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ABSTRACT 
In this paper a generalised model of dynamic and stochastic changing priorities within an 
M=M=c queue is presented. Simulation and Markov chain models are given that describe the 
behaviour of such systems, and their stationarity is explored. Bounded approximations of 
the Markov models are given, and measures of their accuracy in approximating the infinite 
versions given. Finally the models are used to model a waiting list for surgical endoscopy 
with unknown service disciplines, fitting system parameters to reflect the queue behaviour. 
An exploration of behaviour under different class change parameters is given for a better 
understanding of the system.
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1. Introduction

There are a several situations in which a customer’s 
level of urgency in a queue might change while they 
wait, or equivalently where their priority depends 
on the amount of time they have already spent in 
the queue. Classic examples arise in healthcare sys-
tems, for example when a patient’s medical urgency 
increases the longer they spend waiting due to 
health degeneration (Bradford Delong et al., 2008; 
Garbuz et al., 2006; Williams et al., 2020). Another 
example would be a prioritisation scheme that 
attempts a trade-off between medical need and wait-
ing times (Powers et al., 2023). These are both 
examples where a patient’s priority has the chance 
to upgrade over time while in the queue. Here we 
precisely define a customers’ priority as an ordinal 
measure, with lower priority customers only being 
served once all higher priority customers in the sys-
tem have been served. These ordinal priority meas-
ures are usually integers, and are usually attributed 
to whole classes of customers (Stewart, 2009).

There also might be situations in which a 
patient’s priority can downgrade over time: consider 
waiting for some medical intervention that can 
improve a patient’s outcome only if caught early: if 
a patient has been waiting a long time already then 
they might be passed over for a newly referred 
patient who will gain more benefit from the inter-
vention. In this case a patient’s priority is down-
graded the longer they wait (D’Alessandro et al., 
2017).

In this paper a single M=M=c queue is modelled, 
with multiple classes of customer of different 

priorities. While waiting in the queue, customers 
change their class to any other class at specific rates. 
Thus upgrades and downgrades are modelled.

This is first modelled using simulation, where we 
describe generalisable logic. This was first imple-
mented in version v2.3.0 of the Ciw library in 
Python (Palmer et al., 2019) and is a contribution of 
this paper. An important question arises from this, 
when does a steady state distribution exist for such 
a queueing system? To answer this question, two 
Markov chain models are defined, which are used to 
find steady state distributions and expected sojourn 
times for each customer class. These Markov chains 
give some insights into the behaviour of the systems 
under different combinations of parameters; and 
numerical experiments give further behaviours.

This paper is structured as follows: Section 1.1
gives a motivating example from a healthcare setting 
demonstrating the need for this type of model. 
Section 1.2 highlights some previous and related 
work. Section 2 defines the system under consider-
ation in detail. Section 3 discusses the simulation 
logic required and the contribution to the Ciw 
library; then experimentally justifies the use of these 
models to model scenarios where prioritisation rules 
are unknown. Section 4 defines two Markov chain 
models of the system, one useful for considering 
system-wide statistics such as state probabilities, and 
one useful for considering customers’ statistics such 
as average sojourn time. This includes exploring a 
bounded approximation for numerically tractable 
analysis, presenting measures of accuracy for these 
bounded approximations, and discussing the 
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existence or otherwise of systems that can reach 
steady state. An exploration of the system behaviour 
under different parameters is given.

1.1. Motivating case study: Surgical endoscopy

Consider the queueing process for a particular surgical 
procedure. In many cases the service discipline, that is 
the rules for how patients chosen from the waiting list 
to be scheduled for surgery, are not known to model-
lers, and may even be impossible to know as managers 
may be reluctant to disclose the information for polit-
ical or other reasons. There have been efforts to under-
stand such unknown service disciplines, for example in 
Ding et al. (2019), which shows that in Canada that 
decision makers often use their own discretion in 
deciding which patients to be seen, rather than FIFO 
within each triage category. They attempt to fit priori-
tisation rules to this discretionary behaviour. Here we 
will do the same, utilising a stochastic priority switching 
configuration to emulate the observed service disci-
plines. We consider and investigate the waiting list of a 
surgical endoscopy procedure carried out in a Welsh 
health board over the period 1 January to 31 December 
2021.

It is clear from examining the data that a first-in- 
first-out (FIFO) service discipline was not used. To 
show this, we assign each patient in the data set an 
arrival rank, the order in which they were referred for 
an endoscopy, and a service rank, the order in which 
they received their endoscopy. The difference in the 
two ranks corresponds to the net number of patients 
that they “overtook” in the queue: a negative number 
indicates more customers overtook them which will be 
referred to as being “bumped down” the queue. A posi-
tive number indicates that they overtook more people, 
and were “bumped up” the queue. During the observa-
tion period, 169 patients received an endoscopy, and 
Figure 1 shows the distribution of the rank differences, 
and the distribution of waiting times by those who 
were bumped up or down the queue. No patient had a 

waiting time of zero, indicating that no patient was 
referred to the queue in a prioritised state, this indicates 
that patients have priorities that change over time. The 
figure also reports x" and x#; the average waiting time 
for patients that were bumped up and down the list, 
respectively.

1.2. Related work

Queue where customers’ priority changes as they wait 
or progress through the system have been studies previ-
ously. One of the first papers to consider such a system 
was Jackson (1960), which considers a customer’s wait-
ing time and their urgency number when deciding 
which customer to be served next from the queue; the 
difference between the waiting time and urgency num-
ber determines the customer’s priority, which increases 
linearly over time. This is analysed by considering event 
probabilities at clock ticks. This is re-analysed and 
extended in Kleinrock (1964), a fundamental paper on 
dynamic priorities, also called “delay dependent,” “time 
dependent” and “accumulating” priorities. Here both 
pre-emptive and non-pre-emptive priorities are consid-
ered (Ferrand et al., 2018). applies this to a simulation 
of an emergency department in a children’s hospital, 
and shows that these accumulating priorities lead to 
more efficient resource use.

In Holtzman (1971) the original model by 
Jackson (1960) is extended by treating different 
urgency numbers as separate customer classes, with 
certain restrictions on the ordering of parameters on 
the linear priority functions. Bounds on the custom-
ers’ waiting times are found. Later Bagchi and 
Sullivan (1985), extends the work of all of the above 
by considering cases where the multiple classes of 
customer have less restrictive orderings of the linear 
priority functions, and Sharma and Sharma (1994) 
derives its expected steady state waiting times 
(Stanford et al., 2014). furthers the work of 
Kleinrock (1964) to look at the maximum priority 
of the waiting customers in a single server queue, 

Figure 1. Distribution of overtakes in the endoscopy waiting list.
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that is the next customer to be served, as a stochas-
tic process termed an accumulating priority queue 
(APQ). This is extended in Sharif et al. (2014) to 
multi-server queues, and in Li and Stanford (2016) 
to account for heterogeneous servers, and in Kella 
and Ravner (2017) where waiting time distributions 
are derived. In Bilodeau and Stanford (2022) trun-
cated analytical expressions are given for a two class 
delayed accumulating priority queue with general 
service time distributions, where customers experi-
ence an initial fixed delay before service.

Non-linear, concave accumulating priority func-
tions are considered in Netterman and Adiri (1979) 
in place of the linearly accumulating priorities con-
sidered before. While in Li et al. (2017) equivalences 
between some families on non-linear accumulation 
functions and linearly increasing ones are given.

Another way in which modellers have considered 
dynamically changing classes is by static priorities 
within a customer class, but dynamically switching 
class. This is the model considered in this paper. In 
Fratini (1990) a non-pre-emptive M=G=1 closed loss 
queue with two classes of customers is considered, 
where priorities switch if the number from one class 
exceeds a given threshold. Similarly, Knessl et al. 
(2003) extends this to infinite waiting capacities for 
both customers in the case of Markovian services.

Stochastic class switching has also been studied. 
The logic for simulating a finite population queue 
with randomly increasing priority numbers is 
described in Panayiotopoulos (1980), where times 
between priority increases are randomly generated; 
while Grindlay (1965) simulation experiments are run 
where for series of queues in tandem where a custom-
er’s urgency number adapts according to the amount 
of time already spent in the system. In Xhafa and 
Tonguz (2001) calls in personal communication sys-
tems are modelled by considering a system with three 
priority classes, the lower priority class is lost to the 
system when servers are busy, while the other two 
classes experience non-pre-emptive priorities, and 
exponentially distributed upgrades from the middle 
priority to the highest priority. That is the time for a 
customer to upgrade is exponentially distributed. In 
Down and Lewis (2010) a pre-emptive M=M=c prior-
ity queue with exponential upgrades for two classes of 
customer is considered with holding costs, with some 
state dependent restrictions on the upgrades. In Xie 
et al. (2008) the pre-emptive M=M=c priority queue 
with exponential upgrades is studied for an arbitrary 
amount of customer classes; however customers can 
only upgrade to the priority immediately higher than 
themselves (He et al., 2012). extends this to allow 
batch arrivals and phase-type upgrades, but again, cus-
tomers only upgrade to the priority immediately 

higher than themselves. Exponential downgrades are 
modelled in Klimenok et al. (2020) alongside 
upgrades, but limited to single server system with 
finite queueing capacity. This is extended in Lee et al. 
(2020) to include multiple priority classes but without 
downgrades, and in Dudin et al. (2021) to include 
unreliable services and impatient customers. We con-
tribute to the literature by generalising these models 
to include upgrades and downgrades to any other pri-
ority class, introducing both a simulation and Markov 
chain models to describe these behaviours.

Other configurations of dynamically changing 
priority classes have also been considered. For 
example, Adiri (1971) introduces a model where 
customers are de-prioritised during their service if 
their service time exceeds a given minimum time 
interval, or quantum of time. Customers are down-
graded and made to wait again for service, behind 
newly arriving and newly downgraded customers. 
Van Mieghem (1995) introduces the generalised 
cl-rule, first conceived in Smith (1956), which 
applies a cost to each customer which is dependent 
on both their class and their waiting time. This cost 
then acts as a scheduling rule, but can also model 
changing priorities amongst customers.

2. An M=M=c queue with stochastic priority 
switching

In this section, we present the detailed description 
of a queueing model where customers can stochas-
tically switch priority classes while waiting. Consider 
an M=M=c queue with K classes of customer 
labelled 0, 1, 2, :::, K − 1: Let:

� kk be the arrival rate of customers of class k,
� lk be the service rate of customers of class k,
� hi, j be the rate at which customers of class i 

change to customers of class j while they are 
waiting in line.

Customers of class i have priority over customers 
of class j if i < j: Customers of the same class are 
served in the order they arrived to that class. Figure 2
shows an example with two classes of customer.

The key feature here is the K � K class change 
matrix H ¼ ðhi, jÞ: All elements hi, j where i 6¼ j are 
rates, and so are non-negative real numbers, if cus-
tomers of class i cannot change to customers of 
class j directly, then hi, j ¼ 0: The diagonal values 
hi, i are unused as customers cannot change to their 
own class. All elements hi, i−1 represent the direct 
upgrade rates; all elements hi, iþ1 represent the direct 
downgrade rates, while all other elements can be 
thought of as “skip-grades” (moving to a priority 
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class not immediately above or below the current 
class), not commonly considered in the literature. 
This is shown in Figure 3.

The priorities are pre-emptive, that is if a newly 
arriving customer has a higher priority than a cus-
tomer in service, or if a waiting customer changes 
priority class to a higher priority than a customer is 
service, then that new customer displaces the lowest 
priority customer that is in service. The displaced 
customer rejoins the queue, before all other custom-
ers of their own or lower priority classes, but behind 
all other customers of higher priority classes. When 
that displaced customer eventually enters service 
again, their service time can either be resumed, re- 
started, or re-sampled.

The next two sections outline and compare two 
implementations of this model:

� a discrete-event simulation,
� an exact model using Markov chains.

3. Simulation model logic

Discrete-event simulation is a common way of mod-
elling queueing systems, especially those with non- 
standard customer behaviours as the development 
time for capturing new or complex behaviours is a 
lot quicker than Markov modelling (Standfield et al., 
2014). One standard way of implementing discrete- 
event simulation is through the event scheduling 

approach (Robinson, 2014), a variant of the three- 
phase approach. In this work we use the Ciw library 
(Palmer et al., 2019) to simulate customers changing 
priority class. Ciw is an open-source Python library 
for discrete-event simulation of open queueing net-
works, which itself is built using the event schedul-
ing approach. A key contribution of this work is the 
adaptation of the library’s logic to facilitate the type 
of stochastic priority switching described in Section 2. 
This adaptation was first released in version Ciw 
v2.3.0, with usage documentation at https://ciw.read-
thedocs.io/en/latest/Guides/CustomerClasses/change- 
class-while-queueing.html, and works by considering 
different classes of customer and mapping each class 
to a priority ranking, and re-sampling these rankings 
over time. Appendix A gives an overview of the event 
scheduling approach and details the adaptations 
required for priority switching logic.

Figure 4 shows example Ciw code required to 
simulate the system with two classes of customer, 
k1 ¼ 1; k2 ¼ 3; l1 ¼ 3; l2 ¼ 2; c ¼ 1; h12 ¼ 1:5;
and h21 ¼ 0:5; for 365 time units. Note that the par-
ticular distributions used to sample class change dates 
in these cases are generic, and any of Ciw’s currently 
pre-programmed distributions can be chosen, or cus-
tom distributions can also be used. For the systems 
described in this paper, we choose Exponential distri-
butions with rates determined by the class change 
matrix H: Ciw allows for pre-empted customers to 
resume, re-start, or re-sample their service time.

Figure 2. An example of a two-class priority queue.

Figure 3. Representations of parts of the matrix H: Example when K ¼ 5:
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3.1. Modelling unknown service disciplines

The stochastic priority switching model presented in 
Section 2 may be used to model situations where 
FIFO is not appropriate, but specific service disci-
plines may not be known. The premise here is that 
sequences of stochastic upgrades and downgrades of 
customers within the queue can model the same 
effect as the unknown service discipline. Recall now 
the motivating example discussed in Section 1.1, 
where it was established that FIFO was not appro-
priate and the service discipline was unknown. Here 
we attempt to use stochastic priority switching to 
model the surgical endoscopy waiting list.

According to the observed data referrals roughly 
follow a Poisson distribution with rate k ¼ 0:463;
that is an average of 0.463 referrals per day, or one 
referral every 2.16 days. Service rate data is esti-
mated to be around 0.5 a day, that is around one 
endoscopy procedure every other day. To determine 
the appropriateness of the stochastic priority switch-
ing model here, we model the system as a two class 
system, with k1 ¼ 0:463 and k2 ¼ 0; and l1 ¼ l2 ¼

0:5 and c ¼ 1; that is all referrals are of the most 
urgent, with customers able to be downgraded and 
then upgraded during their waiting time. (Note that 
an alternative model might be k1 ¼ 0 and k2 ¼

0:463; that is all new referrals are not the most pri-
oritised customers.)

We simulate this system under different parame-
ters of h12 and h21: For each parameter set we 
observe 1 year of referrals, over five trials. One KPI 
of interest is the amalgamated distribution of rank 
differences, or overtakes, over the trials; and we 
compare that with the distribution of the original 
system with indeterminate service discipline. The 
Wasserstein distance (Mostafaei & Kordnourie, 
2011) between the modelled and actual distributions 

is calculated to measure the models’ accuracies in 
approximating the indeterminate service discipline. 
Another KPI is the mean absolute percentage error, 
MAPE, between the simulated and actual average 
waiting times for patients that with bumped up or 
down the waiting list. Figure 5 compares the mod-
elled and actual distributions of net rank difference, 
along with the Wasserstein metric W and MAPE in 
waiting times, for all pairs ðh12, h21Þ 2 f1, 2, 3g �
f0, 1, 2g: From this it can be seen that a combin-
ation of downgrades and upgrades is required to fit 
a good distribution of overtakes, and of the parame-
ters tested h12 ¼ 3; h21 ¼ 1 produces the best fit 
both in terms of Wasserstein distance and MAPE. 
This indicates that, with further parameter tuning, 
these stochastic priority switching models can be 
used to model unknown service disciplines.

We may then be tempted to use these found val-
ues of H to parametrise a model, to perform stand-
ard exercises such as what if scenarios. However we 
need more understanding on the dynamics of sto-
chastic priority switching, and in particular the 
effect of H and other parameters on the system. As 
an example, consider the case above with 
k1 ¼ 0:463; k2 ¼ 0; c ¼ 1; and now with h12 ¼ 3;
h21 ¼ 1 as found above. Consider a small what-if 
scenario where upgraded customers are served 
quicker than downgraded customers, l1 ¼ 0:4 and 
l2 ¼ 0:6: Comparing the base scenario with this 
new scenario produced vastly different results, in 
particular, this new scenario results in an infinitely 
growing queue, as shown in Figure 6.

Simulation alone does might not give us suffi-
cient insight into why this occurs. In the next sec-
tion we built analytical models of stochastic priority 
switching, allowing a deeper insight into the system 
behaviour.

Figure 4. Example Ciw code to simulate an M=M=1 queue with stochastic priority switching.
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4. Markov chain models

The situation described in Section 2 can be modelled 
using a pair of Markov chains. The first, described in 
Section 4.1, describes the overall changes in state, 
where a state records the number of customers of 
each priority class present. This is useful for analy-
sing system-wide statistics such as average queue size. 
The second, described in Section 4.2, describes how 
an individual arriving customer experiences the sys-
tem until their exit. This is useful for analysing 

individual customers’ statistics such as average 
sojourn time. Given that service times are exponen-
tially distributed and hence memoryless, the Markov 
chains are equivalent regardless of whether pre- 
empted customers resume, re-start, or re-sample their 
service.

4.1. Discrete state Markov chain formulation

Let s t ¼ ðs0, t , s1, t, :::, sK−1, tÞ 2 NK represent the state 
of the system at time step t, where sk, t represents 

Figure 5. Comparison between simulated and observed overtakes for different values of h12 and h21:

Figure 6. Comparison between two simulated scenarios, with stochastic priority switching, and differing service rates for each 
priority. In one scenario the queue size reaches a steady state, while in the other the queue size grows infinitely.
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the number of customers of class k present at time 
step t. Let S denote set of all states s t:

The rates of change between s t and s tþ1 are 
given by Equation (1a-1d), where d ¼ s tþ1 − s t;

and Bk, t; representing the number of customers of 
class k currently in service at time step t, is given by 
Equation (2), where c is the number of servers. 
Here case (1a) denotes transitions representing cus-
tomers arriving to the system, case (1b) denotes 
transitions representing customers finishing services, 
and case (1c) denotes transitions representing cus-
tomers switching priorities.

Bk, t ¼ min c-min c,
X

i<k
si, t

� �
, sk, t

� �
(2) 

Let ps denote the steady state probability of being 
in state s 2 S (omitting the time step index notation 
t), while Lk represents the expected number of cus-
tomers of class k, and L represents the total 
expected number of customers present, given by 
Equations (3) and (4), respectively.

Lk ¼
X

s
ps sk (3) 

L ¼
XK−1

k¼0

X

s
ps sk (4) 

4.2. Sojourn time Markov chain formulation

To analyse individual customer statistics, the 
sojourn time Markov chain formulation is 

employed. Let z t ¼ ðz0, t , z1, t , :::, zn, t:::, zK−1, t , mt , ntÞ 2

NKþ2 � ð1, :::, K − 1Þ represent the state of a par-
ticular customer at time step t, where nt represents 
that customer’s class at time t; zk, t 8 k < n repre-

sents the number of customers of class k in front of 
the customer in the queue at time t; zk, t 8 n < k <
K represents the number of customers of class k 
behind the customer in the queue at time t; and mt 
represents the number of customers of class nt 
behind the customer in the queue at time t. Also let 
? represent an absorbing state, representing the state 
where that customer has finished service and left 
the system. Let Z denote set of all states z t and ?:

Then the rates of change between z t and z tþ1 are 
given by Equations (5a)-(5j), where d ¼ z tþ1 − z t;

and Ak, n, t and ~An, t; representing the number of cus-
tomers of class k currently in service, are given by 
Equations (6) and (7), respectively. Here cases cor-
respond to arrivals, services, and priority switching, 
all in relation to the customer currently under con-
sideration. This customer’s class in n, which is sub-
ject to change. Cases (5a), and (5i) correspond to 
transitions that affect the customer under consider-
ation, finishing service and switching priority, 
respectively. Cases (5b) and (5c) correspond to 
arrivals of other customers, of the same and differ-
ent class to the considered individual, respectively. 
Cases (5e) and (5d) correspond to services of other 
customers, of the same and different class to the 
considered individual, respectively. Cases (5h), (5 g), 
and (5f) all correspond to customers switching 

qs t , s tþ1 ¼

kk if dk ¼ 1 and di ¼ 0 8 i 6¼ k, ð1aÞ
Bk, tlk if dk ¼ 1 and di ¼ 0 8 i 6¼ k and

P
i<k si, t < c, ð1bÞ

ðsk, t − Bk, tÞhk, l if dk ¼ −1 and dl ¼ 1 and di ¼ 0 8 i 6¼ k, l, ð1cÞ
0 otherwise; ð1dÞ

8
>><

>>:

qz t , z tþ1¼

ln if ztþ1 ¼ ? and
P

k�n zk, t < c$, ð5aÞ
kn if dK ¼ 1 and di ¼ 0 8 i 6¼ K, ð5bÞ
kk if dk ¼ 1 and di ¼ 0 8 i 6¼ k and k 6¼ n, ð5cÞ
Ak, n, tlk if dk ¼ −1 and di ¼ 0 8 i 6¼ k and k < K, ð5dÞ
~An, tln if dK ¼ −1 and di ¼ 0 8 i 6¼ K, ð5eÞ
ðzk, t − Ak, n, tÞhk, l if dk ¼ −1 and dl ¼ 1 and di ¼ 0 8 i 6¼ k, l and k < K and l 6¼ n, K, K þ 1, ð5fÞ
ðzK, t − ~An, tÞhn, k if dK ¼ −1 and dk ¼ 1 and di ¼ 0 8 i 6¼ k, n and k < K, ð5gÞ
ðzk, t − Ak, n, tÞhk, n if dk ¼ −1 and dK ¼ 1 and di ¼ 0 8 i 6¼ k, K, ð5hÞ
hn, k if dn ¼ zK, t and dK ¼ −zK, t and dKþ1 ¼ n − k and di ¼ 0 otherwise, and

P
k�n zk, t < c,ð5iÞ

0 otherwise ð5jÞ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:
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priorities, to n, from n, and from two classes neither 
of which are n, respectively.

Ak, n, t ¼

min c,
P

i�k zi, t
� �

− min c,
P

i<k zi, t
� �

if k � n
min c,

P
i�k zi, t þ 1þ zK, t

� �

−min c,
P

i<k zi, t þ 1þ zK, t
� �

if n < k < K

8
>>>>><

>>>>>:

(6) 
~An, t ¼ min c,

P
i�n zi, t þ 1þ zK, t

� �
− min c,

P
i�n zi, t þ 1

� �

(7) 

4.2.1. Sojourn time CDF
The sojourn time cumulative distribution function 
(CDF) is a phase-type distribution formed by this 
absorbing Markov chain, which can be found using 
standard methods (Stewart, 2009). Let X be the ran-
dom variable representing the sojourn time of any 
customer, and let Xk represent the sojourn time of a 
customer who enters the system as a customer of 
class k. Then the CDFs we are interested in are 
PðX < xÞ; and PðXk < xÞ for each k.

Let T be the transition rate matrix constructed 
from the rates in Section 4.2 above without the 
rows and columns associated with the absorbing 
state ?: Customers arrive in all states where zK ¼ 0;
and their class can be determined by n. Therefore 
define ~Z ¼ z 2 Z n f?g j zK ¼ m ¼ 0g � Zf as the 
set of all states where the newly arriving customer 
can arrive, and define ~Zk ¼ fz 2 ~Z j zK−1 ¼ n ¼
kg � Z as the states where newly arriving customers 
of class k arrive.

Let f : ~Z ! S be a map between states in ~Z and 
S, given in Equation (8).

f z ¼ ðz0, z1, :::, zK−1, m, nÞð Þ ¼ ðz0, z1, :::, zK−1Þ (8) 

Note that f is a surjective map, but not injective. 
In fact, for every element s 2 S exactly K states in ~Z 
map to it. These correspond to states at which each 
of the K classes of customer can arrive. In each of 
these states, the probability of a customer from class 
k arriving is kkPK−1

i¼0
ki
:

Now the overall sojourn time CDF is given by 
Equation (9), and the sojourn time CDF for custom-
ers of class k is given by Equation (10); where eM 

represents the matrix exponential of a matrix M, 
and ½M�zs represents an entry of the matrix M with 
row corresponding to state z and column corre-
sponding to state s.

PðX � xÞ ¼ 1 −
X

z2~Z

X

s2Znf?g

XK−1

k¼0

kk
PK−1

i¼0 ki
pf ðz Þ eTx½ �zs

(9) 
PðXk � xÞ ¼ 1 −

X

z2~Z k

X

s2Znf?g

pf ðz Þ eTx½ �zs (10) 

4.2.2. Mean sojourn time calculation
Matrix exponentials can be computationally expensive 
to evaluate, and for a complete CDF Equation (9)
would need to be evaluated many times for each value 
of x. Additionally, these CDF equations have no known 
easily computable inverse. However, matrix methods 
can give us summary statistics (Stewart, 2009).

Let az denote the expected time to absorption 
from state z 2 Z; and Y ¼ −T−1; then az is given 
by elements of the vector Ye where e is a vector or 
ones. Similar to the CDFs then, we can get the over-
all mean sojourn time by Equation (11) and the 
mean sojourn time for customers arriving as class k 
by Equation (12).

W ¼
X

z2~Z

XK−1

k¼0

kk
PK−1

i¼0 ki
pf ðz Þaz (11) 

Wk ¼
X

z2~Z k

pf ðz Þaz (12) 

4.2.3. Sojourn time variance calculation
Similarly to the mean sojourn time, the variance in 
sojourn times can be calculated by first calculating 
the variance in the times to absorption from each 
state. Let /z represent the variance in the times to 
absorption from state z 2 Z n f?g; given by ele-
ments of the vector / given in Equation (13)
(Stewart, 2009).

/ ¼ 2Ye − sqfYge (13) 

where sqfYg is the matrix Y with each element 
squared.

In a similar calculation to Equation (11), the 
appropriate aggregation of states to give an overall 
variance in sojourn times, U; is given in Equation 
(14). This is derived by considering the overall time 
to absorption as a mixture distribution of times to 
absorption of each arriving state z 2 ~Z; with weights 
corresponding to the probabilities of encountering 
those states upon arrival.

U ¼
X

z2~Z

XK−1

k¼0

kk
PK−1

i¼0 ki
pf ðz Þ /z þ az

2
� �

0

@

1

A − W
2

(14) 

4.3. Bounded approximation

In order to analyse the above Markov chain models 
numerically, finite approximations are necessary. Let 
b 2 N define the b-bounded version of the infinite 
queueing system described in Section 2, such that 
the maximum allowed number of customers of each 
priority class is b, and customer losses occur when 
that number is exceeded. The equivalent b-bounded 
Markov chains associated with this system are 
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identical to those described in Sections 4.1 and 4.2
except with bounded state spaces s t ¼2 ð0, 1, :::, bÞK 

and z t ¼2 ð0, 1, :::, bÞKþ2
� ð1, :::, K − 1Þ; respect-

ively. These Markov chains are finite and are there-
fore stationary.

If the unbounded system is stationary, that is the 
system reaches steady state and has steady state proba-
bilities p; then the steady states of the b-bounded sys-
tem, ~p is an approximation of p: As b increases the 
probability of the number of customers of a particular 
customer class in the unbounded system exceeding b 
approaches zero as b increases. Therefore as b increases 
the b-bounded system becomes a better and better 
approximation of the unbounded system.

Choosing an appropriate value for b is a trade-off 
between accuracy and model size, and so computational 
time. One way to choose b would be to sequentially 
build bounded models, increasing b each time, calculat-
ing the statistics of interest, and observing when the 
relationship between b and that statistic levels off. This 
is shown in Figures 7 and 8, which show that for a 
particular system (two customer classes, k1 ¼

2
3 ;

k2 ¼
1
3 ; l1 ¼

3
2 ; l2 ¼

5
2 ; h12 ¼ 3; h21 ¼ 1; c ¼ 1), the 

expected number of customers of each class in the 
simulation, and the expected sojourn time for each 
class, approaches that found using a long run simula-
tion (400,000 simulated time units with a warmup and 
cooldown time of 3000 time units) as b increases.

This is an inefficient way of determining the 
accuracy of the bounded approximation. It would be 
more efficient to choose a b and be able to immedi-
ately measure if the accuracy is sufficient. We pro-
pose two measures, one for the ergodic Markov 
chains of Section 4.1, and one for the absorbing 
Markov chains of Section 4.2.

4.3.1. Accuracy measure for the ergodic Markov 
chain
Let Sb ¼ s 2 S j b 2 s

� �
; the set of states that lie 

on the Markov chain boundary. We wish to choose 

b large enough that the boundary is irrelevant, that 
is that the Markov chain hardly ever reaches the 
boundary. Therefore we propose the relative prob-
ability of being at the boundary, QðbÞ; to be a 
measure of accuracy; if this is sufficiently small, 
then the bound b is large enough. This, given in 
Equation (15), is the ratio of the probability of being 
at the boundary in the b-bounded system, and the 
probability of being at the boundary if every state 
was equally likely. This normalisation by the equally 
likely state probabilities is necessary because the 
larger b is, the larger the state space is, meaning 
that the steady state probabilities are spread over 
more states and so are not comparable alone, 
whereas the relative probability of being at the 
boundary is comparable over different sizes of b.

QðbÞ ¼
jSj
jSbj

X

s2Sb

~ps (15) 

To demonstrate the effect of b on QðbÞ under 
different systems, consider the stochastic priority 
switching system with two customer classes, k1 ¼

1
2 ;

k2 ¼
1
2 ; c ¼ 1; l1 ¼

1
q
; l2 ¼

1
q
; h12 ¼ 1; and h21 ¼ 1; 

where 0 < q < 1 is some given traffic intensity. 
Figure 9 shows the effect of b on QðbÞ for this sys-
tem, for different values of q: In all cases as b 
increases, QðbÞ decreases, indicating greater accur-
acy of the bounded system. As expected, as q 

increases, we expect more customers in the queue, 
and so the boundary b needs to be much larger 
before it can be considered irrelevant.

The above measure cannot be used for absorbing 
Markov chains as they will not reach steady state, so 
another check is required. Define hi, J as the hitting 
probabilities of a set of states J from state i, that is, 
what is the probability of ever reaching any state in 
J when starting from state i. These are defined 
recursively by Equation (16) (Privault, 2013), where 
qi, k is the transition rate from state i to state j 

Figure 7. Demonstrating that as b increases, the expected 
number of customers of each class approaches that found 
using a long run simulation. The number of class 1 and class 
2 customers are found using Equation (3), and the overall 
number of customers found using Equation (4).

Figure 8. Demonstrating that as b increases, the expected 
sojourn time of customers of each class approaches that 
found using a long run simulation. The sojourn time for 
class 1 and class 2 customers are found using Equation (12), 
and sojourn time for the overall number of customers is 
found using Equation (11).
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defined in Section 4.2.

hi, J ¼

P
k qi, khk, J if i 62 J

1 if i 2 J

�

(16) 

Relating this to the absorbing Markov chain 
described in Section 4.2, and letting Zb � Z be the 
set of boundary states such that Zb ¼

z 2 Z j b 2 zf g; then if a customer arrives to state 
i, the probability of that customer’s state reaching 
the boundary is hi, Sb : Therefore we propose the 
probability of an arriving customer experiencing the 
boundary, PðbÞ; to be a measure of accuracy; if this 
is sufficiently small, then the bound b is large 
enough. This is calculated in a similar way to the 
mean sojourn time in Section 4.2.2, and given in 
Equation (17).

PðbÞ ¼
X

z2~Z

XK−1

k¼0

kk
PK−1

i¼0 ki
pcðz Þhz , Zb (17) 

To demonstrate the effect of b on PðbÞ under 
different system, consider the same stochastic prior-
ity switching system with two customer classes used 
in the previous demonstration. Figure 10 shows the 
effect of b on PðbÞ for this system, for different val-
ues of q: Again, in all cases as b increases, PðbÞ
decreases, indicating greater accuracy of the 
bounded system; and similarly as q increases the 
boundary b needs to be larger before it can be con-
sidered irrelevant.

Appendix B shows examples where the simula-
tion and Markov chains given the state probabilities, 
for K ¼ 2; K ¼ 3; and K ¼ 4 priority classes.

4.4. Existence of stationary distributions

In all cases, the b-bounded system will only be an 
approximation of the infinite system if that infinite 
system is stationary, that is it reaches a steady-state 
and the queue does not grow indefinitely. 
Proposition 1 gives a naive check for the existence 
or non-existence of steady states for work conserv-
ing queues, but does not cover all possibilities. A 
work conserving queue is one where the total work 
that needs to be done by the servers is not lowered 
or increased by the priority or service discipline 
(Wolff, 1970).

Proposition 1. For an M=M=c work conserving 
queue with K classes of customer, with arrival rate 
and service rate kk and lk for customers of class k, 
respectively; then

1. it will reach steady state if qmax ¼

P
i
ki

cminili
< 1;

2. it will never reach steady state if qmin ¼

P
i
ki

cmaxili
� 1:

Note that this result does not assume any par-
ticular service discipline such as first-in-first-out or 
stochastically changing prioritised classes, but holds 
for any work conserving discipline.

Proof
The queue will reach steady state if the rate at 
which customers are added to the queue is less than 
the rate at which customers leave the queue. As 
arrivals are not state dependent, customers are 
added to the queue at a rate 

P
i ki when in any 

state. The rate at which customers leave the queue 
is state dependent, depending on the service 
discipline.

We do not need to consider cases when there are 
less than c customers present, as here any new 
arrival will increase the rate at which customers 
leave the queue, as that arrival would enter service 
immediately. Considering the cases where there are 
c or more customers in the queue, there are two 
extreme cases, either:

1. all customers in service are of the class with the 
slowest service rate. In this case the rate at 
which customers leave the queue is cminili;

which is the slowest possible rate at which cus-
tomers can leave the queue. If 

P
i ki < cminili 

then the rate at which customers enter the 
queue is smaller than the smallest possible rate 
at which customers leave the queue, and so will 
always be smaller than the rate at which cus-
tomers leave the queue in all states. Therefore 
the system will reach steady state. Or:

Figure 10. Demonstration of the effect of b on PðbÞ:

Figure 9. Demonstration of the effect of b on QðbÞ:
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2. all customers in service are of the class with the 
fastest service rate. In this case the rate at which 
customers leave the queue is cmaxili; which is 
the fastest possible rate at which customers can 
leave the queue. If 

P
i ki � cmaxili then the 

rate at which customers enter the queue is 
greater than or equal to the largest possible rate 
at which customers leave the queue, and so will 
always be greater or equal to than the rate at 
which customers leave the queue in all states. 
Therefore the system cannot reach steady 
state.                                                    w

Proposition 1 applies to the stochastic priority 
switching system of this paper. If pre-empted cus-
tomers resume their service upon re-entering ser-
vice, then the system is work conserving. Otherwise, 
if the pre-empted customers restart or resample 
their service, despite not technically being work con-
serving any more, the systems are equivalent under 
Exponential service times, and so still applies here.

If cminili �
P

i ki < cmaxili then more investi-
gation is needed. In the case of stochastic priority 
switching, the class change matrix H may be signifi-
cant. For example the service rate of customers of 
one class may be very slow, however if the rate at 
which customers leave that class is sufficiently large 
then that service rate may not have an effect. 
Alternatively if the rate at which customers of the 
other classes change to that class is large, then that 
slow service rate could be a bottleneck for the 
system.

We can however approximately test if a system is 
stationary or not using simulation. Consider the 
time series xðtÞ; representing the total number of 
customers in the system at time t. In Ciw, this can 
be empirically recorded using a state tracker object. 
If the system reaches steady state, then the xðtÞ will 
be stochastic with non-increasing trend, therefore it 
would be a stationary time series. Conversely, if the 
system does not reach steady state, then xðtÞ will be 
stochastic with increasing trend, therefore it would 
be a non-stationary time series. The Augmented 
Dicky-Fuller (ADF) test (Dickey & Fuller, 1979) 
tests for the non-stationarity of a stochastic time 
series, and so can be utilised here to test if a simula-
tion has reached steady state or not. Note here that 
the time series xðtÞ recorded by Ciw has irregular 
gaps (time stamps are the discrete time points where 
a customer arrives or leaves the system), and the 
ADF test requires regularly spaced time stamps; 
therefore the Traces library (The Traces library 
developers, 2023) is used to take regularly spaced 
moving averages before the hypothesis test is 
undertaken.

To demonstrate this, consider two examples, with 
parameters defined in Table 1. Example 1 is guaran-
teed to reach steady state by Proposition 1, while 
Example 2 is guaranteed not to reach steady state.

Figures 11a and 11b shows their state time series’ 
xðtÞ; respectively. It is clear that the state time series 
for Example 1 is stationary, and the state time series 
for Example 2 is non-stationary and increasing. 
When performing the ADF test on these, Example 1 
gives a p-value of 0.0004, rejecting the null hypoth-
esis that the time series is non-stationary, while 
Example 2 gives a p-value of 0.9961, and the null 
hypothesis cannot be rejected.

There is a gap in Proposition 1 for systems where 
cminili �

P
i ki < cmaxili: Indeed it is in this gap 

that our previous scenario in Figure 6 falls, and it is 
here where stochastic priority switching can influ-
ence the stationarity of the system. Consider a two 
class system with k1 ¼ 2; k2 ¼ 2; c ¼ 1: For the ser-
vice rates of each customer class, consider two cases:

� l1 ¼ 3 and l2 ¼ 5: here qmin < 1 < qmax; and 
the prioritised class receive a slower service rate;

� l1 ¼ 5 and l2 ¼ 3: here qmin < 1 < qmax; and 
the prioritised class receive a faster service rate.

In each of these cases, we can consider three 
other cases pertaining to the class change rate 
matrix H:

� h12 ¼ 1 and h21 ¼ 0: downgrades but no 
upgrades;

� h12 ¼ 1 and h21 ¼ 1: both downgrades and 
upgrades;

� h12 ¼ 0 and h21 ¼ 1: upgrades but no upgrades.

All these cases are not covered by Proposition 1, so 
we experimentally investigate their stationarity using 
the Ciw simulation and ADF test. Figure 12 shows the 
results. Here we see that three of the six cases are sta-
tionary, (a), (e), and (f), while the others are not. In 
all three we see that there is possibility of a customer 
from the class with the slower service rate transition-
ing to a class with the quicker service rate. In two of 
the non-stationary cases, (c) and (d), customers with 
the slower service rate have no possibility of transi-
tioning out of their class, and so the queue builds up 
indefinitely. It is interesting to compare cases (b) and 
(e), in which both customer classes can transition to 
the other customer class. Here one case is stationary, 
and the other is non-stationary, with the only 

Table 1. Parameters used in demonstrations of the ADF 
test.

k1 k2 c l1 l2 h12 h21

Example 1 2 1 1 4 4 1 1
Example 2 2 1 1 1 1 1 1
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difference being whether the prioritised class has the 
quicker service rate or not. This evidences the interest-
ing interplay between service rate, priority class, and 
class change rates.

4.5. Effect of H on customer experience

In Section 3.1 that it is established that some service 
disciplines can be modelled as stochastically changing 
priorities with a class change matrix H; and we now 
have Markov chain models that can be used to con-
sider the effect of H on the system behaviour. We 
now investigate the effect of this matrix on customer 
experience, as this would be important for the model-
ling process, and also for controllers of the system 
who might be able to influence the rates and improve 
customer experience or system outcomes.

We first define three scenarios that we will use to 
investigate the effect of H; defined in Table 2. Each 
scenario involves two classes of customer: in 
Scenario A prioritised customers have a slower ser-
vice rate than unprioritised customer, in Scenario B 

both customer classes have the same service rate, 
while in Scenario C prioritised customers have a 
faster service rate than prioritised customers. The 
Markov chain models of Section 4 are built with 
these parameters, and all values of h12 and h21 rang-
ing from 0 to 3, in steps of 0.2, with a bound of 16 
(all producing accuracy measures Qð16Þ,Pð16Þ <
0:012), and customer experience statistic are found 
and compared.

Figures 13a, 13b, and 13c give L1 and L2; the 
steady-state average number of customers of each 
class, for all pairs of h12 and h21; under Scenarios A, 
B, and C, respectively. In general it can be seen that 
as h12 increases in comparison to h21 then we expect 
less customers of class 1 and more of class 2, and 

Figure 11. Demonstration of the ADF test on states that do and do not reach steady state according to Proposition 1.

Figure 12. Investigating the stationarity under six cases not covered by Proposition 1.

Table 2. Parameters used in experiments that investigate 
the effect of H:
Scenario k1 k2 c l1 l2

A 1 1 1 5/2 7/2
B 1 1 1 3 3
C 1 1 1 7/2 5/2
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the opposite is true as h21 increases in comparison 
to h12: At first it seems that when h12 � h21 the 
magnitude of the rate does not have a big effect of 
the number of customers of each class present, how-
ever further investigation shows this not to be the 

case. Figure 14 shows the mean number of class 1 
and class 2 customers when h12 ¼ h21 ¼ ~h; under 
Scenarios A, B, and C, as the magnitude ~h changes. 
In Scenario A, where prioritised customers have a 
slower service rate, increasing the priority change 

Figure 13. Average number of customers of each class, as H changes.
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rate increases the prioritised customers present, and 
decreases the number of unprioritised customers. In 
Scenario B the same effect can be seen, but the size 
of this effect is smaller. In Scenario C the opposite 
trend is true. Looking at the effect of ~h on the over-
all number of customers present, in Figure 15 we 
see that a higher rate of priority changes increases 
the number of customers in Scenario A, but 
decreases the number of customers in Scenario C, 
while in Scenario B where all customers have equal 
service rates, increasing the rate of priority change 
does not have an effect of the overall number of 
customers present. This may be because as the rate 
of priority changes increases, each customer is more 
likely to be served as a prioritised customer, and in 
Scenario C prioritised customers are processed 
quicker.

Figures 16a, 16b, and 16c give W1 and W2; the 
steady-state average sojourn time of customers 
beginning in each class, for all pairs of h12 and h21;

under Scenarios A, B, and C, respectively. The mean 
sojourn time for class 1 customers are hardly 
effected by the size of h12; but is more effected by 
the size of h21; likely due to an increased number of 
class 1 customers present when they join the queue. 
The effect of h21 on the mean sojourn time of class 
2 customers depends on the scenario: in Scenario A 
the higher h21; the more likely a class 2 customer is 
to be served as a class 1 customer, that with the 
slower service rate, and so a longer sojourn time; 
while in Scenario C they are more likely to be 
served as a class 1 customer with higher service 
rate, and so shorter sojourn time. In Scenario B it 
seems that h21 does not affect the sojourn time of 
class 2 customers.

The variance in the sojourn times can also be 
found. Figure 17 shows the affect of the priority 
switching rates on the overall variance of the 

sojourn time U: In all scenarios the sojourn time 
variance decreases as h21 increases. This is expected, 
as a very high value of h21 would correspond to all 
customers being of high priority, or equivalently 
there being no priority, and introducing priority 
into a system increases its variance. However, in 
Scenarios A and B, for very small values of h21 the 
opposite effect is seen. Increasing h12 generally 
increases the sojourn time variance. This general 
increase in variance is due to moving people out of 
the prioritised class increases their variance, as the 
unprioritised class’s sojourn times rely on the behav-
iour of different customer classes, whereas the priori-
tised customers’ sojourn times only rely on the 
prioritised queue. This effect is not as pronounced in 
Scenario C, where the prioritised customers have a 
higher service rate, as the prioritised queue is reduc-
ing faster, and so has less effect on the sojourn time 
of the unprioritised customers.

4.6. Case study insights

The above Markov chain models can now be used 
to investigate the effect of the stochastic priority 
switching on our surgical endoscopy case study. In 
particular, we will consider the variance in the 
sojourn time of the customers, as reducing variabil-
ity amongst patients is one of the core principles of 
prudent healthcare (Bevan Commission, 2015). First 
we will compare the sojourn time variance U; using 
Equation (14), between the scenario that does and 
doesn’t use stochastic priority switching, which are 
given in Table 3. The variability in the customers’ 
sojourn times is much greater when modelling using 
stochastic priority switching, over 16 times the vari-
ance without priority switching, demonstrating that 
some important performance measures are not cap-
tured by FIFO alone.

Figure 14. Average number of customers of each class, as ~h changes.

Figure 15. Average number of customers overall as ~h changes.
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We previously saw in Figure 6 that small changes 
to the service rates can have large effects on the sys-
tem. Figure 18a shows the effect of increasing in the 
service rate l on the customers’ sojourn time vari-
ance U; and we see that even just a very slight 

increase to the service rate could drastically reduce 
the variation in the customers’ waiting times, this 
may be due to the initially very high traffic intensity 
(q ¼ k=l ¼ 0:463=0:5 ¼ 0:926) causing long waiting 
times and therefore lots of customers switching 

Figure 16. Average sojourn time for customers beginning in each class, as H changes.
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priorities. We can also consider percentiles of the 
sojourn time, which may be a more interpretable 
measure of variability than U: As the sojourn time 
distribution of Equations (9) and (10) do not have 
an easily found inverse, this is difficult to analyse 
analytically, but can be considered using the simula-
tion described in Section 3. Figure 18b gives the 
95th percentile of the sojourn time, with and with-
out priority switching, as the service rate increases. 
We see that under priority switching the sojourn 
times always have a longer tail, but the gap shortens 
as the traffic intensity decreases.

5. Conclusions

In this paper a generalised model of stochastic pri-
ority switching within an M=M=c queue is pre-
sented. The general formulation was given in 
Section 2, followed by two methodologies for mod-
elling it, first by simulation, with contributions to 
the Ciw library, and second by two separate Markov 
chains used in conjunction to find state probabilities 
and customer sojourn times. In order to use the 
Markov chains we present bounded approximations, 
and importantly we introduce two accuracy meas-
ures to immediately determine how well the 
bounded Markov chain approximates its infinite 
version: QðbÞ the relative probability steady-state 
probability of being at the boundary, and PðbÞ the 
probability of an arriving customer experiencing the 
boundary.

This work is motivated by modelling a healthcare 
situation, a surgical endoscopy waiting list, where 
modelling as FIFO was inappropriate. We show that 
modelling as stochastically changing priorities can 
approximate the queue behaviour, with a sufficient 
choice of class change rate matrix H: We then 
explore the effect of this matrix on customer experi-
ence, namely mean number of customers of each 
priority in the system, and mean sojourn time for 
each customer class. This exploration may be useful 
to queue controllers, such as waiting list managers, 
who can influence or tweak the class change matrix, 
for example if prioritised customers have a faster 
service rate, then the queue is managed better when 
the priority change rate is higher, though at the 
expense of the prioritised customers themselves. In 
the surgical endoscopy case study, we show that the 
variance in the customers’ sojourn times are highly 
sensitive to the service rate.

Although much of the work in this paper concen-
trated on two classes of customer and two prioritisa-
tion levels, the formulation is generalised to any 
number of customer classes, offering greater flexibil-
ity in modelling unknown service disciplines. 
Similarly, the simulation methodology, implemented 

Figure 17. Variance in sojourn time for customers beginning in each class, as H changes.

Table 3. Comparison in the variance in customer sojourn 
time for models with and without stochastic priority switch-
ing, for the surgical endoscopy case study of Section 1.1.
Scenario h12 h21 U

No priority switching 0 0 150.8
Priority switching 2 1 2449.4

Figure 18. The effect of small increases in the service rate, 
with and without priority switching.

16 G. I. PALMER ET AL.



and available out-of-the-box in an open-source 
Python package, is generalised and can model non- 
Markovian priority changes too. For example a 
deterministic distribution, that is one that samples 
the same number each time, is equivalent to a time 
cut-off for priority changes.

All code and computational work used to pro-
duce this paper is openly available at Palmer et al. 
(2024) and all development of the code took place 
at https://github.com/geraintpalmer/DynamicClasses.
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Appendix A. Simulation details

Here we detail the logic of the simulation model dis-
cussed in Section 3, implemented in the Ciw library. It 
utilised an event scheduling approach, with three phases: 
an A-phase which advances the clock to the next sched-
uled event, a B-phase where scheduled events are carried 
out, and a C-phase where conditional events are carried 
out. Appendix Figure 1 shows a flow diagram of the logic 
of the event scheduling approach.

The primary scheduled, or B-events that occur in 
queueing simulations are customers arriving to a queue, 
and customers finishing service. The conditional, or C- 
events are those that happen immediately after, and 
because of, these B-events. The primary ones are custom-
ers beginning service, and customers leaving the queue.

Any other customer, server, or system behaviour to be 
captured by the simulation corresponds to increasing the 
range of B- and C-events that can happen during the 
simulation run. For example if servers are subject to a 
work schedule, then extra B-events include a server going 
off and on duty, and extra C-events would include a cus-
tomer beginning service after another customer has left 
the server.

In the case of customers randomly changing priority 
classes while waiting, one additional B-event and two 
additional C-event need to be included:

� Upon arrival to the queue customers are assigned a 
date in which they will change customer class, deter-
mined by randomly sampling from a distribution. As 
such each customer’s event of changing customer class 
is scheduled for the future, and are therefore B-events. 
If those customers begin service (which might not be 
scheduled yet) before that event has occurred, then 
their changing customer class event is cancelled.

� Upon changing class, they immediately schedule 
another changing class event for the future, again sam-
pling a date from a given distribution. This happens 
immediately after the above, and so is a C-event.

� If a newly arriving customer is of a higher priority than 
a customer in service, or if a lower priority customer is 
upgraded to a higher priority a customer in service, then 
the lower priority customer in service is pre-empted. 
They stop service and are placed at the head of the 
queue. This happens immediately after an arrival or after 
an upgrade, and so is a C-event.

For the Ciw code shown in Figure 4, the key parameters are 
priority_classes, which takes a tuple containing a Python dic-
tionary that maps customer class labels to priority rankings, 
and a list of pre-emption options for each node; and class_ 
change_time_distributions, defining the time distributions 
used to describe the time it takes to transfer from one cus-
tomer class to another. Note here that the simulation frame-
work is general enough to use any probability distribution, 
and is not restricted to Exponential distributions.
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Appendix B. Further experiments

Appendix Figure 2. Simulation and Markov chain methods for finding state probabilities for 2, 3, and 4 priority classes.

Appendix Figure 1. Flow diagram of the event scheduling approach, adapted from Palmer (2018).
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