedures are not strictly guaranteed to con-
verge to the solution of the equations, in particular, due to the flux
and gradient limiters that are used. Additionally, the first criterion
essentially measures whether the iteration has stopped and does not
make any statement about how close the solution is to solving the
equations.

3.2.4 Local timestepping

The scheme presented thus far solves the conduction problem for
all gas cells in the simulation at each timestep. Since, when using
local-timestepping, the mesh in AREPO is only guaranteed to be
complete for active cells, the scheme, as currently presented, can
only be used on global timesteps. This makes it unsuitable for use
in complex problems with deep timestep hierarchies (such as those
typically found in simulations of galaxy clusters). We, therefore, use
a method similar to Pakmor et al. (2016b) to adapt the scheme to
work with local timestepping.

At each timestep we compute the specific thermal energy of each
cell involved in the calculation and use this to solve the conduction
problem for each active interface4 as described in the previous sec-
tions. We then update the thermal energy of the cells due to these
conduction fluxes. Note that the mesh at each timestep is guaranteed
to be complete for active cells so all information required to cal-
culate the gradients and quantities at the corners will be available.
This means that we only have to solve the conduction problem for all
active cells and for a layer of inactive cells that share a face with an
active cell.

For the ‘semi-implicit, non-linear solver’ we must additionally de-
fine the particle set over which we calculate the convergence criteria
(see Section 3.2.3). We choose this set to be all cells that have at least
one active interface, (i.e. all cells that can potentially have their in-
ternal energies changed by the thermal conduction in this timestep).
Note that this is the same particle set that is used in the matrix iter-
ation stopping criterion in the implicit step (used in both the linear
and non-linear solvers) as the matrix will include the energies of all
cells that are involved in the flux calculation (i.e. those that have at
least one shared interface).

The scheme presented in this work uses a fundamentally different
method to that of the anisotropic thermal conduction solver described
in Kannan et al. (2016) which is also implemented in AREPO. In ad-
dition, extending our scheme to work with local timesteps using the
procedure described above is relatively straightforward. Building the

4 An active interface refers to a Voronoi face where at least one of the two
neighbouring cells is active.
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Figure 3. Specific internal energy slices at early times (𝑡 = 10) for the problem of anisotropic conduction of a hot patch of gas around a circular magnetic field
in 2D. Each panel shows the entire computational domain for five simulations with different resolutions (indicated in the top right) which use local timestepping
(see text for explanation). In the lower-right panel we show the analytic solution for comparison. With increasing resolution the diffusion perpendicular to the
magnetic field decreases and the numerical solution is seen to converge on the analytic one.

mesh at each sync-point for the active particle set requires inserting
the direct neighbours of all active cells into the mesh which, as dis-
cussed above, is sufficient for us to compute the fluxes over all active
interfaces. The scheme presented in Kannan et al. (2016), however,
requires information about a second layer of cells around active cells,
which are not guaranteed to be part of the partial mesh. This means
that the scheme can only be used on timesteps where all particles are
active, making it unsuitable for use in investigating complex prob-
lems (such as those found in studies of structure formation) with deep
timestep hierarchies.

3.3 Anisotropic thermal conduction in comoving coordinates

Here we briefly discuss the changes that need to be made to adapt the
procedure described in the previous sections for use in cosmological
simulations. In cosmological simulations it is convenient to intro-
duce spatial coordinates that are comoving with the cosmological
expansion and a set of comoving variables (which we indicate with a
subscript ‘c’). Those relevant to the transformation of the conduction
equation are defined via

𝒓 = 𝑎𝒙 , 𝒖 = 𝒗 − ¤𝑎𝒙 ,

𝜌 = 𝜌c 𝑎
−3 , 𝑃 = 𝑃c 𝑎

−3 𝜒 = 𝜒c 𝑎
−1 , (33)

The derivatives in comoving coordinates transform according to

𝜕

𝜕𝑡

����
𝒓
=

𝜕

𝜕𝑡

����
𝒙
− 𝐻 𝒙 · ∇𝒙 , ∇𝒓 =

1
𝑎
∇𝒙 , (34)

where 𝐻 = 𝐻 (𝑎) = ¤𝑎/𝑎 is the Hubble rate.
The part of the energy equation relevant for anisotropic thermal

conduction in comoving coordinates is then

𝜕𝑢

𝜕𝑡

����
𝒙
=

1
𝜌c𝑐v

∇𝒙 ·

[
𝜒c 𝒃(𝒃 · ∇𝒙 𝑢)

]
. (35)

Note that this equation does not correspond to an exact transform of
equation (13) but, rather, comes about by transforming the energy
equation (3) and isolating the term relevant for anisotropic thermal
conduction. The discretised form of this equation is then

𝜕𝑢𝑖

𝜕𝑡

����
𝒙
=

1
𝑚𝑖𝑐v

∑︁
𝑗

[
𝜒𝑖 𝑗 ,c (𝒃𝑖 𝑗 · ∇𝒙 𝑢𝑖 𝑗 ) (𝒃𝑖 𝑗 · 𝑨𝑖 𝑗 ,c)

]
. (36)

3.4 Comparison with other algorithms and implementations

The solver described in this work presents a significant improvement
over previous schemes implemented in AREPO which solve diffusion
problems. It combines local timestepping, spatially varying diffusion
coefficient with dependence on the quantity being diffused, and an
optional non-linear solver to solve the resulting non-linear anisotropic
diffusion problem.

The cosmic ray diffusion scheme presented in Pakmor et al.
(2016b) is closest to that presented in this paper. Their scheme, how-
ever, only works for a spatially uniform diffusion coefficient which

where 𝑎 is the scale factor, 𝒓 are physical coordinates, 𝒙 are comoving 
coordinates, the physical velocity is 𝒗 = 𝒓¤, and the peculiar velocity is 
𝒖 = 𝑎 𝒙¤. Note that, under this coordinate transformation, the specific 
internal energy is unchanged.
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Figure 4. 𝐿1 norm for the problem of anisotropic conduction of a hot patch
of gas around a circular magnetic field in 2D (as visualised in Fig. 3). The top
panel shows the 𝐿1 norm at early times (𝑡 = 10), and the bottom panel shows
it at late times (𝑡 = 200). The different coloured lines show the results for
different timestepping schemes: ‘local’ and ‘global’ correspond to simulations
that use local and global timestepping schemes, respectively. ‘global+diff’
corresponds to simulations that use global timestepping with the addition of
the timestep criterion required by explicit schemes for stability (equation 22).
In general, all configurations show very similar errors and convergence rates,
both at early times (𝐿1 ∝ 𝑁−0.52) and at late times (𝐿1 ∝ 𝑁−0.7).

leads to a purely linear problem. In contrast, the schemes presented
in the previous section for thermal conduction were designed to work
stably and accurately also when the diffusivity varies on a cell-to-
cell basis according to the local properties of the gas. The steep
temperature gradients that are expected in the CGM and ICM lead to
correspondingly steep gradients in the diffusivity, making this a tax-
ing problem. They also make the problem at least mildly non-linear,
so it is critical to have a solver that can take this non-linearity into
account.

The scheme presented in Berlok et al. (2020) treats the anisotropic
diffusion of momentum and uses a similar spatial discretisation as
Pakmor et al. (2016b). However, their scheme is not compatible with
local timestepping, making it unable to cope with the large spa-
tial and temporal dynamic range that arises in cosmological cluster
simulations. Finally, the scheme for anisotropic thermal conduction
introduced in Kannan et al. (2016) uses a different spatial discreti-
sation which, similar to the time integration scheme in Berlok et al.
(2020), is fundamentally unable to be extended to local timestep-
ping. Additionally, it requires a cap on the diffusivity for stability

(Kannan et al. 2017) which does not allow modelling of full Spitzer
conductivity in galaxy clusters and precludes studying models with
a physically suppressed heat conduction which are suggested by ad-
vanced models of MHD that account for electron-whistler scattering
(e.g., Drake et al. 2021).

4 RESULTS: NUMERICAL TESTS

In this section we present results from a number of numerical test
problems which we use to assess the accuracy and stability of the
anisotropic thermal conduction scheme.

4.1 Anisotropic conduction around a ring in 2D

We test the 2D diffusion of a hot patch of gas in a circular magnetic
field, following the setup of Parrish & Stone (2005) and Sharma &
Hammett (2007). We use this setup to test and quantify the conver-
gence of the anisotropic solver with respect to the analytical solution
when applied to a multidimensional problem at fixed conductivity
and a constant background. We, therefore, disable hydrodynamics in
this test and keep the mesh fixed.

We use a regular, approximately hexagonal mesh, which we create
by taking a uniform Cartesian mesh offsetting the points in every
other column by 0.49 times the cell size. We initialise the specific
thermal energy within a domain of [−1, 1]2 to

𝑢(𝒙) =
{

12 if 0.5 < 𝑟 < 0.7 and |𝜙| < 𝜋/12 ,
10 otherwise ,

(37)

where 𝑟 =
√︁
𝑥2 + 𝑦2 is the distance from the centre of the box and

𝜙 = tan−1 (𝑦/𝑥) is the angle to the 𝑥-axis. The magnetic field is
initialised via

𝐵𝑥 (𝒙) = − 𝑦

𝑟
,

𝐵𝑦 (𝒙) = + 𝑥
𝑟
. (38)

We set the parallel diffusivity, 𝜅 = 𝜒/(𝑐v𝜌), to 0.01. There is no
perpendicular diffusivity so the energy should stay within the ring.

At early times, the resulting behaviour can be considered as a 1D
diffusion problem of a double step function, which has an analytic
solution given by

𝑢(𝒙) = 10 + erfc
[(
𝜙 + 𝜋

12

)
𝑟

𝐷

]
− erfc

[(
𝜙 − 𝜋

12

)
𝑟

𝐷

]
, (39)

where 𝐷 =
√

4𝜅𝑡 for 0.5 < 𝑟 < 0.7 and 𝑢(𝒙) = 10 elsewhere. At
late times, the energy should be uniformly distributed in the ring,
i.e. 𝑢 = 10 + 1/6 for 0.5 < 𝑟 < 0.7 and 𝑢 = 10 elsewhere.

In Section 3.2.3 we introduced the non-linear solver as a way to
take the temperature dependence of the conduction coefficient into
account. In this test the conduction coefficient is fixed and therefore
insensitive to the non-linear solver. We therefore defer discussion of
the non-linear solver to the following section and, for this test, con-
sider only the semi-implicit, linear solver described in Section 3.2.2.

In the present section we compare simulations that use local
timesteps with those that use global timesteps and additionally con-
sider simulations where we impose the timestep criterion required by
explicit schemes for stability (equation 22). We refer to these three
types of simulation as ‘local’, ‘global’ and ‘global+diff’, respectively.

In the simulations that use local timesteps we impose a timestep
hierarchy, as this does not arise naturally in the problem. We leave
the timesteps of cells in the lower-left quadrant unaltered and reduce



stopped the simulation before the conduction front left the domain.
For consistency we will continue to refer to the lower resolution sim-
ulations with a box side length of 200 pc as 643 and 1283, despite the
fact that, when doubling the domain length, we also double the num-
ber of cells along each edge. This ensures that, across all simulations
of a given resolution (i.e. 643, 1283 or 2563), the spatial resolution
remains the same.

The background medium has constant density 𝑛0 = 1 cm−3 and
temperature𝑇0 = 104 K. The background magnetic field has strength
1 𝜇G and points in the positive 𝑥-direction, which corresponds to
an initial plasma beta of ∼ 35. In all simulations we inject 𝐸0 =

3.33× 1050 erg into the central region. In the 643 resolution runs we
inject into the central 8 cells. We keep the volume of the injection
region the same in the higher resolution simulations (1283 and 2563),
and the number of injection cells increases accordingly to 64 and 512,
respectively. This means that the total mass into which the energy is
injected is constant across all simulations (and thus the peak initial
temperature is also the same).

For simulations with conduction, the conductivity is assumed to
take the Spitzer value without any form of suppression (i.e. 𝜒 is as
in equation 9). Unless specified, the simulations were run with the
linear thermal conduction solver. We identify those that were run
with the non-linear solver explicitly.

In order to capture the very early evolution of the shock and con-
duction fronts, we employ maximum timesteps that are log-spaced in
time. We, additionally, carried out analogous simulations with local
timesteps where we relaxed this maximum timestep criterion and
confirmed that the results of these simulations are consistent with
the late time behaviour described in the rest of this section.

Figure 5 shows thin temperature projections at three different
times for the 1283 resolution simulations without conduction, with
isotropic conduction and with anisotropic conduction. At early times,
the conduction fronts in the runs with conduction (middle and right
columns) advance faster than the shock front in the pure MHD run
(left column). In the simulation with anisotropic conduction there is
essentially no diffusion perpendicular to the magnetic field and the
parallel expansion occurs noticeably faster than the radial expansion
seen in the simulation with isotropic conduction. The perpendicular
expansion in the anisotropic conduction case is also slower than the
classical adiabatic solution, as was also found in Kannan et al. (2016)
and Dubois & Commerçon (2016).

At later times, the pure MHD and isotropic conduction simulations
have similar radial extents although the MHD simulation retains a
strong radial temperature gradient within the shocked region, while
the temperature gradients in the simulations with conduction are
much flatter.

We now examine the different behaviour observed in these simula-
tions more quantitatively. Analytic solutions to the problem of point
explosion in a uniform medium exist for the purely adiabatic case
and the case of pure conduction. For an adiabatic point explosion,
the radius of the shock front expands according to

𝑟s (𝑡) = 𝜉 (𝑛)
(
𝐸0 𝑡

2

𝜌0

)1/(𝑛+2)
, (40)

where 𝑛 is the dimension of the problem and 𝜉 (𝑛) is a constant of
order unity which also depends on the adiabatic index (Sedov 1959).
In three dimensions, with 𝛾 = 5/3, 𝜉 (3) is approximately 1.15.

For the case of a point explosion with heat conduction where
the conductivity has a power law dependence on temperature, 𝜒 =

that of the cells in the upper-left and lower-right quadrant by a factor 
of 2, and that of the cells in the upper-right quadrant by a factor of 4.

Figure 3 shows the specific i nternal energy d istribution a t early 
times (𝑡 = 10) for five simulations with different resolutions, and in 
the bottom-right we show the analytic prediction. The simulations 
in Fig. 3 were all run with local timestepping (as described above). 
Reassuringly, it is evident that there are no unphysical features at the 
boundaries between regions with different timesteps. All simulations 
reproduce the general behaviour predicted by the analytic solution. 
With increasing resolution, however, there is less perpendicular dif-
fusion and the numerical solution becomes a better match to the 
analytic one.

We now examine these simulations more quantitatively. Figure 4 
shows the 𝐿1 norm5 as a function of resolution of the simulation at 
early and late times, for simulations that use local timestepping and 
for runs that use global timestepping, with and without the diffusion 
timestep constraint being imposed. In general, all three configurations 
show very similar errors and convergence rates, at both early times 
(𝐿1 ∝ 𝑁−0.52) and late times (𝐿1 ∝ 𝑁−0.7). The faster convergence 
rates at late times arise due to the fact that, by this point, the solution 
is primarily sensitive to errors in the conduction perpendicular to 
the magnetic field w hereas a ny e rrors i n t he p arallel conduction 
speed (which the solution will be sensitive to at early times) have 
been washed out. We note that these convergence rates are clearly 
worse than first order but are comparable to other implementations 
of anisotropic transport solvers (Parrish & Stone 2005; Sharma & 
Hammett 2007; Kannan et al. 2016; Pakmor et al. 2016b).

The behaviour of the errors in the runs with local and global 
timesteps are very similar. At late times, however, the run with lo-
cal timesteps has slightly smaller errors at higher resolution. This 
may arise because we impose smaller timesteps than required in the 
local-timestepping simulations. The runs with the additional timestep 
constraint show slightly smaller errors at early times and higher res-
olution in comparison to the other schemes. At late times and high 
resolution, however, the error is slightly worse.

4.2 Point explosion in a uniform medium

To assess the accuracy of the coupling between the ideal MHD and 
thermal conduction solvers we carry out 3D simulations of a point 
explosion in a uniform background where the conductivity is self-
consistently determined by the temperature. We perform three differ-
ent types of simulation; one where there is no thermal conduction (i.e. 
ideal MHD), one with the addition of isotropic conduction and one 
with anisotropic conduction. We refer to these type of simulations as 
‘MHD’, ‘+iso’ and ‘+aniso’, respectively.

In all simulations, the mesh is initially Cartesian but undergoes reg-
ularisation during the course of the simulation (see Vogelsberger et al. 
2012). We carry out simulations at three different spatial resolutions: 
643, 1283 and 2563. For the ideal MHD and isotropic conduction 
simulations, the computational domain has side length 100 pc. As 
the conduction front in the setup with anisotropic conduction moves 
much faster than in the isotropic case we use a computational domain 
with side length 200 pc for the two lower resolution simulations with 
anisotropic conduction. This ensures that the conduction front does 
not leave the box during the simulation. For the highest resolution 
simulation with anisotropic conduction, increasing the boxsize was 
too expensive and so we ran it in a box of side length 100 pc and

5 The sum over all cells of the absolute value of the difference between the 
simulation result and analytic prediction.
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Figure 5. Thin temperature projections of size 100 × 100 pc for the point explosion test. Each column, from left to right, shows results for the pure MHD case,
that with isotropic conduction and that with ansiotropic conduction. Each row depicts the state of the system at a different time which is indicated in the top-right
corner of each panel in the first column. The grey lines show the magnetic field configuration. Thermal conduction can significantly affect the outcome of a
point explosion, particularly when conduction occurs anisotropically along the magnetic field.

𝜒0 𝑇
𝛼, the radius of the conduction front evolves according to

𝑟c (𝑡) =
[(

2(𝑛𝛼 + 2)
𝛼

𝜒0
𝑐v𝜌0

) (
2
𝑆𝑛

1
B( 𝑛2 ,

1
𝛼 + 1)

𝐸0
𝜌0𝑐v

)𝛼
𝑡

]1/(𝑛𝛼+2)

,

(41)

where 𝑆𝑛 = 1, 2𝜋, 4𝜋 for dimensions 𝑛 = 1, 2, 3, and B(𝑥, 𝑦) is the
beta function (see e.g. Zel’dovich & Raizer 1967; Barenblatt 1996).

4.2.1 Point explosion with isotropic conduction

We begin by examining the simulations that were run with isotropic
conduction. Equation (40) predicts that the 3D shock radius in our

simulations should expand according to

𝑟s,3D (𝑡) = 4.75
(

𝑡

kyr

) 2
5

pc . (42)

From equation (41) the 3D conduction front, assuming Spitzer con-
ductivity (𝛼 = 5/2), is at radius

𝑟c,3D (𝑡) = 10.1
(

𝑡

kyr

) 2
19

pc . (43)

In Fig. 6 we show the time evolution of the radius of the
shock/conduction front for the three different resolution simulations.
Additionally, for the lowest resolution, we show the results from a
simulation run using the non-linear conduction solver described in
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Figure 7. Evolution of the radius of the conduction/shock front in the 3D
point explosion test with anisotropic conduction (as visualised in the right
column of Fig. 5). Solid/dot-dash, coloured lines show the radius as measured
parallel/perpendicular to the initial magnetic field direction (see figure leg-
end). The black dotted lines show the analytic scalings for the radial evolution
of a cylindrical blast wave (𝑟 ∝ 𝑡1/2, see equation 40) and a 1D conduction
front (𝑟 ∝ 𝑡2/9, see equation 41). The expansion of the conduction front along
the magnetic field follows the expected scalings for a 1D point explosion with
pure conduction. Perpendicular to the initial magnetic field, the shock front
expands slower than the conduction front and follows the expected scalings
for a cylindrical blast wave.

direction of the magnetic field. Perpendicular to the magnetic field
lines, the evolution of the system is determined by MHD processes
and the early rapid expansion of the conduction front along the 𝑥-
axis, as seen in Fig. 5, means that this approximately resembles a 2D
cylindrical blast wave.

Equations (40) and (41) show that the radii of the conduction and
shock fronts in this scenario should scale as 𝑟c,1D ∝ 𝑡2/9 and 𝑟s,2D ∝
𝑡1/2, respectively. In contrast to the isotropic case, the constants 𝐸0
and 𝜌0 in equations (40) and (41) are not well defined because the
anisotropic case does not decouple into two independent problems
along and perpendicular to the magnetic field. We, therefore, just
compare the scaling behaviour of the radius of the 2D shock and 1D
conduction front, rather than exact values.

In Fig. 7 we show the radii of the conduction/shock front in the
point explosion test with anisotropic conduction as a function of time,
for the three different resolution simulations. We calculate the radii
of the shock/conduction front parallel and perpendicular to the initial
magnetic field direction and use the same method as was described
in the previous section for the isotropic conduction simulations. The
expansion of the conduction front along the magnetic field at early
times is much faster than seen for the isotropic case. This is expected
and is largely due to the geometry of the problem. The radius of
the conduction front follows the analytic scaling well for the higher
resolution simulations, but is slightly shallower for the lowest reso-
lution run (red line). At late times, the radial expansion slows with
respect to the analytic scaling as hydrodynamical processes that are
driving the lateral expansion become important. This behaviour was
also seen in Kannan et al. (2016).

The expansion of the shock front perpendicular to the magnetic
field is initially slower than that of the conduction front along the
magnetic field and follows the expected scaling well at all resolution
levels, except perhaps at very early times for the lowest resolution run.

Figure 6. Evolution of the radius of the conduction/shock front in the 3D point 
explosion test with isotropic conduction (as visualised in the middle column of 
Fig. 5). Solid, coloured lines show results from simulations run with the linear 
conduction solver while the dashed, yellow line corresponds to a simulation 
run with the non-linear solver (see figure l egend). The black l ines indicate 
the analytic expectation for the radial evolution of the shock/conduction front 
in the cases of pure hydrodynamics (𝑟s,3D, equation 42) and pure conduction 
(𝑟c,3D, equation 43). At early times conduction is fastest but at ∼ 13 kyr, the 
shock front catches up and overtakes. With increasing resolution the results 
converge towards the analytic expectation.

Section 3.2.3. We estimate the radius of the shock/conduction front 
by first calculating a spatial temperature profile of the gas along the 
𝑥-axis6, passing through the centre of the injection region. We then 
define the conduction/shock front radius to be the distance from the 
centre to the furthest point where the temperature is above 1%7 of
the background temperature, 𝑇0.

At early times, conduction dominates and the radius of the fronts 
advances ∝ 𝑡2/19, in accordance with analytical expectations. Equat-
ing equations (42) and (43) gives a transition time of ∼ 13 kyr at 
which hydrodynamical process are expected to become dominant. 
Indeed, this is very close to the time at which we see a distinct 
change in the evolution of the shock/conduction front in the simula-
tions, which then begins to follow the shock solution. With increasing 
resolution and at a fixed time, the radius of the measured front is gen-
erally smaller, and converges towards the analytic expectation. The 
behaviour of the shock/conduction front in the simulation run with 
the non-linear solver (dashed yellow line) almost exactly reproduces 
that in the analogous simulation run with the linear solver (solid red 
line). In future work we plan to apply the non-linear solver to other 
problems (including galaxy cluster zooms) to test whether this result 
holds generally.

4.2.2 Point explosion with anisotropic conduction

When heat conduction is anisotropic, the problem of point explosion 
in a uniform medium essentially becomes a 1D problem along the

6 The results discussed in the remainder of the section are independent of 
the direction of the axis along which the temperature profile is measured. 
7 We also tested threshold values of 0.1% and 10% and found that the 
location of the shock/conduction front radius is sufficiently we ll resolved 
in all simulations that the results presented in this section and the one that 
follows are insensitive to the exact choice of this threshold value.
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Figure 8. Temperature slices with magnetic field lines overlaid in black that show the time evolution of the MTI for the simulation where the unstable region
has resolution 256 × 256. The slices show the entire simulation domain (𝐿 × 2𝐿), and the grey horizontal lines indicate the boundaries between the unstable
and neutral regions. The temperatures are normalised to that at the base of the unstable region. The initial perturbation grows linearly in the first three panels
until there is a large vertical component of the magnetic field. This configuration is, however, non-linearly unstable with the end result being a state of sustained
turbulence.

Overall, the results in this section have validated the accuracy of the
coupling between the hydrodynamics and thermal conduction solvers
and have, additionally, demonstrated the accuracy of our treatment
of the temperature dependence of the conductivity in the solver.

4.3 The magneto-thermal instability

For both positive and negative temperature gradients, high-𝛽, weakly
collisional, stratified plasmas are unstable to magnetically-mediated
buoyancy instabilities when anisotropic conduction is rapid com-
pared to the dynamical response of a plasma. Specifically, anisotropic
heat conduction causes the slow magnetosonic wave to become buoy-
antly unstable to the MTI (Balbus 2000, 2001) when the temperature
decreases with height and to the HBI (Quataert 2008) when the
temperature increases with height.

In regions where 𝒈 · ∇𝑇 > 0, any misalignment of magnetic-field
lines and gravity (i.e. 𝒈) can result in the development of the MTI.
In the presence of a sustained temperature gradient, the MTI drives
vigorous turbulence that is largely isotropic (see e.g. Parrish & Stone
2005, 2007; Perrone & Latter 2022a,b). In this section, we present
simulations which explore the non-linear behaviour of the MTI and
compare our results to previous work (such as Parrish & Stone 2005;
Parrish & Quataert 2008; McCourt et al. 2011; Kannan et al. 2016).

4.3.1 Initial conditions

We follow the evolution of a 2D region of plasma initially in hydro-
static and thermal equilibrium. The region of plasma we simulate
consists of an MTI unstable region, where conduction is anisotropic,
sandwiched between two buoyantly neutral regions, where the heat
conduction is isotropic. Note, however, that we ignore these buffer
regions in the quantitative analysis presented in this section.

The plasma is stratified in density and temperature and is subject
to a uniform gravitational field in the vertical direction: 𝒈 = −𝑔0 𝒛.
In the horizontal direction, we apply periodic boundary conditions.
At the upper and lower boundaries, we fix the temperature. This en-
forces a vertical temperature gradient across the box and prevents

the instabilities from saturating by flattening this gradient. We ex-
trapolate the pressure into the ghost cells at these boundaries so as
to enforce hydrostatic equilibrium, while all other plasma quantities
are treated using reflective boundary conditions.

The size of the simulated domain is 𝐿×2𝐿 and the unstable region
lies within 𝐿/2 < 𝑧 < 3𝐿/2. In this unstable region we construct
an atmosphere where the temperature decreases linearly with height
according to

𝑇 (𝑧) = 𝑇0

(
1 − 𝑧 − 𝐿/2

3𝐻0

)
, (44)

𝜌(𝑧) = 𝜌0

(
1 − 𝑧 − 𝐿/2

3𝐻0

)2
, (45)

𝑃(𝑧) = 𝑃0

(
1 − 𝑧 − 𝐿/2

3𝐻0

)3
, (46)

where 𝐻0 is a scale height. We set 𝐿/𝐻0 = 0.1 which means that this
setup is ‘local’ in the sense that the size of the simulation domain is
much smaller than the pressure scale height.

We initialise the buoyantly neutral layers as isothermal atmo-
spheres where the temperatures are continuous across the boundaries
of the unstable region. The pressure and density in these regions vary
exponentially with height. We set 𝑔0 = 𝑘B𝑇0/(𝐻0 𝜇 𝑚H) to ensure
that the system is initially in hydrostatic equilibrium and additionally
apply a uniform background magnetic field in the 𝑥-direction with
magnitude such that the plasma beta at the base of the unstable region
is 𝛽0 = 2 × 104. This means that magnetic tension is negligible on
the scales of interest.

The physics of the buoyancy instabilities is independent of the
conductivity in the limit that the thermal diffusion time across
the spatial scales of interest is short compared to the dynamical
time. We, therefore, assume a uniform fixed conductivity and en-
sure that the simulations are in this fast conduction limit by setting
𝜒 = 10 𝜌0 𝑐v 𝜔buoy 𝐿

2, where we evaluate the characteristic fre-
quency for the buoyancy instability,

𝜔buoy =

����𝑔0
𝜕 ln𝑇
𝜕𝑧

����1/2 , (47)



𝑡 ≈ 6 𝑡buoy as the magnetic field configuration approaches the linearly
stable state.

The linear growth rate of a mode of the MTI can be determined
from the set of linearised equations that govern the system (see e.g.
Quataert 2008; Kunz 2011; Berlok et al. 2021). Assuming locality
in the vertical direction, the growth rate for the perturbation seeded
in these simulations should be 𝜔buoy. The dashed line in the right-
hand panel of Fig. 9 corresponds to this scaling and is in very good
agreement with the behaviour observed in our simulations.

Both the lower and higher resolution simulations agree very well
on the behaviour of the instability during the linear growth phase
(𝑡 ≲ 6 𝑡buoy). At later times, the results differ quantitatively. These
differences, however, are marginal and the qualitative behaviour is
in good agreement. The evolution of the magnetic field and the
kinetic energy densities, shown in Fig. 9, are also very similar to
those presented in Kannan et al. (2016), who carried out similar 2D
simulations of the MTI, and to those found in the 3D simulations of
McCourt et al. (2011).

5 COSMOLOGICAL SIMULATIONS OF GALAXY
CLUSTERS WITH ANISOTROPIC THERMAL
CONDUCTION

To investigate the effects of anisotropic thermal conduction on struc-
ture formation and evolution it is important that the anisotropic ther-
mal conduction solver is able to work efficiently and accurately in a
fully cosmological context. In this section, we demonstrate that our
code is capable of efficiently running high resolution cosmological
zoom simulations of galaxy clusters. An in-depth analysis of the role
of anisotropic thermal conduction in the evolution and properties
of the cluster will be presented in a follow-up paper. Here we will
largely focus on technical details and implementation choices.

In one of our simulations, we set the conductivity to the Spitzer
value (equation 9) and in the other we set it to Spitzer with whistler
suppression (equation 10).

5.1 Initial conditions and physical model

In this section we present three different cosmological zoom simula-
tions of one halo with mass 𝑀200c = 5.09× 1014 ℎ−1 M⊙ and radius
𝑅200c = 1.30 ℎ−1 Mpc at 𝑧 = 0. Here, we define 𝑀200c and 𝑅200c
such that the average density within a sphere of radius 𝑅200c is 200
times the critical density of the universe and 𝑀200c is the mass en-
closed by this radius. The simulations use a Planck-2018 cosmology
(Planck Collaboration et al. 2020) where Ω𝑚 = 0.315, Ω𝑏 = 0.049,
ΩΛ = 0.684, and the Hubble constant is 𝐻0 = 100 ℎ km s−1 Mpc−1

with ℎ = 0.673. The simulations presented in this section were
carried out as part of the ongoing PICO-Clusters (Plasmas In COs-
mological Clusters) project, which will be presented in greater detail
in forthcoming work.

The particular halo studied here was selected for re-simulation
from a parent dark matter only simulation with side of length
1 ℎ−1 cGpc. The initial conditions for the zoom simulation were
then created using a new code that will be described in Puchwein et
al., in prep. We have made sure that the simulations presented here
have no low resolution dark matter particles within 2 𝑅200c at 𝑧 = 0.

In these simulations, the high resolution dark matter particles have
mass 4.0×107 ℎ−1 M⊙ while the gas in the high resolution region has
target mass resolution 7.4 × 106 ℎ−1 M⊙ . The comoving softening
length of the high resolution dark matter is set to 3.25 ℎ−1 ckpc
with a maximum physical softening length of 1.627 ℎ−1 kpc. The

at the base of the unstable region. This means that the thermal diffu-
sion time across the unstable region is ∼ 0.1 𝜔−

buo
1 

y. As the conduc-
tivity is fixed, we only present simulations that use the linear solver
in this section.

The simulations are initialised with a regular mesh, similar to that 
described in Section 4.1, which is then allowed to move over the 
course of the simulation. We, additionally, consider two different 
spatial resolutions, where the unstable region is resolved by 1282 or 
2562 cells. The simulations are all run for 50 buoyancy times (𝑡buoy =
𝜔−

buo
1 

y, where 𝜔buoy is evaluated at the base of the unstable region). 
We apply single mode transverse perturbations to the velocity field
with wave vector 𝒌 = (4𝜋/𝐿) �̂� and amplitude 10−4𝑐s,0 where 𝑐s,0 
is the sound speed evaluated at the base of the buoyantly unstable 
region.

In 2D, when the mesh is allowed to move, we found that not 
resolving the gradients and the magnetic field topology could lead 
to the introduction of noise in the simulations. In these simulations 
we, therefore, applied an extra criterion whereby the tangential fluxes 
across a face are set to zero if the signs of the normal components 
of the magnetic field estimates at the two corners of each face are 
different. This increases the stability of the scheme at the cost of being 
more diffusive. We find th at th is condition is  no t necessary in  3D 
(where the number of corners that contribute to the interface estimate 
is significantly higher), or when the resolution is high enough.

4.3.2 Results

Figure 8 shows temperature slices with magnetic field lines overlaid 
in black for the simulation where the unstable region has resolution 
256 × 256. The slices show the entire simulation domain (𝐿 × 2𝐿), 
including the upper and lower buoyantly neutral regions and the grey 
horizontal lines indicate the boundaries between these regions. In the 
first t hree panels, t he i nstability i s s till i n t he l inear g rowth phase. 
The perturbations grow exponentially and drive the development of 
a large vertical magnetic field component.

The MTI growth rate goes to zero when the field l ines become 
vertical. As we see from the final two panels of Fig. 8, however, the 
MTI does not saturate quiescently when it reaches this linearly stable 
state but, instead, drives sustained turbulence. This arises due to the 
existence of zero-frequency modes of the dispersion relation, which 
correspond to horizontal perturbations that act to drive the plasma 
away from this equilibrium configuration (Balbus & Reynolds 2010; 
McCourt et al. 2011). This state of sustained turbulence persists for 
the rest of the simulation. This qualitative behaviour is consistent 
with that observed in previous simulation work (see e.g. Parrish & 
Stone 2005, 2007; McCourt et al. 2011; Kannan et al. 2016; Berlok 
et al. 2021).

In the final two panels of Fig. 8 we see that the turbulent motions 
have length scales that are comparable to the size of the computational 
domain. As shown by McCourt et al. (2011), this prematurely stops 
the buoyant acceleration and implies that these ‘local’ simulations 
are not able to accurately capture the saturated state of the MTI and 
under-predict the turbulent energies.

The left-hand panel of Fig. 9 shows the evolution of the 𝑧-
component of the magnetic field and h ighlights t he d ifference be-
tween the linear phase of the instability where the vertical compo-
nent of the magnetic field is exponentially amplified and the saturated 
state where the magnetic field becomes close to isotropic. We also 
show the time evolution of the volume averaged kinetic energy den-
sity in the right-hand panel of Fig. 9. In both simulations, the kinetic 
energy is exponentially amplified at early times but then saturates at
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Figure 9. The left-hand panel shows the time evolution of the magnetic field orientation in the two-dimensional MTI simulation visualised in Fig. 8. Specifically,
we show the volume average of the square of the vertical component of 𝒃 = 𝑩/|𝑩 |. A vertical magnetic field will have 𝑏2

𝑧 = 1, whereas 𝑏2
𝑧 = 0.5 corresponds to

an isotropic field in 2D. The right-hand panel shows the time evolution of the volume averaged kinetic energy density. The different coloured lines correspond
to simulations with different resolutions (see legend). These quantities were calculated by averaging over all cells within the buoyantly unstable region. The
black dashed line shows the theoretical scaling of the growth rate. During the linear phase of the instability (𝑡 ≲ 6 𝑡buoy), the magnetic field is driven towards a
vertical orientation and the kinetic energy is exponentially amplified. During the non-linear phase that follows, the instability saturates and the turbulence acts
to isotropise the magnetic field.

gas softening is treated adaptively and scales with the radius of the
cell, with a minimum comoving value of 0.41 ℎ−1 ckpc.

This resolution is about 3 times better than that used in the full-
physics MillenniumTNG box (Pakmor et al. 2023), and is slightly
better than that used in the TNG300 volume of the IllustrisTNG
project (Springel et al. 2018; Marinacci et al. 2018; Nelson et al.
2018; Pillepich et al. 2018b; Naiman et al. 2018) and the recent
TNG-Cluster simulations (Nelson et al. 2024), with slight differences
arising from the choice of cosmology.

We apply a physics model based on that used in the TNG project,
which is described in detail in Weinberger et al. (2017) and Pillepich
et al. (2018a). Physical processes in this model include primordial
and metal line cooling along with heating from a spatially uniform
UV background (Vogelsberger et al. 2013), an effective model for
the ISM and star formation (Springel & Hernquist 2003), chemi-
cal enrichment of the ISM due to core collapse and thermonuclear
supernovae and AGB stars, an effective model for galactic winds
(Pillepich et al. 2018a) and the formation, growth of and feedback
from supermassive black holes (Weinberger et al. 2017). We addi-
tionally initialise a spatially uniform seed magnetic field of comoving
strength of 10−14 G at the start of the simulations (𝑧 = 127).

We perform three zoom simulations of this halo, all of which use
this physics model as a baseline. The first simulation (which we
will refer to as the ‘standard’ simulation) has no additional mod-
els for physical processes. In the other two simulations we switch
on our model for anisotropic thermal conduction. In both of these
simulations we use the ‘semi-implicit, linear solver’. In one of these
simulations, we set the conductivity to the Spitzer value (equation 9)
and in the other we set it to Spitzer with whistler suppression (equa-
tion 10). We refer to these simulations as ‘+spitzer’ and ‘+whistler’,
respectively.

For the simulations with thermal conduction, we do not solve the
conduction problem across interfaces where one or more of the cells
on either side are star forming. The thermal energy of these cells is
set by the effective equation of state (Springel & Hernquist 2003) and
represents an effective pressure rather than the temperature of the gas,

which should just be considered as a property of the effective subgrid
model. In doing this we effectively assume that thermal conduction
is unimportant for the transport of energy between the star-forming
ISM and the gas surrounding it.

5.2 Results

Figure 10 shows thin projections of various quantities at 𝑧 = 0
for the ‘+whistler’ simulation. The magnetic field in the cluster is
clearly highly turbulent and has strength that reaches ∼ 10 𝜇G in the
central regions. In the outskirts of the cluster, however, the field is
significantly weaker. For an in-depth discussion of the amplification
of magnetic fields in the PICO clusters, see Tevlin et al. (2024).

Throughout the majority of the cluster, the magnetic field is, how-
ever, largely dynamically unimportant, as can be seen in the projec-
tion of the plasma beta. The plasma beta typically lies within the
range ∼ 102 − 103 but can be even higher in the cluster outskirts,
particularly in regions where the magnetic field is low. Intermittent
magnetic flux tubes can reach plasma beta values of 10.

In the lower-middle panel, we show the thermal diffusivity 𝜅 =

𝜒/(𝜌𝑐v), as measured in the simulation (i.e. including the effects
of whistler suppression) and in the lower-right panel we show the
factor by which the diffusivity is suppressed below the Spitzer value,
(1 + (1/3) 𝛽 𝜆mfp,e / 𝑙T,∥ )−1, see equation (10). The turbulent na-
ture of the magnetic field (in combination with a much smoother
temperature gradient) leads to significant variation in the tempera-
ture gradient length scale along the direction of the magnetic field,
𝑙T, ∥ = |𝒃 · ∇ ln𝑇 |−1. This, in combination with the variations in
𝛽, can lead to a significant suppression of the conductivity, particu-
larly in the outskirts of the cluster and at the location of shocks (see
the temperature projection in the upper-left panel and density in the
upper-middle panel).

In Fig. 11 we show radially averaged profiles of various thermo-
dynamical quantities at 𝑧 = 0 for all three simulations. In general,
we find good agreement across all three runs. There are, however,
some slight differences, particularly in the density, metallicity, en-
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Figure 10. Thin (100 ℎ−1 kpc) projections of size (3 ℎ−1 Mpc)2 at 𝑧 = 0 for the ‘+whistler’ simulation. From left to right, the top row shows temperature,
gas density and magnetic field strength. The bottom row shows the plasma beta, the thermal diffusivity, and the ratio of the (whistler suppressed) thermal
diffusivity to the Spitzer value. The temperature projection is weighted by mass, while those of the magnetic field strength, density and thermal diffusivity are
volume weighted. The projection of the plasma beta is calculated by dividing the volume weighted projection of the thermal pressure by that of the magnetic
pressure; likewise, the projection of the ratio of the thermal diffusivity to the Spitzer value is calculated by dividing the volume weighted projection of the
thermal diffusivity by that of the Spitzer value. Dashed circles correspond to 𝑅200c. The magnetic field is highly turbulent and this, along with a much smoother
temperature gradient leads to significant levels of suppression in the heat flux (see equation 10), particularly in the outskirts of the cluster and at shocks.

using conduction schemes which require application of the diffusion
timestep criterion (see equation 22) for stability. Such a cap prevents
extremely small diffusive timesteps which could otherwise make the
simulation computationally intractable (see e.g. Yang & Reynolds
2016; Kannan et al. 2017). Values used for such a cap are typically
∼ 5×1031 cm2 s−1. From the thermal diffusivity profiles for our sim-
ulations (lower-right panel of Fig. 11) we see that the Spitzer value
in the outskirts of the cluster can be significantly higher than this nu-
merical cap. The use of such a cap can, therefore, result in significant
numerical suppression of the conductivity in the outskirts of the clus-
ter. The application of this artificial suppression also means that such
schemes cannot be reliably used to explore the effects of physically
motivated conductivity closures such as whistler suppression.

Whilst the differences in the radially averaged profiles are rather
subtle, we do find larger differences between these systems in other

tropy and magnetic field s trength p rofiles: th e ru ns wi th th e con-
duction exhibit higher central densities and magnetic field strengths, 
lower central entropies and flatter central metallicity gradients. The 
flattening of the metallicity profile could be explained by enhanced 
mixing, associated with the effects of t hermal conduction. Similar 
behaviour has also been observed in previous simulation work ex-
ploring anisotropic thermal conduction in galaxy clusters (Kannan 
et al. 2017). We will explore this in more detail in future work with 
a larger sample of simulated clusters. Additionally, the cluster sim-
ulated with full Spitzer conductivity shows larger differences than 
that simulated with whistler suppressed conduction when compared 
to the simulation without conduction.

A number of works in the literature which use simulations to ex-
plore the effects of anisotropic thermal conduction in galaxy clusters 
impose a cap on the thermal diffusivity. This is often done when



10 2 10 1 100

R [R200c]

10 6

K
[g

cm
4
/s

2 ]

10 2 10 1 100

R [R200c]

10 1

2 × 10 1

Z
[Z

]

10 2 10 1 100

R [R200c]

1032

[c
m

2 s
1 ]

10 2 10 1 100

R [R200c]

10 28

10 27

[g
cm

3 ]

standard
+whistler
+spitzer

10 2 10 1 100

R [R200c]

3 × 107

4 × 107

6 × 107

T
[K

]

10 2 10 1 100

R [R200c]

10 1

100

B
[

G
]

Figure 11. Radial profiles at 𝑧 = 0 for the galaxy cluster zoom simulations. From left to right, the top row shows density, temperature, and magnetic field
strength. The bottom row shows entropy (which we define to be 𝐾 = 𝑘B𝑇/𝑛(𝛾−1)

e , where 𝑛e is the electron number density), metallicity, and thermal diffusivity,
for the two simulations run with anisotropic thermal conduction. All profiles are in reasonably good agreement with each other, with some deviations seen in the
central regions. The cluster simulated with full Spitzer conductivity (‘+spitzer’) shows larger differences than that simulated with whistler suppressed conduction
(‘+whistler’) when compared to the simulation without conduction (‘standard’).
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Figure 12. Mass-weighted temperature projections of size (3 ℎ−1Mpc)2 and depth 200 ℎ−1kpc at 𝑧 = 0 for, from left to right, the simulation without conduction
(‘standard’), that with whistler suppressed anisotropic conduction (‘+whistler’), and that with full Spitzer conductivity (‘+spitzer’). The ‘standard’ simulation
shows significant small-scale structure in the temperature field. The temperature field in the simulations with conduction, however, is considerably smoother,
with the largest effect seen in the ‘+spitzer’ case.

quantities. In Fig. 12 we show temperature projections of the three
clusters at 𝑧 = 0. The ‘standard’ simulation shows significant small-
scale structure in the temperature field. In the simulations with con-
duction, however, this small-scale structure is largely gone and the
temperature field is substantially smoother; an effect that is most pro-
nounced in the ‘+spitzer’ run, where the conductivities are generally

higher than in the ‘+whistler’ run (see lower right panel of Fig. 11).
These observations are consistent with the expected behaviour of
thermal conduction: namely that it acts to flatten temperature gradi-
ents.

This can be understood more quantitatively by examining radial
profiles of the standard deviation of the temperature within each
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20% of the run-time is spent in the conduction solver. About a third
to half of this time is spent in the matrix solver, and the majority
of the remaining time is spent in the computation of the coefficients
for the gradient estimates and the preparation of the relevant data
structures. The cost associated with the explicit flux calculation itself
is negligible in comparison.

Fewer than 10 iterations are typically required to solve the system
of equations in the implicit part of the calculation. At later times,
and particularly at time steps where a significant fraction of the
gas cells are active, the addition of the multigrid preconditioner is
required as otherwise the matrix solver is unable to converge within
200 iterations.

As is typical for cluster zooms, our simulations have timestep
hierarchies that can be up to ∼ 10 levels deep. These simulations
would be prohibitively expensive if all cells had to be integrated on
the smallest global timestep. The significant difference between the
smallest and largest timesteps (a factor of∼ 1024) demonstrates that it
is not appropriate to apply the scheme only on global synchronisation
points. All this underlines the necessity of our local timestepping
scheme for such calculations.

The data structures that store necessary information related to the
faces and corners of the Voronoi mesh have the largest memory foot-
print of all those associated with the conduction solver. In addition,
the HYPRE library can have a significant memory footprint in larger
simulations which is allocated independently to AREPO’s memory
manager. All these structures are, however, not required anywhere
else in the code, and are freed upon exit of the thermal conduction
routine.

6 SUMMARY AND OUTLOOK

In this paper, we presented a new scheme for modelling anisotropic
thermal conduction on a moving mesh. The solver, which we have
implemented into the moving-mesh code AREPO (Springel 2010;
Pakmor et al. 2016a; Weinberger et al. 2020), is fully conservative,
ensures the entropy condition is not violated, and allows for semi-
implicit time integration and individual timestepping.

The anisotropic thermal conduction solver introduced in this work
represents an improvement over the approach described in Kannan
et al. (2016), which is also implemented in AREPO, primarily due
to the fact that it supports local timestepping; a feature which is
crucial for efficiency and accuracy in cosmological simulations. If
conduction is done on global timesteps only, it either becomes too
expensive to run, or one loses the coupling to the gas on faster
timescales. Accurate treatment of anisotropic thermal conduction is,
additionally, more complex than cosmic ray diffusion (Pakmor et al.
2016b), due to the fact that the conductivity is not spatially and
temporally constant (as is often assumed in one-moment treatments
of cosmic ray diffusion).

We tested our implementation on a variety of numerical prob-
lems and demonstrated that our solver is able to reproduce analytic
predictions and numerical solutions. The convergence rate of the
anisotropic solver is comparable to those of other numerical diffu-
sion solvers, and we showed that the use of local timesteps does not
lead to a significant reduction in the accuracy of the solver. We also
verified the accuracy of the coupling between the conduction and hy-
drodynamics and demonstrated that the solver is able to reproduce the
speed of the conduction front predicted by analytic arguments. These
tests highlighted just a few ways anisotropic thermal conduction can
fundamentally change the behaviour of a system.

We also demonstrated that the solver can be applied to highly

Figure 13. Radial profiles at 𝑧  = 0 of the standard deviation of the tempera-
ture distribution in radial bins, weighted by volume, for the simulation without 
conduction (‘standard’), that with whistler suppressed anisotropic conduction 
(‘+whistler’), and that with full Spitzer conductivity (‘+spitzer’). The ‘stan-
dard’ simulation shows the highest levels of variability in the temperature 
field, whereas the l evels of variability in both s imulations with anisotropic 
conduction are significantly lower.

radial bin, weighted by cell volume, which are shown in Fig. 13. At 
all radii (except the very centre) the simulation without conduction 
has the largest temperature variance, while both simulations with 
anisotropic conduction show significantly lower levels of variability. 
The ‘+spitzer’ simulation, where the conductivities are generally 
highest, has the lowest level of variability.

In this section we have shown that the differences between simu-
lations with and without anisotropic conduction can be significant. 
Additionally, we have shown that the effect o f w histler suppres-
sion can be considerable. Previous cosmological cluster simulations 
have also found that conduction can have a substantial effect on the 
cluster properties (see e.g. Dolag et al. 2004; Jubelgas et al. 2004; 
Ruszkowski et al. 2011; Kannan et al. 2017; Barnes et al. 2019; Pel-
lissier et al. 2023). In order to carefully asses the extent to which 
thermal conduction is affecting t he c luster p roperties a nd i n what 
ways these effects manifest, it is first important to better understand 
the variability inherent in the standard physics model and which clus-
ter properties it robustly predicts. It is, additionally, important to have 
more than one data point to draw conclusions from, which requires 
simulating a larger sample of clusters. This is beyond the scope of this 
work, where the aim is to introduce our thermal conduction scheme, 
but will be studied in detail in future work.

It should also be mentioned that the extent to which the thermal 
conductivity closure used in the ‘+whistler’ simulation (equation 10) 
accurately captures the effect of whistler waves on electron transport 
in the ICM is not well understood. The present results, however, 
demonstrate that it may have a significant i mpact o n t he effective 
conductivity, particularly in the outskirts of the cluster. Future work 
is needed to better understand the impact of kinetic microinstabilities 
on electron transport and how these effects manifest on large scales, 
in a cosmological context.

5.3 Technical considerations

We end this section with a few technical remarks relating to the 
performance of the anisotropic thermal conduction solver in these 
cluster zooms. In the two simulations with thermal conduction, about



non-linear problems with deep timestep hierarchies by performing
high-resolution cosmological zoom-in simulations of a galaxy clus-
ter with anisotropic conduction, where we showed that the solver
operates efficiently and robustly. In these simulations we found that
anisotropic thermal conduction, as well as the presence (or absence)
of whistler suppression can have a significant impact on the tempera-
ture distribution of ICM and acts to smooth out small-scale structure.
We will explore these results in more detail in future work.

The ability to accurately and efficiently capture the effects of
anisotropic thermal conduction in a fully cosmological environment
is crucial, and the methods presented here will allow us to assess the
effects of conduction in a wide range of astrophysical processes in
diverse contexts.

In the future, we plan to use high resolution cosmological simu-
lations to better understand the role anisotropic thermal conduction
plays in a range of astrophysical contexts, including the ICM of
clusters and the CGM of galaxies. This will require a large suite of
high resolution cosmological zoom simulations. These studies will
be made possible by the fact that our conduction solver is able to op-
erate accurately and efficiently on problems that exhibit significant
variations in the relevant spatial and temporal scales.
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APPENDIX A: ESTIMATING THE CONDUCTION
COEFFICIENT IN CELL INTERFACES

In Section 3.1.1 we explained that we calculate the conductivity
in a cell interface by taking the arithmetic average of those of the
two cells on each side of the interface (see equation 20). To check
that this estimate is reasonable we also carried out isotropic point
explosion tests (see Section 4.2) where we estimated the conductivity
in the interface by taking the harmonic average (see e.g. Sharma &
Hammett 2007) of those of the two cells on either side
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Figure A1. Evolution of the radius of the conduction/shock front in the 3D
point explosion test with isotropic conduction. Solid/dashed coloured lines
show results from simulations where the conductivity in cell interfaces was
calculated using the arithmetic/harmonic mean. The black, dot-dash lines
show the analytic expectation for the radial evolution of the shock/conduction
front in the cases of pure hydrodynamics (𝑟s,3D, equation 42) and pure con-
duction (𝑟c,3D, equation 43), respectively. With increasing resolution, the
radius of the conduction front converges with the analytic solution when the
conductivity is calculated using the arithmetic mean, and diverges from the
analytics when the harmonic mean is used.

In Fig. A1 we show the time evolution of the radius of the
shock/conduction in these simulations. Solid/dashed coloured lines
show results from simulations where the conductivity in cell inter-
faces was calculated using the arithmetic/harmonic mean. From this
figure it is clear that the speed of the conduction fronts in the ‘har-
monic’ case are slower than the analytic prediction, 𝑟c,3D and those
measured in the ‘arithmetic’ simulations.

Additionally, as can be seen in Figures 6 and A1 (and was discussed
in Section 4.2.1), with increasing resolution, the size of the conduc-
tion front is smaller (at a given time). In the ‘arithmetic’ case, this
means that the radius of the conduction front converges towards the
analytic prediction, but for the ‘harmonic’ case, the radius diverges
further from the analytic solution.

The fact that the results for the ‘harmonic’ case do not converge
to the analytic prediction, as the resolution of the initial conditions is
increased, likely arises due to the way we set up the initial conditions.
Specifically, the fact that the energy is injected into a fixed mass
or equivalently volume, regardless of resolution means that, with
increasing resolution, the initial conditions do not converge to that
of a point explosion (as assumed by the analytic solution) and the
initial discontinuity at the edge of the injection region persists. It is
this initial discontinuity which is likely responsible for the offset of
the results for the ‘harmonic’ case.

In the types of simulations to which we plan to apply this solver
(e.g. galaxy cluster zooms), gradients are often unresolved and large
discontinuities may arise. We, therefore, choose to calculate the in-
terface conductivities via equation (20) as these results show that it
performs better in scenarios typical of what we might expect in our
simulations.

From Fig. A1 we see that the late-time behaviour is similar in all
simulations. This is due to the fact that hydrodynamical processes
dominate at late times (see discussion in Section 4.2.1). If this were

From equations (20) and (A1), we can see that, in the case of sig-
nificant differences in conductivity between the cells, the arithmetic 
mean will tend towards the larger value of 𝜒, while the harmonic 
mean tends towards the smaller.

We compare these two averaging procedures by carrying out sim-
ulations analogous to those presented in Section 4.2.1, i.e. in the 
isotropic blast wave setup. We do so because, in this setup, the speed 
of the conduction front can be predicted using analytical arguments. 
We show simulations at two different resolutions, 643 and 1283, for 
each of these averaging procedures, which we will refer to as ‘arith-
metic’ and ‘harmonic’. All details of the simulations are as described 
in Section 4.2.

http://dx.doi.org/10.1086/431202
https://ui.adsabs.harvard.edu/abs/2005ApJ...629..139S
http://dx.doi.org/10.1016/j.jcp.2007.07.026
https://ui.adsabs.harvard.edu/abs/2007JCoPh.227..123S
https://ui.adsabs.harvard.edu/abs/2007JCoPh.227..123S
http://dx.doi.org/10.1016/j.jcp.2011.03.009
https://ui.adsabs.harvard.edu/abs/2011JCoPh.230.4899S
https://ui.adsabs.harvard.edu/abs/2011JCoPh.230.4899S
http://dx.doi.org/10.1088/0004-637X/720/1/652
https://ui.adsabs.harvard.edu/abs/2010ApJ...720..652S
http://dx.doi.org/10.1088/0004-637X/720/1/652
https://ui.adsabs.harvard.edu/abs/2010ApJ...720..652S
http://dx.doi.org/10.3189/002214310791968395
http://dx.doi.org/10.1111/j.1365-2966.2009.15715.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401..791S
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.339..289S
http://dx.doi.org/10.1093/mnras/stx3304
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..676S
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://dx.doi.org/10.1093/mnras/stz1494
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.4393S
http://dx.doi.org/10.48550/arXiv.2411.00103
https://ui.adsabs.harvard.edu/abs/2024arXiv241100103T
http://dx.doi.org/10.1093/mnras/stad472
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.3023T
http://dx.doi.org/10.1111/j.1365-2966.2006.10747.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.371.1106T
http://dx.doi.org/10.1111/j.1365-2966.2012.21590.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21590.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.3024V
http://dx.doi.org/10.1093/mnras/stt1789
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436.3031V
http://dx.doi.org/10.1088/0004-637X/740/1/28
https://ui.adsabs.harvard.edu/abs/2011ApJ...740...28V
http://dx.doi.org/10.1038/nature14167
https://ui.adsabs.harvard.edu/abs/2015Natur.519..203V
http://dx.doi.org/10.1093/mnras/stw2944
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.3291W
http://dx.doi.org/10.3847/1538-4365/ab908c
https://ui.adsabs.harvard.edu/abs/2020ApJS..248...32W
http://dx.doi.org/10.3847/0004-637X/818/2/181
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..181Y
http://dx.doi.org/10.1016/j.ascom.2019.100341
https://ui.adsabs.harvard.edu/abs/2020A&C....3000341Y
http://dx.doi.org/10.1086/310429
https://ui.adsabs.harvard.edu/abs/1997ApJ...474L..61Y
http://dx.doi.org/10.1086/344641
https://ui.adsabs.harvard.edu/abs/2003ApJ...582..162Z
http://dx.doi.org/10.1088/0004-637X/798/2/90
https://ui.adsabs.harvard.edu/abs/2015ApJ...798...90Z
http://dx.doi.org/10.1137/0905001


not the case, we would expect that the differences in the sizes of the
conduction fronts, seen at early times, would persist.
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