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Abstract—Lab-based parent-child interaction (PCI) studies 
enable researchers to observe real-time behaviours in a 
controlled setting. With the rise of head-mounted eye-tracking 
and cameras, these studies now capture even richer data. 
However, extracting meaningful variables often requires time-
consuming manual annotation. One key variable of interest to 
developmental scientists, due to its links to attention and 
learning, is the size of objects in the child’s view. Manually 
extracting object sizes from a single 5-minute recording (9,000 
frames at 30 FPS) can take up to 225 hours. Advances in 
computer vision now offer automated solutions. In this study, 
we evaluated six automated object segmentation solutions for 
their ability to extract object size from PCI videos featuring 
distinctly coloured objects: Colour-based extraction, Segment 
and Track Anything (SAM-Track), Segment Anything Model 2 
(SAM2), DeepLabv3, PyTorch U-Net, and You Only Look 
Once (YOLOv11). Some solutions require minimal setup 
(Colour-based extraction, SAM-Track, and SAM2), whilst 
others require custom training by providing manually 
annotated frames (DeepLabv3, PyTorch U-Net, and 
YOLOv11). Two of the out-of-the-box models (SAM-Track and 
SAM2) and two of the custom-trained models (PyTorch U-Net 
and YOLOv11) demonstrated very high object segmentation 
accuracy (median Dice scores = .92 – .96; median IoU scores = 
.85 – .92). Therefore, these tools offer a scalable and accessible 
way to automate object segmentation, reducing annotation time 
from months to hours, and thus enabling broader application 
of this approach in developmental science.  

I. INTRODUCTION 

Language development is embodied and embedded in 
social contexts [1]. Thus, one of the key types of studies 
used to understand it is parent-child interaction (PCI). PCI 
studies provide researchers with the opportunity to observe 
how children interact with objects and social agents [2]. This 
research has demonstrated that a crucial aspect for 
understanding how young children learn language through 
interaction with others is their visual experiences [3], [4]. 
Although these experiences were notoriously difficult to 
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capture in the past, rapid advancements in head-mounted 
eye-tracking and camera (HMET/headcam) technology have 
made this increasingly possible. These methods have 
enabled researchers to start analysing children’s visual 
scenes, revealing critical visual patterns that shape word 
learning and object recognition [5].  

 
Even though HMET/headcams have generated 

transformative insights in developmental science, their use, 
unfortunately, remains limited to a small number of research 
teams. One reason for this is the sheer volume of data that 
must be manually processed, which is highly prohibitive. 
For example, a key variable researchers may be interested in 
extracting is the sizes of objects in the child’s view, due to 
their links to attention and learning [6]. A typical 5-minute 
HMET recording yields approximately 9,000 frames (5 
minutes × 60 seconds/minute × 30 frames/second). If one 
would want to manually segment three objects in each 
frame, spending around 1.5 minute per frame, this would 
require roughly 225 hours to fully annotate every frame in a 
single 5-minute recording. A well-powered study would 
require thousands of hours of manual annotation, severely 
limiting the scalability of this state-of-the-art approach. 
Rapid developments in the field of computer vision, 
however, promise new avenues for addressing this issue. 

 
In this paper, we evaluated current object segmentation 

solutions for a well-established lab-based parent-child 
interaction paradigm involving distinctly coloured objects 
[4], [6]. Using this design, researchers have been able to 
better understand key components of word learning, 
particularly the interplay between attention and object 
naming during moments of object dominance (i.e., when one 
of the objects dominates in the child’s view). 

 
In the past, studies extracted object sizes by utilising a 

variety of techniques, including pixel-based segmentation 
with Gaussian mixture models for object identification [3]. 
This method would produce pixel ‘blobs’ that could be used 
to determine the size of objects within images, however this 
made it hard to differentiate objects and hands during 
moments of overlap. Another solution previously adopted 
for tackling the same problem used a Graph Cut approach 
with optical flow to predict masks for upcoming frames, 
building from frequent manual polygon markings to 
determine object sizes within a scene [7]. Nevertheless, this 
method requires frequent manual intervention, thus limiting 
its scalability when handling large datasets. Taking this into 
consideration, in this paper, we focused on how recent 
developments in the field of computer vision can remedy 
some limitations of the previous solutions. 
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We compared state-of-the-art segmentation solutions to 
evaluate their performance and effectiveness under typical 
lab-based PCI conditions. The following solutions were 
assessed: Colour-based extraction, Segment and Track 
Anything (SAM-Track [8]), Segment Anything Model 2 
(SAM2 [9]), DeepLabv3 [10], PyTorch U-Net [11], and You 
Only Look Once (YOLOv11 [12]). These segmentation 
algorithms vary in industry and research use cases, 
employing different frameworks and training regimes, as 
well as requiring different run times. For example, some of 
the solutions (Colour-based extraction, SAM-Track, and 
SAM2) employ zero-shot tracking, meaning the methods 
require no prior custom training to segment objects, whilst 
others (DeepLabv3, PyTorch U-Net, and YOLOv11) require 
specific training on manually annotated images to be able to 
correctly segment objects. We evaluated these solutions 
using the Dice coefficient and Intersection over Union (IoU) 
between manually annotated ground truth masks and 
predicted segmentation outputs. We also considered how 
these solutions compare not only on computational demands 
but also on usability. 

II. METHODOLOGY 

A. Data Source 

The data used in the current project was taken from a 
larger word learning study examining PCI in 30 parent-child 
dyads with children’s ages between 17.3 and 58.4 months. 
This study comprised two groups: young children with 
Down syndrome (DS) and young typically developing (TD) 
children, matched on ability level [13]. The study employed 
head-mounted eye-tracking (Positive Science, LCC) to 
capture the participants’ views as they interacted with novel 
objects. Here we analyse the children’s headcam recordings 
(variable frame rate ~30 FPS; 640 x 480 resolution).  

 
The study took place in a controlled laboratory setting, 

where the child and their parent were seated at opposite ends 
of a white table (85 x 61 x 73 cm). Each dyad took part in 
four play trials (90 seconds per trial). During these trials, 
participants engaged with a total of six novel objects that 
were organised into two alternating sets of three. For full 
details, see [6], [13], [14]. This design was implemented 
with machine learning applications in mind. Uniformly 
coloured distinct objects were used to allow for a more 
effective extraction of object size. 

 
For the current paper, we focused on a subset of this 

data. For our training set, we randomly selected two children 
with DS (36 and 44 months) and two TD children (23 and 24 
months). For our validation set, we randomly selected an 
additional two children (48-month-old child with DS and TD 
21-month-old child). Finally, two more children were 
randomly selected for our test set (58-month-old with DS 
and TD 23-month-old). All datasets included data from 
children with DS and TD, ensuring a balanced 
representation. From our selected subset of data, we obtained 
a total of 2,880 seconds of footage (86,314 frames). 

B. Preprocessing Steps 

Before testing segmentation solutions on the data, some 
preprocessing steps were necessary to improve consistency 
and visual clarity. These preprocessing steps included video-

resampling from variable to fixed frame rate (30 FPS), 
deinterlacing using HandBrake [15], and increasing colour 
saturation by 1.8x using FFmpeg [16]. These steps were 
applied to mitigate frame inconsistencies, visual artifacts, 
and to enhance object distinction. As shown in Fig. 1, after 
preprocessing, the data showed improved colour fidelity and 
compensation for motion-related distortions. 

 

 

Figure 1.  Demonstrating the effects of preprocessing on headcam frames. 

(a) Unprocessed raw frame; (b) Processed frame with deinterlacing and 

colour enhancement. 

C. Training and Accuracy Calculation 

To train and evaluate the segmentation solutions, we 
manually annotated object boundaries. Prior to that, the data 
for the training and test sets were down sampled at 1/2 Hz, 
meaning that one frame was sampled for every 2 seconds, 
resulting in a total 836 frames for training, and 392 frames 
for testing. The sampling rates for training and test sets were 
selected based on a study that found that a sampling rate of 
1/5 Hz was sufficient for capturing major regularities in an 
infant’s visual scene, with no significant differences 
observed even when compared to 1/10 Hz [17]. Adopting a 
higher sampling rate provided confidence that our datasets 
would capture relevant visual regularities. This method of 
down sampling allows for an adequate trade-off between 
obtaining enough object variability between frames whilst 
also ensuring that the dataset is manageable for manual 
annotation to be conducted to a high standard in a reasonable 
timeframe. As the training sample size is likely to impact the 
segmentation accuracy, a robustness analysis was conducted 
to explore the effect of training sample size on each model. 
Data for the training validation set were down sampled at a 
rate of 1 frame every 8 seconds (1/8 Hz), as a smaller sample 
of frames was sufficient for capturing the variability between 
datasets during post-epoch evaluations. The frames were 
manually annotated in SuperAnnotate [18] by two trained 
annotators. To assess inter-rater reliability, coder 1 annotated 
20% of coder 2’s frames, resulting in a high median Dice 
coefficient of .99 and IoU of .98 (for equations, see Fig. 3a), 
indicating strong agreement.  

 
All custom-trained models in this study were trained for 

100 epochs to ensure adequate learning time. During each 
epoch, the model was exposed to all 836 images, with image 
transformations at each stage to increase variability in the 
training input. The model’s performance was evaluated after 
each epoch using the validation set, with the best performing 
checkpoint selected as the trained model for this study. 

 
DeepLabv3 and YOLOv11 were both trained using 

pretrained models (‘deeplabv3_resnet101’ [10] and 
‘yolo11l-seg.pt’ [12], respectively), leveraging existing 
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detection architectures to identify our custom objects, 
whereas PyTorch U-Net was trained from scratch. 

 
To evaluate model performance, we used both the Dice 

coefficient and IoU (also known as Jaccard index) (see 
equations in Fig. 3a) to measure the accuracy between the 
predicted segmentation masks and the manually annotated 
ground truth masks (see Fig. 2). Both indices are commonly 
used to evaluate performance of segmentation algorithms. 
The Dice coefficient quantifies segmentation accuracy by 
measuring the overlap between two masks. This coefficient 
is computed by doubling the number of overlapping pixels 
between the two masks, divided by the total number of 
pixels in both masks. The Dice coefficient performs 
particularly well at identifying the true positives (i.e., where 
the two masks overlap). The IoU quantifies accuracy by 
dividing the number of overlapping pixels between the two 
masks by the area of union between the two masks. While 
IoU also captures true positives, it is stricter because it 
penalises false positives (pixels present in the predicted 
mask, but not in the ground truth) and false negatives (pixels 
missing from the predicted mask but present in the ground 
truth) more heavily. 

 
 

Both the Dice coefficient and IoU vary between 0 (low 
accuracy) and 1 (high accuracy). Model accuracy was 
compared across solutions by fitting a robust linear mixed 
model using the robustlmm package [19], with model as a 
fixed effect and participant as a random effect. Pairwise 
model comparisons were conducted using estimated 
marginal means via the emmeans package [20]. 
 

 

Figure 2.  A visualisation of intersection calculation. (a) Ground truth mask 

in blue; (b) Predicted segmentation mask in red; (c) Intersection of the two 

masks (purple). Dice = .94; IoU = .89. 

III. EVALUATION 

To test possible segmentation solutions, several 
computer vision methods were evaluated in terms of 
accuracy, computational demands, and usability. These 
include both out-of-the-box solutions (Colour-based 
extraction, SAM-Track, and SAM2), as well as trained 
models (DeepLabv3, PyTorch U-Net, and YOLOv11). 

 

A. Out-of-the-Box Solutions 

1) Colour-based extraction 

As a baseline, a colour-based extraction method was 
implemented to identify and segment specific colour ranges 
within the visual scene. The HSV (Hue, Saturation, Value) 
colour space was used for this method instead of the 
standard RGB (Red, Green, Blue) colour space, based on 
studies such as [21], which suggest that image segmentation 

often performs more accurately in HSV as it aligns better 
with human colour perception and reduces intra-class 
variance caused by lighting conditions. The reduced 
sensitivity to variations in lighting occurs due to the 
separation of colour and brightness information, thus 
improving segmentation robustness in different lighting 
conditions.  
 

2) Segment and Track Anything (SAM-Track) 

The first computer vision model evaluated in this study is 
the SAM-Track model [8]. This model differs from its 
underlying baseline Segment Anything Model (SAM) by 
incorporating functionality to perform object tracking and 
segmentation in videos, rather than solely individual frames. 
This is achieved via integrating SAM with the Transformers 
Framework DeAOT, an efficient multi-object tracking mode 
to track objects through videos. SAM-Track is a zero-shot 
model, which means that beyond providing positive prompts 
for the first 3 trackable objects in the first frame using a 
graphical interface, no further training or human intervention 
is required. Therefore, compared to the other object 
segmentation solutions, this is the most user-friendly model 
for researchers who are less familiar with machine learning 
techniques. 

 

3) Segment Anything Model 2 (SAM2) 
SAM2 [9] is the recently released successor to the 

original SAM. It represents a significant evolution from the 
original by natively integrating advanced segmentation 
capabilities for both images and videos. This model employs 
a new transformer-based architecture that includes an 
innovative memory mechanism for real-time video 
processing. We selected SAM2 due to its advanced 
segmentation capabilities, with the ability to process both 
images and videos without requiring additional fine-tuning. 
For this study, SAM2 was used with a pre-trained model that 
was not trained on our novel object data. Like SAM-Track, 
prompt points were required to effectively track objects 
throughout the video. However, unlike SAM-Track, it lacks 
a graphical interface, making it less accessible to users 
without coding experience.  

B. Custom-Trained Solutions 

1) DeepLabv3 

DeepLabv3 [22] is a deep convolutional neural network 
that employs atrous convolution, enabling multi-scale 
contextual information without sacrificing spatial resolution. 
By combining atrous convolution with atrous spatial 
pyramid pooling, DeepLabv3 is particularly effective for 
complex scenes, including object overlap and fine-grained 
detail. Originally introduced in 2016 [23], DeepLabv3 has 
since become widely adopted and popular among biomedical 
researchers [24]. 

 
2) PyTorch U-Net 
A U-Net based Convolutional Neural Network (CNN 

[25]) was designed for integration with PyTorch, an open-
source deep learning library. Despite the U-Net architecture 
being much older than other solutions in this study, U-Net 
remains a widely used method in biomedical image 
segmentation due to its unique architecture, high 
performance, and simplicity [25]. It consists of a contracting 
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Figure 3.   (a) Equations used for Dice and IoU calculation; (b) Segmentation accuracy of each method, with Dice shown in orange and IoU in grey; (c)-(e)  
Comparisons of models under challenging conditions: (c) Holding object; (d) Object overlap; and (e) Motion blur. Left to right: Original image, ground truth, 

Colour-based extraction, SAM-Track, SAM2, DeepLabv3, PyTorch U-Net, and YOLOv11.  

 

path used to capture contextual features, and a symmetric 
expanding path that enables precise localisation. This design 
also allows the network to learn effectively from a relatively 
small number of annotated images while maintaining high 
segmentation accuracy. 

 

3) You Only Look Once (YOLOv11) 
You Only Look Once (YOLO [26]) is a widely 

recognised and extensively used object detection model, 
known for its continuous improvements in accuracy. This is 
a single-shot approach that predicts bounding boxes and 
class probabilities in one evaluation using a single neural 
network. Each new iteration of the model architecture (with 
the newest being YOLOv11 [12]) provides better 
performance. YOLOv11 was chosen for its efficiency in 
processing large volumes of data as well as efficiency in 
object detection.  

IV. RESULTS 

A. Model Performance Comparison 

1) Out-of-the-box methods 
As evidenced in the segmentation masks in Fig. 3c-e, the 

out-of-the-box methods often struggle when faced with 
frames that include overlapping objects (Fig. 3d) or images 
with heavy motion blur (Fig. 3e). While all out-of-the-box 
methods showed some inconsistency in their performance, 
this was especially evident in Colour-based extraction, with 
many incorrect masks in each frame. SAM-Track’s and 
SAM2’s performance showed the highest overall accuracy 
out of the three out-of-the-box solutions (Fig. 3b), with 
SAM-Track achieving a Dice score of .96 and IoU score of 
.91, and SAM2 achieving a Dice score of .96 and IoU score 

of .92. These results were obtained even though prompt 
points were only given for the first 3 coloured objects in the 
participants recording. To further evaluate the models, we 
repeated this process but instead provided prompt points at 
the start of each play trial, rather than solely at the start of 
each participant’s recording. This allowed the models to 
receive positive prompts for each object being tracked, 
rather than generalising to objects across trials. The impact 
of this on the models’ performance was negligible (SAM-
Track: Dice = .96, IoU = .92; SAM2: Dice = .95, IoU = .91). 
 

2) Custom-trained methods 

As shown in Fig. 3b, all custom-trained methods 
performed well and yielded comparable results (DeepLabv3:  
Dice = .92, IoU = .85; PyTorch U-Net: Dice = .95, IoU = 
.91; YOLOv11: Dice = .95, IoU = .91) with a maximum 
overall variation of .03 for Dice and .06 for IoU. 
Nonetheless, all methods suffered from instances of 
overclassification. Examples of these include masks where 
hands were misclassified as a red object, or small mask 
artifacts were produced. The latter issue occurred only for 
PyTorch U-Net. Therefore, before evaluation, a small mask 
filter was introduced for this model to remove masks under 
100 pixels. These overclassification instances were likely 
better captured by the IoU score, as this method penalises 
false positives more harshly than the Dice coefficient. 
Another challenge for the models were overlapping objects - 
YOLOv11 was the only model to segment an object through 
the opening of another (see Fig. 3d). However, it often 
underperformed by producing segmentation masks with 
smoother edges, which negatively impacted its Dice score. 
Overall, PyTorch U-Net and YOLOv11 showed the best 
performing solution in terms of both Dice and IoU scores. 
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3) Overall model comparison 

The robust linear mixed model and the pairwise contrasts 
using emmeans revealed that Colour-based extraction 
significantly underperformed when compared to other 
solutions (p < .05) on both metrics. For both Dice and IoU 
scores, there was no difference in performance between 
SAM2, PyTorch U-Net, and YOLOv11. These models 
outperformed DeepLabv3. For Dice, YOLOv11 showed 
higher accuracy than SAM-Track. This pattern was not 
found for IoU, as both YOLOv11 and SAM-Track showed 
comparable accuracy, and all four models outperformed 
DeepLabv3 (see appendices for more details: 
https://osf.io/syebh). 

B. Impact of Training Sample Size 

To evaluate how annotation density affects segmentation 
accuracy, each custom-trained model was trained under 4 
different training conditions. These include sampling at 1/2 
Hz, 1/4 Hz, 1/6 Hz, and 1/8 Hz. Table 1 shows that both 
PyTorch U-Net’s and YOLOv11’s segmentation accuracy is 
consistently high through every training density tested, even 
when presented with only 209 training images (1/8 Hz), 
while DeepLabv3 shows a steady decline. This strong 
performance is likely a result of PyTorch U-Net’s unique 
architectural design, and YOLO’s large pre-trained detection 
model. 

TABLE 1. Impact of training saturation across trained solutions (medians). 

Model Index 
Training sample size 

1/2 Hz 1/4 Hz 1/6 Hz 1/8 Hz 

DeepLabv3 
Dice .92 .89 .86 .66 

IoU .85 .80 .76 .53 

PyTorch 

U-Net 

Dice .95 .95 .94 .92 

IoU .91 .91 .90 .85 

YOLOv11 
Dice .95 .95 .95 .95 

IoU .91 .90 .90 .90 
 

C. Applications 

1) Object size and position analysis 
By using the segmentation masks obtained from the most 

robust model (YOLOv11), we were able to conduct further 
analyses, including automatic calculations of object size and 
their location (see Fig. 4). Object size is quantified by 
calculating the total number of pixels covered by a given 
mask (visible object) relative to the total pixels within the 
visual scene. In addition, spatial data can be gathered by 
forming a boundary box around each object. This allows us 
to pinpoint an object’s centre and determine its location 
within the frame. These metrics can then be leveraged for 
further analyses, depending on the research question. 

 

  

Figure 4.  Visualisation of object sizes within the play trial, including 

boundary boxes and centre coordinates outlining location using masks from 

YOLOv11. 

2) Identifying visual object dominance 
By collecting object size data from section C.1, we can 

apply this to answer research questions about the role of 
object dominance in PCI [4], [13], [27] (see Fig. 5). This 
requires minimal manual intervention between providing 
video frames and obtaining size data, allowing for large 
datasets to be analysed quickly. 

 

 
Figure 5.   Moments of visual dominance within a play session. Frame (a), 
(b) and (c) are defined as containing a dominant object (i.e., object-dominant 
events) as its object size comprised at least 5% of the image, its relative size 
is greater than 50% of all other objects in view, and these conditions lasted 
over 500 ms [13].  

V. DISCUSSION 

This study aimed to evaluate a range of out-of-the-box 
and custom-trained computer vision solutions for object 
segmentation in lab-based PCI studies. The results suggest 
that custom-trained models show comparable performance to 
some of the out-of-the-box solutions in terms of accuracy 
and accessibility. Specifically, SAM-Track and SAM2 
showed a comparable Dice and IoU accuracy score to the 
custom-trained models. Nevertheless, this was not the case 
for Colour-based extraction, with accuracy scores well 
below those of other models. 

 
Out of the 3 trained solutions used in this study, PyTorch 

U-Net and YOLOv11 achieved the highest Dice and IoU 
scores. Given the comparable performance for these models, 
if speed and ease of implementation is a priority, YOLOv11 
was notably faster and easier to implement than the other 
solutions, with detailed guides and premade training scripts 
available [12]. Furthermore, YOLOv11 excelled in its 
detection and segmentation, showing a particularly high and 
consistent performance as evidenced by narrow confidence 
intervals presented in Fig. 3b, was the only model capable of 
segmenting objects through openings in other objects, and it 
was robust to the manipulation of training sample size. 
However, this model is not without limitations as due to its 
reliance on initial object detection using bounding boxes, 
this approach introduces subtle artifacts on the boundaries of 
objects, such as flat edges, which are noticeable in some 
resulting masks.  

 
When considering out-of-the-box solutions, SAM2 and 

SAM-Track emerged as the most effective models, both 
achieving strong accuracy, comparable to those of custom-



 

For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author 

Accepted Manuscript version arising. 

 

trained models. Thus, these models are excellent options as 
they require minimal setup and zero custom data training. 
One limitation of the zero-shot solutions is that longer 
videos demand significant memory allocation, which can 
result in out-of-memory issues. This issue was observed 
when running SAM2, which loaded all frames into memory 
before processing, requiring an increase in available memory 
compared to other models. Whilst this issue did not arise for 
SAM-Track, it is possible that it might occur if analysing 
bigger datasets than those included in this study. Taking this 
into consideration, SAM-Track emerges as a better 
alternative since it also provides a more intuitive and user-
friendly interface. This lowers the barriers to entry for 
researchers with limited technical expertise. Recently, new 
tools such as Low-Rank Adaptation (LoRA [28]) have been 
developed which enable efficient fine-tuning of large models 
like SAM, allowing for more tailored output. However, these 
tools are less accessible to researchers with limited 
knowledge of how to implement such techniques. 

 
Controlled settings, like those utilised in the current 

study, allow for certain practices that can enhance the 
effectiveness of automated object segmentation. These 
should be (and often are) considered at the design and data 
collection stages of lab-based studies. Researchers can adopt 
a background colour distinct from the objects, use objects 
that are distinct from each other, ensure the room is 
adequately lit, and reduce the number of objects in the room 
unrelated to the study. These steps would maximise the 
accuracy of automated segmentation pipelines, which require 
minimal setup time and allow meaningful data to be extracted 
from hours of video in a fraction of the time that would be 
required from manual annotation. Most of the models tested 
in the current study indeed demonstrated high accuracy. 
However, it remains uncertain how well these solutions 
generalise from our controlled lab-based study to more 
naturalistic, everyday videos. Resolving this is essential for 
enabling large-scale naturalistic studies, further advancing 
our theories of development, and informing diagnostic and 
intervention approaches. 

ACKNOWLEDGMENT 

The authors would like to thank all the families who 
contributed their time to this study. This work would also 
not have been possible without the support of the Cardiff 
Babylab team. We would particularly like to thank Kate Mee 
and Sophia Ivackovic, for their help with data collection and 
manual annotation, respectively. 

REFERENCES 

[1] C. S. Tamis-LeMonda and L. R. Masek, “Embodied and Embedded 

Learning: Child, Caregiver, and Context,” Curr. Dir. Psychol. Sci. , 

vol. 32, no. 5, pp. 369–378, Jul. 2023. 

[2] S. H. Suanda, M. Barnhart, L. B. Smith, and C. Yu, ‘The signal in the 
noise: the visual ecology of parents’ Object Naming’, Infancy, vol. 24, 

no. 3, pp. 455–476, 2019. 

[3] A. F. Pereira, H. Shen, L. B. Smith, and C. Yu, ‘A first-person 

perspective on a parent-child social interaction during object play’, 

Proc. Annu. Meet. Cogn. Sci. Soc., vol. 31, no. 31, Jan. 2009. 
[4] L. B. Smith, C. Yu, and A. F. Pereira, ‘Not your mother’s view: the 

dynamics of toddler visual experience’, Dev. Sci., vol. 14, no. 1, pp. 9–

17, Jan. 2011. 

[5] J. M. Franchak, K. S. Kretch, K. C. Soska, and K. E. Adolph, ‘Head-

mounted eye tracking: A new method to describe infant looking’, Child 

Dev., vol. 82, no. 6, pp. 1738–1750, Oct. 2011. 

[6] C. Chen, D. M. Houston, and C. Yu, ‘Parent–child joint behaviors in 
novel object play create high-quality data for word learning’, Child 

Dev., vol. 92, no. 5, pp. 1889–1905, Aug. 2021. 

[7] Q. Mirsharif, S. Sadani, S. Shah, H. Yoshida, and J. Burling, ‘A semi-

automated method for object segmentation in infant’s egocentric videos 

to study object perception’, 2016, arXiv:1602.02522. 
[8] Y. Cheng et al., ‘Segment and Track Anything’, 2023, 

arXiv:2305.06558. 

[9] N. Ravi et al., ‘SAM 2: Segment anything in images and videos’, 2024, 

arXiv: 2408.00714.  

[10] PyTorch. ‘Deeplabv3.’, Pytorch. Accessed: Mar. 5, 2025. [Online] 
Available: 

https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/ 

[11] milesial. ‘Pytorch-UNet.’ Github. Accessed: Mar. 5, 2025. [Online]. 

Available: https://github.com/milesial/Pytorch-UNet 

[12] Ultralytics. ‘Ultralytics.’ Github. Accessed: Apr. 02, 2025. [Online]. 
Available: https://github.com/ultralytics/ultralytics. 

[13] C. Bocchetta, C. D. J. Thompson, C. Suarez-Rivera, C. Yu, and H. 

D’Souza, ‘Same scenes, different movements: Different dyadic motor 

patterns underlie object dominance in typically developing and 

neurodivergent young children’, submitted for publication. 
[14] C. Yu and L. B. Smith, ‘Multiple sensory-motor pathways lead to 

coordinated visual attention’, Cogn. Sci., vol. 41, pp. 5–31, Mar. 2016. 

[15] The HandBrake Team. ‘HandBrake: The open source video 

transcoder’. Accessed: Mar. 17, 2025. [Online]. Available: 

https://handbrake.fr/ 
[16] FFmpeg. ‘FFmpeg’. Accessed: Mar. 26, 2025. [Online]. Available: 

https://www.ffmpeg.org/ 

[17] C. M. Fausey, S. Jayaraman, and L. B. Smith, ‘From faces to hands: 

Changing visual input in the first two years’, Cognition, vol. 152, pp. 
101–107, Jul. 2016. 

[18] SuperAnnotate AI. ‘SuperAnnotate’. Accessed: Mar. 17, 2025. 

[Online]. Available: https://www.superannotate.com. 

[19] M. Koller, ‘robustlmm: An R package for robust estimation of linear 

mixed-effects models’, J. Stat. Softw., vol. 75, no. 6, pp. 1–24, Dec. 
2016. 

[20] Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Square 

Means. (2021). [Online]. Available: 

 https://CRAN.R-project.org/package=emmeans 

[21] Z. Shu, G. Liu, Z. Xie, and Z. Ren, ‘Segmentation algorithm of color 
block target captured by CCD camera based on region growing’, in 

2016 3rd International Conference on Information Science and Control 

Engineering (ICISCE), Jul. 2016, pp. 597–600. 

[22] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘Rethinking 

atrous convolution for semantic image segmentation’, 2017, 
arXiv:1706.05587. 

[23] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, 

‘DeepLab: semantic image segmentation with deep convolutional nets, 

atrous convolution, and fully connected CRFs’, 2016, 

arXiv:1606.00915. 
[24] S. Vedpathak, P. Soni, S. Gaikwad, and M. Parmar, ‘2D Brain MRI 

segmentation: U-Nets versus optimized DeepLab Models’, in 2024 

IEEE International Conference on Information Technology, Electronics 

and Intelligent Communication Systems (ICITEICS), Jun. 2024, pp. 1–

6. 
[25] O. Ronneberger, P. Fischer, and T. Brox, ‘U-Net: convolutional 

networks for biomedical image segmentation’, 2015, 

arXiv:1505.04597. 

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘You only look 

once: Unified, real-time object detection’, 2016, arXiv:1506.02640. 
[27] C. Yu, L. B. Smith, H. Shen, A. F. Pereira, and T. Smith, ‘Active 

information selection: Visual attention through the hands’, IEEE Trans. 

Auton. Ment. Dev., vol. 1, no. 2, pp. 141–151, Aug. 2009. 

[28] Z. Zhong, Z. Tang, T. He, H. Fang, and C. Yuan, ‘Convolution Meets 

LoRA: Parameter Efficient Finetuning for Segment Anything Model’, 
2024, arXiv:2401.17868. 


	I. INTRODUCTION
	II. Methodology
	A. Data Source
	B. Preprocessing Steps
	C. Training and Accuracy Calculation

	III. evaluation
	A. Out-of-the-Box Solutions
	1) Colour-based extraction
	2) Segment and Track Anything (SAM-Track)
	3) Segment Anything Model 2 (SAM2)

	B. Custom-Trained Solutions
	1) DeepLabv3
	2) PyTorch U-Net
	3) You Only Look Once (YOLOv11)


	IV. Results
	A. Model Performance Comparison
	1) Out-of-the-box methods
	2) Custom-trained methods
	3) Overall model comparison

	B. Impact of Training Sample Size
	C. Applications
	1) Object size and position analysis
	2) Identifying visual object dominance


	V. Discussion
	Acknowledgment
	References

