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ABSTRACT
We study properties of the (generalized) Dickman distribution
with two parameters and the stationary solution of the Orn-
stein–Uhlenbeck stochastic differential equation driven by a Pois-
son process. In particular, we show that the marginal distribution
of this solution is the Dickman distribution. Additionally, we inves-
tigate superpositions of Ornstein–Uhlenbeck processes which may
have short- or long-range dependencies and marginal distribution
of the form of the Dickman distribution. The numerical algorithm for
simulation of these processes is presented.
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1. Introduction

In [46] a (generalised) Dickman distribution is defined as a distribution of a random
variable Dθ satisfying the distributional fixed-point equation

Dθ
d= U1/θ (1+ Dθ ), (1)

where θ > 0, U is independent of Dθ and has the uniform distribution on (0, 1]. The
density of Dθ is given by

fθ (x) = e−γ θ

�(θ)
ρθ (x)1(0,∞)(x), x ∈ R,

where �(·) is the gamma function, γ = −�′(1) ≈ 0.5772 is Euler’s constant and the
function ρθ (x) satisfies the difference-differential equation:

ρθ (x) = 0, x ≤ 0,

ρθ (x) = xθ−1, 0 < x ≤ 1,

xρ′θ (x)+ (1− θ)ρθ (x)+ θρθ (x− 1) = 0, x > 1.

(2)
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It is also known that the random variable Dθ with the Dickman distribution satisfies

Dθ
d= U1/θ

1 + (U1U2)
1/θ + (U1U2U3)

1/θ + (U1U2U3U4)
1/θ + · · · ,

where {Uk}∞k=1 are independent identically distributed random variables with the uniform
distribution on (0, 1], see e.g. [27,46,47].

The function ρθ (x) occurs, among others, in context of number theory and combina-
torics, see [22,23,57] and references therein. For θ = 1 the function ρ1(x) is the celebrated
Dickman function [19], which appears even earlier in Ramanujan’s unpublished paper
[49]. The Dickman distribution is closely related to the so-called Goncharov distribution
and the Poisson-Dirichlet family of distributions, see [35,36,45,46,48] and the references
therein. Recently, a number of new applications of theDickman distribution have appeared
in random graph theory [46], biology [33], physics [17] and other fields; see [45] for more
references and details. The Dickman distribution also appears in various limiting schemes
[10,13,14,27,46,47]. It also appears as a special case of Vervaat perpetuities [55]. For the
historical account of the Dickman distribution see [9,45] and [56]. For simulation from
the Dickman distribution see [16,18,21].

The term generalised in the naming of the distribution defined by (1) accounts to the
presence of the parameter θ > 0 and was first used by [46]. Different generalizations of the
Dickman distribution have appeared later on in, for example, [35], see also [9,13,26,34].

In this paper we first propose a new generalization of theDickman distribution by intro-
ducing another parameter. The new parameter is the scale parameter of the distribution.
We study the properties of the Dickman distribution with the two parameters.

We then consider the Lévy driven Ornstein–Uhlenbeck (OU) type processes with
Dickman type marginals. Non-Gaussian OU processes and their superpositions were
introduced and studied in [1,2,4,5], see also references therein. In the framework of
ambit stochastics such stochastic processes have applications in turbulence, financial
econometrics, astrophysics, etc. [8].

We show that the Poisson driving process yields an OU type process with the Dickman
stationary distribution. Furthermore, we consider various extensions with different driv-
ing processes that give stationary processes with marginals closely related to the Dickman
distribution. In Section 4, we consider superpositions of Dickman OU processes and show
their properties. Finally, in Section 5 we present simulation methods for the introduced
processes.

2. Generalised Dickman distribution

We start by introducing a generalized Dickman distribution with two parameters.

Definition 2.1: A random variable Dθ ,a has the (generalised) Dickman distribution with
parameters θ > 0 and a>0, shortly Dθ ,a ∼ GD(θ , a), if Dθ ,a satisfies the distributional
fixed-point equation

Dθ ,a
d= U1/θ (a+ Dθ ,a), (3)

where ‘ d=’ denotes the equality in distribution, U is independent of Dθ ,a and has the
uniform distribution on (0, 1].
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For a = 1, the GD(θ , 1) distribution is equivalent to the generalized Dickman distribu-
tion defined by (1). Since aDθ ,1

d= U1/θ (a+ aDθ ,1), aDθ ,1 satisfies (3). Hence,

aDθ ,1
d= Dθ ,a, (4)

the parameter a is the scale parameter of the GD(θ , a) distribution. The next proposition
shows that there are many different characterizations of the GD(θ , a) distribution.

Proposition 2.2: Let θ > 0 and a>0.

(1) Let a random variable D satisfy the distributional fixed-point equation

D d= U1/θ
a (1+ a−1D), (5)

where Ua is independent of D and has the uniform distribution on (0, aθ ]. Then D ∼
GD(θ , a).

(2) A random variable given by

D = aU1/θ
1 + a(U1U2)

1/θ + a(U1U2U3)
1/θ + · · · , (6)

where Un, n ∈ N, are mutually independent with the uniform distribution on (0, 1], has
the GD(θ , a) distribution.

(3) A random variable given by

D =
∞∑
n=1

ae−Tn

where Tn, n ∈ N, are arrival times a Poisson process with parameter θ , has the GD(θ , a)
distribution.

Proof: (1) LetU be uniformly distributed on (0, 1] and independent ofD, then from (5)
we have D d= (aθU)1/θ (1+ a−1D) d= U1/θ (a+ D), hence, D satisfies (3).

(2) Note first that the almost sure convergence of the series (6) was shown in [46].
From (6) we get that

D = U1/θ
1 (a+ aU1/θ

2 + a(U2U3)
1/θ + · · · ) d= U1/θ

1 (a+ D),

hence, D satisfies (3).
(3) This statement follows from Proposition 2 in [46] and (4).

�

Remark 2.1: Random variables given by (6) are referred to as perpetuities, see e.g. [25]
and the references therein. For a = 1, formula (6) is known as Vervaat perpetuity [55]. In
insurance mathematics, formula (6) can be interpreted as a present value of payment of
amount a every year in the future, subject to random discounting.

By using (4), general properties of the GD(θ , a) distribution follow readily from Propo-
sition 3 in [46].
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Proposition 2.3: (1) The Laplace transform of Dθ ,a ∼ GD(θ , a) is given by

ψ(s) = Ee−sDθ ,a = exp
{
−θ

∫ a

0
(1− e−su)du

u

}
, s > 0. (7)

(2) Let θ1, θ2 > 0, a>0, Dθ1,a ∼ GD(θ1, a) and Dθ2,a ∼ GD(θ2, a) be independent. Then
Dθ1,a + Dθ2,a ∼ GD(θ1 + θ2, a).

(3) The kth cumulant of Dθ ,a ∼ GD(θ , a) equals to akθ/k. In particular,

EDθ ,a = aθ , VarDθ ,a = a2
θ

2
.

We can write (7) as ψ(s) = exp{−θ · Ein(as)}, where

Ein(z) =
∫ z

0

1− e−u

u
du =

∞∑
k=1
(−1)k−1 zk

k · k! , z ∈ R

is the modified exponential integral introduced by [52], see also [43] for historical refer-
ences. It follows from (7) that the GD(θ , a) distribution is infinitely divisible with Lévy
measure given by

ν(du) = θ

u
1(0,a](u) du.

Remark 2.2: The GD(θ , a) distribution is also self-decomposable with a canonical func-
tion k(x) given by k(x) = θ1(0,a](x) [51, Corollary 15.11]. However, theGD(θ , a) distribu-
tion does not belong to the Thorin class [37] because k(x) is not differentiable.

Since a is the scale parameter, we have that the density fθ ,a(x) of the GD(θ , a) distribu-
tion satisfies fθ ,a(x) = a−1fθ ,1(x/a) and hence

fθ ,a(x) = a−1 e
−γ θ

�(θ)
ρθ (x/a)1(0,∞)(x),

where ρθ (x) is given by (2). By using the recurrent relation for the density fθ ,1(x) obtained
in [13], we have that

fθ ,a(x) =

⎧⎪⎪⎨⎪⎪⎩
e−γ θ

a�(θ)

(x
a

)θ−1
, 0 < x ≤ a,

e−γ θ

a�(θ)

(x
a

)θ−1 − a−1θ
(x
a

)θ−1 ∫ x−a

0

fθ ,a(z)
(1+ z/a)θ

dz, x > a.

Another representation of the density fθ ,a(x) is given by

fθ ,a(x) = e−γ θ

a�(θ)

⎛⎝(x
a

)θ−1 + [x/a]−1∑
k=1

(−θ)kKk(x/a, θ)

⎞⎠ 1(0,∞)(x),

Kk(x, θ) = 1
k!

∫
· · ·
∫
Dk(x)

(x− (u1 + . . .+ uk))θ−1
du1 . . . duk
u1 · . . . · uk ,

where [·] is the integer part function and Dk(x) = {(u1, . . . , uk) ∈ R
k : u1 + . . .+ uk ≤

x, u1, . . . uk ≥ 1}. This formula was obtained in [54] and can also be deduced from Propo-
sition 4.2 of [15] or from Lemma 1 of [22]. Similar formulas were derived in the context
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Figure 1. The density fθ ,1(x) of the Dickman distribution for θ = 0.9, 1, 1.2 and 3.

of the Poisson-Dirichlet distribution of population genetics [33, Theorem 1]; see also [57].
Figure 1 shows the density fθ ,1(x) for different values of the parameter θ .

3. Ornstein–Uhlenbeck type processes with Dickmanmarginals and beyond

In this section we introduce several stationary processes related to the Dickman distribu-
tion. For a stochastic processY(t), t ≥ 0, wewill denote the cumulant function of a random
vector (Y(t1), . . . ,Y(tm)) by

κ(Y(t1),...,Y(tm))(z1, . . . , zm) = logEei(z1Y(t1)+...+zmY(tm)), zj ∈ R, j = 1, . . . ,m,

and, in particular, κY(z) = logEeizY(1), z ∈ R, is the cumulant function of Y(1).

3.1. Ornstein–Uhlenbeck process driven by a Poisson process

Non-Gaussian Ornstein–Uhlenbeck type processes have been studied in [4,5], see also
references therein.

A strictly stationary stochastic process X(t), t ≥ 0, is said to be an Ornstein–Uhlenbeck
process driven by the Lévy process (OU type process) if it is the strong solution of the
following stochastic differential equation

dX(t) = −λX(t) dt + dZ(λt), t ≥ 0, (8)
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where λ > 0 and Z(t) is a Lévy process such that

E log(1+ |Z(1)|) <∞,

see [7] for details. The process Z(t), t ≥ 0, is commonly referred to as the backward driving
Lévy process (BDLP), see [4].

The strictly stationary solution of (8) is given by

X(t) = e−λtX(0)+
∫ t

0
e−λ(t−τ) dZ(λτ).

If we extend Z(t), t ≥ 0, to a two-sided Lévy process Z(t), t ∈ R, meaning that we put for
t<0, Z(t) = −Z̃(−t−), where Z̃(t), t ≥ 0, is an independent copy of the Lévy process
Z(t), t ≥ 0, modified to be càdlàg, then an OU type process can be written in the form

X(t) =
∫ t

−∞
e−λ(t−τ) dZ(λτ), t ≥ 0. (9)

From [4] and [50], it follows that for any self-decomposable distribution D there exists
a BDLP Z(t), t ≥ 0, such that the stationary distribution of an OU type process is D.
Moreover, for the cumulant function of Z and X it holds that

κ(X(t1),...,X(tm))(z1, . . . , zm) =
∫

R

λκZ

⎛⎝ m∑
j=1

zje−λ(tj−s)1[0,∞)(tj − s)

⎞⎠ ds,

see [38]. In particular, using the change of variables we get

κX(z) =
∫ ∞
0

κZ(e−sz) ds, κZ(z) = z
d
dz
κX(z). (10)

The correlation function of an OU type process (if it exists) is of the form

r(τ ) = Corr(X(t),X(t + τ)) = e−λτ , τ ≥ 0,

see e.g. [4,50,51] for more details on OU type processes.
For an OU type processes where the stationary distribution is GD(θ , a) the cumulant

function of the BDLP Z(t) is of the form

κZ(z) = z
d
dz

∫ a

0
(eizu − 1)

θ

u
du = z

∫ a

0
eizu(iu)

θ

u
du = θ(eiaz − 1) = logEeizNθ ,a(1),

(11)
where Nθ ,a(t), t ≥ 0, is a homogeneous Poisson process with rate parameter θ > 0 and
jumps of size a>0, that is P(Nθ ,a(t) = k) = P(aNθ ,1(t) = k), k ≥ 0. Thus, we arrived at
the following statement.

Theorem 3.1: Let Nθ ,a(t), t ≥ 0, be a homogeneous Poisson process with rate parameter θ
and jumps of size a>0. The stationary solution X(t) of the stochastic differential equation

dX(t) = −λX(t) dt + dNθ ,a(λt), t ≥ 0, (12)

has the marginal distribution GD(θ , a) and

Cov(X(t),X(t + τ)) = e−λτVarX(t) = a2
θ

2
e−λτ , τ ≥ 0. (13)
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We will refer to a process X(t) from Theorem 3.1 as Dickman OU (DOU) process. From
(13) we get that the second-order spectral density of the DOU process is

f (ω) = a2θ
2π

λ

λ2 + ω2 , ω ∈ R.

Remark 3.1: It is noteworthy that the Ornstein–Uhlenbeck process driven by the Poisson
process was first introduced in [5, Table 2, line 3], where the marginal distribution of such
processX(t), t ≥ 0, was not specified but only the cumulant function was given in the form

κX(z) = −θ(Ei(z)+ log z + γ ), (14)

where

Ei(z) =
∫ ∞
z

e−y

y
dy

is the exponential integral and γ is Euler’s constant. The formula (14) can be rewritten as
the cumulant of theGD(θ , 1) distribution given in (7), see, for example, [42, Appendix D].

Lemma 3.2: There exists a temporally homogeneous transition function Pt(x,B) for the
DOU process such that∫ ∞

−∞
eizyPt(x, dy) = exp

{
ize−λtx+ θ

λ

∫ a

ae−λt
(eiuz − 1)

du
u

}
. (15)

Proof: Due to Lemma 17.1 in [51] for X(t) being a solution of the Equation (12) there
exists a temporally homogeneous transition function Pt(x,B) = P(X(t) ∈ B | X(0) = x)
on R such that∫ ∞

−∞
eizyPt(x, dy) = exp

[
ize−λtx+

∫ t

0
κZ(e−λsz) ds

]
, z ∈ R

and for each t and x, Pt(x, ·) is infinitely divisible. Taking Z(t) = Nθ ,a(t) and inserting
its cumulant function κNθ ,a(z) = θ(eiaz − 1), the formula (15) is obtained by change of
variables. �

Remark 3.2: We adopt the convention on the summation that
∑M

k=1 zk = 0 whenM = 0.

From (15) we immediately get the following statement.

Corollary 3.3: For the process X(t), t ≥ 0, conditionally on X(0) = x, for any fixed t>0 it
holds that

X(t) d= e−λtx+
Ñ∑
k=1

ξk, (16)

where Ñ has the Poisson distribution with parameter θ t and ξk, k = 1, 2 . . ., are independent
random variables with the density

g(u) = 1
λtu

1(ae−λt ,a)(u). (17)
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Corollary 3.4: The transition function Pt(x, y) = P(X(t) ≤ y | X(0) = x) of the DOU
process can be represented in the form

Pt(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, y < e−λtx
e−θ t , y = e−λtx
∞∑
n=1

(tθ)n

n!
e−θ t

∫ y−e−λtx

0
gn(u) du, y > e−λtx,

where gn(u) =
∫ u
0 g(y)gn−1(u− y) dy, n ≥ 2 and g1(u) = g(u) is given by (17).

The above corollaries can also be deduced from [58]. The DOU process is exponentially
β-mixing [44, Corollary 4.4]. Hence, from [11, Theorem 19.2] it follows that as T →∞

XT(t)⇒ B(t), t ∈ (0, 1],
where B(t), t ≥ 0, is the standard Brownian motion,⇒ denotes weak convergence in the
space D[0, 1] of càdlàg functions with Skorokhod topology, and

XT(t) = 1
sc
√
T

∫ Tt

0
(X(τ )− aθ) dτ or XT(t) = 1

sd
√
T

[Tt]∑
τ=1
(X(τ )− aθ), t ∈ [0, 1],

where s2c = a2θ
λ in view of (13) and s2d = a2θ

2
1+e−λ
1−e−λ .

In the same manner, the stationary autoregressive process of order 1 with GD(θ , a)
marginals can be constructed. Let X0 be a random variable with the GD(θ , a) distribution
and 0< c<1. We define an autoregressive process X1,X2, . . . as

Xn = cXn−1 + εn, n ≥ 1,

where the innovation process εn, n ≥ 1, is a sequence of independent identically dis-
tributed random variables, independent of X0, and

ε1 = c
∫ − log c

0
e−τ dNθ ,a(τ ),

whereNθ ,a(t) is the homogeneous Poisson process with parameter θ > 0 and jumps of size
a>0. Moreover,

ε1
d=

Ñ∑
k=1

aξk,

where Ñ has the Poisson distributionwith parameter θ and ξk, k = 1, 2 . . ., are independent
random variables with the density

g(u) = 1
u log 1/c

1(c,1)(u).

Then {Xn}∞n=1 is a strictly stationary process withmarginals given by theGD(θ , a) distribu-
tion and the covariance function Cov(Xn,Xn+τ ) = a2 θ2 c

τ , τ = 0, 1, . . . , while the spectral
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density is of the form

f (ω) = a2θ
2π

∑
k∈Z

− log c
log2 c+ (ω + 2πk)2

, ω ∈ [−π ,π).

3.2. Ornstein–Uhlenbeck process driven by a Poisson process of order k

The Poisson process of order k was introduced in [40], see also [39,41] and the references
therein. The Poisson process of order k, k ≥ 1, is given by

N(k)θ (t) =
Nkθ (t)∑
i=1

Yi, t ≥ 0,

where Yi, i = 1, 2, . . . is a sequence of independent identically distributed random vari-
ables with the discrete uniform distribution on the set {1, 2, . . . , k}, which is independent
of the homogeneous Poisson processNkθ (t)with parameter kθ . If we take the Poisson pro-
cess of order k as the BDLP in (8), we get an OU type process which is closely related to
the Dickman OU process.

Theorem 3.5: Let X(k)(t), t ≥ 0, be a stationary solution of the stochastic differential
Equation (8) with the BDLP Z(t) = N(k)θ (t), t ≥ 0, the Poisson process of order k. Then the
following equality of finite dimensional distributions holds

{X(k)(t), t ≥ 0} fdd=
⎧⎨⎩

k∑
j=1

Xθ ,j(t), t ≥ 0

⎫⎬⎭ , (18)

where Xθ ,j(t), j = 1, . . . , k, are independent DOU processes with parameters θ and aj = j.
Moreover,

EX(k)(t) = θ k(k+ 1)
2

,

Cov(X(k)(t),X(k)(t + τ)) = θ

2
k(k+ 1)(2k+ 1)

6
e−λτ , τ ≥ 0.

Proof: For 0 < t1 < · · · < tm, the cumulant function of the random vector (X(k)(t1), . . . ,
X(k)(tm)) is

κ(X(k)(t1),...,X(k)(tm))(z1, . . . , zm)

= logEei(z1X
(k)(t1)+···+zmX(k)(tm))

=
∫

R

λκN(k)θ

( m∑
l=1

zle−λ(tl−s)1[0,∞)(tl − s)

)
ds,

see e.g. Equation (3.7) in [53]. The cumulant function of N(k)θ (1) is

κN(k)θ
(z) = kθ

⎛⎝ k∑
j=1

1
k
eijz − 1

⎞⎠ = θ k∑
j=1
(eijz − 1).
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Hence, we get that

κ(X(k)(t1),...,X(k)(tm))(z1, . . . , zm) =
k∑

j=1

∫
R

λθ
(
eij
∑m

l=1 zle−λ(tl−s)1[0,∞)(tl−s) − 1
)
ds

=
k∑

j=1

∫
R

λκNθ ,j

( m∑
l=1

zle−λ(tl−s)1[0,∞)(tl − s)

)
ds

=
k∑

j=1
logEei(z1Xθ ,j(t1)+···+zmXθ ,j(tm)),

where for each j = 1, . . . , k,Xθ ,j(t) is the DOU processes with parameters θ and j,Nθ ,j(t) is
its driving Poisson process with rate parameter θ and jumps of size j. This proves (18). �

3.3. OU processes driven by Bell-Touchard processes

Following [24], a Bell-Touchard process with parameter α > 0 and ν > 0 is a compound
Poisson process

Bα,ν(t) =
Nα,ν(t)∑
i=1

Yi, t ≥ 0, (19)

where Yi, i = 1, 2, . . . , is the sequence of i.i.d. random variables with the probability mass
function

P(Yi = n) = 1
(eν − 1)

νn

n!
, n = 1, 2, . . . ,

which are independent of the Poisson process Nα,ν(t) with parameter α(eν − 1).

Remark 3.3: Note that the distribution of the jumps Yi, i = 1, 2, . . ., is the zero-truncated
Poisson distribution.

Similarly as in the previous subsection, we consider the OU process (8) with the BDLP
Z(t) = Bα,ν(t), t ≥ 0, given by (19). It turns out that this process corresponds to an infinite
superposition of independent DOU processes.

Theorem 3.6: Let XBT(t), t ≥ 0, be a stationary solution of the stochastic differential
Equation (8) with the BDLP Z(t) = Bα,ν(t), t ≥ 0, the Bell-Touchard process. Then

{
XBT(t), t ≥ 0

}
fdd=
⎧⎨⎩
∞∑
j=1

Xθj,j(t), t ≥ 0

⎫⎬⎭ ,
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where Xθj,j(t), j ≥ 1, are independent DOU processes with parameters θj = ανj

j! and aj = j.
Mean and covariance functions of Xα,ν(t), t ≥ 0, are given by

EXBT(t) =
∞∑
j=1

j
ανj

j!
= ανeν ,

Cov(XBT(t),XBT(t + τ)) = αeν

2
ν(ν + 1)e−λτ .

Proof: Since

κBα,ν (z) = α(eν − 1)

⎛⎝ ∞∑
j=1

eijz
1

(eν − 1)
νj

j!
− 1

⎞⎠ = α ∞∑
j=1

νj

j!
(
eijz − 1

)
,

similarly as in the proof of Theorem 3.5 we have that

κ(XBT(t1),...,XBT(tm))(z1, . . . , zm) =
∫

R

λκBα,ν

( m∑
l=1

zle−λ(tl−s)1[0,∞)(tl − s)

)
ds

=
∞∑
j=1

∫
R

λα
νj

j!

(
ei
∑m

l=1 jzle−λ(tl−s)1[0,∞)(tl−s) − 1
)
ds

=
∞∑
j=1

∫
R

λκN
α ν

j
j! ,j

( n∑
l=1

zle−λ(tl−s)1[0,∞)(tl − s)

)
ds

=
∞∑
j=1

logEei(z1Xθj ,j(t1)+···+znjXθj ,j(tn)),

where for each j = 1, . . . , k, Xθj,j(t), t ≥ 0, is the DOU process with parameters θj = ανj

j!

and aj = j, driven by the Poisson process N
α ν

j
j! ,j
(t) with rate parameter α ν

j

j! and jumps of

size j. �

4. Superpositions of DOU processes

While OU type processes provide stationarymodels with flexible choice of marginal distri-
butions, the correlation function of these processes always decays exponentially. However,
by considering superpositions of such processes, different correlation structures may be
obtained. Superpositions of OU type processes have been introduced in [2], see also [6,8].
The basic idea of the construction is to randomize the parameter λ in (9). Instead of fol-
lowing [2], we shall introduce supOUprocesses using the parametrization from [20] which
is more suitable for simulation and corresponds better to the definition (9).
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LetZ(t), t ≥ 0, be a Lévy process such thatE log(1+ |Z(1)|) <∞ and having the Lévy-
Khintchine characteristic triplet (b, σ 2,μ) such that

κZ(z) = izb− 1
2
z2σ 2 +

∫
R

(eizx − 1− izx1[−1,1](x))μ(dx).

The second ingredient in the construction of the superposition process is a measure π on
R
+ such that

η−1 :=
∫

R+
ξ−1π(dξ) <∞. (20)

The quadruple (b, σ 2,μ,π) is sometimes called the generating quadruple [20]. Suppose
that Lévy basis � is a homogeneous infinitely divisible independently scattered random
measure on S = R+ × R such that

κ�(A)(z) = logEeiz�(A) = (π × Leb)(A)κZ(z), A ∈ B(R+ × R),

where Leb denotes the Lebesgue measure on R. A superposition of OU type processes
(supOU) is defined as the following stochastic integral with respect to� [2,20]

Y(t) =
∫

R+

∫
R

e−ξ(t−s)1[0,∞)(t − s)�(dξ , η ds). (21)

The existence of the integral in (21) was proven in [2] and the equivalence of different
parametrizations was shown in [20], see also [6]. The supOU process is strictly station-
ary and its stationary distribution is a self-decomposable distribution determined by the
BDLP Z(t) similarly as with the OU type processes. Moreover, for 0 ≤ t1 < · · · < tm, the
cumulant function of finite dimensional distributions is given by

κ(Y(t1),...,Y(tm))(z1, . . . , zm) =
∫

R+

∫
R

ηκZ

( m∑
l=1

zle−ξ(tl−s)1[0,∞)(tl − s)

)
dsπ(dξ). (22)

In particular, the relation (10) between cumulant functions holds. The correlation function
of Y(t), if it exists, is given by

r(τ ) = Corr(Y(t),Y(t + τ)) = η
∫ ∞
0

ξ−1e−τξπ(dξ), τ ≥ 0. (23)

Thus, it follows that ∫ ∞
0

r(τ ) dτ = η
∫ ∞
0

ξ−2π(dξ), (24)

and this integral can be both finite and infinite. Hence, we will say that a supOU process
exhibits long-range dependence (has a long memory) if the integral in (24) is infinite and
we will say that it exhibits a short-range dependence (short memory) otherwise. Moreover,
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if π is regularly varying at zero, i.e.

π((0, ξ ]) ∼ �(ξ−1)ξ 1+α , as ξ → 0, (25)

for some α > 0 and a slowly varying function �(·) at infinity, then

r(τ ) ∼ η(1+ α)
�(α)

�(τ )τ−α , as τ →∞,

see [30]. In particular, if α ∈ (0, 1) in (25), then the supOU process exhibits long-range
dependence; see [20] and [29] for details. Overall, we can see that the supOU processes
form a wide class of stochastic processes and the representation (21) enables one to inde-
pendently model marginal distributions by the choice of the BDLP and the correlation
structure by the choice of the measure π .

4.1. Dickman supOU processes

Let π be any measure on R+ such that (20) holds and let Z(t), t ≥ 0, be a Poisson process
with parameter θ and jumps of size a>0 such that κZ(z) = θ(eiaz − 1), and the Lévy-
Khintchine triplet is

b =
{
aθ , if a ≤ 1
0, if a > 1

, σ 2 = 0, μ = θδa, (26)

where δa is the Dirac measure concentrated at a.
It follows from (11) that the supOU process Y(t), t ≥ 0, with generating quadruple

(b, 0,μ,π) has the GD(θ , a) marginal distribution and the correlation function (23). We
will refer to this class of supOU processes as Dickman supOU processes (supDOU). Note
that for any choice of the measure π on R+ we get one example of a stationary process
with Dickman marginals. We now consider some examples for specific choices of π .

Example 4.1: Suppose that π is degenerate such that π({λ}) = 1 for some λ > 0. Then
it follows from (22) since η = λ that the finite dimensional distributions of the supDOU
process are the same as for the standard OU type process (9), that is

κ(Y(t1),...,Y(tm))(z1, . . . , zm) =
∫

R

λκZ

⎛⎝ m∑
j=1

zje−λ(tj−s)1[0,∞)(tj − s)

⎞⎠ ds.

Example 4.2: Suppose π is a discrete probability measure such that π({λj}) = pj, j ∈ N,
λj > 0 and suppose that (20) holds, i.e.

η−1 =
∞∑
j=1

λ−1j pj <∞.
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Then we have from (22) that the supDOU process has the cumulant function of finite
dimensional distributions given by

κ(Y(t1),...,Y(tm))(z1, . . . , zm) =
∞∑
j=1

∫
R

ηpjκZ

( m∑
l=1

zle−λj(tl−s)1[0,∞)(tl − s)

)
ds

=
∞∑
j=1

∫
R

λj
ηpj
λj
κZ

( m∑
l=1

zle−λj(tl−s)1[0,∞)(tl − s)

)
ds.

Hence, a supDOU process Y(t), t ≥ 0, has the same finite dimensional distributions as

{Y(t), t ≥ 0} fdd=
⎧⎨⎩
∞∑
j=1

X(λj)θj,a (t), t ≥ 0

⎫⎬⎭ ,

where X(λj)θj,a (t), t ≥ 0, are independent DOU processes with parameters θj = ηpj
λj
θ , aj = a

and mean-reverting parameter λj.

Example 4.3: Let π be the gamma distribution Gamma(1+ α,β) for some α > 0 and
β > 0 given by the density

p(ξ) = β1+α

�(1+ α)ξ
αe−βξ , ξ > 0,

where �(·) is the gamma function. Then (20) holds and a resulting supDOU process has
GD(θ , a)marginals and the correlation function can be explicitly computed to be

r(t) =
(
1+ t

β

)−α
, t ≥ 0.

In particular, for α ∈ (0, 1) we obtain a long-range dependent process with Dickman
marginals.

More examples of possible choices of π and corresponding supOU processes are given
in [3].

4.2. Limit theorems for supDOU processes

Let Y(t), t ≥ 0, be a supDOU process with parameters θ > 0 and a>0. Denote Y∗(t), t ≥
0, the integrated supDOU process

Y∗(t) =
∫ t

0
(Y(u)− θ) du,

Limit theorems for integrated supOUprocesses have been proved in [30] for the finite vari-
ance case and in [31] for the infinite variance case. We apply now these results to supDOU

processes. In the following, fdd→ denotes convergence of all finite-dimensional distributions



STOCHASTICS 15

and de Bruijn conjugate ��(·) of some slowly varying function �(·)which is a unique slowly
varying function such that �(x)��(x�(x))→ 1 and ��(x)�(x��(x))→ 1 as x→∞ see [12,
Theorem 1.5.13].

Corollary 4.4: (1) If
∫∞
0 ξ−2π(dξ) <∞, then{

1
T1/2Y

∗(Tt)
}

fdd→ σ̃B(t) as T →∞,

where {B(t), t ≥ 0} is the standard Brownian motion and σ̃ 2 = ηa2θ ∫∞0 ξ−2π(dξ).
(2) If

∫∞
0 ξ−2π(dξ) = ∞, assume that π has a density p(x) such that for some α ∈ (0, 1)

and �(·) is slowly varying at infinity

p(x) ∼ (1+ α)�(x−1)xα , as x→ 0.

Then {
1

T1/(1+α)��(T)1/(1+α)
Y∗(Tt)

}
fdd−→ {S1+α(t)}, as T →∞,

where ��(·) is de Bruijn conjugate of 1/�(x1/(1+α)) and {S1+α(t)} is the (1+ α)-stable
Lévy process such that

κS1+α(1)(z) = −|z|1+α
�(1− α)
−α θη−1a1+α cos

(
π(1+ α)

2

)
×

×
(
1− i sign(z) tan

(
π(1+ α)

2

))
.

Proof: The statement follows fromTheorems 3.2 and 3.4 in [30] since the supDOUprocess
has finite variance and the Blumenthal-Getoor index of the BDLP is 0. �

The convergence inCorollary 4.4(i) can be extended toweak convergence in the space of
continuous functions C[0, 1] with uniform topology provided that additionally the fourth
moment is finite (which is always true for the Dickman distribution) and

∫∞
0 ξ−3π(dξ) <

∞, see [30] for details.
Integrated supOU processes with long-range dependence exhibit another interesting

limiting behaviour called intermittency, see [30].

Definition 4.5: For a stochastic process X(t), t ≥ 0, let

τX(q) = lim
t→∞

logE|X(t)|q
log t

denote its scaling function which measures the rate of growth of moments as time goes to
infinity. We will say that the process X(t) exhibits the intermittency property if there exists
q∗ such that the function q→ τX(q)/q is strictly increasing on [q∗,∞).
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For the integrated supDOU processes Y∗(t), t ≥ 0, the scaling function τY∗(q)/q is
constant if, for example, the measure π is concentrated on a finite set; specifically, we have

τY∗(q) = 1
2
q.

However, under the assumptions of Corollary 4.4(i), if we additionally assume that (25)
holds with α > 1, then the scaling function has the form

τY∗(q) =
⎧⎨⎩
1
2
q, 0 < q ≤ 2α,

q− α, q ≥ 2α,

and under the assumptions of Corollary 4.4(ii) the scaling function has the form

τY∗(q) =
⎧⎨⎩

1
1+ α q, 0 < q ≤ 1+ α,
q− α, q ≥ 1+ α.

Since in both cases τY∗(q)/q is strictly increasing for q>2 and q > 1+ α respectively, such
integrated supDOU processes exhibit intermittency, see [28–30,32] for details.

5. Simulations

For the simulation of the DOU process (12) we use Algorithm 1 which is based on
the Markovian property of the OU process and representation (16). Figure 2 shows the
simulated paths with parameters a = 1, θ = 3, λ = 1 on intervals [0, 10] and [0, 300].

Algorithm 1 Simulation of the DOU process
1: function DOU_Random(θ , λ, T, dt)
2: n← 1+ �T/dt�
3: OU ← rep(0, n)
4: OU[1]← DickmanRandom(θ)
5: time← 0
6: τ ← ExponentialRandom(θ ∗ λ)
7: for i← 1 to n− 1 do
8: time← time+ dt
9: if time ≥ τ then
10: OU[i+ 1]← exp(−λ ∗ dt) ∗ OU[i]+ 1
11: τ ← τ + ExponentialRandom(θ ∗ λ)
12: else
13: OU[i+ 1]← exp(−λ ∗ dt) ∗ OU[i]
14: end if
15: end for
16: return OU
17: end function
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Figure 2. Sample trajectories of the DOU process with a = 1, θ = 3, λ = 1 on the interval [0, 10] (left)
and the interval [0, 300] (right).

Figure 3. Sample trajectories of the supDOU processes, where π is given by the density of the gamma
distribution with α = 0.1 (left) and α = 5 (right).
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Next, we consider the supDOU processes. The Lévy basis� in the definition of the sup-
DOU process has a generating quadruple (b, 0,μ,π) given by (26) with arbitrary measure
π satisfying (20). Using [6, Theorem 2.2], we consider a modification of � such that for
A ∈ B(R+ × R) we have

�(A) =
(
b−

∫
|x|≤1

xθδa(dx)
)
(π × Leb)(A)+

∫
A

∫
R

xN(dξ , ds, dx),

where N is an independent Poisson random measure on R− × R× R with intensity π ×
Leb× μ. Hence we get that

�(A) =
∞∑

k=−∞
aδ(Rk,Sk)(A),

where −∞ < · · · < S−1 < S0 ≤ 0 < S1 < · · · <∞ are the jump times of a two-sided
Poisson process on R with intensity θ and {Rk, k ∈ Z} is an i.i.d. sequence with the
distribution π independent of {Sk, k ∈ Z}, see also [20].

Algorithm 2 Simulation of the supDOU process
1: function supDOU_Random(α, θ , Tmin, T, dt)
2: n← 1+ �T/dt�
3: t← vector(0, dt, 2 dt, . . . , (n− 1) dt)
4: Xsup← rep(0, n)
5: τ ← Tmin + ExponentialRandom(θ)
6: N ← 1
7: arrivals[1]← τ

8: while τ ≤ T do
9: τ ← τ + ExponentialRandom(θ)
10: N ← N + 1
11: arrivals[N]← τ

12: end while
13: R← GammaRandom(N, shape = α + 1, rate = α)
14: for i← 1 to n do
15: maxIndex← max{j : arrivals[j] ≤ t[i]}
16: Xsup[i]←∑maxIndex

k=1 exp(−R[k] ∗ (t[i]− arrivals[k]))
17: end for
18: return Xsup
19: end function

Therefore, the supDOU process can be represented as

Y(t) =
∞∑

k=−∞
ae−Rk(t−Sk)1[0,∞)(t − Sk), (27)

which is convenient for simulation of the supDOU process.
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In case of a supDOU process with a discrete measure π , see Example 4.2, we have

{Y(t), t ≥ 0} fdd=
⎧⎨⎩
∞∑
j=1

X(λj)θj,a (t), t ≥ 0

⎫⎬⎭ ,

whereX(λj)θj,a (t), t ≥ 0, are independent supDOU processes with parameters θj = ηpj
λj
θ , aj =

a and mean-reverting parameter λj. The trajectories of this process can be approximated
using finite sums or (27), where the sequence {Rk, k ∈ Z} is sampled from the discrete
distribution π .

Consider now the case of the continuous measure π , for example, let

π(dx) = αα+1

�(α + 1)
xαe−αx1(0,∞)(x) dx, α > 0,

as in Example 4.3. Then we obtain Algorithm 2which uses (27) to build sample trajectories
of the supDOUprocess. The infinite sum in (27) is truncated using an additional parameter
Tmin, e.g. we can choose Tmin = −1000 for simulation. Note that in this case the supDOU
has a long memory whenever 0 < α < 1 and a short memory otherwise. We choose α =
0.1, α = 5 and a = 1, θ = 2. Note that both processes on Figure 3 are stationary processes
with the same marginal distribution GD(2, 1) but different correlation structures.
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