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A B S T R A C T 

In weakly collisional strongly magnetized plasmas such as the intracluster medium (ICM), hot accretion flows, and the solar 
corona, the transport of heat and momentum occurs primarily along magnetic field lines. In this paper we present a new scheme 
for modelling anisotropic thermal conduction that we have implemented in the moving mesh code AREPO . Our implementation 

uses a semi-implicit time integration scheme that works accurately and efficiently with individual time-stepping, making the 
scheme highly suitable for use in cosmological simulations. We apply the scheme to a number of test-problems including the 
diffusion of a hot patch of gas in a circular magnetic field, the progression of a point explosion in the presence of thermal 
conduction, and the evolution and saturation of buoyancy instabilities in anisotropically conducting plasmas. We use these 
idealized tests to demonstrate the accuracy and stability of the solver and highlight the ways in which anisotropic conduction 

can fundamentally change the behaviour of the system. Finally, we demonstrate the solver’s capability when applied to highly 

non-linear problems with deep time-step hierarchies by performing high-resolution cosmological zoom-in simulations of a 
galaxy cluster with conduction. We show that anisotropic thermal conduction can have a significant impact on the temperature 
distribution of the ICM and that whistler suppression may be rele v ant on cluster scales. The new scheme is therefore well suited 

for future work that will explore the role of anisotropic thermal conduction in a range of astrophysical contexts including the 
ICM of clusters and the circumgalactic medium of galaxies. 

Key words: conduction – magnetic fields – plasmas – methods: numerical – galaxies: clusters: general – galaxies: clusters: intr- 
acluster medium. 
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 I N T RO D U C T I O N  

any astrophysical systems, such as hot accretion flows, the intra- 
luster medium (ICM) of galaxy clusters, the solar wind, and some 
hases of the interstellar medium (ISM), are weakly collisional and 
trongly magnetized. Such plasmas are characterized by a hierarchy 
f scales whereby the electron and ion gyroradii are much smaller 
han the electron mean free path of ion Coulomb collisions, which 
tself is smaller than characteristic length-scale associated with the 
ystem. 

As a result of this scale ordering, charged particles gyrate around 
agnetic field lines much faster than the rate at which they undergo
oulomb scattering. This ef fecti vely ties charged particles to field 

ines, meaning that the transport of heat and momentum occurs 
referentially in the direction of the magnetic field and only gradients 
riented along the magnetic field can be relaxed. Such systems are 
ften well described by Braginskii magnetohydrodynamics (MHD; 
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raginskii 1965 ), which differs from ideal MHD via the addition of
nisotropic heat conduction and viscosity. 

Anisotropic heat conduction is thought to be important in a wide
ange of astrophysical processes in div erse conte xts, for e xample,
n determining the structure of the hot plasma in the solar corona
see e.g. Yok o yama & Shibata 1997 ; Bingert & Peter 2011 ; Bourdin,
ingert & Peter 2013 ; Ye et al. 2020 ; Navarro et al. 2022 ) and in

egulating energy transport in supernova remnants (see e.g. Chevalier 
975 ; Tilley, Balsara & Howk 2006 ; Balsara, Tilley & Howk 2008a ;
alsara et al. 2008b ). Thermal conduction also affects the stability
roperties of the plasma in the formation and dynamics of multiphase
tructure in the ICM, the circumgalactic medium (CGM), and ISM 

see e.g. Sharma, Parrish & Quataert 2010 ; Choi & Stone 2012 ;
r ̈uggen & Scannapieco 2016 ; Armillotta et al. 2017 ; Jennings & Li
021 ; Br ̈uggen, Scannapieco & Grete 2023 ). 
Thermal conduction is thought to play a significant role in shaping

he properties and dynamics of the ICM. It may, for example,
e important for distributing energy from active galactic nuclei 
nd offsetting radiative cooling in cool cores of galaxy clusters 
Zakamska & Narayan 2003 ; Voit 2011 ; Voit et al. 2015 ; Yang &
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1 By ‘weakly collisional’ we are referring to systems where the gradient 
length-scale is 10 –10 3 times larger than the Coulomb-collisional mean free 
path. 
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eynolds 2016 ; Jacob & Pfrommer 2017a , b ). Anisotropic transport
ay also be rele v ant for explaining features such as cold fronts in

he ICM (Markevitch & Vikhlinin 2007 ; ZuHone et al. 2015 ), which
xhibit temperature changes on scales of order (or smaller than) the
lectron mean free path. Simulations find that magnetic fields tend to
rape around cold fronts (Lyutikov 2006 ; Asai, Fukuda & Matsumoto
007 ; Dursi & Pfrommer 2008 ; Pfrommer & Dursi 2010 ), which act
o insulate them from the surroundings and potentially protect their
oherence by suppressing mixing (Fabian et al. 2003 ; Dong & Stone
009 ; ZuHone et al. 2015 ). 
Additionally, when heat transport occurs predominantly along

he magnetic field, the stability properties of the plasma change
arkedly. The hydrodynamic stability to convection is no longer

etermined by the sign of the entropy gradient (Schwarzschild 1958 )
ut rather by that of the temperature gradient, in combination with
opology of the magnetic field. The resulting instabilities, driven
y fast heat conduction, have the ability to affect the outer regions
f galaxy clusters (the magneto-thermal instability, MTI; Balbus
000 , 2001 ) and also the innermost regions of cool-core clusters (the
eat-flux-driv en buoyanc y instability, HBI; Quataert 2008 ). The MTI
enerates a turbulent state driven by the background temperature
radient, consisting of density and velocity fluctuations across a
road range of scales. At saturation, the root mean square values
f these fluctuations follow distinct power-law relationships with
hermal dif fusi vity and the gradients of gas entropy and temperature
Perrone & Latter 2022a , b ). 

Weakly collisional plasmas where the ratio of thermal-to-magnetic
ressure is large ( β ∼ 100) are, ho we ver, susceptible to kinetic insta-
ilities, driven by pressure anisotropies and heat fluxes (Schekochihin
t al. 2005 ; Kunz, Schekochihin & Stone 2014 ; Komarov et al. 2016 ).
hese microinstabilities act to enhance the scattering of charged
articles, potentially leading to suppression of the conductivity below
he collisional (Spitzer 1962 ) value (Riquelme, Quataert & Ver-
charen 2016 ; Berlok et al. 2021 ). Alternati vely, conducti vity can be
uppressed below the classical Spitzer value in a weakly collisional
lasma as a result of streaming electrons, which resonantly excite
histler w aves. These w aves frequently scatter electrons, causing a
ear-isotropization of the electron distribution in the whistler wave
rame. As a result, the mean electron transport speed along the
agnetic field is reduced from its thermal value � th to the whistler

hase speed ∼ � th /βe , where βe is the electron plasma beta (Roberg-
lark et al. 2016 , 2018 ; Komarov et al. 2018 ; Drake et al. 2021 ), thus,

educing the efficiency of heat conduction. While heat conduction is
ndeed suppressed for strong whistler suppression so that the MTI
urbulence ceases to e xist, e xternally driv en turbulence can re vi ve
he MTI turbulence and re-establish efficient heat conduction at a
ome what lo wer rate because of the intermittency of strong magnetic
ux tubes along which most of the electron heat flux is transported
Perrone, Berlok & Pfrommer 2024a , b ). 

Structure formation and evolution is a highly complex and non-
inear problem with a vast range of rele v ant length-scales and time-
cales that need to be considered. Numerical simulations therefore
lay a crucial role in exploring anisotropic thermal conduction in
uch conte xts. Ov er the past two decades, a number of works have
sed simulations to investigate the effects of heat conduction in
alaxy clusters (see e.g. Dolag et al. 2004 ; Jubelgas, Springel &
olag 2004 ; Parrish, Quataert & Sharma 2010 ; Ruszkowski & Oh
010 , 2011 ; Yang & Reynolds 2016 ; Kannan et al. 2017 ; Barnes
t al. 2019 ; Su et al. 2019 ; Beckmann et al. 2022 ; Pellissier, Hahn &
errari 2023 ). 
Some of these simulations were run with conduction solvers

hat employ explicit time-integration schemes, which, for stability,
NRAS 541, 2493–2512 (2025) 
equire a time-step limit that scales with the square of the cell radius.
mplicit or semi-implicit schemes are therefore preferable as they do
ot require this time-step criterion, which can markedly reduce the
ttainable spatial resolution. 

When constructing such a scheme it is also important to ensure
hat energy is not allowed to flow from lower to higher temperatures,
hich can occur when not e xplicitly prev ented. Sharma & Hammett

 2007 ) demonstrated, for a Cartesian mesh, how violating this
ntropy condition can be a v oided with appropriate gradient limiters
nd Pakmor et al. ( 2016b ) then generalized this procedure for an
rregular mesh. 

In this paper, we introduce a scheme for anisotropic thermal
onduction that we have implemented into the moving-mesh code
REPO (Springel 2010 ; Pakmor et al. 2016a ; Weinberger, Springel &
akmor 2020 ). Our scheme uses a semi-implicit time integration
cheme, is compatible with individual time-stepping, and ensures the
ntropy condition is not violated. The underlying method is based on
hat of Pakmor et al. ( 2016b ), which concerns itself with the problem
f cosmic ray diffusion and is itself based on those of Sharma &
ammett ( 2007 ) and Sharma & Hammett ( 2011 ). 
The anisotropic thermal conduction solver presented in this work

s fundamentally different from the solver described in Kannan et al.
 2016 ), which is also implemented in AREPO . Our solver represents an
mpro v ement o v er this earlier method, primarily due to the fact that
t supports local time-stepping, a feature that is crucial for efficiency
nd accuracy in cosmological simulations. 

This paper is structured as follows. In Section 2 , we introduce
he continuous form of the equations of Braginskii MHD and then
escribe our algorithm and its numerical implementation in Section 3 .
n Section 4 , we assess the accuracy of our solver by performing
everal test problems including the diffusion of a hot patch of gas
n a circular magnetic field, the progression of a point explosion in
he presence of thermal conduction, and the evolution and saturation
f buoyancy instabilities in an anisotropically conducting plasma. In
ection 5 , we demonstrate the efficiency and stability of the solver
hen used in computationally demanding cosmological zoom-in

imulations of a galaxy cluster and present some first results. Finally,
n Section 6 , we summarize our results and provide a brief outlook. 

 BA SIC  E QUAT I O N S  

he Braginskii MHD equations can be used to describe transport in a
ully ionized, weakly collisional, 1 and strongly magnetized plasma.
n such systems the electrons and ions are tied to magnetic field
ines, resulting in the anisotropic transport of heat and momentum,
o v erned by 

∂ ρ

∂ t 
+ ∇ · ( ρ� ) = 0 , (1) 

∂ ρ� 
∂ t 

+ ∇ ·
[
ρ� � T + P tot I − B B T 

4 π

]
= −∇ · � , (2) 

∂ E 
∂ t 

+ ∇ ·
[(

E + P tot 

)
� − B 

(
� ·B 

)
4 π

]
= −∇ · ( � · � ) − ∇ · Q , (3) 

∂ B 
∂ t 

= ∇ × ( � × B ) , (4) 

here we have used Gaussian units. ρ, � , and B are the local gas
ensity , velocity , and magnetic field, respectively. I is the unit rank-
wo tensor and P tot is the total pressure, accounting for thermal gas
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nd magnetic fields 

 tot = P + 

B 

2 

8 π
. (5) 

 is the total energy density 

 = ρu + 

1 

2 
ρ � 2 + 

B 

2 

8 π
, (6) 

here u is the specific internal energy. The anisotropic viscosity 
ensor � is 

 = −�P 

(
b b T − 1 

3 
I 

)
, (7) 

here b = B / | B | and �P = P ⊥ 

− P ‖ is the pressure anisotropy, i.e.
he difference between the perpendicular and parallel pressures with 
espect to the magnetic field direction. 

The heat flow vector Q is given by 

Q = −χ
[
b ( b · ∇ T ) 

]
, (8) 

here χ is the conductivity along the magnetic field and T is the
emperature, which is related to the specific internal energy via u =
 v T . The specific heat capacity at constant volume is given by c v =
 B / [( γ − 1) μm p ], where k B is the Boltzmann constant, μ is the
ean molecular weight, m p is the proton mass, and γ is the adiabatic

ndex. 
In a collisional theory of transport processes, the dif fusi ve transfer

f heat is dominated by electrons and mediated by particle–particle 
oulomb collisions. The resulting conductivity is often referred to 
s the ‘Spitzer conductivity’ (Spitzer 1962 ) and is given by 

sp = 1 . 84 × 10 −5 T 
5 / 2 

ln C 

erg s −1 K 

−1 cm 

−1 , (9) 

here the temperature, T , is measured in Kelvin and ln C ≈ 37 is
he Coulomb logarithm. 

High β, weakly collisional plasmas, ho we ver, are susceptible to a
ariety of kinetic instabilities, which act to alter the mean electron 
ransport velocity, which may, ultimately, lead to a suppression of 
lectron transport. 

At saturation, the whistler instability has been found to establish a 
arginal heat flux that is suppressed by a factor of 1 /βe , the inverse

f the electron plasma beta (Komarov et al. 2018 ; Roberg-Clark
t al. 2018 ). To account for this, one can assume a functional form
or the conductivity (Komarov et al. 2018 ) that smoothly interpolates 
etween the two regimes 

sat, whist = 

χsp 

1 + (1 / 3) βe λmfp , e / l T , ‖ 
, (10) 

here l T , ‖ = | b · ∇ ln T | −1 is the temperature gradient scale parallel
o the magnetic field and λmfp , e is the electron mean free path, given
y 

mfp , e = 

3 3 / 2 k 2 B T 
2 

4 π1 / 2 n e e 4 ln C 

, (11) 

here n e is the electron number density and e is the electron charge.
One can also construct an analogous form for the conductivity that 

ncorporates the saturation of the heat flux due to the free-streaming 
f electrons (Cowie & McKee 1977 ) 

sat, free = 

χsp 

1 + 4 . 2 λmfp , e / l T , ‖ 
. (12) 

n the outskirts of galaxy clusters, ho we ver, where the plasma beta
s expected to be high ( β � 100), whistler suppression is likely to be

ore rele v ant. 
 I MPLEMENTATI ON  

e now describe how we implemented the anisotropic thermal 
onduction solver into the AREPO code (Springel 2010 ; Pakmor et al.
016a ; Weinberger et al. 2020 ). Note that there is already a first
ersion of an anisotropic conduction solver implemented in AREPO 

Kannan et al. 2016 ). The solver presented in this work, ho we ver, is
undamentally different and is compatible with local time-stepping. 

e discuss these differences in more detail in Section 3.2.4 . Note also
hat a solver for Braginskii viscosity has already been implemented 
n AREPO by Berlok, Pakmor & Pfrommer ( 2020 ). While the solver
escribed in this work shares a superficial resemblance to those 
resented in Pakmor et al. ( 2016b ) and Kannan et al. ( 2016 ), it differs
ubstantially in critical details, and these differences dramatically 
hange the practical applicability to the targeted science applications. 

AREPO solves the equations of ideal MHD on an unstructured 
oronoi mesh using a second-order finite-volume scheme (Pakmor, 
auer & Springel 2011 ; Pakmor & Springel 2013 ). The Voronoi mesh

s constructed from a set of mesh-generating points that can mo v e
ith arbitrary velocities, but that are typically set to the local fluid
elocity, resulting in quasi-Lagrangian behaviour. AREPO computes 
elf-gravity using a tree-PM method and couples it to MHD with a
econd-order Leapfrog scheme (Springel 2010 ; Springel et al. 2021 ).

The anisotropic thermal conduction scheme, described in this 
ork, is based on that of the cosmic ray diffusion solver presented in
akmor et al. ( 2016b ). This approach itself generalizes and extends

he flux limiting scheme of Sharma & Hammett ( 2007 ) and the semi-
mplicit time-integration scheme of Sharma & Hammett ( 2011 ) for
se with unstructured meshes and local time-stepping. 
We have implemented this solver in such a way that it can

e used for both cosmological and non-cosmological simulations. 
or simplicity, ho we ver, we will continue below to use physical
oordinates to describe the scheme and explain how to implement 
he comoving form of the equations in Section 3.3 . 

We now focus on the treatment of just the conduction term in
quation ( 3 ), 

∂ u 

∂ t 
= 

1 

ρc v 
∇ ·

[
χ b ( b · ∇u ) 

]
, (13) 

here we have recast the equation in terms of the specific internal
nergy, assuming c v is spatially constant. 

Our numerical treatment of thermal conduction necessarily differs 
rom that of cosmic ray diffusion, described in Pakmor et al. ( 2016b ),
n a number of ways. First, the treatment of cosmic ray diffusion
ssumes that the dif fusi vity is spatially and temporally constant
nd that χ therefore commutes with the gradient operator. This is, 
o we ver, not a good assumption for thermal conduction and therefore
equires an additional treatment. Note, ho we ver, that this also may
ot be a good assumption for cosmic ray diffusion (see e.g. Thomas,
frommer & Pakmor 2023 ). Some of the methods described in this
aper may therefore be rele v ant for future one-moment treatments of
osmic ray diffusion. In addition to this, there is an extra factor of 1 /ρ
efore the flux term in the thermal conduction equation (equation 13 ),
eaning that extra care has to be taken in the integration to ensure

he scheme is conserv ati ve. 

.1 Spatial discretization 

e now spatially discretize equation ( 13 ) and begin by integrating
 v er volume 

 

∂ u 

∂ t 
= 

1 

ρc v 

∫ 
V 

∇ ·
[
χ b ( b · ∇ u ) 

]
d V , (14) 
MNRAS 541, 2493–2512 (2025) 
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Figure 1. A sketch illustrating the gradient estimate at the corners of the 
Voronoi mesh in 2D. Mesh-generating points are indicated by turquoise 
circles and the centres of mass of cells by blue crosses. The corners of 
the mesh are indicated by pink circles and are connected by the faces that 
form the Voronoi mesh, shown in black. A quantity at corner 1 (highlighted 
by the red circle) is estimated from the values at the centres of mass a, b, and 
c of the three adjacent cells. The values at these three points are indicated by 
the colouring of each cross and the shading within the triangle corresponds 
to the least-squares estimate of the gradient at the corner 1. Since the corner, 
1, lies outside of the triangle, the value predicted at this point (illustrated by 
its colouring) is larger than those at a, b, and c and has been extrapolated, 
producing a new extremum. The gradient at corner 2 (highlighted by the green 
circle), ho we ver, is calculated from the values at the centres of mass d, e, 
and f . This corner lies within the triangle def and the value predicted by the 
least-squares fit lies within the range of values at d, e, and f , corresponding 
to an interpolation. 
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here we have assumed that ρ and u are constant throughout the
olume and that 

∫ 
d V commutes with the time deri v ati ve. Using

auss’ theorem then gives 

∂ u 

∂ t 
= 

1 

V ρc v 

∫ 
∂ V 

[
χ b ( b · ∇ u ) 

]
· d A , (15) 

here d A is the area element on the surface ∂ V , directed along the
utward normal. 
We now take the integral to be over one cell in the simulation,

nde x ed by i, 

∂ u i 

∂ t 
= 

1 

m i c v 

∑ 

j 

[
χij ( b ij · ∇ u ij ) ( b ij · A ij ) 

]
, (16) 

here the sum is taken o v er all faces of the cell, and quantities
nde x ed by ij are calculated in the interface between cells i and
, which has area A ij . Note that we have also used the relation
i = m i /V i , where m i and V i are the mass and volume of the cell,
espectively. 

We have also implemented a solver for isotropic conduction. In
his case, the discretized equation that determines the evolution of
he specific internal energy is 

∂ u i 

∂ t 
= 

1 

m i c v 

∑ 

j 

[
χij ( ∇ u ij · A ij ) 

]
. (17) 

.1.1 Estimating quantities in the interface 

o e v aluate the flux on the right-hand side of equation ( 16 ), the
radient of the specific thermal energy, ∇ u ij , and the magnetic field
irection, b ij , in the interfaces of all cells need to be determined. 
When calculating the gradient of the thermal energy in the

nterface, care has to be taken to ensure the resulting solution is
hysical. When not explicitly prevented in the gradient estimates,
he solution may lead to heat flowing from a cold cell to a hot
ell. This can, ho we ver, be a v oided by using gradient limiters, as
escribed in Sharma & Hammett ( 2007 ). To calculate the gradients
e largely follow the procedure described in Pakmor et al. ( 2016b ),
hich generalizes the procedure of Sharma & Hammett ( 2007 ) for a
oving mesh. We now briefly summarize the relevant details here. 
To estimate the specific thermal energy gradient in the interface,

e first determine the gradients at the corners of the Voronoi face.
he interface estimate is then built from these corner estimates. In

2D) 3D, every corner of a Voronoi cell corresponds to the centre
f the (circumcircle) circumsphere of a (triangle) tetrahedron in the
ual Delaunay tessellation. The corners of a Delaunay (triangle)
etrahedron correspond to mesh-generating points in the Voronoi

esh, so every corner has (three) four adjacent cells. 
To estimate the specific thermal energy gradient at the corner, we

erform a least-squares fit, using the values of the specific thermal
nergy at the centres of mass 2 of these adjacent cells (see section 2.1
f Pakmor et al. 2016b , for an in-depth explanation). 
If a corner lies outside of the (triangle) tetrahedron formed by the

entres of mass of the (three) four neighbouring cells the gradient
stimate will be an extrapolation rather than an interpolation. This
s illustrated in Fig. 1 where, for simplicity, we consider the 2D
oronoi mesh. The value of a quantity and its gradient are estimated
t corner 1 from the values at the centres of mass, a, b, and c, of the
hree adjacent cells. In the figure, the values at these three points are
NRAS 541, 2493–2512 (2025) 

 Note that the centre of mass of a Voronoi cell is not necessarily spatially 
oincident with the associated mesh-generating point. 

c  

t
 

s  
ndicated by the colouring of the crosses and the shading within the
riangle corresponds to the fit to the gradient at corner 1. As corner
 lies outside of the triangle ab c , the predicted value (indicated by
ts colouring) is larger than those at points a, b, and c, and has been
xtrapolated. The gradient at corner 2, on the other hand, is estimated
rom the values at the centres of mass d , e, and f of its three adjacent
ells. This corner lies within the triangle def and the value predicted
y the least-squares fit is within the range of those at d , e, and f ,
orresponding to an interpolation. 

We mark corners where extrapolation has occurred as ‘problem-
tic’ and use a different treatment for the contribution of this corner
o gradient estimates in the interface; we will describe this alternative
reatment shortly. 

In the calculation of the fluxes, we split the gradient of the thermal
nergy into normal ∇ u ij , N and tangential ∇ u ij , T components relative
o the normal to the interface. 

 u ij = ∇ u ij , N + ∇ u ij , T . (18) 

he contributions to the flux from these two components are then
alculated separately and added together to get the total flux across
he interface. 

In Fig. 2 we show a sketch illustrating why anisotropic diffusion
chemes are prone to violations of the entropy criterion. Both panels
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Figure 2. A sketch illustrating how anisotropic diffusion schemes are prone to violations of the entropy criterion. Mesh-generating points are indicated by 
turquoise circles and the centres of mass of cells by blue crosses. The corners of the mesh are indicated by pink circles and are connected together by the faces 
that form the Voronoi mesh, shown in black. Both panels show the same configuration of the Voronoi mesh, with the only difference being the direction of 
the magnetic field estimate in the interface (as indicated by the arrow labelled B ). On the left-hand side, the configuration is such that the projection of the 
temperature gradient estimate on to the magnetic field direction and the projection of the magnetic field on to the normal to the face are positive. In this case, 
heat will flow across this face from the hot cell to the cold (see equation 16 ). In the right hand panel, ho we ver, the projection of the magnetic field on to the face 
normal is now ne gativ e, meaning that heat will flow across this face from the cold cell to the hot. This is a result of the numerical discretization of the diffusion 
problem and can lead to extrema being accentuated. 
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3 The weights are the same as those described abo v e for the thermal energy 
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closest to the rele v ant corner. 
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how exactly the same configuration of the Voronoi mesh, with the 
nly difference being the direction of the magnetic field estimate in 
he interface. In the panel on the left, the quantity ( B · ∇T )( B · ˆ n )
s positive (where ˆ n is the normal to the face). Inspecting equation 
 16 ) shows that, in this configuration, heat will flow across the face,
rom the hot cell to the cold. In the right hand panel, ho we ver, the
rojection of the magnetic field on to the face normal is now ne gativ e,
eaning that heat will flow across this face in the opposite direction.
To ensure that temperature extrema are not accentuated we use 

 procedure very similar to that described in Sharma & Hammett 
 2007 ), which requires two steps. First, when estimating the normal
radient of the thermal energy in the interface (described below), we 
nsure that energy associated with the normal flux flows across a 
ace from the hotter cell to the colder. Secondly, we slope-limit the
angential gradient, ∇ u ij , T , using a generalized version of the van 
eer limiter (van Leer 1984 ) 

 u ij , T = 

N ∑ 

k ( ∇ u k, T ) −1 
, (19) 

here the sum runs o v er all N corners (inde x ed by k) of the face ij .
f the tangential gradients at the corners ∇ u k, T do not all have the
ame sign, the tangential gradient in the interface is set to zero. 

We calculate the normal component of the gradient in the interface 
y taking an average of the values at the corner, weighted by the
ractional area of the Voronoi face that is closest to this corner. This
lone does not, ho we ver, guarantee that the result satisfies the entropy
ondition. We therefore additionally calculate a ‘simple’ finite 
ifference estimate using the values of the specific thermal energy at 
he centres of mass of the two cells on either side of the interface.

hile the corner averaged normal gradient estimate has a larger 
tencil, this ‘simple’ estimate is more robust. We then compare the 
igns of these two gradient estimates and, if they disagree, we use the
simple’ finite difference estimate that satisfies the entropy condition 
y construction. We, additionally, replace the contribution of corners 
hat were previously flagged as ‘problematic’ (due to extrapolation 
n the gradient estimate at the corner) with this ‘simple’ estimate. 

The magnetic field direction in the interface, b ij , is calculated in
 similar way. We use a least-squares fit to get a first estimate at the
orners, and then calculate the interface value by taking a weighted
verage of these corner estimates. 3 We then calculate c v assuming the
as is fully ionized with primordial composition. Next, we calculate 
he conductivity in the interface, χij , by taking the arithmetic average
f the conductivities of the two cells on either side of the interface 

ij = 

1 

2 
( χi + χj ) . (20) 

For the scheme outlined in Sharma & Hammett ( 2007 ) they
uggest instead using the harmonic average for numerical stability. 
n our scheme, ho we ver, we do not observ e an y stability problems
hen using the arithmetic average. Additionally, in Appendix A , 
e use point explosion simulations (analogous to those presented 

n Section 4.2.1 ) to explore the effects of these two averaging
rocedures and show that, for our scheme, the arithmetic mean best
eproduces the analytic predictions of the speed of advance of the
onduction fronts. 

Note that, when using the functional form of the conductivity that
nterpolates between the whistler suppressed and collisional regimes 
see equation 10 ), we use the unlimited temperature gradient to cal-
ulate the temperature gradient length-scale. Typically, AREPO stores 
he limited gradients that are used in the flux calculations, which
an be significantly lower than the true gradients in regions where
he gradients are not well resolved. Using these limited gradients in
MNRAS 541, 2493–2512 (2025) 
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he calculation of l T , ‖ could lead to underestimates of the level of
uppression. Additionally, since AREPO uses the single-fluid MHD
pproximation we do not have access to the electron temperature.
hen calculating the whistler suppression factor we therefore use

he bulk plasma temperature to calculate the plasma beta. 
For the case of isotropic conduction, only the gradient of the

pecific thermal energy normal to the surface contributes to the flux,
hich we estimate in the same way as for ∇ u ij , N . 

.2 Time integration 

e implement three different time integration schemes for the
nisotropic thermal conduction solver: an explicit solver, a semi-
mplicit linear solver, and a semi-implicit non-linear solver. Note that
n the descriptions of these methods in the next three sub-sections,
he equations are strictly only valid when using global time-steps. In
ection 3.2.4 we discuss the adaptations that need to be made when
sing local time-stepping. 

.2.1 Explicit time integration 

or the explicit integration scheme, we evolve the specific thermal
nergy using two half time-steps updates that are carried out immedi-
tely before and after the first and second gravity kicks, respectively: 

 

n + 1 / 2 
i = u 

n 
i + 

�t 

2 m 

n 
i c v 

∑ 

j 

[
χn 

ij 

(
b ij · ∇ u 

n 
ij , T 

)
( b ij · A ij ) 

]
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�t 

2 m 

n 
i c v 
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[
χn 

ij 

(
b ij · ∇ u 

n 
ij , N 

)
( b ij · A ij ) 

]
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n + 1 
i = u 

n + 1 / 2 
i + 

�t 

2 m 

n + 1 
i c v 
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[
χ

n + 1 / 2 
ij 

(
b ij · ∇ u 

n + 1 / 2 
ij , T 

)
( b ij · A ij ) 

]
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�t 

2 m 

n + 1 
i c v 

∑ 
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[
χ

n + 1 / 2 
ij 

(
b ij · ∇ u 

n + 1 / 2 
ij , N 

)
( b ij · A ij ) 

]
, (21)

here the superscripts n , n + 1 / 2, and n + 1 correspond to the begin-
ing, mid-point, and end of a time-step of length �t , respectively.
e use the same procedure for the explicit treatment of isotropic

onduction, with the appropriate flux term (equation 17 ). 
For stability, this explicit integration scheme requires a time-step

onstraint of the form 

t < η
( �x) 2 

κ
, (22) 

here �x is the cell diameter, η < 1 is a constant, and 

= 

χ

c v ρ
(23) 

s the thermal dif fusi vity. When determining this time-step for each
ell, we use the maximum value of χ in any of its interfaces to
alculate κ . 

Note that this time-step criterion can become prohibitively re-
trictive due to its quadratic dependence on the cell size, severely
imiting the achie v able spatial resolution. It is therefore preferable to
se semi-implicit or implicit time-integration schemes, which do not
equire this time-step criterion for stability. Note also that supertime-
tepping schemes such as that presented in Berlok et al. ( 2020 ) can be
sed to somewhat alleviate this time-step constraint. So far, ho we ver,
upertime-stepping schemes are not able to deal with the local time-
tepping in AREPO , and extending them to be capable of doing so is
ot straightforward. 
NRAS 541, 2493–2512 (2025) 
.2.2 Semi-implicit, linear solver 

he gradient limiter that ensures the entropy condition is not
iolated (equation 19 ) introduces non-linearities into the tangential
ux estimate, which significantly increase the numerical complexity
hen using an implicit integrator. The normal gradient estimate on

he other hand has an explicit linear dependence on internal energy.
ut it has an additional implicit dependence on temperature via

he conductivity (which is often modelled as being temperature-
ependent). In this ‘semi-implicit linear solver’ we assume χij for
ach interface is constant during the determination of the normal
ux. In the following section we discuss an integration scheme that
elaxes this assumption. 

When changes to χij across a time-step are ignored, a semi-implicit
cheme can be formulated that is almost as stable as a fully implicit
cheme and in which only one linear implicit problem is solved
er time-step (see Sharma & Hammett 2011 ; Pakmor et al. 2016b ).
o this end we split the calculation into two parts. First, the flux
ssociated with the tangential component of the specific thermal
nergy gradient is evolved using a forward-Euler method, 

 

˜ n 
i = u 

n 
i + 

�t 

m 

n + 1 
i c v 

∑ 
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[
χn 

ij 

(
b ij · ∇ u 

n 
ij , T 

)
( b ij · A ij ) 

]
, (24) 

here the superscript ˜ n indicates intermediate values. In the second
tep, the thermal energies are advanced due to the flux associated
ith the normal component of the specific thermal energy gradient
sing an implicit backward-Euler scheme, 

 

n + 1 
i = u 

˜ n 
i + 

�t 

m 

n + 1 
i c v 

∑ 

j 

[
χn 

ij 

(
b ij · ∇ u 

n + 1 
ij , N 

)
( b ij · A ij ) 

]
. (25) 

To solve this linear system of equations, we use the HYPRE library
Falgout & Yang 2002 ) and carry out a two-step procedure, first using
 generalized minimal residual (GMRES) solver (Saad & Schultz
986 ) iteratively until the residual drops below 10 −8 . If this condition
s not met within 200 iterations, we add an algebraic multigrid pre-
onditioner (Henson & Yang 2002 ) to GMRES, which is then iterated
ntil the residual drops below 10 −8 . 
We apply a flux limiter to the first (explicit) part of this calculation

o ensure that cells are not completely drained of thermal energy
uring the exchange. Such a limiter is, ho we ver, not required in the
econd (implicit) part of the calculation. 

We find that this scheme does not require a time-step criterion
imilar to that required by explicit schemes (see equation 22 ) and is
table on much longer time-steps, similar to what was observed in
harma & Hammett ( 2011 ) and Pakmor et al. ( 2016b ). The implicit
art of the flux calculation is unconditionally stable. As the time-
teps become very long, ho we ver, the explicit fluxes may become so
arge that the flux limiter acti v ates and the solution becomes more
sotropic. We, ho we v er, do not observ e such behaviour when cells
re integrated on their MHD time-step. 

We also treat the case of isotropic conduction similarly and split
he flux into two steps of size �t/ 2. We integrate the first step using
he explicit scheme and the second using the implicit scheme. This
emi-implicit scheme is fully second-order convergent in the case of
sotropic conduction (Pakmor et al. 2016b ). We could in principle
reat isotropic conduction purely implicitly (as only normal gradient
stimates are required, which are linear in the specific internal energy
f the cells), though this scheme would only be first-order accurate
n time. 
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.2.3 Semi-implicit, non-linear solver 

hen the conductivity has a temperature dependence (e.g. Spitzer), 
he fluxes of thermal energy associated with conduction will neces- 
arily lead to changes in the conductivity. To test whether taking into
ccount changes in χij across each time-step affects our results, we 
lso implemented a ‘non-linear solver’. 

Put simply, this ‘semi-implicit non-linear solver’ iteratively ap- 
lies the procedure described in the previous section for the ‘semi-
mplicit linear solver’ and updates the conductivity and gradients at 
ach iteration. Specifically, we iteratively calculate 

 

˜ n ,m 

i = u 

n, 0 
i + 

�t 
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n + 1 
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c v 
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[
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n,m −1 
ij 

(
b ij · ∇ u 

n,m −1 
ij , T 

)
( b ij · A ij ) 

]
, (26) 

 

n,m ∗
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χ

˜ n ,m 

ij 

(
b ij · ∇ u 

n,m ∗
ij , N 

)
( b ij · A ij ) 

]
, (27) 

here n inde x es the time-step and m inde x es the iteration. ˜ n denotes
n intermediate quantity, after the tangential flux has been evolved 
ut before that of the normal flux. We use the intermediate thermal
nergies to calculate the conductivity, χ ˜ n ,m 

ij , that is used in the normal
ux (equation 27 ). 
u 

n,m ∗
i is the specific thermal energy that is predicted at the end of

teration m . To get the energies used in the conductivity and gradients
t the beginning of the next iteration, we interpolate between this
alue and the specific thermal energy at the beginning of this iteration, 
 

n,m −1 , via 

 

n,m = μm u 

n,m ∗ + (1 − μm ) u 

n,m −1 , (28) 

here u is a vector of thermal energies of all cells being considered
n the calculation. A good choice of the interpolation parameter, μm , 
an speed up the rate at which the non-linear solver converges. We
mplemented two different interpolation methods. First, similar to 
annan et al. ( 2016 ), we employ a modified version of the unstable
anifold corrector scheme described in Smedt, Pattyn & Groen 

 2010 ) in which the correction vector (i.e. the vector of changes
n thermal energy across the time-step) is adaptively overrelaxed 
r underrelaxed depending on the relative direction of successive 
orrection vectors. In the second interpolation method, we take 
m = 1 but reduce this when necessary to ensure that the relative
hange of the thermal energy of all cells from its value at the
eginning of the iteration is not more than 10 per cent. We found the
econd procedure to be more robust, while the first method sometimes
ook much longer to converge, particularly when using local-time- 
tepping. 

We use two criteria to determine if the solution is converged, both
f which are checked at every iteration. The first criterion we check
s 

| u 

n,m − u 

n,m −1 | 
| u 

n, 0 | < 10 −6 . (29) 

or the second convergence criterion we begin by estimating the 
olution at the end of the iteration using a forward-Euler scheme 
or both the tangential and normal components. The first part of this
s identical to the standard treatment of the tangential fluxes (see 
quation 26 ), so only the normal component requires calculating at 
ach iteration. 

The estimate of the solution at the end of the iteration, u 

ˆ n ,m 

i , is
hen 
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˜ n ,m 

i + 
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n + 1 
i c v 
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χ

˜ n ,m 

ij ( b ij · ∇ u 

˜ n ,m 

ij , N ) ( b ij · A ij ) 

]
, (30) 
here u 

˜ n ,m 

i is given by equation ( 26 ). We then calculate the difference
etween these predictions, u ̂

 n ,m , and the internal energies at the 
eginning of the iteration u 

n,m , 

 u 

n,m = u 

n,m − u 

ˆ n ,m , (31) 

nd the second convergence criterion is then 

| � u 

n,m | 
| � u 

n, 0 | < 10 −3 . (32) 

f either of these two conditions are satisfied then we stop the iteration
nd accept the internal energies at the end of the final iteration. 

We find that convergence typically occurs within the first ∼ 10 
terations but can sometimes take many more, particularly when 
sing local-time-stepping (as described below) at synchronization 
oints where a significant fraction of gas cells are active. We should
ote, ho we ver, that these procedures are not strictly guaranteed to
onverge to the solution of the equations, in particular, due to the flux
nd gradient limiters that are used. Additionally, the first criterion 
ssentially measures whether the iteration has stopped and does not 
ake any statement about how close the solution is to solving the

quations. 

.2.4 Local time-stepping 

he scheme presented thus far solves the conduction problem for all
as cells in the simulation at each time-step. Since, when using local-
ime-stepping, the mesh in AREPO is only guaranteed to be complete
or active cells, the scheme, as currently presented, can only be used
n global time-steps. This makes it unsuitable for use in complex
roblems with deep time-step hierarchies (such as those typically 
ound in simulations of galaxy clusters). We therefore use a method
imilar to Pakmor et al. ( 2016b ) to adapt the scheme to work with
ocal time-stepping. 

At each time-step we compute the specific thermal energy of each
ell involved in the calculation and use this to solve the conduction
roblem for each active interface 4 as described in the previous 
ections. We then update the thermal energy of the cells due to these
onduction fluxes. Note that the mesh at each time-step is guaranteed
o be complete for active cells so all information required to calculate
he gradients and quantities at the corners will be available. This
eans that we only have to solve the conduction problem for all

ctive cells and for a layer of inactive cells that share a face with an
ctive cell. 

For the ‘semi-implicit non-linear solver’ we must additionally 
efine the particle set o v er which we calculate the convergence
riteria (see Section 3.2.3 ). We choose this set to be all cells that
ave at least one active interface, (i.e. all cells that can potentially
ave their internal energies changed by the thermal conduction in 
his time-step). Note that this is the same particle set that is used in
he matrix iteration stopping criterion in the implicit step (used in
oth the linear and non-linear solvers) as the matrix will include the
nergies of all cells that are involved in the flux calculation (i.e. those
hat have at least one shared interface). 

The scheme presented in this work uses a fundamentally different 
ethod to that of the anisotropic thermal conduction solver described 

n Kannan et al. ( 2016 ), which is also implemented in AREPO .
n addition, extending our scheme to work with local time-steps 
sing the procedure described abo v e is relativ ely straightforward.
MNRAS 541, 2493–2512 (2025) 
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uilding the mesh at each sync-point for the active particle set
equires inserting the direct neighbours of all active cells into the
esh, which, as discussed abo v e, is sufficient for us to compute the
ux es o v er all activ e interfaces. The scheme presented in Kannan
t al. ( 2016 ), ho we ver, requires information about a second layer
f cells around active cells, which are not guaranteed to be part of
he partial mesh. This means that the scheme can only be used on
ime-steps where all particles are active, making it unsuitable for use
n investigating complex problems (such as those found in studies of
tructure formation) with deep time-step hierarchies. 

.3 Anisotropic thermal conduction in comoving coordinates 

ere, we briefly discuss the changes that need to be made to adapt the
rocedure described in the previous sections for use in cosmological
imulations. In cosmological simulations it is convenient to intro-
uce spatial coordinates that are comoving with the cosmological
xpansion and a set of comoving variables (which we indicate with a
ubscript ‘c’). Those rele v ant to the transformation of the conduction
quation are defined via 

r = a x , u = � − ȧ x , 

ρ = ρc a 
−3 , P = P c a 

−3 χ = χc a 
−1 , (33) 

here a is the scale factor, r are physical coordinates, x are comoving
oordinates, the physical velocity is � = ṙ , and the peculiar velocity is

u = a ẋ . Note that, under this coordinate transformation, the specific
nternal energy is unchanged. 

The deri v ati v es in como ving coordinates transform according to 

∂ 

∂ t 

∣∣∣∣
r 

= 

∂ 

∂ t 

∣∣∣∣
x 

− H x · ∇ x , ∇ r = 

1 

a 
∇ x , (34) 

here H = H ( a) = ȧ /a is the Hubble rate. 
The part of the energy equation rele v ant for anisotropic thermal

onduction in comoving coordinates is then 

∂ u 

∂ t 

∣∣∣∣
x 

= 

1 

ρc c v 
∇ x ·

[
χc b ( b · ∇ x u ) 

]
. (35) 

ote that this equation does not correspond to an exact transform of
quation ( 13 ) but, rather, comes about by transforming the energy
quation ( 3 ) and isolating the term rele v ant for anisotropic thermal
onduction. The discretized form of this equation is then 

∂ u i 

∂ t 

∣∣∣∣
x 

= 

1 

m i c v 

∑ 

j 

[
χij, c ( b ij · ∇ x u ij ) ( b ij · A ij , c ) 

]
. (36) 

.4 Comparison with other algorithms and implementations 

he solver described in this work presents a significant impro v ement
 v er previous schemes implemented in AREPO that solve diffusion
roblems. It combines local time-stepping, spatially varying diffu-
ion coefficient with dependence on the quantity being diffused,
nd an optional non-linear solver to solve the resulting non-linear
nisotropic diffusion problem. 

The cosmic ray diffusion scheme presented in Pakmor et al.
 2016b ) is closest to that presented in this paper. Their scheme,
o we ver, only works for a spatially uniform diffusion coefficient,
hich leads to a purely linear problem. In contrast, the schemes
resented in the previous section for thermal conduction were
esigned to work stably and accurately also when the dif fusi vity
aries on a cell-to-cell basis according to the local properties of the
as. The steep temperature gradients that are expected in the CGM
NRAS 541, 2493–2512 (2025) 
nd ICM lead to correspondingly steep gradients in the dif fusi vity,
aking this a taxing problem. They also make the problem at least
ildly non-linear, so it is critical to have a solver that can take this

on-linearity into account. 
The scheme presented in Berlok et al. ( 2020 ) treats the anisotropic

iffusion of momentum and uses a similar spatial discretization as
akmor et al. ( 2016b ). Ho we ver, their scheme is not compatible
ith local time-stepping, making it unable to cope with the large

patial and temporal dynamic range that arises in cosmological
luster simulations. Finally, the scheme for anisotropic thermal
onduction introduced in Kannan et al. ( 2016 ) uses a different
patial discretization that, similar to the time integration scheme
n Berlok et al. ( 2020 ), is fundamentally unable to be extended to
ocal time-stepping. Additionally, it requires a cap on the dif fusi vity
or stability (Kannan et al. 2017 ), which does not allow modelling of
ull Spitzer conductivity in galaxy clusters and precludes studying
odels with a physically suppressed heat conduction, which are

uggested by advanced models of MHD that account for electron-
histler scattering (e.g. Drake et al. 2021 ). 

 RESULTS:  N U M E R I C A L  TESTS  

n this section we present results from a number of numerical test
roblems that we use to assess the accuracy and stability of the
nisotropic thermal conduction scheme. 

.1 Anisotropic conduction around a ring in 2D 

e test the 2D diffusion of a hot patch of gas in a circular
agnetic field, following the set-up of Parrish & Stone ( 2005 )

nd Sharma & Hammett ( 2007 ). We use this set-up to test and
uantify the convergence of the anisotropic solver with respect to
he analytical solution when applied to a multidimensional problem
t fixed conductivity and a constant background. We therefore disable
ydrodynamics in this test and keep the mesh fixed. 

We use a regular, approximately hexagonal mesh, which we create
y taking a uniform Cartesian mesh offsetting the points in every
ther column by 0.49 times the cell size. We initialize the specific
hermal energy within a domain of [ −1 , 1] 2 to 

 ( x ) = 

{
12 if 0 . 5 < r < 0 . 7 and | φ| < π/ 12 , 
10 otherwise , 

(37) 

here r = 

√ 

x 2 + y 2 is the distance from the centre of the box and
= tan −1 ( y /x ) is the angle to the x-axis. The magnetic field is

nitialized via 

B x ( x ) = − y 

r 
, 

B y ( x ) = + 

x 
r 
. (38) 

e set the parallel dif fusi vity, κ = χ/ ( c v ρ), to 0.01. There is no
erpendicular dif fusi vity so the energy should stay within the ring. 
At early times, the resulting behaviour can be considered as a 1D

iffusion problem of a double step function, which has an analytic
olution given by 

 ( x ) = 10 + erfc 

[(
φ + 

π

12 

)
r 

D 

]
− erfc 

[(
φ − π

12 

)
r 

D 

]
, (39) 

here D = 

√ 

4 κt for 0 . 5 < r < 0 . 7 and u ( x ) = 10 elsewhere. At
ate times, the energy should be uniformly distributed in the ring, i.e.
 = 10 + 1 / 6 for 0 . 5 < r < 0 . 7 and u = 10 elsewhere. 
In Section 3.2.3 we introduced the non-linear solver as a way

o take the temperature dependence of the conduction coefficient
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Figure 3. Specific internal energy slices at early times ( t = 10) for the problem of anisotropic conduction of a hot patch of gas around a circular magnetic field 
in 2D. Each panel shows the entire computational domain for five simulations with different resolutions (indicated in the top right), which use local time-stepping 
(see the text for explanation). In the lower right panel we show the analytic solution for comparison. With increasing resolution the diffusion perpendicular to 
the magnetic field decreases and the numerical solution is seen to converge on the analytic one. 
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nto account. In this test the conduction coefficient is fixed and 
herefore insensitive to the non-linear solver. We therefore defer 
iscussion of the non-linear solver to the following section and, for
his test, consider only the semi-implicit linear solver described in 
ection 3.2.2 . 
In the present section we compare simulations that use local time- 

teps with those that use global time-steps and additionally consider 
imulations where we impose the time-step criterion required by 
xplicit schemes for stability (equation 22 ). We refer to these 
hree types of simulation as ‘local’, ‘global’, and ‘global + diff’,
espectively. 

In the simulations that use local time-steps we impose a time-step 
ierarchy, as this does not arise naturally in the problem. We leave
he time-steps of cells in the lower left quadrant unaltered and reduce
hat of the cells in the upper left and lower right quadrant by a factor
f 2, and that of the cells in the upper right quadrant by a factor of 4.
Fig. 3 shows the specific internal energy distribution at early 

imes ( t = 10) for five simulations with different resolutions,
nd in the bottom-right we show the analytic prediction. The 
imulations in Fig. 3 were all run with local time-stepping 
as described abo v e). Reassuringly, it is evident that there are
o unphysical features at the boundaries between regions with 
ifferent time-steps. All simulations reproduce the general be- 
aviour predicted by the analytic solution. With increasing res- 
lution, ho we ver, there is less perpendicular diffusion and the 
umerical solution becomes a better match to the analytic 
ne. 
We now examine these simulations more quantitatively. Fig. 4 
hows the L 

1 norm 

5 as a function of resolution of the simulation
t early and late times, for simulations that use local time-stepping
nd for runs that use global time-stepping, with and without the
iffusion time-step constraint being imposed. In general, all three 
onfigurations show very similar errors and convergence rates, at 
oth early times ( L 

1 ∝ N 

−0 . 52 ) and late times ( L 

1 ∝ N 

−0 . 7 ). The
aster convergence rates at late times arise due to the fact that,
y this point, the solution is primarily sensitive to errors in the
onduction perpendicular to the magnetic field, whereas any errors in 
he parallel conduction speed (which the solution will be sensitive to
t early times) have been washed out. We note that these convergence
ates are clearly worse than first order but are comparable to other
mplementations of anisotropic transport solvers (Parrish & Stone 
005 ; Sharma & Hammett 2007 ; Kannan et al. 2016 ; Pakmor et al.
016b ). 
The behaviour of the errors in the runs with local and global

ime-steps is very similar. At late times, ho we ver, the run with local
ime-steps has slightly smaller errors at higher resolution. This may 
rise because we impose smaller time-steps than required in the 
ocal-time-stepping simulations. The runs with the additional time- 
tep constraint show slightly smaller errors at early times and higher
MNRAS 541, 2493–2512 (2025) 
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Figure 4. L 

1 norm for the problem of anisotropic conduction of a hot patch 
of gas around a circular magnetic field in 2D (as visualized in Fig. 3 ). 
The top panel shows the L 

1 norm at early times ( t = 10), and the bottom 

panel shows it at late times ( t = 200). The different coloured lines show the 
results for different time-stepping schemes: ‘local’ and ‘global’ correspond 
to simulations that use local and global time-stepping schemes, respectively. 
‘global + diff’ corresponds to simulations that use global time-stepping 
with the addition of the time-step criterion required by explicit schemes 
for stability (equation 22 ). In general, all configurations show very similar 
errors and convergence rates, both at early times ( L 

1 ∝ N 

−0 . 52 ) and at late 
times ( L 

1 ∝ N 

−0 . 7 ). 
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esolution in comparison to the other schemes. At late times and high
esolution, ho we ver, the error is slightly worse. 

.2 Point explosion in a uniform medium 

o assess the accuracy of the coupling between the ideal MHD
nd thermal conduction solvers we carry out 3D simulations of a
oint explosion in a uniform background where the conductivity
s self-consistently determined by the temperature. We perform
hree different types of simulation: one where there is no thermal
onduction (i.e. ideal MHD), one with the addition of isotropic
onduction, and one with anisotropic conduction. We refer to these
ype of simulations as ‘MHD’, ‘ + iso’, and ‘ + aniso’, respectively. 

In all simulations, the mesh is initially Cartesian but undergoes
egularization during the course of the simulation (see Vogelsberger
t al. 2012 ). We carry out simulations at three different spatial
esolutions: 64 3 , 128 3 , and 256 3 . For the ideal MHD and isotropic
onduction simulations, the computational domain has side length
00 pc. As the conduction front in the set-up with anisotropic
onduction mo v es much faster than in the isotropic case we use
NRAS 541, 2493–2512 (2025) 
 computational domain with side length 200 pc for the two lower
esolution simulations with anisotropic conduction. This ensures that
he conduction front does not leave the box during the simulation.
or the highest resolution simulation with anisotropic conduction,

ncreasing the boxsize was too e xpensiv e and so we ran it in a box of
ide length 100 pc and stopped the simulation before the conduction
ront left the domain. F or consistenc y we will continue to refer to the
ower resolution simulations with a box side length of 200 pc as 64 3 

nd 128 3 , despite the fact that, when doubling the domain length, we
lso double the number of cells along each edge. This ensures that,
cross all simulations of a given resolution (i.e. 64 3 , 128 3 or 256 3 ),
he spatial resolution remains the same. 

The background medium has constant density n 0 = 1 cm 

−3 and
emperature T 0 = 10 4 K. The background magnetic field has strength
 μG and points in the positive x-direction, which corresponds to
n initial plasma beta of ∼ 35. In all simulations we inject E 0 =
 . 33 × 10 50 erg into the central region. In the 64 3 resolution runs
e inject into the central eight cells. We keep the volume of the

njection region the same in the higher resolution simulations (128 3 

nd 256 3 ), and the number of injection cells increases accordingly to
4 and 512, respectively. This means that the total mass into which
he energy is injected is constant across all simulations (and thus the
eak initial temperature is also the same). 

For simulations with conduction, the conductivity is assumed to
ake the Spitzer value without any form of suppression (i.e. χ is as
n equation 9 ). Unless specified, the simulations were run with the
inear thermal conduction solver. We identify those that were run
ith the non-linear solver explicitly. 
In order to capture the very early evolution of the shock and

onduction fronts, we employ maximum time-steps that are log-
paced in time. We, additionally, carried out analogous simulations
ith local time-steps where we relaxed this maximum time-step

riterion and confirmed that the results of these simulations are
onsistent with the late time behaviour described in the rest of this
ection. 

Fig. 5 shows thin temperature projections at three different
imes for the 128 3 resolution simulations without conduction, with
sotropic conduction and with anisotropic conduction. At early times,
he conduction fronts in the runs with conduction (middle and right
olumns) advance faster than the shock front in the pure MHD run
left column). In the simulation with anisotropic conduction there is
ssentially no diffusion perpendicular to the magnetic field and the
arallel expansion occurs noticeably faster than the radial expansion
een in the simulation with isotropic conduction. The perpendicular
xpansion in the anisotropic conduction case is also slower than the
lassical adiabatic solution, as was also found in Kannan et al. ( 2016 )
nd Dubois & Commer c ¸on ( 2016 ). 

At later times, the pure MHD and isotropic conduction simulations
ave similar radial extents although the MHD simulation retains a
trong radial temperature gradient within the shocked region, while
he temperature gradients in the simulations with conduction are
uch flatter. 
We now examine the different behaviour observed in these simula-

ions more quantitatively. Analytic solutions to the problem of point
xplosion in a uniform medium exist for the purely adiabatic case
nd the case of pure conduction. For an adiabatic point explosion,
he radius of the shock front expands according to 

 s ( t) = ξ ( n ) 

(
E 0 t 

2 

ρ0 

)1 / ( n + 2) 

, (40) 
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Figure 5. Thin temperature projections of size 100 × 100 pc for the point explosion test. Each column, from left to right, shows results for the pure MHD 

case, that with isotropic conduction and that with ansiotropic conduction. Each row depicts the state of the system at a different time, which is indicated in the 
top-right corner of each panel in the first column. The grey lines show the magnetic field configuration. Thermal conduction can significantly affect the outcome 
of a point explosion, particularly when conduction occurs anisotropically along the magnetic field. 
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here n is the dimension of the problem and ξ ( n ) is a constant of
rder unity, which also depends on the adiabatic index (Sedov 1959 ).
n three dimensions, with γ = 5 / 3, ξ (3) is approximately 1.15. 

For the case of a point explosion with heat conduction where 
he conductivity has a power-law dependence on temperature, χ = 

0 T 
α , the radius of the conduction front evolves according to 

 c ( t) = 

[(
2( nα + 2) 

α

χ0 

c v ρ0 

)(
2 

S n 

1 

B( n 2 , 
1 
α

+ 1) 

E 0 

ρ0 c v 

)α

t 

]1 / ( nα+ 2) 

, (41) 

here S n = 1, 2 π , and 4 π , respectively, for dimensions n = 1, 2,
nd 3, and B( x , y ) is the beta function (see e.g. Zel’dovich & Raizer
967 ; Barenblatt 1996 ). 
.2.1 Point explosion with isotropic conduction 

e begin by examining the simulations that were run with isotropic
onduction. Equation ( 40 ) predicts that the 3D shock radius in our
imulations should expand according to 

 s , 3D ( t) = 4 . 75 

(
t 

kyr 

) 2 
5 

pc . (42) 

rom equation ( 41 ) the 3D conduction front, assuming Spitzer
onductivity ( α = 5 / 2), is at radius 

 c , 3D ( t) = 10 . 1 

(
t 

kyr 

) 2 
19 

pc . (43) 

In Fig. 6 we show the time evolution of the radius of the
hock/conduction front for the three different resolution simulations. 
dditionally, for the lowest resolution, we show the results from a
MNRAS 541, 2493–2512 (2025) 
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Figure 6. Evolution of the radius of the conduction/shock front in the 3D 

point explosion test with isotropic conduction (as visualized in the middle 
column of Fig. 5 ). The solid coloured lines show results from simulations run 
with the linear conduction solver and the dashed yellow line corresponds 
to a simulation run with the non-linear solver (see figure legend). The 
black lines indicate the analytic expectation for the radial evolution of the 
shock/conduction front in the cases of pure hydrodynamics ( r s , 3D , equation 
42 ) and pure conduction ( r c , 3D , equation 43 ). At early times conduction 
is fastest but at ∼ 13 kyr, the shock front catches up and o v ertakes. With 
increasing resolution the results converge towards the analytic expectation. 
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Figure 7. Evolution of the radius of the conduction/shock front in the 3D 

point explosion test with anisotropic conduction (as visualized in the right 
column of Fig. 5 ). The solid/dot–dashed coloured lines show the radius as 
measured parallel/perpendicular to the initial magnetic field direction (see 
figure legend). The black dotted lines show the analytic scalings for the radial 
evolution of a cylindrical blast wave ( r ∝ t 1 / 2 , see equation 40 ) and a 1D 

conduction front ( r ∝ t 2 / 9 , see equation 41 ). The expansion of the conduction 
front along the magnetic field follows the expected scalings for a 1D point 
explosion with pure conduction. Perpendicular to the initial magnetic field, 
the shock front expands slower than the conduction front and follows the 
expected scalings for a cylindrical blast wave. 
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imulation run using the non-linear conduction solver described in
ection 3.2.3 . We estimate the radius of the shock/conduction front
y first calculating a spatial temperature profile of the gas along the
-axis, 6 passing through the centre of the injection region. We then
efine the conduction/shock front radius to be the distance from the
entre to the furthest point where the temperature is abo v e 1 per cent 7 

f the background temperature, T 0 . 
At early times, conduction dominates and the radius of the

ronts advances ∝ t 2 / 19 , in accordance with analytical expectations.
quating equations ( 42 ) and ( 43 ) gives a transition time of ∼ 13 kyr
t which hydrodynamical process are expected to become dominant.
ndeed, this is very close to the time at which we see a distinct change
n the evolution of the shock/conduction front in the simulations,
hich then begins to follow the shock solution. With increasing

esolution and at a fixed time, the radius of the measured front is
enerally smaller, and converges towards the analytic expectation.
he behaviour of the shock/conduction front in the simulation

un with the non-linear solver (dashed yellow line) almost exactly
eproduces that in the analogous simulation run with the linear solver
solid red line). In future work we plan to apply the non-linear solver
o other problems (including galaxy cluster zooms) to test whether
his result holds generally. 

.2.2 Point explosion with anisotropic conduction 

hen heat conduction is anisotropic, the problem of point explosion
n a uniform medium essentially becomes a 1D problem along the
NRAS 541, 2493–2512 (2025) 

 The results discussed in the remainder of the section are independent of the 
irection of the axis along which the temperature profile is measured. 
 We also tested threshold values of 0.1 per cent and 10 per cent and found that 
he location of the shock/conduction front radius is sufficiently well resolved 
n all simulations that the results presented in this section and the one that 
ollows are insensitive to the exact choice of this threshold value. 

w
 

fi  

m  

l  

r  

o  

s  
irection of the magnetic field. Perpendicular to the magnetic field
ines, the evolution of the system is determined by MHD processes
nd the early rapid expansion of the conduction front along the x-
xis, as seen in Fig. 5 , means that this approximately resembles a 2D
 ylindrical blast wav e. Equations ( 40 ) and ( 41 ) show that the radii
f the conduction and shock fronts in this scenario should scale as
 c , 1D ∝ t 2 / 9 and r s , 2D ∝ t 1 / 2 , respectively. In contrast to the isotropic
ase, the constants E 0 and ρ0 in equations ( 40 ) and ( 41 ) are not
ell defined because the anisotropic case does not decouple into two

ndependent problems along and perpendicular to the magnetic field.
e therefore just compare the scaling behaviour of the radius of the

D shock and 1D conduction front, rather than exact values. 
In Fig. 7 we show the radii of the conduction/shock front in the

oint explosion test with anisotropic conduction as a function of time,
or the three different resolution simulations. We calculate the radii
f the shock/conduction front parallel and perpendicular to the initial
agnetic field direction and use the same method as was described

n the previous section for the isotropic conduction simulations.
he expansion of the conduction front along the magnetic field at
arly times is much faster than seen for the isotropic case. This
s expected and is largely due to the geometry of the problem. The
adius of the conduction front follows the analytic scaling well for the
igher resolution simulations, but is slightly shallower for the lowest
esolution run (red line). At late times, the radial expansion slows
ith respect to the analytic scaling as hydrodynamical processes that

re driving the lateral expansion become important. This behaviour
as also seen in Kannan et al. ( 2016 ). 
The expansion of the shock front perpendicular to the magnetic

eld is initially slower than that of the conduction front along the
agnetic field and follows the expected scaling well at all resolution

ev els, e xcept perhaps at very early times for the lowest resolution
un. Overall, the results in this section have validated the accuracy
f the coupling between the hydrodynamics and thermal conduction
olv ers and hav e, additionally, demonstrated the accurac y of our
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reatment of the temperature dependence of the conductivity in the 
olver. 

.3 The MTI 

or both positive and negative temperature gradients, high- β weakly 
ollisional stratified plasmas are unstable to magnetically medi- 
ted buoyancy instabilities when anisotropic conduction is rapid 
ompared to the dynamical response of a plasma. Specifically, 
nisotropic heat conduction causes the slow magnetosonic wave to 
ecome buoyantly unstable to the MTI (Balbus 2000 , 2001 ) when the
emperature decreases with height and to the HBI (Quataert 2008 ) 
hen the temperature increases with height. 
In regions where g · ∇ T > 0, any misalignment of magnetic field 

ines and gravity (i.e. g ) can result in the development of the MTI.
n the presence of a sustained temperature gradient, the MTI drives 
igorous turbulence that is largely isotropic (see e.g. Parrish & Stone 
005 , 2007 ; Perrone & Latter 2022a , b ). In this section, we present
imulations that explore the non-linear behaviour of the MTI and 
ompare our results to previous work (such as Parrish & Stone 2005 ;
arrish & Quataert 2008 ; McCourt et al. 2011 ; Kannan et al. 2016 ). 

.3.1 Initial conditions 

e follow the evolution of a 2D region of plasma initially in
ydrostatic and thermal equilibrium. The region of plasma we 
imulate consists of an MTI-unstable region, where conduction is 
nisotropic, sandwiched between two buoyantly neutral regions, 
here the heat conduction is isotropic. Note, ho we ver, that we ignore

hese buffer regions in the quantitative analysis presented in this 
ection. 

The plasma is stratified in density and temperature and is subject 
o a uniform gravitational field in the vertical direction: g = −g 0 ̂  z .
n the horizontal direction, we apply periodic boundary conditions. 
t the upper and lower boundaries, we fix the temperature. This

nforces a vertical temperature gradient across the box and prevents 
he instabilities from saturating by flattening this gradient. We 
xtrapolate the pressure into the ghost cells at these boundaries so as
o enforce hydrostatic equilibrium, while all other plasma quantities 
re treated using reflective boundary conditions. 

The size of the simulated domain is L × 2 L and the unstable region
ies within L/ 2 < z < 3 L/ 2. In this unstable region we construct an
tmosphere where the temperature decreases linearly with height 
ccording to 

T ( z) = T 0 

(
1 − z−L/ 2 

3 H 0 

)
, (44) 

ρ( z) = ρ0 

(
1 − z−L/ 2 

3 H 0 

)2 

, (45) 

P ( z) = P 0 

(
1 − z−L/ 2 

3 H 0 

)3 

, (46) 

here H 0 is a scale height. We set L/H 0 = 0 . 1, which means that this
et-up is ‘local’ in the sense that the size of the simulation domain is
uch smaller than the pressure scale height. 
We initialize the buoyantly neutral layers as isothermal atmo- 

pheres where the temperatures are continuous across the boundaries 
f the unstable region. The pressure and density in these regions vary
xponentially with height. We set g 0 = k B T 0 / ( H 0 μ m H ) to ensure
hat the system is initially in hydrostatic equilibrium and additionally 
pply a uniform background magnetic field in the x-direction with 
agnitude such that the plasma beta at the base of the unstable region
s β0 = 2 × 10 4 . This means that magnetic tension is negligible on
he scales of interest. 

The physics of the buoyancy instabilities is independent of the 
onductivity in the limit that the thermal diffusion time across the
patial scales of interest is short compared to the dynamical time.
e therefore assume a uniform fixed conductivity and ensure that 

he simulations are in this fast conduction limit by setting χ =
0 ρ0 c v ω buoy L 

2 , where we e v aluate the characteristic frequency for
he buoyancy instability, 

 buoy = 

∣∣∣∣g 0 ∂ ln T ∂ z 

∣∣∣∣
1 / 2 

, (47) 

t the base of the unstable region. This means that the thermal
iffusion time across the unstable region is ∼ 0 . 1 ω 

−1 
buoy . As the

onductivity is fixed, we only present simulations that use the linear
olver in this section. 

The simulations are initialized with a regular mesh, similar to that
escribed in Section 4.1 , which is then allowed to mo v e o v er the
ourse of the simulation. We, additionally, consider two different 
patial resolutions, where the unstable region is resolved by 128 2 or
56 2 cells. The simulations are all run for 50 buoyancy times ( t buoy =
 

−1 
buoy , where ω buoy is e v aluated at the base of the unstable region).
e apply single mode transverse perturbations to the velocity field 
ith wav e v ector k = (4 π/L ) ˆ x and amplitude 10 −4 c s , 0 , where c s , 0 

s the sound speed e v aluated at the base of the buoyantly unstable
egion. 

In 2D, when the mesh is allowed to mo v e, we found that not
esolving the gradients and the magnetic field topology could lead 
o the introduction of noise in the simulations. In these simulations
e therefore applied an extra criterion whereby the tangential fluxes 

cross a face are set to zero if the signs of the normal components
f the magnetic field estimates at the two corners of each face are
ifferent. This increases the stability of the scheme at the cost of being
ore dif fusi ve. We find that this condition is not necessary in 3D

where the number of corners that contribute to the interface estimate
s significantly higher), or when the resolution is high enough. 

.3.2 Results 

ig. 8 shows temperature slices with magnetic field lines o v erlaid
n black for the simulation where the unstable region has resolution
56 × 256. The slices show the entire simulation domain ( L × 2 L ),
ncluding the upper and lower buoyantly neutral regions and the grey
orizontal lines indicate the boundaries between these regions. In the 
rst three panels, the instability is still in the linear growth phase.
he perturbations grow exponentially and drive the development of 
 large vertical magnetic field component. 

The MTI growth rate goes to zero when the field lines become
ertical. As we see from the final two panels of Fig. 8 , ho we ver, the
TI does not saturate quiescently when it reaches this linearly stable

tate but, instead, drives sustained turbulence. This arises due to the
 xistence of zero-frequenc y modes of the dispersion relation, which
orrespond to horizontal perturbations that act to drive the plasma 
way from this equilibrium configuration (Balbus & Reynolds 2010 ; 
cCourt et al. 2011 ). This state of sustained turbulence persists for

he rest of the simulation. This qualitative behaviour is consistent 
ith that observed in previous simulation work (see e.g. Parrish &
tone 2005 , 2007 ; McCourt et al. 2011 ; Kannan et al. 2016 ; Berlok
t al. 2021 ). 

In the final two panels of Fig. 8 we see that the turbulent
otions have length-scales that are comparable to the size of the
MNRAS 541, 2493–2512 (2025) 
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Figure 8. Temperature slices with magnetic field lines o v erlaid in black that show the time evolution of the MTI for the simulation where the unstable region 
has resolution 256 × 256. The slices show the entire simulation domain ( L × 2 L ), and the grey horizontal lines indicate the boundaries between the unstable 
and neutral regions. The temperatures are normalized to that at the base of the unstable region. The initial perturbation grows linearly in the first three panels 
until there is a large vertical component of the magnetic field. This configuration is, ho we ver, non-linearly unstable with the end result being a state of sustained 
turbulence. 
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omputational domain. As shown by McCourt et al. ( 2011 ), this
rematurely stops the buoyant acceleration and implies that these
local’ simulations are not able to accurately capture the saturated
tate of the MTI and underpredict the turbulent energies. 

The left-hand panel of Fig. 9 shows the evolution of the z-
omponent of the magnetic field and highlights the difference be-
ween the linear phase of the instability where the vertical component
f the magnetic field is exponentially amplified and the saturated state
here the magnetic field becomes close to isotropic. We also show

he time evolution of the v olume-a veraged kinetic energy density
n the right-hand panel of Fig. 9 . In both simulations, the kinetic
nergy is exponentially amplified at early times but then saturates at
 ≈ 6 t buoy as the magnetic field configuration approaches the linearly
table state. 

The linear growth rate of a mode of the MTI can be determined
rom the set of linearized equations that go v ern the system (see e.g.
uataert 2008 ; Kunz 2011 ; Berlok et al. 2021 ). Assuming locality

n the vertical direction, the growth rate for the perturbation seeded
n these simulations should be ω buoy . The dashed line in the right-
and panel of Fig. 9 corresponds to this scaling and is in very good
greement with the behaviour observed in our simulations. 

Both the lower and higher resolution simulations agree very well
n the behaviour of the instability during the linear growth phase
 t � 6 t buoy ). At later times, the results differ quantitatively. These
if ferences, ho we ver, are marginal and the qualitative behaviour is
n good agreement. The evolution of the magnetic field and the
inetic energy densities, shown in Fig. 9 , are also very similar to
hose presented in Kannan et al. ( 2016 ), who carried out similar 2D
imulations of the MTI, and to those found in the 3D simulations of

cCourt et al. ( 2011 ). 

 C O S M O L O G I C A L  SIMULATIONS  O F  

A L A X Y  CLU STERS  WITH  ANISOTROPIC  

H E R M A L  C O N D U C T I O N  

o investigate the effects of anisotropic thermal conduction on
tructure formation and evolution it is important that the anisotropic
hermal conduction solver is able to work efficiently and accurately in
 fully cosmological context. In this section, we demonstrate that our
NRAS 541, 2493–2512 (2025) 
ode is capable of efficiently running high-resolution cosmological
oom-in simulations of galaxy clusters. An in-depth analysis of the
ole of anisotropic thermal conduction in the evolution and properties
f the cluster will be presented in a follow-up paper. Here, we will
argely focus on technical details and implementation choices. 

In one of our simulations, we set the conductivity to the Spitzer
alue (equation 9 ) and in the other we set it to Spitzer with whistler
uppression (equation 10 ). 

.1 Initial conditions and physical model 

n this section we present three different cosmological zoom-in
imulations of one halo with mass M 200c = 5 . 09 × 10 14 h 

−1 M 
 and
adius R 200c = 1 . 30 h 

−1 Mpc at z = 0. Here, we define M 200c and
 200c such that the average density within a sphere of radius R 200c is
00 times the critical density of the Universe and M 200c is the mass en-
losed by this radius. The simulations use a Planck-2018 cosmology
Planck Collaboration VI 2020 ) where �m 

= 0 . 315, �b = 0 . 049,
� 

= 0 . 684, and the Hubble constant is H 0 = 100 h km s −1 Mpc −1 

ith h = 0 . 673. The simulations presented in this section were
arried out as part of the ongoing PICO-Clusters (Plasmas In
Osmological Clusters) project, which will be presented in greater
etail in forthcoming work. 
The particular halo studied here was selected for re-simulation

rom a parent dark matter only simulation with side of length
 h 

−1 cGpc . The initial conditions for the zoom-in simulation were
hen created using a new code that will be described in Puchwein et al.
n preparation. We have made sure that the simulations presented here
ave no low-resolution dark matter particles within 2 R 200c at z = 0.
In these simulations, the high-resolution dark matter particles have
ass 4 . 0 × 10 7 h 

−1 M 
, while the gas in the high-resolution region
as target mass resolution 7 . 4 × 10 6 h 

−1 M 
. The comoving soften-
ng length of the high-resolution dark matter is set to 3 . 25 h 

−1 ckpc
ith a maximum physical softening length of 1 . 627 h 

−1 kpc . The gas
oftening is treated adaptively and scales with the radius of the cell,
ith a minimum comoving value of 0 . 41 h 

−1 ckpc . 
This resolution is about three times better than that used in the full-

hysics MillenniumTNG box (Pakmor et al. 2023 ), and is slightly
etter than that used in the TNG300 volume of the IllustrisTNG
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Figure 9. The left-hand panel shows the time evolution of the magnetic field orientation in the two-dimensional MTI simulation visualized in Fig. 8 . Specifically, 
we show the volume average of the square of the vertical component of b = B / | B | . A vertical magnetic field will have b 2 z = 1, whereas b 2 z = 0 . 5 corresponds 
to an isotropic field in 2D. The right-hand panel shows the time evolution of the volume averaged kinetic energy density. The different coloured lines correspond 
to simulations with different resolutions (see legend). These quantities were calculated by averaging over all cells within the buoyantly unstable region. The 
black dashed line shows the theoretical scaling of the growth rate. During the linear phase of the instability ( t � 6 t buoy ), the magnetic field is driven towards a 
vertical orientation and the kinetic energy is exponentially amplified. During the non-linear phase that follows, the instability saturates and the turbulence acts 
to isotropize the magnetic field. 
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roject (Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson et al.
018 ; Springel et al. 2018 ; Pillepich et al. 2018b ) and the recent
NG-Cluster simulations (Nelson et al. 2024 ), with slight differences 
rising from the choice of cosmology. 

We apply a physics model based on that used in the TNG
roject, which is described in detail in Weinberger et al. ( 2017 )
nd Pillepich et al. ( 2018a ). Physical processes in this model
nclude primordial and metal-line cooling along with heating from 

 spatially uniform UV background (Vogelsberger et al. 2013 ), an 
f fecti ve model for the ISM and star formation (Springel & Hernquist
003 ), chemical enrichment of the ISM due to core-collapse and 
hermonuclear supernovae and AGB stars, an effective model for 
alactic winds (Pillepich et al. 2018a ), and the formation, growth 
f, and feedback from supermassive black holes (Weinberger et al. 
017 ). We additionally initialize a spatially uniform seed magnetic 
eld of comoving strength of 10 −14 G at the start of the simulations
 z = 127). 

We perform three zoom-in simulations of this halo, all of which 
se this physics model as a baseline. The first simulation (which 
e will refer to as the ‘standard’ simulation) has no additional 
odels for physical processes. In the other two simulations we 

witch on our model for anisotropic thermal conduction. In both 
f these simulations we use the ‘semi-implicit linear solver’. In one 
f these simulations, we set the conductivity to the Spitzer value 
equation 9 ) and in the other we set it to Spitzer with whistler
uppression (equation 10 ). We refer to these simulations as ‘ + spitzer’
nd ‘ + whistler’, respectively. 

For the simulations with thermal conduction, we do not solve the 
onduction problem across interfaces where one or more of the cells 
n either side are star-forming. The thermal energy of these cells is
et by the ef fecti ve equation of state (Springel & Hernquist 2003 ) and
epresents an ef fecti ve pressure rather than the temperature of the gas,
hich should just be considered as a property of the ef fecti ve subgrid
odel. In doing this we ef fecti vely assume that thermal conduction

s unimportant for the transport of energy between the star-forming 
SM and the gas surrounding it. 
h

.2 Results 

ig. 10 shows thin projections of various quantities at z = 0 for
he ‘ + whistler’ simulation. The magnetic field in the cluster is
learly highly turbulent and has strength that reaches ∼ 10 μG in the
entral regions. In the outskirts of the cluster, ho we ver, the field is
ignificantly weaker. For an in-depth discussion of the amplification 
f magnetic fields in the PICO clusters, see Tevlin et al. ( 2024 ). 
Throughout the majority of the cluster, the magnetic field is, 

o we ver, largely dynamically unimportant, as can be seen in the
rojection of the plasma beta. The plasma beta typically lies within
he range ∼ 10 2 –10 3 but can be even higher in the cluster outskirts,
articularly in regions where the magnetic field is low. Intermittent 
agnetic flux tubes can reach plasma beta values of 10. 
In the lower middle panel, we show the thermal diffusivity 
= χ/ ( ρc v ), as measured in the simulation (i.e. including the

ffects of whistler suppression) and in the lower right panel we
how the factor by which the diffusivity is suppressed below the
pitzer value, (1 + (1 / 3) β λmfp , e / l T , ‖ ) −1 , see equation ( 10 ). The

urbulent nature of the magnetic field (in combination with a much
moother temperature gradient) leads to significant variation in the 
emperature gradient length-scale along the direction of the magnetic 
eld, l T , ‖ = | b · ∇ ln T | −1 . This, in combination with the variations

n β, can lead to a significant suppression of the conductivity, 
articularly in the outskirts of the cluster and at the location of
hocks (see the temperature projection in the upper left panel and
ensity in the upper middle panel). 
In Fig. 11 we show radially averaged profiles of various thermody-

amical quantities at z = 0 for all three simulations. In general, we
nd good agreement across all three runs. There are, ho we ver, some
light differences, particularly in the density , metallicity , entropy , and
agnetic field strength profiles: the runs with the conduction exhibit 

igher central densities and magnetic field strengths, lower central 
ntropies, and flatter central metallicity gradients. The flattening 
f the metallicity profile could be explained by enhanced mixing, 
ssociated with the effects of thermal conduction. Similar behaviour 
as also been observed in previous simulation work exploring 
MNRAS 541, 2493–2512 (2025) 
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M

Figure 10. Thin (100 h −1 kpc ) projections of size (3 h −1 Mpc ) 2 at z = 0 for the ‘ + whistler’ simulation. From left to right, the top ro w sho ws temperature, 
gas density, and magnetic field strength. The bottom row shows the plasma beta, the thermal dif fusi vity, and the ratio of the (whistler suppressed) thermal 
dif fusi vity to the Spitzer value. The temperature projection is weighted by mass, while those of the magnetic field strength, density, and thermal dif fusi vity are 
volume-weighted. The projection of the plasma beta is calculated by dividing the volume-weighted projection of the thermal pressure by that of the magnetic 
pressure; likewise, the projection of the ratio of the thermal diffusivity to the Spitzer value is calculated by dividing the volume-weighted projection of the 
thermal dif fusi vity by that of the Spitzer v alue. The dashed circles correspond to R 200c . The magnetic field is highly turbulent and this, along with a much 
smoother temperature gradient, leads to significant levels of suppression in the heat flux (see equation 10 ), particularly in the outskirts of the cluster and at 
shocks. 
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nisotropic thermal conduction in galaxy clusters (Kannan et al.
017 ). We will explore this in more detail in future work with a larger
ample of simulated clusters. Additionally, the cluster simulated
ith full Spitzer conductivity shows larger differences than that

imulated with whistler suppressed conduction when compared to
he simulation without conduction. 

A number of works in the literature that use simulations to explore
he effects of anisotropic thermal conduction in galaxy clusters
mpose a cap on the thermal dif fusi vity. This is often done when
sing conduction schemes that require application of the diffusion
ime-step criterion (see equation 22 ) for stability. Such a cap prevents
xtremely small dif fusi ve time-steps that could otherwise make the
imulation computationally intractable (see e.g. Yang & Reynolds
016 ; Kannan et al. 2017 ). Values used for such a cap are typically

5 × 10 31 cm 

2 s −1 . From the thermal dif fusi vity profiles for our
NRAS 541, 2493–2512 (2025) 
imulations (lower right panel of Fig. 11 ) we see that the Spitzer
alue in the outskirts of the cluster can be significantly higher than
his numerical cap. The use of such a cap can therefore result in
ignificant numerical suppression of the conductivity in the outskirts
f the cluster. The application of this artificial suppression also
eans that such schemes cannot be reliably used to explore the

ffects of physically motivated conductivity closures such as whistler
uppression. 

While the differences in the radially averaged profiles are rather
ubtle, we do find larger differences between these systems in other
uantities. In Fig. 12 we show temperature projections of the three
lusters at z = 0. The ‘standard’ simulation shows significant small-
cale structure in the temperature field. In the simulations with
onduction, ho we ver, this small-scale structure is largely gone and
he temperature field is substantially smoother, an effect that is
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Figure 11. Radial profiles at z = 0 for the galaxy cluster zoom-in simulations. From left to right, the top row shows density, temperature, and magnetic field 
strength. The bottom row shows entropy (which we define to be K = k B T /n 

( γ−1) 
e , where n e is the electron number density), metallicity, and thermal dif fusi vity, 

for the two simulations run with anisotropic thermal conduction. All profiles are in reasonably good agreement with each other, with some deviations seen in the 
central regions. The cluster simulated with full Spitzer conductivity ( + spitzer) shows larger differences than that simulated with whistler suppressed conduction 
( + whistler) when compared to the simulation without conduction (standard). 

Figure 12. Mass-weighted temperature projections of size (3 h −1 Mpc ) 2 and depth 200 h −1 kpc at z = 0 for, from left to right, the simulation without conduction 
(standard), that with whistler suppressed anisotropic conduction ( + whistler), and that with full Spitzer conductivity ( + spitzer). The ‘standard’ simulation shows 
significant small-scale structure in the temperature field. The temperature field in the simulations with conduction, ho we ver, is considerably smoother, with the 
largest effect seen in the ‘ + spitzer’ case. 
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ost pronounced in the ‘ + spitzer’ run, where the conductivities are
enerally higher than in the ‘ + whistler’ run (see lower right panel
f Fig. 11 ). These observations are consistent with the expected 
ehaviour of thermal conduction, namely, that it acts to flatten 
emperature gradients. 

This can be understood more quantitatively by examining radial 
rofiles of the standard deviation of the temperature within each 
adial bin, weighted by cell volume, which are shown in Fig. 13 . At
ll radii (except the very centre) the simulation without conduction 
as the largest temperature variance, while both simulations with 
nisotropic conduction show significantly lower levels of variability. 
he ‘ + spitzer’ simulation, where the conductivities are generally 
ighest, has the lowest level of variability. 
In this section we have shown that the differences between sim-

lations with and without anisotropic conduction can be significant. 
dditionally, we have shown that the effect of whistler suppression 

an be considerable. Previous cosmological cluster simulations have 
lso found that conduction can have a substantial effect on the
luster properties (see e.g. Dolag et al. 2004 ; Jubelgas et al. 2004 ;
uszkowski et al. 2011 ; Kannan et al. 2017 ; Barnes et al. 2019 ;
MNRAS 541, 2493–2512 (2025) 
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M

Figure 13. Radial profiles at z = 0 of the standard deviation of the temper- 
ature distribution in radial bins, weighted by volume, for the simulation 
without conduction (standard), that with whistler suppressed anisotropic 
conduction ( + whistler), and that with full Spitzer conductivity ( + spitzer). 
The ‘standard’ simulation shows the highest levels of variability in the 
temperature field, whereas the levels of variability in both simulations with 
anisotropic conduction are significantly lower. 
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ellissier et al. 2023 ). In order to carefully asses the extent to
hich thermal conduction is affecting the cluster properties and

n what ways these effects manifest, it is first important to better
nderstand the variability inherent in the standard physics model
nd which cluster properties it robustly predicts. It is, additionally,
mportant to have more than one data point to draw conclusions from,
hich requires simulating a larger sample of clusters. This is beyond

he scope of this work, where the aim is to introduce our thermal
onduction scheme, but will be studied in detail in future work. 

It should also be mentioned that the extent to which the thermal
onductivity closure used in the ‘ + whistler’ simulation (equation 10 )
ccurately captures the effect of whistler waves on electron transport
n the ICM is not well understood. The present results, ho we ver,
emonstrate that it may have a significant impact on the ef fecti ve
onductivity, particularly in the outskirts of the cluster. Future work
s needed to better understand the impact of kinetic microinstabilities
n electron transport and how these effects manifest on large scales,
n a cosmological context. 

.3 Technical considerations 

e end this section with a few technical remarks relating to the
erformance of the anisotropic thermal conduction solver in these
luster zooms. In the two simulations with thermal conduction, about
0 per cent of the run-time is spent in the conduction solver. About
 third to half of this time is spent in the matrix solver, and the
ajority of the remaining time is spent in the computation of the

oefficients for the gradient estimates and the preparation of the
ele v ant data structures. The cost associated with the explicit flux
alculation itself is negligible in comparison. 

Fewer than 10 iterations are typically required to solve the system
f equations in the implicit part of the calculation. At later times, and
articularly at time-steps where a significant fraction of the gas cells
re active, the addition of the multigrid pre-conditioner is required
s otherwise the matrix solver is unable to converge within 200
terations. 

As is typical for cluster zooms, our simulations have time-step
ierarchies that can be up to ∼ 10 levels deep. These simulations
ould be prohibitively expensive if all cells had to be integrated on
NRAS 541, 2493–2512 (2025) 
he smallest global time-step. The significant difference between the
mallest and largest time-steps (a factor of ∼ 1024) demonstrates
hat it is not appropriate to apply the scheme only on global
ynchronization points. All this underlines the necessity of our local
ime-stepping scheme for such calculations. 

The data structures that store necessary information related to the
aces and corners of the Voronoi mesh have the largest memory
ootprint of all those associated with the conduction solver. In
ddition, the HYPRE library can have a significant memory footprint
n larger simulations, which is allocated independently to AREPO ’s
emory manager. All these structures are, ho we ver, not required

nywhere else in the code, and are freed upon exit of the thermal
onduction routine. 

 SUMMARY  A N D  O U T L O O K  

n this paper, we presented a new scheme for modelling anisotropic
hermal conduction on a moving mesh. The solver, which we have
mplemented into the moving-mesh code AREPO (Springel 2010 ;
akmor et al. 2016a ; Weinberger et al. 2020 ), is fully conserv ati ve,
nsures the entropy condition is not violated, and allows for semi-
mplicit time integration and individual time-stepping. 

The anisotropic thermal conduction solver introduced in this work
epresents an impro v ement o v er the approach described in Kannan
t al. ( 2016 ), which is also implemented in AREPO , primarily due to
he fact that it supports local time-stepping, a feature that is crucial for
fficienc y and accurac y in cosmological simulations. If conduction is
one on global time-steps only, it either becomes too e xpensiv e to run,
r one loses the coupling to the gas on faster time-scales. Accurate
reatment of anisotropic thermal conduction is, additionally, more
omplex than cosmic ray diffusion (Pakmor et al. 2016b ), due to the
act that the conductivity is not spatially and temporally constant (as
s often assumed in one-moment treatments of cosmic ray diffusion).

We tested our implementation on a variety of numerical problems
nd demonstrated that our solver is able to reproduce analytic
redictions and numerical solutions. The convergence rate of the
nisotropic solver is comparable to those of other numerical diffusion
olvers, and we showed that the use of local time-steps does not
ead to a significant reduction in the accuracy of the solver. We
lso verified the accuracy of the coupling between the conduction
nd hydrodynamics and demonstrated that the solver is able to
eproduce the speed of the conduction front predicted by analytic
rguments. These tests highlighted just a few ways anisotropic
hermal conduction can fundamentally change the behaviour of a
ystem. 

We also demonstrated that the solver can be applied to highly
on-linear problems with deep time-step hierarchies by performing
igh-resolution cosmological zoom-in simulations of a galaxy cluster
ith anisotropic conduction, where we showed that the solver
perates efficiently and robustly. In these simulations we found
hat anisotropic thermal conduction, as well as the presence (or
bsence) of whistler suppression, can have a significant impact on the
emperature distribution of ICM, and acts to smooth out small-scale
tructure. We will explore these results in more detail in future work.

The ability to accurately and efficiently capture the effects of
nisotropic thermal conduction in a fully cosmological environment
s crucial, and the methods presented here will allow us to assess the
ffects of conduction in a wide range of astrophysical processes in
iv erse conte xts. 
In the future, we plan to use high-resolution cosmological simu-

ations to better understand the role anisotropic thermal conduction
lays in a range of astrophysical contexts, including the ICM of
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lusters and the CGM of galaxies. This will require a large suite
f high-resolution cosmological zoom-in simulations. These studies 
ill be made possible by the fact that our conduction solver is able to
perate accurately and efficiently on problems that exhibit significant 
ariations in the relevant spatial and temporal scales. 
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PPENDIX  A :  ESTIMATING  T H E  

O N D U C T I O N  C OEFFICIENT  IN  CELL  

NTER FACES  

n Section 3.1.1 we explained that we calculate the conductivity
n a cell interface by taking the arithmetic average of those of the
wo cells on each side of the interface (see equation 20 ). To check
hat this estimate is reasonable we also carried out isotropic point
xplosion tests (see Section 4.2 ) where we estimated the conductivity
n the interface by taking the harmonic average (see e.g. Sharma &
ammett 2007 ) of those of the two cells on either side 

ij , h = 

1 
1 
2 ( 

1 
χi 

+ 

1 
χj 

) 
. (A1) 

rom equations ( 20 ) and ( A1 ), we can see that, in the case of sig-
ificant differences in conductivity between the cells, the arithmetic
ean will tend towards the larger value of χ , while the harmonic
ean tends towards the smaller. 
We compare these two averaging procedures by carrying out

imulations analogous to those presented in Section 4.2.1 , i.e. in
he isotropic blast wave set-up. We do so because, in this set-up,
he speed of the conduction front can be predicted using analytical
rguments. We show simulations at two different resolutions, 64 3 and
28 3 , for each of these averaging procedures, which we will refer to
s ‘arithmetic’ and ‘harmonic’. All details of the simulations are as
escribed in Section 4.2 . 
In Fig. A1 we show the time evolution of the radius of the

hock/conduction in these simulations. The solid/dashed coloured
ines show results from simulations where the conductivity in cell
nterf aces w as calculated using the arithmetic/harmonic mean. From
his figure it is clear that the speed of the conduction fronts in the
harmonic’ case is slower than the analytic prediction, r c , 3D , and
hose measured in the ‘arithmetic’ simulations. 

Additionally, as can be seen in Figs 6 and A1 (and was discussed in
ection 4.2.1 ), with increasing resolution, the size of the conduction
ront is smaller (at a given time). In the ‘arithmetic’ case, this means
hat the radius of the conduction front converges towards the analytic
NRAS 541, 2493–2512 (2025) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
igure A1. Evolution of the radius of the conduction/shock front in the 3D
oint explosion test with isotropic conduction. The solid/dashed coloured
ines show results from simulations where the conductivity in cell inter-
 aces w as calculated using the arithmetic/harmonic mean. The black dot–
ashed lines show the analytic expectation for the radial evolution of the
hock/conduction front in the cases of pure hydrodynamics ( r s , 3D , equation
2 ) and pure conduction ( r c , 3D , equation 43 ), respectively. With increasing
esolution, the radius of the conduction front converges with the analytic
olution when the conductivity is calculated using the arithmetic mean, and
iverges from the analytics when the harmonic mean is used. 

rediction, but for the ‘harmonic’ case, the radius diverges further
rom the analytic solution. 

The fact that the results for the ‘harmonic’ case do not converge
o the analytic prediction, as the resolution of the initial conditions is
ncreased, likely arises due to the way we set up the initial conditions.
pecifically, the fact that the energy is injected into a fixed mass
r equi v alently volume, regardless of resolution, means that, with
ncreasing resolution, the initial conditions do not converge to that
f a point explosion (as assumed by the analytic solution) and the
nitial discontinuity at the edge of the injection region persists. It is
his initial discontinuity that is likely responsible for the offset of the
esults for the ‘harmonic’ case. 

In the types of simulations to which we plan to apply this solver
e.g. galaxy cluster zooms), gradients are often unresolved and
arge discontinuities may arise. We therefore choose to calculate
he interface conductivities via equation ( 20 ) as these results show
hat it performs better in scenarios typical of what we might expect
n our simulations. 

From Fig. A1 we see that the late-time behaviour is similar in all
imulations. This is due to the fact that hydrodynamical processes
ominate at late times (see discussion in Section 4.2.1 ). If this were
ot the case, we would expect that the differences in the sizes of the
onduction fronts, seen at early times, would persist. 
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