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Summary 

 Plastic is essential in modern society, yet over-use and improper disposal 

have increased microplastic pollution dramatically over the past century. 

Microplastics pose unique physical, chemical, and biological threats to the 

environment, with particular concern for freshwater ecosystems due to their proximity 

to microplastic sources, importance for biodiversity, and role in human well-being. 

Despite growing research on microplastic distribution, load, and ecological effects in 

freshwater systems, substantial gaps remain. Major challenges include: (i) both the 

dynamic nature of freshwater ecosystems and complex behaviour of microplastic 

particles; (ii) poorly resolved interactions between microplastics and organisms over 

space and time; and (iii) inconsistencies in research methodologies. 

 This thesis empirically assesses some ecological risks of freshwater 

microplastic pollution at the global, catchment, and reach scale in four steps. First, 

published studies are reviewed to identify trends in microplastic distribution in 

freshwater ecosystems across a hierarchy of spatial and temporal scales. Next, 

methodologies to sample, extract, quantify and characterise microplastic are 

evaluated to determine how varying protocols might influence estimated loads and 

trends. Third, recommended protocols are used to sample microplastic 

comprehensively across the whole River Taff catchment, Wales, as a model river 

system with varying land use. Lastly, ecological interactions and impacts of 

microplastic from point sources are assessed experimentally in field stream 

mesocosms. 

 Globally, the results reveal that freshwater microplastic pollution is associated 

with urban sources and poor waste management, though variations amongst 

sources and hydrodynamics lead to site-specific exceptions. The review of methods 

reinforces the need for harmonised protocols. In the model catchment, sampling 

shows the widespread but patchy distribution of microplastic in freshwater sediment 

and invertebrates. At the reach-scale, microplastic addition can have limited 

ecological effects either reflecting limited interaction with organisms or limited 

immobilisation of microplastic under natural stream conditions. These novel findings 

contribute toward improved risk assessment. 
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Chapter 1: General Introduction 

1.1 Introduction 

Plastics are useful and ubiquitous synthetic materials that benefit humans in 

modern society. Derived mostly from fossil fuels, plastics are formed by linking 

carbon, hydrogen, and oxygen monomers into long polymer chains. Around twenty 

chemically distinct polymers serve as fundamental building blocks, including 

polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride 

(PVC), which are combined with additives to achieve specific properties. Additives 

include fillers, hardeners, flame retardants, UV and thermal stabilisers, antimicrobial 

agents, surfactants, synthetic dyes, and pigments, creating over 80,000 plastic 

formulations available commercially (Andrady 2015). Since their invention early    

20th century, plastics have radically changed society. The material can be moulded 

into virtually any shape, enabling their use in a wide range of applications across 

industries including packaging, construction, electronics, healthcare, and 

transportation (Andrady and Neal 2009). Plastics’ durability ensures products have a 

long lifespan and perform reliably in diverse environments. Lastly, their light weight 

and cost-effectiveness compared to alternative materials like metals or glass, 

reduces their carbon footprint, energy consumption, and costs associated with 

transportation and production (Amienyo et al. 2013; Stefanini et al. 2021). Yet, these 

precise advantages bring some equally harmful pitfalls.  

Plastic production has burgeoned since mass production began in the 1950s, 

reaching an annual total of 400.3 million metric tonnes (Mt) in 2022, with China alone 

responsible for a third of this output (PlasticsEurope 2023). Concomitantly, the 

worlds annual plastic waste production was 353 Mt in 2019, 22 Mt of which leaked 

into the environment through inadequate waste collection and disposal            

(OECD 2022). This leakage is estimated to rise to 90 Mt/year under ‘business as 

usual’ by 2030 or 53 Mt/year even if ambitious mitigation commitments are met by 

governments (Borrelle et al. 2020). Most plastics do not biodegrade easily and 

instead, may persist in the environment for hundreds to thousands of years  

(Chamas et al. 2020). Degradation through mechanical, chemical, and biological 

processes produces a range of material categorised by size (macro-: > 25 mm, 

meso-: 5-25 mm, micro-: 0.0001-5 mm, and nanoparticles: < 100 nm) and shape 
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(fragments, pellets, spheres, films, and fibres) (Arthur et al. 2009; GESAMP 2015). 

While plastic particles of all size classes carry environmental risks (Jâms et al. 

2020), the smaller micro- and nano-scale size fractions have attracted particular 

interest, in part because they account for over 90% of plastic waste in the marine 

environment (Eriksen et al. 2014). Microplastics are classified into two broad groups: 

primary microplastics manufactured at this size, such as nurdles and microbeads for 

cleaning products and cosmetics (Zitko and Hanlon 1991), air blasting, and 

medicinal drug vectors (Patel et al. 2009); and secondary microplastics degraded 

from larger plastic material. Microplastic has widespread documented presence 

across all environments (Akdogan and Guven 2019; Windsor et al. 2019a), including 

air (O’Brien et al. 2023), soil (Yang et al. 2021), and water bodies (Du et al. 2021).    

It has even been detected in the deep ocean (Van Cauwenberghe et al. 2013), on 

the highest mountain (Napper et al. 2020), and inside the human body                 

(Ragusa et al. 2021).  

Microplastic pose physical, chemical, and biological threats to organisms and 

ecosystems. Physically, microplastic may entangle small organisms including 

invertebrates and cause gut obstruction when ingested, which can limit energy intake 

and produces inflammatory and stress responses (Wright et al. 2013a; Wright et al. 

2013b; Steer and Thompson 2020). Chemically, microplastic may act as a source of 

metal ions and persistent organic pollutants (POPs) from their incorporated 

additives, degradation products, or chemicals sorbed from the environment     

(Teuten et al. 2007; Andrady 2011; Vieira et al. 2021). This leads to non-toxic and 

toxic effects, for example through endocrine, carcinogenic, and mutagenic pathways 

(Nobre et al. 2015; Hermabessiere et al. 2017; Li et al. 2018; Verla et al. 2019). 

Biologically, microbial communities can colonise microplastic surfaces and change 

the likelihood of their ingestion (Zettler et al. 2013; Wang et al. 2021c), while 

facilitating gene-exchange and antimicrobial resistance (Arias-Andres et al. 2018; 

Yang et al. 2019b). Consequential toxicity and impacts on individual growth and 

performance (Anbumani and Kakkar 2018) threatens populations and trophic-level 

energy transfer, potentially reducing the function of communities and ecosystem   

(Ma et al. 2020b; Ockenden et al. 2021; Amaneesh et al. 2023). Conversely, some 

literature suggested potential benefits of environmental microplastic by diluting POPs 
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in aquatic environments and reducing their bioaccumulation within organisms 

(Besseling et al. 2013; Koelmans et al. 2013; Wang et al. 2020c). 

This high abundance, widespread environmental presence, and potential risks 

create global concern for microplastic pollution. Research has historically focussed 

on the marine environment (e.g., Cole et al. 2011; Ivar do Sul and Costa, 2014; 

Alomar, Estarellas and Deudero, 2016), encompassing 87% of peer-reviewed 

publications from 1980 to May 2018 (Blettler et al. 2018). However, freshwater 

ecosystems, including lakes, ponds, rivers, streams, and wetlands, act as both major 

sinks (Free et al. 2014; Nava et al. 2023) and conduits of microplastic from the 

terrestrial to marine environment (Rech et al. 2014; Lebreton et al. 2017; Meijer et al. 

2021). Suggested sources to freshwaters include landfill and urban area runoff, 

Wastewater Treatment Plant (WWTP) and sewage system effluent, agricultural runoff 

(equipment and machinery, sewage sludge application), tyre wear particles (TWPs), 

industry pollution, and atmospheric deposition of airborne particles (Wagner and 

Lambert 2018). Freshwater ecosystems are highly important, being hotspots of 

biological diversity (Dudgeon et al. 2006) and providing critical ecosystem services 

including provision of drinking water, flood/erosion buffering, energy production, and 

cultural values (Postel and Carpenter 1997). This has led to a recent surge in 

freshwater microplastic investigation (Sarijan et al. 2021). Furthering our 

understanding of microplastic dynamics in freshwater environments is therefore 

relevant to preserving functions of freshwater ecosystems as well as cross-

ecosystem subsidies. 

Notable research gaps in freshwater microplastic pollution include the limited 

understanding of microplastic sources and transport mechanisms into and within 

freshwater ecosystems. Addressing this knowledge gap requires detailed studies on 

the occurrence and distribution of microplastics across different spatio-temporal 

scales to capture the dynamic and complex nature of both freshwater ecosystems 

and microplastic particles. Furthering our understanding of microplastic 

transportation and interaction with flow dynamics is crucial for predicting their unique 

distribution and accumulation in different freshwater systems, which will inform risk 

assessments and the development of effective management and mitigation 

strategies. The impact of microplastics on freshwater ecosystems also warrants 

more attention. Research is needed to understand how microplastics affect the 
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health and behaviour of freshwater organisms that are crucial to ecosystem function. 

Environmentally relevant conditions are essential to bridge the gap between 

laboratory-based studies and real-world scenarios, ensuring that research on 

microplastics accurately reflects the complex interactions and impacts in natural 

freshwater systems. Additionally, the interplay between microplastic pollution and 

other environmental stressors, such as climate change and shifts in water quality, 

requires further investigation to understand how these factors compare to or 

influence microplastic distribution and effects. Lastly, the effect of inconsistent and 

unstandardised methods for extracting, quantifying, and characterising microplastics 

is poorly understood. 

 

1.2 Aim of the thesis 

The overarching aim of this thesis was to identify sources, fluxes, and 

endpoints of microplastic pollution in freshwater ecosystems at different spatial and 

temporal scales, while assessing the influence of methodological technique. The 

overall thesis hypotheses are: (i) microplastics occur widely in freshwater 

ecosystems from the local to the global scale, and interact with organisms to affect 

individuals, communities, and ecological processes; and (ii) clarity over 

understanding these effects is affected by methodological challenges. Data were 

collected through systematic literature reviews, secondary datasets, and primary 

data collection from the field and constructed mesocosm experiments. Analyses 

ranged in spatial coverage from global freshwater ecosystems to individual 

catchments (e.g., River Taff, South Wales) to local habitats (e.g., stream leaf litter). 

The thesis is divided into several chapters for which, the background, aims and 

objectives are as follows. 

 

Chapter 2: Bridging the gap between the spatio-temporal distribution of 
microplastics in freshwater ecosystems and biological exposure. 
 Data on both spatial and temporal trends of microplastic in freshwater 

ecosystems are scarce, especially across different hierarchical scales. This chapter, 

therefore, provides systematic review and meta-analysis of field data on microplastic 

in freshwater matrices to assess spatial patterns at local, catchment and global-

scales, and temporal trends over hours to years. Analysis includes geographical links 
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with economic development and land-use, as well as evaluation of abiotic and biotic 

variables that influence reported microplastic loads and characteristics. By 

summarising current research and identifying knowledge gaps, the synthesis 

presented provides context and reasoning for subsequent primary data chapters. 

 
Chapter 3: A global review and analysis of microplastic extraction and 
analytical methods in freshwater ecosystems. 
 Wide variation in reported microplastic concentrations within the freshwater 

environment creates concern about the influence of research methodology on 

reported loads. Moreover, lack of methodological standardisation complicates the 

determination of the most effective and accurate protocol. This chapter, therefore, 

builds and complements Chapter 2 by appraising techniques to sample, extract, and 

characterise microplastic particles from different freshwater matrices. The analysis 

enables the evaluation of advantages and disadvantages to different equipment and 

protocols, leading to recommendations for best practice. The synthesis presented in 

this review provides methodological context for subsequent primary data chapters as 

well as summarised criteria to identify and characterise microplastic particles. 

 
Chapter 4: Microplastic in the sediments and invertebrates of an urban river 
system. 
 Stratified sampling of microplastic distribution across whole freshwater 

catchments is limited, considering the variability in spatial trends of freshwater 

microplastic and effects of site-specific hydrodynamics investigated in Chapter 2. 

Moreover, freshwater microplastic research is biased towards the water column, 

reducing understanding of factors influencing contamination of sediment and biota. 

This chapter sampled microplastic contamination in sediment and invertebrates at  

38 sites across a whole river catchment, using the River Taff in Wales as a model. 

This aims to identify trends in microplastic distribution from upstream to downstream 

and associations with land-use variables, whilst attempting to identify major point 

sources. Sampling four different feeding guilds of macroinvertebrates enables the 

investigation of microplastic entry into freshwater food webs, with the aim to identify 

microplastic bioindicators. Sediment sampling will provide further evidence into its 

role as a microplastic sink in freshwater ecosystems. 
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Chapter 5: Comparing methods to extract microfibres from leaf litter 
decomposing in fresh water. 
 Lack of standardisation in methods to sample freshwater media and extract, 

quantify, and characterise microplastic makes experimental design difficult when 

investigating microplastic loads in poorly researched media. This chapter develops, 

describes, and compares methods to extract microplastic from submerged leaf litter. 

The aim is to identify methodological pitfalls and validate methods through 

microplastic recovery assessment. Addressing this research gap is important in the 

context of the thesis and in particular, methodological development to support 

assessment of microplastic capture by submerged leaf litter in Chapter 6. 

 

Chapter 6: Microplastic addition has minimal effects on invertebrate 
communities or litter decomposition in stream mesocosms of differing pH. 

Research into the effects of microplastic on freshwater ecosystems has 

primarily been conducted on individual organisms in controlled, single-species 

laboratory experiments with unnatural microplastic concentrations. Concern is 

growing over increased release from either wastewater treatment or spills from 

Combined Sewer Overflows (CSOs), where microplastic is not removed from 

wastewater. This chapter investigates the interaction of microplastic from point and 

pulse sources with allochthonous material and aquatic invertebrates, with the aim to 

assess potential effects at the population (macroinvertebrate density), community 

(diversity; abundance of different feeding guilds), and ecosystem level, specifically 

affecting ecosystem processes (leaf litter decomposition). By utilising field 

mesocosms at contrasting pH, the aim is to create environmental realism. 

Addressing this research gap in association with pH supports environmental risk 

assessments and effective management when multiple stressors are at play. 

 

Chapter 7: General discussion. 
The final chapter synthesises the outcomes from Chapters 2-6. This 

discusses how microplastic distributional trends and knowledge gaps were identified 

and research methods were synthesised, to inform catchment-scale and local-scale 

assessment of microplastic fate, flux, and effect in running freshwater ecosystems. 

Research design is reviewed to draw upon general caveats of thesis results and 
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comment on the potential efficacy of environmental microplastic monitoring to inform 

regulation and policy. The chapter finishes by discussing future research directions 

that stem from this thesis, including the required harmonisation of microplastic 

extraction methodology and necessary developments required to understand fully 

the risk presented by microplastic to freshwater ecosystems. 
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Chapter 2: Bridging the gap between the spatio-temporal 
distribution of microplastics in freshwater ecosystems and 
biological exposure 

 

2.1 Abstract 

Although evidence of microplastic transport in freshwater ecosystems is 

growing rapidly, available data are fragmentary. This chapter presents a quantitative 

review of microplastics in freshwater ecosystems from 300 field studies to appraise 

(i) spatial patterns at local, catchment, and global-scales and (ii) temporal trends 

over hours to years. This review extends previous work in using a uniquely 

hierarchical approach in space and time to identify research needs, as well as 

improving our understanding of organism exposure. 

Reported microplastic concentrations in water and sediment are aggregated 

in distribution and range over eleven orders of magnitude. Values are greater in 

urban regions and in less developed compared to more developed countries, but 

data are skewed to the global North and patchy across spatial scales. Temporal 

effects such as hydrological events influence microplastic concentrations, such as 

the increase in concentration during winter, but have been assessed in less than a 

quarter of available studies and seldom over complete hydrological events. Over 

both space and time, microplastic concentration in freshwater follows one of two 

opposing mechanisms: (1) resuspension and (2) dilution, respectively increasing or 

decreasing with greater water flow. Microplastic data from freshwater organisms are 

limited and biased towards fishes. Studies indicate the lowest microplastic 

abundance per individual in bivalves and greatest in ray-finned fishes, and suggests 

a rise in microplastic abundance per unit mass with increasing body size. Multiple 

biotic variables have varying influence on microplastic uptake across biota, which 

may change over space and time, yet more research is needed to further this 

understanding. 

Integrated, interdisciplinary studies are needed to link microplastic distribution 

to biological exposure including: (i) micro-distributional patterns where organisms 

occur; (ii) catchment-scale variations; (iii) temporal dynamics from hydrological 

events to interannual trends; and (iv) interactions with other pressures, for example 
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climate change. Gaps for freshwater biota include: (i) variations in exposure across 

levels of organisation; (ii) effects of contrasting life-history traits; (iii) characterisations 

of polymer types and additives most likely to affect organisms; (iv) the role of 

organisms as biological indicators; and (v) microplastic effects on ecological 

processes. Previous interdisciplinary studies of other freshwater stressors at multiple 

scales provide models to advance understanding on freshwater microplastic 

pollution. 

 

2.2 Introduction 

Microplastic has widespread documented presence across all environments 

(Akdogan and Guven 2019; Windsor et al. 2019a), persisting for hundreds to 

thousands of years (Chamas et al. 2020) and posing physical, chemical, and 

biological threats to organisms and ecosystems (Issac and Kandasubramanian 

2021; Dissanayake et al. 2022). Research into microplastics has increased rapidly 

over the last decade, but there is still considerable imbalance both across and within 

ecosystems in knowledge of their occurrence, behaviour, and potential effects. 

Within the aqueous environment, most literature focused on marine ecosystems 

(e.g., Galloway et al. 2017; Tsang et al. 2017; Duncan et al. 2019). More recently, 

attention has turned to standing and running freshwater ecosystems for three 

principal reasons. Firstly, their proximity to terrestrial sources of microplastic (Auta et 

al. 2017) means freshwater ecosystems are at significant risk of microplastic 

pollution. These include point sources of industry outflows, Wastewater Treatment 

Plants (WWTPs), and Combined Sewer Overflows (CSOs) (Woodward et al. 2021), 

that can be traced to a single origin. Microplastics are also easily transported into 

freshwater by wind or surface water runoff (Windsor et al. 2019a). These diffuse 

sources include sewage sludge (Hatinoğlu and Sanin 2021), plasticulture (Mormile et 

al. 2017), litter, urban dust, and tyre wear (Wagner et al. 2018). As a result, standing 

waters can be significant stores of microplastic (Vaughan et al. 2017), while flowing 

waters could contribute up to 80% of the plastic entering marine systems (Cole et al. 

2011; Jambeck et al. 2015; Akdogan and Guven 2019; Lebreton and Andrady 2019). 

Secondly, physico-chemical conditions differ between freshwater and marine 

environments in ways that influence microplastic occurrence and behaviour. 

Differences in salinity (<1% and ~3.5%, respectively), water density (1 g/ml and 
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1.025 g/ml, respectively), extent, depth distributions, bed substrata, hydraulic 

character and currents may all affect plastic buoyancy and dispersion, while 

differences in temperature and UV penetration are likely to affect plastic degradation 

(Simpson et al. 2005; Eerkes-Medrano et al. 2015). Thirdly, evidence has 

accumulated to illustrate how freshwater organisms are now exposed to 

microplastics either directly (Atici 2022) or through food-web transfer (D’Souza et al. 

2020). 

Despite the increasing volume of data, however, information on microplastics 

in freshwater ecosystems is still fragmentary, and few available reviews provide a 

systemic, quantitative assessment of microplastic distribution (e.g., Cera et al. 2020; 

Li et al. 2020). Reviews specifically assessing sources, fluxes, fates, and biological 

interactions involving microplastics are more qualitative (Eerkes-Medrano et al. 

2015; Lu et al. 2021; Sarijan et al. 2021). These circumstances prevent the accurate 

assessment of freshwater microplastic loads, making it difficult to compare different 

regions or sources and track changes over time. This limits our understanding of 

exposure risk to organisms and prevents evidence-based management options in 

freshwater ecosystems. 

This systematic, quantitative review of field data on microplastic in freshwater 

matrices aimed to: (i) summarise current knowledge on the abundance and 

distribution of microplastic over different spatial and temporal scales, including 

geographical links with economic development; (ii) evaluate abiotic and biotic 

variables that influence reported microplastic loads and characteristics; and            

(iii) review knowledge gaps and deficits in order to recommend future research 

particularly with respect to organismal exposure. This provides a more quantitative 

insight than previous reviews that are also based on an array of freshwater 

microplastic studies (Eerkes-Medrano et al. 2015), and answers seminal calls for 

expanded effort and prioritisation of microplastic research in the context of 

freshwaters. In contrast to previous reviews, this work takes an explicitly scale-

dependent and hierarchical approach to distribution and exposure patterns in space 

and time. Lastly, knowledge gaps are identified to provide context for subsequent 

primary data chapters and future research. 
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2.3 Methods 

2.3.1 Data sources 

Literature was collected following procedures recommended by the ‘Preferred 

Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)’ approach 

(Moher et al. 2009, Figure 2.1). Peer-reviewed, primary literature written in English 

were retrieved from the Web of Science and Google Scholar databases up to 3rd 

August 2022 by searching titles, abstracts and keywords with combined search 

terms including ‘microplastic*’ or ‘micro-sized plastic*’ or ‘micro sized polymer*’ or 

‘synthetic polymer*’ and ‘freshwater’ or ‘river’ or ‘lake’ or ‘water’ or ‘sediment’, 

producing 3,059 results. Secondary references from these sources were also 

searched. These articles were screened, refined, and accepted if they: (i) sampled a 

freshwater environment (river, stream, canal, lake, pond, reservoir, wetland, and 

surface runoff); (ii) sampled water, benthic sediment, and/or biota associated with 

freshwater; and (iii) extracted and quantified microplastic particles (< 5 mm in size 

and any shape). Studies reporting meso- and macro-plastics or those sampling 

marine or estuarine environments were excluded. The final sample of 300 articles 

(Table A1) covered the period 23rd November 2010 (Moore et al. 2011) to 19th 

September 2022 (Zhang et al. 2022b), with almost three quarters published from 

2019 onwards and numbers expected to grow further (Figure 2.2). While this sample 

cannot be exhaustive given the current rates of publication, it is viewed as a 

representative sample within the above definitions and at the timepoint prior to 

subsequent primary data chapters. Limitations also arise from the different 

definitions of microplastic, including their size and shape (Frias and Nash 2019), 

while methods of sampling environmental matrices, extracting particles, and 

identifying polymers also vary between studies (Li et al. 2018; Stock et al. 2019). For 

example, methods using finer sieves, larger sampling volumes, and/or accurate 

spectroscopic polymer identification methods would capture more particles, whilst 

methods of contamination control prevent particle overestimation. 
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Figure 2.1 PRISMA literature search flow diagram (Moher et al. 2009) stating the 

number of studies identified, screened, retained and discarded. 
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Figure 2.2 Frequency of published freshwater microplastic studies (bars) 

with non-linear polynomial regression (red line; F(2, 9) = 198.4, R2 = 0.888, 

p < 0.005). 
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Qualifying studies were classified by freshwater ecosystem type          

(flowing: river (e.g., Dris et al. 2025), canal (e.g., Leslie et al. 2017), stream (e.g., 

Dahms et al. 2020), creek (e.g., Moore et al. 2011), surface runoff (e.g., Grbic et al. 

2020); standing: pond (e.g., Turner et al. 2019), lake (e.g., Xia et al. 2020), reservoir 

(e.g., Lin et al. 2021), stormwater retention pond (e.g., Liu et al. 2019a), wetland 

(e.g., Abbasi 2021)) and by the matrix sampled: water (surface (e.g., Mao et al. 

2020a), column (e.g., Park et al. 2020b, bed (e.g., Kay et al. 2018)), suspended 

particulate matter, sediment (benthic (e.g., Lenaker et al. 2021), shore (e.g., Jiang et 

al. 2018)) and biota (with taxon and species where available: Table 2.1). Eighteen 

studies investigated both standing and flowing freshwaters, and 103 studies sampled 

more than one type of environmental matrix (Table 2.1). Snow, ice, and suspended 

particulate matter were only sampled in three studies and were excluded from further 

evaluation. Information was extracted, where possible, on sample location (country), 

sample time, sample matrix, abundance of microplastics reported (as range and 

means of concentration by mass, particles number or percentage prevalence), and 

qualitative spatial and temporal relationships. This allowed analysis of freshwater 

microplastic concentration across space at a global, catchment, and local scale, and 

through time at an inter-annual, intra-annual, and circadian scale. To assess the 

global distribution of microplastic freshwater ecosystems, standardised average 

concentrations from selected studies were converted to arithmetic means per 

continent and per country. 
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Table 2.1 Number of studies sampling static and flowing freshwater ecosystems, 

sub-categorised by freshwater matrices at two levels. L1 and L2 are level 1 and level 

2, respectively. Data from n = 300 reviewed studies. 

 

 Sample matrix 

Sample system L1 L2 

Flowing 211 Water 147 Surface 140 

Column 10 

Bed 3 

Sediment 89 Benthic 76 

Shore 13 

Organism 57 Insecta 9 

    Malacostraca 7 

    Gastropoda 6 

    Bivalvia 3 

    Clitellata 4 

    Actinopterygii 42 

    Amphibia 0 

    Aves 2 

    Angiospermae 0 

    Mammalia 1 

    Biofilm 1 

    Zooplankton 0 

Static 113 Water 74 Surface 71 
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  Column 6 

  Bed 1 

  Sediment 62 Benthic 48 

  Shore 16 

  Organism 26 Insecta 1 

    Malacostraca 2 

    Gastropoda 3 

    Bivalvia 1 

    Clitellata 0 

    Actinopterygii 16 

    Amphibia 3 

    Aves 3 

    Angiospermae 1 

    Mammalia 0 

    Biofilm 0 

    Zooplankton 0 

 

2.3.2 Standardisation 

 Differences in sampling techniques and limited standardisation among studies 

(see Chapter 3) resulted in 69 different forms of units to describe microplastic 

concentration in water, sediment, and organisms (Table A2). Where possible, 

reported microplastic concentration in water were converted to concentrations in 

particles/m3. This required the assumption that 1 item/m2 = 1 particle/m3, 1 item/km2 

= 10-6 particles/m3, and 1 particle/L = 103 particles/m3, further assuming an average 

water depth per unit area of 1 m (Chen et al. 2020b). Only microplastic concentration 

in sediment recorded in particles/kg were assessed, as this was the most common 



17 
 

recording unit. However, some studies did not state whether sediment 

concentrations were recorded on a wet- or dry-weight basis and thus, all sediment 

concentrations were used in analysis, whether dried or not. 

 

2.3.3 Statistical analysis 

 Global increase in plastic production and consumption led to the hypothesis of 

higher microplastic concentrations in freshwater ecosystems in more economically 

developed countries and in urban areas. Average microplastic concentration was 

therefore compared between countries categorised as less developed (n = 26) and 

more developed (n = 34) , where the UN Human Development Index was < 0.8 and 

> 0.8, respectively (United Nations 2019). Country-averaged microplastic 

concentrations in water (particles/m3) were not normally distributed (Shapiro-Wilk 

test: W = 0.201 and 0.244 for less developed and more developed countries, 

respectively, both with p < 0.01), although more developed country data could be 

normalised by Ordered Quantile transformation (best transformation based on 

Pearson P test). Concentrations in economically less developed and developed 

countries were therefore compared using the non-parametric Mann-Whitney-

Wilcoxon test. Country-averaged microplastic concentration in sediment 

(particles/kg) were both normally distributed after Ordered Quantile normalising 

transformation (W = 0.999 and 0.997 for less developed and more developed 

countries, respectively, both with p < 0.01) and thus, were compared using unpaired 

2-sample t-test. Furthermore, general linear regression modelling (GLM) was used to 

test whether country-averaged freshwater microplastic concentration (particles/m3) 

could be predicted by social measures obtained from United Nation’s 2021 

International Statistical Yearbook (Department of Economic and Social Affairs, 

Statistics Division 2021). Variables were transformed to ensure normal distribution 

(Table A3), creating normally distributed residuals (Shapiro-Wilk test: W = 0.965,      

p = 0.443) with uniform variances. 

Average microplastic concentration in water and sediment were compared 

independently between static and flowing ecosystems. All datasets initially had 

distributions departing significantly from normality (W = 0.119, 0.153, 0.139, 0.093, 

for static water, flowing water, static sediment, and flowing sediment, respectively, all 
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with p < 0.01) and so were transformed using Ordered Quantile Normalisation (best 

transformation based on Pearson P test: p = 1.207, 1.247, 1.560, 1.546, for static 

water, flowing water, static sediment, and flowing sediment, respectively) resulting in 

Normal distributions (W = 0.988, 0.997, 0.996, 0.999, for static water, flowing water, 

static sediment, and flowing sediment, respectively, all with p > 0.05) allowing 

comparison using unpaired 2-sample t-test. 

 

2.4 Spatial pattern 

2.4.1 Global scale 

Published microplastic data on freshwater ecosystems comes mostly from 

Asia (n = 127; 68% of which are in China), then Europe (n = 88), North America      

(n = 54), Africa (n = 17), South America (n = 11), and Oceania (n = 4) (Table A1). 

Currently less than one-third of all 195 countries (n = 59) have been involved, with 

water, sediment and biota studied in 25% (n = 49), 21% (n = 40), 16% (n = 31) of all 

countries, respectively. Most investigations by county have been in China (n = 86), 

followed by the USA (n = 31), while there have been proportionately fewer freshwater 

studies in African (n = 17), South American (n = 11), and Oceanian countries (n = 4), 

and none in Antarctica. This disparity reduces the reliability of global-scale estimates 

of freshwater microplastic abundance, for example in relation to ecoregions, land-

use, culture, and development. 

For surface waters, average published microplastic concentrations rank in the 

order Asia > North America > Europe > Africa > Oceania > South America (Table A4). 

Site-specific concentrations ranged over eleven orders of magnitude  from   2.8 x10-5 

particles/m3 in Lake Veeranam, India (Bharath et al. 2021) to 4.0 x106 particles/m3 in 

the Xiangjiang River, China (Shen et al. 2021) (Figure 2.3), with an overall median of 

14 (IQR = 1,477) particles/m3. In freshwater sediments, average concentrations rank 

in the order Europe > Asia > North America > South America > Africa (Table A5), and 

ranged over three orders of magnitude from 0.81 ± 0.37 particles/kg ww in dammed 

and constructed fish ponds, Hungary (Bordós et al. 2019) to 980 particles/kg dw in 

Lake Ontario, Canada (Ballent et al. 2016) (Figure 2.3), with an overall median (x͂) of 

287 (IQR = 1,027) particles/kg. 
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Less developed countries had significantly greater median microplastic 

concentration in freshwater (x͂ = 1,324, IQR = 6,113.77 particles/m3) than developed 

countries (x͂ = 1.98, IQR = 69.08 particles/m3; Mann-Whitney-Wilcoxon: W = 9,301.5, 

p < 0.05), but there was no corresponding difference for sediment (2-sample t-test: 

t(128) = 0.009, p = 0.993) (Figure 2.4). Chen et al. (2020b) similarly found 

significantly greater microplastic concentration in freshwaters of less developed 

compared to developed countries, when reviewing 37 locations. Estimated 

microplastic outputs from European rivers modelled by Siegfried et al. (2017), also 

related to socio-economic development and wastewater treatment technology. It is 

likely that limited infrastructure and wastewater treatment in less developed countries 

reduces pollution control (Blettler et al. 2019). However, this global-scale 

assessment is constrained by incomplete coverage of the world’s countries, as well 

as factors influencing microplastic concentration over smaller spatial scales, such as 

local land-use and hydrological conditions (see sections 2.4.2 Catchment scale and 

2.4.3 Local scale). 

The attempt to model microplastic concentration by country revealed some 

relationships with socio-economic predictors. GLM regression of country-averaged 

freshwater microplastic concentration using respective human population density 

(per km2; 2021), proportion of population with access to a safe water supply (2020), 

and tourist numbers (2018; Department of Economic and Social Affairs, Statistics 

Division 2021) had the lowest Akaike Information Criterion (AIC) value, no collinearity 

between independent variables (Figure A1), and no obvious autocorrelation in the 

residual sequence (Durbin-Watson test: D-W = 1.969, p = 0.906), indicating best fit. 

This model approached formal significance (R2 = 0.246, F(28, 25) = 2, p = 0.054), 

but the relationship with human population density (per km2 in 2021) was stronger               

(β = 0.461, p = 0.034). Chen et al. (2020b) previously reported a similar effect in      

37 waterbodies, which was ascribed to greater demand for plastic products coupled 

with greater waste output. This relationship is also observed at smaller spatial 

scales, with population density and land use influencing microplastic concentration in 

29 Japanese rivers (Kataoka et al. 2019), across four estuarine tributaries of 

Chesapeake Bay, USA (Yonkos et al. 2014), and in the Biobío River, Chile (Correa-

Araneda et al. 2022) (see sections 2.4.2 Catchment scale and 2.4.3 Local scale). For 

freshwater sediment, country-averaged microplastic concentration was not 
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significantly related to any socio-economic predictors (R2 = 0.163, F(17, 14) = 2,       

p = 0.374).  

This may relate to the different dynamic forces acting on freshwater 

sediments and surface waters. Water flow immediately influences the particles 

carried by surface waters, whereas particles in sediment may be more stable over 

time and thus, microplastic loads in sediment may reflect historical, rather than 

current socio-economic conditions. This may also be true for lakes as, despite being 

classed as static systems, many are affected by currents, seiche effects, and 

turbulent mixing at a range of water depths, which all influence microplastic fate 

(Eriksen et al. 2013; Xiong et al. 2018). When comparing mean microplastic 

concentration across sampled lakes and rivers identified in the literature search, no 

clear differences were observed either in surface water (3,163 ± 21,210 particles/m3 

in lakes vs 61,748 ± 375,152 particles/m3 in rivers; Student’s 2-sample t-test: t(401) 

= 0.051, p = 0.959) or sediment (x͂ = 249, IQR = 886 particles/kg and x͂ = 336, IQR = 

1,198 particles/kg, respectively; Mann-Whitney: U = 1,850.5, p > 0.05), but these 

estimates were characterised by large variability. This may indicate re-suspension of 

particles in “static” lake systems. Potential differences between lakes and rivers 

have, however, been detected at more local scales across a single catchment. For 

example, fibrous and fragmented microplastic particles were up to three-fold higher 

in lentic compared to fluvial habitats of the Biobío River, Chile (Correa-Araneda et al. 

2022). 
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Figure 2.4 Ranked Ordered Quantile normalising transformed mean microplastic 

concentration in a) water (particles/m3) and b) sediment (particles/kg) of freshwater 

ecosystems per country, marked by level of country development. 

b) Sediment 
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2.4.2 Catchment scale 

Freshwater catchments are highly connected networks varying in area and 

surrounding land-use, while also being characterised by hydrological dynamism and 

heterogeneity in hydraulic conditions. Assessing catchment-scale microplastic 

distribution, therefore, ideally requires samples from multiple locations to best 

capture all major sources of variability. This can also identify putative pollutant 

sources as well as physical conditions influencing microplastic retention or dispersal. 

So far, much of the focus in catchment studies has been on land use, and there is 

strong evidence that microplastic concentration increases with urbanisation           

(34 reviewed studies, e.g., Tibbetts et al. 2018; Yuan et al. 2022). A combination of 

increased population density, resource use, plastic demand, greater cover of non-

permeable surfaces (increasing surface runoff), poor waste disposal, and increased 

discharge from wastewater or industry are all likely to be implicated (Yonkos et al. 

2014; Baldwin et al. 2016; Fan et al. 2019; Kataoka et al. 2019; Townsend et al. 

2019; Mbedzi et al. 2020; Zhang et al. 2020a; Bertoldi et al. 2021; Fan et al. 2021; 

Sekudewicz et al. 2021; Belontz et al. 2022; Correa-Araneda et al. 2022; Dai et al. 

2022; Li et al. 2022a; Ma et al. 2022). Less obvious sources – such as tourism - can 

also increase microplastic release (Jin et al. 2022). In combination, these factors 

lead often to an increase in microplastic concentrations from upstream to 

downstream of rivers following a rural-to-urban gradient (Han et al. 2020; Napper et 

al. 2021; Prata et al. 2021; Wicaksono et al. 2021; Murphy et al. 2022; Park et al. 

2022; Rakib et al. 2022; Yuan et al. 2022). However, Tibbetts et al. (2018) and Mao 

et al. (2020b) report greater microplastic concentration in respective urban upstream 

reaches of River Tame (UK) and Yulin River (China), compared to rural downstream 

sites, consistent with the role of urban areas as overriding sources of pollution rather 

than downstream microplastic accumulation. 

Relationships between microplastics and land use are not always 

straightforward. Di et al. (2019) observed greater microplastic concentrations in the 

water column of China’s Danjiangkou Reservoir near urban areas, but the pattern 

was not apparent in sediment. More notably, other studies have revealed no clear 

influence of urbanisation (Barrows et al. 2018; Wen et al. 2018; Alfonso et al. 2020; 

Wang et al. 2020b; Wang et al. 2021d) or human population density (Miller et al. 

2017; Kapp and Yeatman 2018; Tibbetts et al. 2018; Dikareva and Simon 2019; 



25 
 

Alfonso et al. 2020; Frank et al. 2021; Li et al. 2022b) on freshwater microplastic 

concentrations, indicating other site-specific influences on plastic flux, fate, or 

distribution might sometimes be greater. These include microplastic point sources 

such as industrial effluent (Ziajahromi et al. 2016; Chan et al. 2021; Lofty et al. 2022) 

or the resuspension of plastic particles from sewage sludge spread to land (Schell et 

al. 2022b). Microplastic movement through freshwater ecosystems might also be 

influenced by factors such as morphology and flow dynamics. For example, in 

China’s Lake Dianchi, microplastic concentration in surface water correlated 

negatively with bed roughness, relief, and slope gradient, with particles diffusing 

more over rougher topography (Deng et al. 2022). In China’s Yulin River, microplastic 

concentration in water negatively correlated with channel width (Mao et al. 2020b), 

indicating diffusion across a greater area. Therefore, freshwater microplastic 

concentrations can vary with downstream progression of microplastic sources and 

hydrodynamics (Mani et al. 2015; Troyer 2015; Lestari et al. 2020; Winkler et al. 

2022). 

Apparent variability in the distribution of microplastics across catchments 

raises the need for more extensive studies designed with sufficient detail to appraise 

natural and anthropogenic influences on microplastic distribution. Such studies are 

still scarce, with only eight described explicitly as ‘catchment-scale’ freshwater 

microplastic investigations. These studies involved 10-72 sites where samples were 

collected to assess different land-use effects and microplastic sources across whole 

basins, ranging in size from 522 to 1,808,500 km2. In one of the best examples to 

date, Hurley et al. (2018a) sampled freshwater sediment from forty sites across ten 

tributaries of the Irwell and Mersey rivers in northwest England, which drains into the 

Irish Sea. The work identified urban hotspots, for example in the Greater Manchester 

tributary, River Tame, microplastic concentration exceeded 40,000 particles/kg of 

sediment, with greater contamination immediately downstream of WWTPs and 

CSOs (Hurley et al. 2018b). Catchment-scale work by He et al. (2020) and Mao et al. 

(2020b) respectively in the Brisbane River, Australia, and Yulin River, China, also 

reported correlations between microplastics and anthropogenic activity, with 

concentrations greatest in upstream residential, commercial, and industrial areas, 

and lower concentrations downstream with mixed land use. Similarly, Yuan et al. 

(2022) noted a general increase in microplastic concentration with downstream 
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progression across 38 sites in China’s Yangtze River, co-attributed to distance to 

urban areas, population density, urbanisation rate, and land use across 38 sites. 

Despite this, however, and given the limited distribution of microplastic assessments 

across the world (Figure 2.3), there remains a significant need for representative and 

stratified studies to account for natural and anthropogenic influences on the sources, 

fate, and flux of microplastics in contrasting river catchments. 

 

2.4.3 Local scale 

 As well as their emergent structure at coarser scales, freshwater catchments 

are also characterised by internal heterogeneity at scales ranging from 

subcatchments to reaches, biotopes, patches, and individual substratum. This is 

described sometimes as a ‘catchment hierarchy’ or network over which there are 

large variations in physico-chemical conditions including velocity, turbulence, bed 

roughness, frictional drag, depth, sedimentation, temperature, intra-bed flow, redox 

potential, and dissolved gasses. At these finer scales, microplastic concentration in 

freshwater ecosystems over space and time reflects two opposing mechanisms:     

(1) resuspension and (2) dilution. Multiple freshwater studies record sites with 

relatively higher flow velocity to have greater microplastic concentrations in water 

and reduced concentrations in sediment (Tibbetts et al. 2018; Ding et al. 2019;   

Mani et al. 2019a; Dahms et al. 2020; Migwi et al. 2020; Tien et al. 2020; Feng et al. 

2021b). High velocity and turbidity may disturb sediment and resuspend 

microplastics into the water column, whereas low velocity may facilitate microplastic 

settling into sediment (Eo et al. 2019; Liu et al. 2022b) and finer sediment associated 

with these conditions can trap more microplastics (Fischer et al. 2016; Dikareva and 

Simon 2019). Increased flow is also associated with precipitation, which flushes 

microplastics from land into freshwater, increasing local microplastic concentration. 

In contrast, some freshwater studies report higher microplastic concentration where 

flow velocity is relatively lower (Kapp and Yeatman 2018; Xiong et al. 2019; Huang et 

al. 2021a; Sekudewicz et al. 2021), also seen behind dams (Zhang et al. 2015; 

Watkins et al. 2019a; Weideman et al. 2019; Gopinath et al. 2020; Wang et al. 

2020b; He et al. 2021b), indicating a dilution effect, where more water disperses 

microplastic particles.  
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Fluvial processes also differ across a river’s perpendicular axis, causing 

microplastic concentration to differ up to 10-fold across a river’s cross-sectional 

profile (Wong et al. 2020). Tang et al. (2021) sampled fewer microplastics in surface 

water of the centre of Songhua River, China, where river flow is higher, compared to 

the riverbank. In Rhine River, Germany, Mani et al. (2015) found more microplastic at 

the right riverbank where the Main River enters, compared to middle and left bank. In 

sediment, Corcoran et al. (2020) sampled fewer microplastics along straight courses 

of the Thames River, Canada, compared to inner and outer bends. Nonetheless, 

Barrows et al. (2018), Constant et al. (2020), and He et al. (2021b) report no 

variation in microplastic concentration across a river’s perpendicular axis. These 

local-scale impacts of fluvial processes suggest observed concentrations reported by 

freshwater studies may be biased by the specific sample location within a site. 

Particle characteristics and polymer type can indicate the origin of sampled 

microplastics from local sources, but how far they travel within freshwater 

catchments is poorly known. Using Global Positioning System (GPS) and satellite 

technology, a 500 ml poly(ethylene terephthalate) drinks bottle was recorded to 

travel 2,845 km through the Ganges River, Bangladesh, over 94 days (Duncan et al. 

2020). Microplastic has been found in remote locations including ocean gyres far 

from land sources (Moore et al. 2001), but methods of tracking microplastic have yet 

to be developed. With knowledge on sediment and allochthonous material 

movement in freshwater (Newbold et al. 1982; Webster et al. 1999; Drummond et al. 

2014) and hydrodynamic behaviours of microplastic (Möhlenkamp et al. 2018; Lofty 

et al. 2023), microplastic transport in freshwater catchments can be modelled to 

predict particle fate and thus, the location of potential impact. Nizzetto et al. (2016) 

and Besseling et al. (2017) simulated the first such model, accounting for advective 

transport, particle aggregation, polymer degradation, sedimentation, and 

resuspension. Interestingly, particle size was found to override any effect of polymer 

density on modelled microplastic fate, with particles > 0.2 mm more likely to be 

retained in sediment and settlement of smaller particles being dependent on hetero-

aggregation (Nizzetto et al. 2016; Besseling et al. 2017). However, this model did not 

account for particle shape nor biofilm growth, which can impact the rate of 

microplastic settlement in water (Nguyen et al. 2022). Microplastic biofouling occurs 

rapidly in freshwater ecosystems (Semcesen and Wells 2021; Nava et al. 2022) and 
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increases particle density, with smaller biofouled microplastics expected to sink 

before larger biofouled plastics (Semcesen and Wells 2021). A 3D model by He et al. 

(2021a) suggests polymer density does affect microplastic dispersal in river 

sediment, with denser particles having lower mobility and higher river flow velocity 

moving particles further from their source. The fate of tyre wear particles (TWPs) in 

Göta River, Sweden, modelled by Bondelind et al. (2020), also suggests higher 

density and larger sized particles settle in sediment and therefore, accumulate near 

their source.  

Regarding freshwater lakes, instantaneous microplastics movement can be 

influenced by currents (Eriksen et al. 2013; Xiong et al. 2018). Daily and Hoffman's 

(2020) 3D lentic model predicts turbulent mixing retains microplastics in water, but 

ignore particle size and shape, density changes with aggregation, biofouling, or 

polymer degradation, overestimating particle resuspension. Lastly, Hoffman and 

Hittinger's (2017) model suggests proximity to large population centres has a greater 

impact on microplastic distribution in lakes compared to gyre patterns. This variety of 

model predictions reiterates the complexity of microplastic flux within the dynamic 

freshwater environment. 

 

2.5 Temporal dynamics 

Studies into temporal variations contribute around a quarter of identified 

freshwater microplastic studies (n = 78), with patterns attributed to trends in 

production through time, hydrodynamics such as flow velocity and discharge, 

weather seasonality, and meteorological events (Talbot and Chang 2022a). These all 

occur at different scales and several effects are still poorly resolved. 

 

2.5.1 Inter-annual scale 

Long-term data is crucial for assessing whether microplastic pollution is 

increasing, decreasing, or remaining stable over multiple years. Analyses of historic 

microplastic samples from freshwater ecosystems is limited, but sediment cores 

have provided some temporal assessments. Here, vertical columns of sediment are 

extracted from the bottom of a water body and divided into layers, each of which are 
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radiocarbon dated to identify distinct time periods, and examined for microplastic 

contamination. Cores from Hamstead pond (UK), Lake Uluabat (Turkey), and 

Wujiang River (China) all show very low microplastic concentrations in the early    

20th century before acceleration in the 1960s and continued accumulation into the 

21st century (Turner et al. 2019; Almas et al. 2022; Wu et al. 2022a). Cores from        

Lake Mjøsa (Norway) showed increasing microplastic concentration and richness 

from the 1980s to 2017 (Lusher et al. 2018; Clayer et al. 2021). These studies show 

an almost immediate occurrence of plastic pollution in the environment after 

industrial production began mid-20th century (Geyer et al. 2017). Few studies, 

however, have assessed current trends in freshwater microplastic concentrations 

between years. Lechner et al. (2014) detected an apparent reduction in plastic 

density and composition in the Danube River, Austria, from 2010 to 2012, but 

Anderson et al. (2017) found no change in the microplastic concentration in        

Lake Winnipeg, Canada, from 2014 to 2016. Inter-annual scale research is important 

for identifying recent sources of microplastic pollution, evaluating the impact of 

regulations and management practices, and raising public awareness about the 

issue to emphasise continued efforts to reduce plastic waste. Therefore, this is a 

clear area where expanded activity is needed.  

 

2.5.2 Intra-annual scale 

 Within a year, changes in freshwater microplastics have been observed over 

different seasons, which has been associated with weather and rainfall (Xia et al. 

2020). Similarly to observed local-scale spatial trends (see section 2.4.3), there are 

contrasting patterns in the available data that either show increases in microplastic 

transport and higher concentrations at times of high flow, or dilution when discharge 

increases. Studies reporting increased microplastic transport in rivers during wetter 

periods and/or sedimentations during times of reduced flow are numerous (Moore et 

al. 2011; Yonkos et al. 2014; Faure et al. 2015; Lasee et al. 2017; Hurley et al. 

2018b; Nel et al. 2018; Schmidt et al. 2018; Alam et al. 2019; van Emmerik et al. 

2019; Eo et al. 2019; Mai et al. 2019; Campanale et al. 2020b; Constant et al. 2020; 

Gerolin et al. 2020; Park et al. 2020a; Wong et al. 2020b; Woodward et al. 2020; 

Bujaczek et al. 2021; Chen et al. 2021; Haberstroh et al. 2021a; Munari et al. 2021; 

Shen et al. 2021; Dahms et al. 2022; Winkler et al. 2022). For example, 71% of 
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microplastic transported by the Nakdong River, South Korea, throughout 2017, 

occurred during the wet season (Eo et al. 2019). Greater microplastic concentrations 

were sampled by citizen scientists across 72 sites along the Gallatin River, USA, 

during the wetter March 2016, with reductions in the drier June 2016 (Barrows et al. 

2018). Similarly, He et al. (2020) found higher concentrations of microplastics in the 

Brisbane River, Australia, in December and September during the wet season in 

Queensland State, with lower concentrations in March during the dry season. 

Contrasting patterns from those described above come from studies reporting 

either dry season peaks (Eo et al. 2019; Woodward et al. 2020; Haberstroh et al. 

2021a) or reductions in microplastic concentrations during high flow or wetter months 

(Dris et al. 2015; Mani et al. 2015; Barrows et al. 2018; Rodrigues et al. 2018a;    

Fan et al. 2019; Liu et al. 2019b; Watkins et al. 2019b; Han et al. 2020; Mbedzi et al. 

2020; Scircle et al. 2020; Wang et al. 2020a; Wong et al. 2020a; Wu et al. 2020b; de 

Carvalho et al. 2021; Huang et al. 2021b; Liu et al. 2021a; Napper et al. 2021; Wang 

et al. 2021b; Wicaksono et al. 2021; Aslam et al. 2022; Malla-Pradhan et al. 2022; 

Talbot et al. 2022b). In yet further contrasts, other studies have detected no seasonal 

variations or influences of discharge on microplastic concentration (Su et al. 2016; 

Peller et al. 2019; Weideman et al. 2019; Constant et al. 2020; Mani and Burkhardt-

Holm 2020; Stanton et al. 2020; Chanpiwat and Damrongsiri 2021). 

These differences among available data have a range of putative 

explanations including confounding influences from urbanisation or other 

microplastic sources, the ability of different sampling methods to detect plastics that 

are saltating, floating or in suspension, and potential effects from antecedent 

conditions. A case of the latter effect arose from the UK’s River Irwell which 

experienced a 70% reduction in catchment-wide microplastic concentrations in river 

sediment after winter flooding (2015/16) - in many cases by an order of magnitude 

(Hurley et al. 2018b; Woodward et al. 2020). Export effects of this type would reduce 

potential benthic reservoirs of microplastic that could be mobilised in high-flow 

periods. There are also instances where reductions in river wetted perimeter during 

low flow reduce the ratios between water volume and the contaminated surface area 

of sediment, possibly leading to higher microplastic concentrations in samples 

collected in shallower flows (Wicaksono et al. 2021). A more unusual explanation for 

changing microplastic fluxes between winter and summer arose from Browne et al. 
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(2011), who suggested that higher microplastic fibre releases into freshwater during 

colder months reflected changes in clothing use that caused household washing 

machine usage to rise by 700%. Such effects would vary between regions with 

different climates. 

 

2.5.3 Event scale 

 Environmental dynamics and variations between seasons could also reflect 

changes in microplastic concentration over shorter timescales, down to hours and 

minutes, such as during hydrological events or pollution incidents. So far, however, 

there are few comprehensive studies – particularly examining microplastic behaviour 

over entire storm hydrographs. Watkins et al. (2019b) investigated microplastic 

variation in tributaries to an American lake over 24-hours during low (August 2016) 

and high (April 2017) flow conditions, by sampling every three hours. No significant 

change was observed over each 24-hour period, but concentrations at high flows 

were consistently more variable than those at low flows (Watkins et al. 2019b). Dris 

et al. (2018b) sampled surface waters in the Seine River, France, over a 2-hour and 

12-hour period during high flow (March 2015) and low flow conditions (July 2015), 

respectively. Again, greater variability in microplastic concentration occurred at high 

flows, but this might have reflected shorter sampling periods at high flow compared 

to low flow. Cheung et al. (2019) reported an order-of-magnitude reduction in 

microplastic concentration in the Lam Tsuen River, China, even over a brief rainfall 

event of 2-hours. In contrast, Chen et al. (2021) observed a 3-fold increase in 

microplastic concentration of the Langat River, Malaysia, in response to flooding over 

a 24-hour period, whilst de Carvalho et al. (2022) reported up to 8-fold increase 

during flood episodes in France’s Garonne river. In other instances, effects of 

hydrological events can be more delayed or prolonged and in Lake Donghu, China, 

and Lake Chiusi, Italy, microplastic concentration in water increased over days 

following rainfall (Fischer et al. 2016; Xia et al. 2020). 

 As well as in-channel mobilisation during events, heavy rainfall induces runoff 

from adjacent land that may increase microplastic transport into freshwater systems 

both directly (Dikareva and Simon 2019; Shen et al. 2021; Warrier et al. 2022) or 

indirectly through WWTPs, CSOs, or septic tanks (Grbić et al. 2020; Park et al. 
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2020a; Liu et al. 2022a; Warrier et al. 2022; Zhang et al. 2023). These effects can be 

mediated by local topography, such as steep slopes or impervious surfaces (Yonkos 

et al. 2014). Moreover, rainfall may transfer microplastic from the atmosphere to 

freshwater through wet deposition, by adhering to raindrops (Dris et al. 2015; Dris et 

al. 2016; Xia et al. 2020; Xiong et al. 2022). This diversity of influential mechanisms 

reflects the observed contrasting temporal trends. 

 

2.6 Consequences for freshwater biota 

 Organisms can be directly exposed to microplastic through ingestion or 

respiration, and through food-web transfer to predators (Kim et al. 2018; D’Souza et 

al. 2020). Field studies investigating microplastic exposure in freshwater biota so far 

are outnumbered by assessments in non-biological media by around 3.7-4.3 times 

(Table 2.1). Microplastic presence was investigated in 11 classes, with over 70% of 

studies sampling fish (Actinopterygii; n = 54) (Figure 2.5). Other taxa investigated, in 

decreasing study frequency, include insects (Insecta; n = 10), gastropods 

(Gastropoda; n = 8), crustaceans (Malacostraca; n = 8), annelid worms (Clitellata;    

n = 4), bivalves (Bivalvia; n = 4), birds (Aves; n = 4), amphibians (Amphibia; n = 3), 

mammals (Mammalia; n = 1; O’Connor et al. 2022), microorganismal biofilm (n = 1; 

Huang et al. 2021), and monocot plants (Angiospermae; n = 1; Yin et al. 2021) 

(Figure 2.5). Quantification of microplastic in freshwater zooplankton was not 

identified in this literature search, but has since been published by Lawrence et al. 

(2023). Thirteen studies investigated microplastic in multiple organism classes, with 

Garcia et al. (2021) sampling six classes in Garonne River, France.  

The skew towards microplastic investigation in freshwater fish limits our 

understanding of microplastic load in organisms at lower trophic levels that make up 

freshwater communities and support top predators. Windsor et al. (2019a) called for 

more research on microplastic ingestion in freshwater macroinvertebrates, which act 

as entry points of microplastic to freshwater food webs and now make the second 

most studied organismal class for microplastic ingestion (Figure 2.5). The dominance 

of fish in literature also heavily skews the trends described in subsequent sections, 

which should be accounted for when drawing conclusions. The sections that follow 

first summarise field data on biological factors affecting the occurrence of 
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microplastics in freshwater organisms, before discussing current understanding of 

their exposure in relation to spatio-temporal variations in microplastic distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.1 Biotic influences on microplastics in organisms 

 Organismal contamination by microplastics is likely to reflect biotic factors 

such as their taxonomic group, body size, energetic demands, feeding guild, trophic 

position, or even individual behaviour. In all these cases, however, data are 

inevitably preliminary in part because studies are still relatively few and results 

sometimes conflict. 

Figure 2.5 Number of studies investigating microplastic abundance in organisms 

associated with freshwater, per taxonomic class. 
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From a taxonomic perspective, available data reveal microplastic prevalence 

is greatest in freshwater mammals, ray-finned fish (Actinopterygii), gastropods, and 

insects, where around half of individuals sampled contain microplastic (Table 2.2). 

However, this is limited by scarce evidence, with fewer than 10 studies representing 

each of these taxonomic groups. This 50% proportion also implies that some 

individuals contain no plastic raising questions even at the level of individual 

behaviour. Considering class averaged concentrations, ray-finned fish 

(Actinopterygii) have the highest microplastic abundance per individual (5.6 ± 8.7 

particles/individual), but relatively low microplastic abundance per gram of tissue (0.3 

± 0.5 particles/g) (Table 2.2), likely due to their larger size relative to other 

investigated species. Conversely, insects have the highest microplastic abundance 

per gram (265.8 ± 372.9 particles/g) and comparatively lower abundance per 

individual (1.3 ± 1.4 particles/individual; Table 2.2), possibly due to their relatively 

smaller size. Differences in overall number of particles per individual will have a 

greater influence on the particle abundance to body size ratio for smaller individuals. 

In reviewed papers, contamination peaked at over 1,200 particles in individual Brown 

trout (Salmo trutta) and Brook trout (Salvelinus fontinalis) from the Kinnickinnic River, 

USA (Simmerman and Wasik 2020), while concentrations were greatest (19,023 

particles/g wet weight) in individual Asellidae (Isopoda) from River Dommel, 

Netherlands (Pan et al. 2021). This reveals opposing relationships between body 

size and microplastic concentration, depending on the unit of measurement. 

The influences of body size within taxa were explored in fish from freshwaters 

of South Korea (Park et al. 2020a; Park et al. 2022) and the Orontes River, Syria 

(Kılıç et al. 2022). In all cases, microplastic burden increased with individual weight 

and length, possibly related to greater food consumption increasing microplastic 

uptake and retention. A similar relationship with body size was observed in 

freshwater crustaceans in laboratory studies (Burns 1968; Zánkai 1994), as well as 

in the marine environment (Pegado et al. 2018; Hossain et al. 2019). However, other 

fish studies have found no difference in microplastic ingestion among species of 

different size or mass in freshwater (Campbell et al. 2017; Parvin et al. 2021;  

Dahms et al. 2022; Kılıç et al. 2022; Parker et al. 2022a; Pittura et al. 2022), nor in 

marine environments (Lusher et al. 2013; Neves et al. 2015; Pazos et al. 2017). 

Independently of size, Horton et al. (2018) observed greater microplastic uptake in 
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female common roach (Rutilus rutilus) compared to males, in River Thames, UK, 

attributing this to increased energy demands of spawning causing increased food 

consumption and thus, microplastic uptake.  

With respect to organismal feeding traits and trophic position, data are again 

conflicting. For example, some studies have shown how omnivorous and 

insectivorous fishes contain more microplastics than carnivorous fishes (Park et al. 

2020a; Wang et al. 2020b; Zhang et al. 2020b; Parvin et al. 2021; Park et al. 2022). 

Whereas McNeish et al. (2018) and Tien et al. (2020) reported greater microplastic 

uptake in zoobenthivorous fishes at higher trophic levels than in 

herbivorous/omnivorous fishes. In fishes from China’s Dafeng River (Liu et al. 

2021a) and the UK’s River Bourne (Parker et al. 2022a), tropic level had no apparent 

influence. Among invertebrates, Parker et al. (2022) found lower microplastic 

concentrations in macroinvertebrates from higher trophic positions. Studies by 

Akindele et al. (2020), Pan et al. (2021), and Bertoli et al. (2022) revealed 

significantly higher microplastic concentrations in collector-gatherer gastropods and 

other invertebrates in Nigerian, Dutch, and Italian rivers, respectively, compared to 

other trophic groups. However, feeding mechanisms among invertebrate primary 

consumers in the River Usk and River Taff, UK, had no reported influence on 

individual microplastic loads (Windsor et al. 2019b). Some speculation suggests 

these organisms may mistakenly identify microplastic as food or incidentally 

consume microplastic from the environment and/or contaminated organisms (Park et 

al. 2022). Such incidental ingestion is likely to be the case in filter-feeders that 

sometimes contain higher microplastic concentrations than other taxa (Reynolds and 

Ryan 2018; Wu et al. 2022b), with encounter rates likely to increase with volume of 

water filtered. These differences among studies illustrate some of the current 

uncertainties in understanding processes such as encounter rates, behavioural 

aspects of prey selection, trophic transfer, or biomagnification (Gouin 2020).
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Table 2.2 Mean averaged microplastic concentration and prevalence in freshwater associated biota by class, in descending order, 

from 70 reviewed studies. Data displayed as available, and averages include recordings of zero particles. n = sample size. 

 

Class Average particles/ 
individual (n) 

Class Average particles/g 
tissue (n) 

Class Average % 
prevalence (n) 

Actinopterygii 5.57 ± 8.665 (68) Insecta 265.78 ± 372.94 (8) Gastropoda 58 (5) 

Magnoliopsida 4.90 ± 2.600 (1) Amphibia 259.26 ± 78.65 (3) Mammalia 57 (1) 

Malacostraca 4.51 ± 8.462 (4) Malacostraca 35.13 ± 44.66 (3) Actinopterygii 50 (50) 

Amphibia 2.73 ± 0.780 (1) Gastropoda 28.28 ± 78.65 (5) Insecta 49 (6) 

Clitellata 2.33 ± 3.269 (2) Bivalvia 1.44 ± 2.00 (2) Bivalvia 36 (2) 

Aves 2.31 ± 2.821 (2) Actinopterygii 0.29 ± 0.47 (19) Aves 8 (3) 

Insecta 1.30 ± 1.398 (7) Biofilm 0.02 (1) Clitellata 2 (1) 

Gastropoda 1.18 ± 1.348 (7) Clitellata 0.0004 (1) Malacostraca 2 (1) 

Bivalvia 0.01 ± 0.004 (2)     
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2.6.2 Varying organism exposure in space and time 

 Previously discussed variations in microplastic distribution from local to global 

spatial scales and over timescales ranging between events, seasons, or years are 

likely to affect interactions with organisms, because they too, have distributions, life 

cycles, or behaviours that vary over time and space. Contrasting geographical 

ranges, different habitat occupancy, movements among habitats, changing patterns 

of prey use, breeding cycles, and seasonal or even circadian migration are all 

examples of factors that could change microplastic exposure. Although effects like 

these are well understood for other pollutants – which the most useful indicator 

organisms integrate through time – there is still a need for considerable advance to 

identify robust and reliable biological indicators for microplastics. 

At global or continental scales, no systematic studies were identified that 

compare microplastic contamination in freshwater organisms with sufficiently 

comparable taxonomic identity, feeding niche, or trait character to allow assessments 

that would not be confounded by other biotic effects. Such inter-continental 

comparisons have been made for other pollutants where similar species from the 

same genus occupy different geographical ranges (Morrissey et al. 2010). 

At catchment scales, species-specific assessments of microplastic 

contamination are more feasible and have provided some of the clearest spatial 

assessments of organismal exposure to date. For example, samples from multiple 

sites along land use gradients have shown how microplastic ingestion increases in 

organisms such as fish and river birds at the most urbanised locations (Peters and 

Bratton 2016; Silva-Cavalcanti et al. 2017; D’Souza et al. 2020). Departures from 

these clear trends include instances where microplastic occurrence is patchy or at 

low frequency among organisms (e.g., Windsor et al. 2019c; O’Connor et al. 2020), 

where there are confounding effects between land use and other variations among 

sites (Wardlaw and Prosser 2020), or where relationships between microplastics in 

environmental media and organisms are not correlated (Parker et al. 2022a). 

Smaller-scale variations in microplastic distribution can also affect the 

exposure of organisms, but once again, there are conflicting data. In the Han River, 

South Korea (Park et al. 2022) and the Orontes River, Syria (Kılıç et al. 2022), higher 

microplastic concentrations were observed in pelagic fish, followed by benthopelagic, 
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then demersal species, consistent with marine environments (Rummel et al. 2016). 

More specifically, highly dense polytetrafluoroethylene (PTFE) is more concentrated 

in bottom-feeding fish species of Han River compared to surface-feeders (Park et al. 

2020b). However, these patterns were less clear in fish from Taihu Lake, China 

(Jabeen et al. 2017), freshwaters in Bangladesh (Parvin et al. 2021), and in 

Fengshan River, Taiwan (Tien et al. 2020). Moreover, field studies on a range of taxa 

have found no clear effect of habitat selection or ecological niche on microplastic 

uptake (Holland et al. 2016; Windsor et al. 2019b; Akindele et al. 2020; Liu et al. 

2021a; Pan et al. 2021; Bertoli et al. 2022b). 

Turning to variations through time, organism exposure varies between 

shorter-term patterns linked to changing hydraulic conditions influencing local 

microplastic behaviour, and longer-term trends resulting from increasing plastic 

pollution (Kowalski et al. 2016; Besseling et al. 2017; Khatmullina and Isachenko 

2017; Lenaker et al. 2019; Waldschläger and Schüttrumpf 2019). In the latter case, 

historic biological specimens have provided an important indicator of the advent of 

microplastic occurrence in freshwater ecosystems (Lusher et al. 2018). Hou et al. 

(2021) used freshwater fish specimens collected at various intervals between 1900 

and 2018 in Chicago, to illustrate how no fish were contaminated prior to the 1950s, 

but concentrations significantly increased thereafter as plastic production became 

industrialised (Geyer et al. 2017). This matches trends observed in water and 

sediment (see section 2.5.1). Nevertheless, there were variations among individuals 

and species (Hou et al. 2021). 

On intra-annual timescales, studies have shown greater microplastic burdens 

in otters, fish, and biofilm in winter than summer (O’Connor et al. 2022, Wu et al. 

2022b, and Huang et al. 2021b, respectively). The pattern in biofilm was consistent 

with increased microplastic concentration in water and sediment during the winter 

(Huang et al. 2021b), which was previously suggested may result from greater 

microfibre release in wastewater outflows during colder months, due to the 700% 

rise in household washing machine usage (Browne et al. 2011). Similarly with 

invertebrates, Nel et al. (2018) observed 2.5 times greater maximum microplastic 

loads in Chironomus (Diptera) collected in winter (5.04 particles/mg wet weight) 

compared to summer (1.44 particles/mg wet weight), as well as a greater prevalence 

of microplastic in winter (98%) over to summer (75%) samples. This occurred 
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independently of environmental changes and was attributed to concurrent increases 

in sediment microplastic concentration between seasons (Nel et al. 2018). 

Interestingly, mosquitofish sampled post-flood from Santa Cruz River, USA, 

contained more microplastics than those sampled at baseflow, possibly due to an 

increased encounter rate and/or an impaired ability to distinguish prey from 

microplastic during turbid high flows (Eppehimer et al. 2021). In direct contrast, 

however, planktivorous fish in Lake Chaohu, China, were less contaminated with 

microplastic in the wet versus dry season (Wu et al. 2022b). These findings highlight 

the complex and variable nature of microplastic contamination across different 

species and environments, underscoring the need for further research to understand 

the driving factors behind seasonal variations in microplastic exposure. 

 

2.7 Knowledge gaps and deficits 

 Against expanding research and knowledge of microplastics in freshwater 

ecosystems, this review of field data has revealed a range of knowledge gaps, 

deficits, and uncertainties – including contrasting results with respect to microplastic 

distribution and behaviour. This includes considerable patchiness among continents 

and nations in data availability as well as substantial variability in measured 

microplastic concentrations in water and sediments by 11 and 3 orders of magnitude, 

respectively. At catchment scales, urban areas appear to be important sources of 

microplastic pollution, but this pattern is not universal. Moreover, there have been 

few stratified field surveys to assess or account for other sources of variation, for 

example from other land uses or natural hydro-morphological differences among 

survey sites. At more local scales, small-scale variations in microplastic distribution 

in relation to biotopes, hydraulics, or fine-scale geomorphology are understudied, but 

could be important in informing catchment-scale designs as well as understanding 

microplastic dynamics. Assessments of microplastics through time are substantially 

outnumbered by spatial studies, with longer-term trends or short-term dynamics 

during whole hydrological events scarce among available data. Variations with 

discharge have produced contrasting patterns that suggest the need to reduce 

confounds, improve sampling design, and assess the effects of antecedent 

conditions. Interactions with other stressors, notably climate change and other 

pollutant sources, require expanded attention. 
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Assessments of microplastics in freshwater organisms are outnumbered by 

studies of abiotic media by a factor of around four and skewed towards fish. 

Additional data will further our understanding of potential effects on ecosystem 

processes, food-web transfer, community interactions, and individuals. This includes 

bolstering understanding of how different life-history traits affect exposure - notably 

feeding methods, trophic level, habitat use, movement pattern and lifespan. Better 

integration between laboratory assessments of exposure effects and consequences 

for free-living populations and communities is a general concern in ecotoxicology 

and applies also to microplastics (Windsor et al. 2018). 

One of the greatest needs apparent from this review is for interdisciplinary 

work that integrates spatio-temporal patterns in microplastic distribution with 

organismal exposure and potential ecological impacts at all scales. For example, at 

the global scale, data from regions in Africa, South America, and Oceania would aid 

understanding of microplastic exposure in some of the world’s most biodiverse 

regions while also bolstering eco-regional comparisons (Li et al. 2020). At the 

catchment scale, further work is needed to resolve apparent uncertainties in 

microplastic distribution relative to the distribution of organisms and communities 

whose occurrence also varies naturally at this scale. At finer scales within 

catchments, reaches, patches, and microhabitats, distributions in microplastic are 

still poorly described despite their likely importance to individual behaviours, life 

histories and ecological processes that vary at these scales. There is a particular 

need to boost data on interactions between microplastics and organisms in 

freshwater sediments and benthic environments, which are likely to be microplastic 

sinks that support large densities of organisms expected to mediate microplastic 

entry into food webs (e.g., Windsor et al. 2019c; D’Souza et al. 2020). This also 

implies a need to assess the temporal dynamics of organismal exposure relative to 

the movement, fluxes, and changing concentrations of microplastics at all scales 

from events to inter-annual trends. 

The above challenges are not unique to microplastics, meaning that 

approaches used to address similar large-scale problems could serve as models. At 

the largest spatial extents, for example, emerging pollution problems such as 

pharmaceuticals have been addressed through global surveys (Wilkinson et al. 

2022). In other cases, such as nutrient pollution, data syntheses have integrated 
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smaller-scale reductionist studies with landscape- or catchment-scale information to 

advance understanding (Heathwaite 2010). At national to continental scales, co-

ordinated research programmes have linked models with hierarchically-scaled and 

multi-disciplinary field investigations in time and space, coupled with experiments 

that also straddle different scales from laboratory to mesocosm (Hering et al. 2015; 

Birk et al. 2020). These suggestions are not exhaustive, and it is important to stress 

that full understanding of pollution problems requires substantial investment and 

often accumulated data from multiple studies with consistent methods (e.g., Haase 

et al. 2023). 

 

2.8 Conclusion 

This systematic, quantitative review builds on previous assessments of 

microplastics in freshwater matrices by summarising current knowledge and 

identifying patterns across different spatial and temporal scales. A valuable next step 

would be to quantify how many studies contribute to the review at each spatial and 

temporal scale. This would help to identify research gaps and support the 

development of more standardised, scalable approaches for future monitoring. While 

highlighting the extent to which freshwater ecosystems act as major sinks and 

pathways of microplastics from terrestrial to marine environments, the data reviewed 

here also reinforce earlier assessments by illustrating how research coverage 

remains fragmented, with persistent gaps and uncertainties – particularly concerning 

organismal exposure and resulting impacts on ecosystem processes (Eerkes-

Medrano et al. 2015). These findings add weight to widespread concerns about the 

lack of methodological consistency across literature and the inconsistent units in 

which microplastic data are reported. These caveats pertain to disparities revealed 

here in microplastic concentrations across water, sediment, and organisms, which 

span over 11, 3 and 6 orders of magnitude, respectively, as well as variation among 

countries at different stages of economic development. Similar caveats apply to the 

current understanding of interactions between flow velocity, discharge, hydrological 

events, and the transport of microplastic particles.  

Collectively, these issues raise questions about (i) the representativeness of 

studies conducted to date; (ii) the limitations in the spatio-temporal coverage of 
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available data; and (iii) the effects of variations in sampling, processing, 

quantification, and characterisation of microplastics in freshwater. Attention is drawn 

to the potential for interdisciplinary research, similar to those used in addressing 

other pressures on freshwater ecosystems, which integrates the environmental 

distribution and behaviour of microplastics with the exposure pathways affecting 

organisms, which has been a central concern in the broader context of plastic 

pollution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

Chapter 3: A global review and analysis of microplastic extraction 
and analytical methods in freshwater ecosystems 

 

3.1 Abstract 

Reported freshwater microplastic concentrations range up to 11 orders-of-

magnitude, leading to growing concern about the standardisation of methods and 

units in which microplastic data are reported. However, variation between freshwater 

media necessitates the use of diverse techniques for effective microplastic 

extraction. A systematic, quantitative literature review was used to appraise 

variability in methods of sampling, extracting, enumerating, and characterising 

microplastic particles polluting freshwater ecosystems from 300 studies. Water and 

sediment have been sampled either via volume-reduction techniques using nets, or 

in bulk using containers, grab samplers, or corers, with the latter technique used 

more frequently for sediment sampling. Nets range in dimension (11.6-725 cm2), 

aperture (5 – 2,000 µm), and volume of water filtered (0.0003-522 m3). Freshwater 

biota are investigated as whole specimens except for fish, where the gastrointestinal 

tract (GI) tract, liver, muscle, or gills are dissected. Samples have been processed 

with combinations of sieving, density separation, chemical digestion, and filtration, 

with filtration aperture, chemicals, and experimental conditions varying amongst 

studies. Fine-mesh and multiple stacked sieves are used by one-third of studies 

processing through sieving. Sodium chloride (NaCl) is used by over half of studies 

processing through density separation. Oxidative digestion with hydrogen peroxide 

(H2O2) is most commonly used amongst studies processing through digestion (84%). 

Filtration typically occurs through glass fibre filters and using a pore size of 0.45 µm. 

Finally, microplastics were quantified and characterised using microscopes, where 

particles per unit volume is recommended as the most appropriate reporting unit. 

Polymer type was investigated using spectroscopy and spectrometry techniques, 

mainly using infrared (IR), with polypropylene (PP) and polyethylene (PE) occurring 

most frequently. Key areas for research expansion including: (i) microplastic vertical 

distribution through the water column; (ii) microplastic contamination of biota other 

than fish; (iii) the influence of equipment and methodology choice on observed 

microplastic loads; and (iv) the harmonisation of freshwater microplastic research. 
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3.2 Introduction 

With the exponential growth in plastic production (Geyer et al. 2017) and 

growing evidence for its harmful impacts (Gola et al. 2021), it is vital that microplastic 

abundance and characteristics in freshwater environments are assessed. However, 

methodologies used to extract, quantify, and characterise microplastic in 

environmental media are not consistent between studies. This not only limits 

comparison of reported loads in different environments, but suggests potential 

biases in different techniques, and makes experimental design difficult for new 

researchers.  

This chapter builds on and complements Chapter 2 by explicitly appraising:  

(i) techniques used to sample, extract, and characterise microplastic particles from 

different freshwater matrices; (ii) advantages and disadvantages of the different 

equipment and methodologies used in order to make recommendations for best 

practice; and (iii) knowledge gaps and data deficiencies that require further research. 

This work contributes to the growing literature reviewing methods of microplastic 

detection in freshwater (Prata et al. 2019b; Cutroneo et al. 2020; Fok et al. 2020;    

Lu et al. 2021), contributing information to support methodology standardisation,   

and reviews of microplastic occurrence across freshwater ecosystems (Eerkes-

Medrano et al. 2015; Lu et al. 2021; Sarijan et al. 2021). These aforementioned 

reviews only cover literature published up to October 2020, and investigate 49, 67, 

74, and 183 studies, respectively. Fok et al. (2020) focus on studies sampling in 

China and Cutroneo et al. (2020) focuses on studies sampling the marine 

environment. The intention in this Chapter was to review a more extensive array of 

freshwater microplastic studies than previous accounts, covering 300 studies 

published up to August 2022, to assess knowledge gaps, research questions, and 

implications for current understanding. 

 

3.3 Methods 

See section 2.3 of Chapter 2 for methods on how data were sourced. Where 

available, data were collected on methods of: sample collection (apparatus); sample 

processing, including sieving (aperture), density separation (chemicals used), 
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digestion (chemicals used, temperature, time, and mixing rate), and filtration (pore 

size, filter type); quality control; particle quantification (apparatus, recovery testing, 

reporting units); and particle characterisation (distinguishing microplastic from 

organic and inorganic plastics, shape classification, polymer analysis). For 

consistency, 'aperture' is used throughout to describe the opening size of both nets 

and sieves, while 'pore size' refers to the nominal retention size of filter paper. 

 

3.4 Sample collection 

 Microplastics have been sampled from the aquatic environment either 

thorough bulk, volume-reduced, or selective sampling techniques (table 3.1). Bulk 

sampling is where media is collected as a whole, whereas volume-reduced sampling 

reduces the sample volume in situ and preserves material for ex situ processing 

(Hidalgo-Ruz et al. 2012). The mean in situ aperture used in volume-reducing and 

bulk sampling equipment were compared using Student’s 2-sample t-test (results 

below). The distribution of both datasets differed significantly from normality 

(Shapiro-Wilk test:  W = 0.871 and 0.307 for volume-reduced and bulk sampling, 

respectively, both with p < 0.01) and thus, data were transformed using Ordered 

Quantile normalising transformation (best transformation based on Pearson P test: p 

= 1.744 and 1.376 for volume-reduced and bulk sampling, respectively). Bulk and 

volume-reducing sampling can be selective of certain media; for example, at certain 

timepoints or locations, or under certain conditions. However, hereafter, selective 

sampling refers to the direct collection of individual organisms from the environment. 

Variations of these techniques used for each sample matrix are described below. 

 

3.4.1 Water sampling 

Microplastic within the water matrix of freshwater ecosystems was 

investigated by 205 reviewed studies, with 147 and 74 studies sampling fluvial and 

lentic systems, respectively, indicating overlap in multiple studies. Most of the 

selected studies (96%; n = 196) sampled microplastic in surface waters, with only 

fourteen and three studies sampling sub-surface and benthic water, respectively. 

However, microplastic buoyancy is affected by particle size, shape, surface-area to 

volume ratio, and density, which themselves are influenced by homo- and 
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heteroaggregation and biofouling (Kowalski et al. 2016; Nizzetto et al. 2016; 

Besseling et al. 2017; Khatmullina and Isachenko 2017; Waldschläger and 

Schüttrumpf 2019). For example, the ratio of heavier polymers to lighter polymers 

tends to increase with depth (Lenaker et al. 2019; Liu et al. 2021c), yet high-density 

polymers have been found in surface water (e.g., Bordós et al. 2019; Park et al. 

2020a,b; Bertoldi et al. 2021) and low-density polymers occur in benthic sediment 

(e.g., Sruthy and Ramasamy 2017; Gopinath et al. 2020; Oni et al. 2020; Lenaker et 

al. 2021). Therefore, the skew towards surface water sampling may bias overall 

estimates of microplastic abundance, as well as limit risk assessment of benthic 

habitats. 

A few studies sampled microplastic at multiple depths across the water 

column to investigate their vertical distribution within the same location, generally 

reporting greater loads in surface waters (McCormick et al. 2016; Lin et al. 2018; 

Lenaker et al. 2019; Lestari et al. 2020; Xu et al. 2022a). However, Dris et al. 

(2018b) found insignificant variability in microplastic concentration across three 

depths in Marne River, France, likely due to vertical mixing of microplastics via 

hydrodynamics (Wagner and Lambert 2018). Interestingly, Lenaker et al. (2019) 

observed slightly negative relative percent differences between water surface and 

depth-weighted microplastic concentrations in Milwaukee River, USA, suggesting 

underestimation of water column concentrations using surface-only sampling. 

Conversely, relative percentage differences were positive at lake and estuarine sites 

(Lenaker et al. 2019). Overall, sampling throughout the water column would provide 

a more complete understanding of microplastic presence in freshwaters. 

Water was sampled by volume-reducing or bulk collection techniques, each 

used by a similar number of studies (n = 106 and 111, respectively). Table 3.1 lists 

the number of studies using different water sampling techniques. Volume-reducing 

techniques mainly involved trawl nets (Plankton, Neuston, Manta, drift, streambed 

sampler; n = 100), whilst few used sieves (n = 6). Nets used ranged in dimension 

(11.6-725 cm2), sample depth (0-15 m), volume of water filtered (0.0003-522 m3), 

and aperture (see below) between studies, and were deployed from bridges 

(centrally and at either side of rivers), riverbanks, docks, boats, or by wading (Kapp 

and Yeatman 2018). Nets are easy to use and sample large volumes of water but 

have disadvantages. Firstly, flowing water or a boat is required for sample collection, 
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with boats, tow ropes, air, and the plastic nets themselves potentially contaminating 

samples (Prata et al. 2019b). Secondly, nets are subject to clogging depending on 

water quality and length of time in the water. Lastly, nets come in a range of shapes 

and sizes that are not standardised across studies, changing their behaviour in 

water. For example, the side ‘wings’ of Manta nets provide lift, but hinder their 

function in rough water (Anderson et al. 2017). Net type may influence the 

microplastic sampled as Constant et al. (2020) found significantly higher mass 

concentrations in Rhône River, France, from conical net samples compared to Manta 

trawl samples, but no difference in numerical concentration. 

Bulk sampling collected water using containers made of stainless steel, glass, 

or plastic (n = 80) or a pump (n = 32), which was then filtered in situ or ex situ. 

Containers such as buckets and jars have small volumes and thus, sampling is time 

consuming and requires multiple replicates to account for local-scale spatial variation 

(Zhang et al. 2018). Moreover, seven studies used plastic containers to sample 

water (Vermaire et al. 2017; Schmidt et al. 2018; Watkins et al. 2019a; Weideman et 

al. 2019; Crew et al. 2020; Irfan et al. 2020a; Nan et al. 2020), risking sample 

contamination but taking blanks to account for this. Pumps sample larger volumes 

more easily and allow more choice of filtration aperture, increasing the chance of 

microplastic detection (Prata et al. 2019b). However, the large equipment and 

requirement for an energy source can be limiting in the field. Lastly, remotely 

operated vehicles have been used to continuously sample marine water at different 

depths up to 1,000 m (Choy et al. 2019), but may not be suited to relatively shallower 

freshwater environments and water with high flow velocity. 

Disparity in water sampling technique has research implications, as apparatus 

type influences the microplastic load sampled. Felismino et al. (2021) collected over 

500 times more microplastic per volume of water in Lake Simcoe, Canada, with grab 

samples compared to manta trawls. Kapp and Yeatman (2018) collected 355 times 

more microplastics from Snake River, USA, using 1.85 L glass jars compared to a 

100 µm mesh plankton net with a mean collection volume of 3,207 L. Barrows et al. 

(2017) found an over three orders of magnitude greater microplastic concentration in 

Maine coast, USA, from a 1 L bulk sample compared to a 335 μm neuston net 

sample, in addition to a significantly greater proportion of small (100 μm to 1.5 mm) 

and non-fibrous microplastic and significantly narrower microfibres compared to net 
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samples. These differences indicate that sampling water using nets may 

underestimate microplastic load, even when sampling greater volumes, possibly due 

to missing particles that do not float or are too small to be retained. In contrast, 

collecting water via pumps may overestimate microplastic load due to the 

accelerated water flow field enhancing collection of surrounding microplastic (Zhang 

et al. 2021a). Sample technique may also influence the type of microplastic sampled. 

For example, Zhang et al. (2021) only observed granules and foam in plankton net 

samples and not bulk samples from Lijiang River, China. 

Water samples were often filtered in situ with nets and sieves, with aperture 

reported in 155 reviewed studies. Net aperture differed by three orders of magnitude 

from 5 μm (Simon-Sánchez et al. 2019) to 5,000 μm (Xu et al. 2022b) (Figure 3.1); 

even nets of the same type had different apertures. The most frequently used net 

apertures were 333 μm (n = 33) and 330 μm (n = 18). Sieve aperture ranged from 10 

μm (Liu et al. 2019) to 5 mm (Tien et al. 2020; Xu et al. 2022b), with 45-50 μm used 

most frequently (n = 17). Mean aperture of volume-reduced (x̄ = 234 ± 145 μm) and 

bulk (x̄ = 321 ± 996 μm) sampling techniques were not significantly different 

(Student’s 2-sample t-test: t(159) = -0.059, p = 0.953), indicating that both 

techniques filter water to the same degree of precision. Sampling apparatus with 

smaller apertures are known to collect more microplastic particles. For example, the 

probability of sampling microfibres from River Seine water, France, was 250 times 

greater using 80 µm mesh compared to 330 µm mesh (Dris et al. 2018b). In coastal 

water, overall microplastic concentration was 2.5 and 10 times greater in samples 

collected using 100 μm mesh compared to 333 and 500 μm mesh, respectively 

(Lindeque et al. 2020). Figure 3.1 shows no trend in microplastic concentration in 

water sampled with different filtration apertures. With the majority of microplastic 

being less than 300 μm (Eo et al. 2019; Kooi et al. 2021) and their abundance widely 

reported to increase with decreased particle size (Baldwin et al. 2016; Mani et al. 

2019a; Park et al. 2020a,b; Lenaker et al. 2021), filters with apertures larger than 

300 μm should be avoided to prevent underestimating microplastic abundance 

(Wang et al. 2018b). Sieve aperture must be as low as possible to maximise the 

number of microplastics sampled, whilst accounting for water quality to avoid 

blockage. As results depend on the method and apparatus used for sample 
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collection, biases associated with each technique require further understanding and 

a standardised method is required for future microplastic detection in water. 

 

Figure 3.1 Ordered Quantile normalising transformed mean microplastic 

concentration in water (particles/m3) of freshwater ecosystems sampled with different 

net apertures. 

 

3.4.2 Sediment sampling 

Microplastic in freshwater sediment (benthic and shore) was investigated by 

141 reviewed studies, with 89 and 62 studies sampling sediment in fluvial and lentic 

systems, respectively. This was 31% lower than the number of studies sampling 

water. Sediment is a key part of freshwater ecosystems, providing ecosystem 

Net aperture (µm) 
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services and habitat for benthic taxa, and can act as a sink to microplastics that will 

not be transported into the marine environment. Therefore, it is important to consider 

this matrix in microplastic assessment of freshwater ecosystems. 

Table 3.1 lists the number of studies using different sediment sampling 

techniques. Benthic sediment (bottom of water body) was sampled in 117 studies, 

mainly by bulk sampling. Half of these studies used a grab sampler (Ekman, Shipek, 

petite Ponar, standard Ponar, van Veen, and Peterson; n = 57), which ranged in 

dimension (15-930 cm2) and sample depth (1-50 cm), even within the same 

apparatus type (NB not all studies reported equipment dimension). Other sampling 

equipment included corers (gravity, hammer, sludge, multi-core, Kajak, piston, box, 

and Dutch auger; n = 30) that ranged in dimension (5-10 cm diameter) and sample 

depth (0.02-2.12 m), and scoop samplers (shovel, scoop, spatula, spoon, and 

container; n = 31). Three studies use plastic scoops (Dikareva and Simon 2019; 

Watkins et al. 2019a; Negrete Velasco et al. 2020), which could contaminate 

samples. 

Hurley et al. (2018a) and Woodward et al. (2021) used the cylinder 

resuspension technique (Lambert and Walling 1988) to sample fine-grained riverbed 

sediment in the upper Mersey and Irwell river catchments, UK. This involved placing 

a large cylinder (height: 69 cm, diameter: 42-45 cm) into the riverbed to a depth of 10 

cm, agitating the sediment with a trowel and collecting turbid water (Hurley et al. 

2018b; Woodward et al. 2021). Cylinder resuspension can be used across different 

bed substrates (Duerdoth et al. 2015) and therefore will not be hindered by coarse 

sediment, a limitation of grab samplers and corers. However, the suspended 

particulate matter collected with the resuspension technique is mixed with water and 

thus, could be diluted or contaminated with water associated microplastic. This 

would similarly happen with grab and scoop samples, as well as the Surber net used 

by Garcia et al. (2021). To minimise sediment disturbance, sample loss, and 

contamination, Mani et al. (2019a) used a diving bell to manually sample River Rhine 

sediment. More microplastic was collected with this technique compared to a bucket 

and chain dredge (42 and 111 cm depth), but differences were non-significant due to 

low sample sizes (Mani et al. 2019a). However, this is expensive equipment that is 

not widely available to researchers. The problems encountered when dredging 
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sediment are unavoidable but could be controlled for by comparing microplastics 

loads in sediment to loads in above water. 

Shore sediment (riverbanks, lake shores, and beaches) was sampled in 27 

studies, again, mainly by bulk sampling, with only three studies sampling both shore 

and benthic environments (Ballent et al. 2016; Dean et al. 2018; Woodward et al. 

2021). Three-quarters of these studies took bulk samples using sediment scoops (2-

20 cm deep) (n = 20), three of which employed a quadrat to delineate a sampling 

area of up to 20 x 30 cm. Bulk shore samples were also taken using a corer (15-30 

cm deep; n = 3; Ballent et al. 2016; Dean et al. 2018; Yuan et al. 2022) and an 

Ekman grab (2-5 cm deep; n = 2; Scopetani et al. 2019; Merga et al. 2020). Only two 

studies sampling shore sediment took a volume reduced sample; sieving sediment 

from a 0.25 cm2 quadrat to a 3 cm depth in situ using a 5 mm mesh sieve (Fischer et 

al. 2016; Blettler et al. 2019). If a study compares the microplastic load of benthic 

and associated shore sediment, the same sampling apparatus should be used to 

limit cofounding factors. 

 

3.4.3 Biota sampling 

 Due to their small size, microplastics can interact with aquatic organisms, 

being taken up accidentally or actively from water and sediment, posing as a 

physical, chemical, and biological hazard. Microplastic in freshwater biota was 

investigated by 76 reviewed studies, with 57 and 26 studies sampling organisms 

from fluvial and lentic systems, respectively. Table 3.1 lists the number of studies 

using different biota sampling techniques. The method of sampling biota was 

reported in all but three studies and varied across classes. Half of fish studies 

captured specimens in the field using nets (dip, vertical, hook line, fyke, gill, cast, 

Siene, or trawl; n = 26) and almost half by fishing or electrofishing (n = 24). The 

remaining studies either purchased specimens from local fishers (n = 8) or used 

historic specimens (n = 1; Hou et al. 2021). Insects and gastropods were collected 

by net (dip, kick, Surber, gill, fyke, or cast; n = 17), directly hand-picked from littoral 

zones (n = 5) or sediment cores (n = 1; Hurley et al. 2017), or purchased (n = 1; 

Blankson et al. 2022). Within the few bird studies, three sampled faecal material 

(Reynolds and Ryan 2018; D’Souza et al. 2020; Winkler et al. 2022) and two 
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sampled whole organisms found dead (Faure et al. 2015; Holland et al. 2016). The 

single mammal study sampled Eurasian otter faeces (O’Connor et al. 2022). Lastly, 

reeds (Angiospermae) were hand-collected (n = 1; Yin et al. 2021) and biofilm was 

sampled with a steel shovel  (n = 1; Huang et al. 2021). Unlike water and sediment 

sampling, techniques used to collect whole organisms from freshwater are unlikely to 

influence the assessed microplastic contamination, unless plastic equipment 

fragments and is taken up by organisms. 

 Most taxonomic classes have been investigated as whole specimens, except 

for fish. All but one fish study examined microplastics in the gastrointestinal (GI) tract 

or stomach of individuals after dissection, with muscle, liver (n = 3; Collard et al. 

2018; Garcia et al. 2020; Pittura et al. 2022), and gills (n = 7; Garcia et al. 2020; Park 

et al. 2020b; Liu et al. 2021a; Zhang et al. 2021; Ditlhakanyane et al. 2022; Kılıç et 

al. 2022; Wu et al. 2022) additionally being examined. Dissecting the GI tract reveals 

microplastic uptake through ingestion, whereas gills indicate uptake through 

respiration. Emerging evidence reveals organ-specific localisation of microplastics in 

fish that differs between species (Jabeen et al. 2017). Ditlhakanyane et al. (2022) 

found microplastic abundance in banded tilapia fish (Tilapia sparrmanii) was 46% 

higher in their stomach compared to their intestines, with gills contributing to less 

than one-third of individual microplastic loads. Liu et al. (2021a) and Zhang et al. 

(2021) also found greater microplastic abundance in fish GI tracts compared to gills. 

However, Garcia et al. (2020) found similar microplastic concentrations in the gut 

and gill tissue of two native fish species in Magdalena River, Colombia, indicating 

similar uptake rates through ingestion and inhalation. Evaluating microplastic uptake 

on one organ may bias the assessed exposure, especially as different methods of 

uptake are involved. Furthermore, microplastics found in faecal matter (Reynolds 

and Ryan 2018; D’Souza et al. 2020; Winkler et al. 2020; O’Connor et al. 2022) 

reveal the complete passage of particles through organisms, yet little is known 

regarding any processing, degradation, and/or movement through cell walls, 

especially for more relevant nanoparticles. 



53 
 

Table 3.1 Number of studies sampling water, sediment, and biota using different 

sampling techniques. L1 and L2 are level 1 and 2, respectively. Data from n = 300 

reviewed studies. 

 Sample technique 

Matrix L1 L2 L3 

Water 205 Bulk 111 Sampler 82 Steel 42 

Glass 21 

Plastic 6 

Pump 32   

Volume-
reduced 

106 Net 112 Manta 44 

Plankton 39 

Neuston 16 

Trawl 5 

Drift 2 

Streambed 1 

Kick 1 

Sieve 6   

Sediment 140 Bulk 137 Grab 59 Van Veen 27 

Ponar 11 

Peterson 8 

Ekman 7 

Shipek 2 

Sampler 50 Steel 42 

Plastic 3 

Corer 32 Gravity 5 

Box 4 
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Kajak 
Brinkhurst 

3 

Piston 2 

Splitspoon 2 

Multi 1 

Hammer 1 

Sludge 1 

Glass 1 

Dutch Auger 1 

Cylinder 
resuspension 

2   

Volume-
reduced 

3 Sieve 2   

Net 1 Surber 1 

Organism 76 Selective 76 Dissected 57 GI tract 54 

Gills 16 

Muscle 3 

Soft tissue 3 

Whole 16   

Spraint 3   

  

 

3.5 Sample processing 

 After field sampling, sample matrices need to be processed in the laboratory 

to isolate microplastic for quantification and characterisation. This is performed using 

four techniques: (1) sieving, (2) digestion (removal of organic material), (3) density 

separation (extraction by density), and (4) filtration (extraction by size). 
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3.5.1 Sieving 

Sieving reduces the volume of samples for subsequent processing and 

enables microplastic to be extracted from environmental matrices. Samples can be 

wet sieved or sieved after drying and sieve aperture is used to fraction samples and 

therefore microplastic, into distinct size categories. Sieving was performed in 100 

water, 82 sediment, and seven biota studies, with aperture ranging from 0.5 μm 

(Aslam et al. 2022) to 5.6 mm (Ballent et al. 2016; Kay et al. 2018; Corcoran et al. 

2020). The latter exceeds the 5 mm size limit defined for microplastic particles 

(Arthur et al. 2009; GESAMP 2015) and thus, is not suitable for microplastic 

sampling. Sieving techniques used by reviewed freshwater studies, as categorised 

by Fok et al. (2020), include: 

i. Fine-mesh sieve (< 0.5 mm; n = 61) 

ii. Small-mesh sieve (≥ 0.5-1.99 mm; n = 15) 

iii. Large-mesh sieve (2-5 mm; n = 26) 

iv. Two-sieve stack, collecting particles passing through the upper sieve (usually 

5 mm mesh) but retained on the lower sieve (n = 35) 

v. Multiple (3 to 12) stacked sieves with descending aperture, allowing 

separation of microplastic into distinct size classes (n = 53). 

The percentage use of each sieve type is displayed in Figure 3.2, showing fine-mesh 

sieves (32%) and multiple stacked sieves (28%) were most commonly used. Smaller 

apertures isolate smaller microplastic particles but are more likely to be obstructed 

by organic and inorganic material. Furthermore, smaller apertures are more likely to 

retain particles, especially microfibres, due to electrostatic attraction, capillary action, 

and/or cohesive forces increasing surface tension. This can be reduced with gentle 

agitation or the addition of surfactants (e.g., Tween 20) to samples or rinse water, 

helping release particles (Oladejo 2017). A glass or metal plate can also be vertically 

dipped and withdrawn from water samples to capture surface particles via adhesion 

and surface tension. Ideally, a standardised filtration aperture should be determined 

to allow comparison between studies and to consolidate the definition of 

microplastic, taking into account water quality and sediment grain size. 
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3.5.2 Density separation 

 Plastic polymers range in density from 0.8 to 2.3 g/cm3 (Hidalgo-Ruz et al. 

2012) (Table 3.2), whilst incorporation of additives during manufacturing as well as 

external biofilm growth (Semcesen and Wells 2021), increases this range. 

Microplastic can therefore be separated from environmental material based on 

particle density, as the density of sediment is 2.65 g/cm3 (Hidalgo-Ruz et al. 2012). 

Samples are mixed and shaken with a saturated solution, causing sediment to settle 

and less dense particles to remain suspended or float, with this supernatant being 

extracted for further processing (Hidalgo-Ruz et al. 2012). This technique was used 

by 60% (n = 185) of selected studies and commonly applied to sediment (91%; n = 

128; Figure 3.3). Only 37% (n = 76) and 22% (n = 17) of water and biota studies 

used density separation, respectively (Figure 3.3). 

Of all selected studies using density separation (n = 185), over half used 

saturated sodium chloride (NaCl, ρ = 1.13-1.3 g/cm3; n = 107). This is low-cost, 

easily available, and non-toxic (Cutroneo et al. 2020; Fok et al. 2020) and thus, is 

recommended for use by the Marine Strategy Framework Directive technical 

subgroup of the European Commission Joint Research Centre (European 

Commission, 2013) and National Oceanic and Atmospheric Administration (NOAA; 

Mausra et al. 2015). However, NaCl and other applied solutions including canola oil 

Figure 3.2 Percentage of studies that employed sieving for microplastic extraction  

(n = 190) that used different sieve types. 
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(n = 1; Crew et al. 2020), castor oil (n = 2; Mani and Burkhardt-Holm 2020; Pol et al. 

2022), tap water (1 g/cm3; n = 2; Vaughan et al. 2017; Lusher et al. 2018), sodium 

dodecyl sulfate (SDS; 1.01 g/cm3; n = 1; Cable et al. 2017), and potassium 

metaphosphate (KO3P, 0.0055 g/cm3; n = 1; Tien et al. 2020), are less effective in 

extracting higher-density polymers (Lusher et al. 2017), especially particles with 

biofilm. This potentially underestimates observed microplastic concentrations. 

Density separation via water can recover over 95% of fibres due to their large 

surface area to volume ratio trapping them in the surface tension film (Alomar et al. 

2016; Quinn et al. 2017). Oil has been used due to the oleophilic properties of 

plastic, with canola oil providing Crichton et al. (2017) with faster microplastic 

extraction than sodium iodide (NaI) and calcium chloride (CaCl2) and recovering 

96% of microplastic from sediment including high-density polyvinyl chloride (PVC). 

Using oil does require a cleaning step with detergent, but can be combined with 

saturated solutions to improve recovery rates (Prata et al. 2019b). 

Over one quarter of procedures used zinc chloride (ZnCl2, 1.5-1.7 g/cm3; n = 

51) and 10% used NaI (1.6-1.8 g/cm3; n = 18), which both have higher densities, but 

are not recommended due to their toxicity and high cost (Cutroneo et al. 2020). 

Moreover, NaI reacts with cellulose filters used during filtration (see section 3.5.4), 

turning them black and complicating visual identification (Prata et al. 2019b). 

Interestingly, most studies using density separation to extract microplastic from 

sediment used ZnCl2 over NaCl (Figure 3.3), indicating that a higher density solution 

is needed to separate the organic material. Other applied solutions of higher density 

are CaCl2 (1.4 g/cm3; n = 5), sodium tungstate dihydrate (STD: Na2WO4·2H2O,      

1.4 g/cm3; n = 1; Tsering et al. 2021), potassium formate (HCOOK: K(HCOO),       

1.5 g/cm3; n = 6), sodium polytungstate (SPT: 3Na2WO4·9WO3·2H2O, 1.5 g/cm3;       

n = 6), NaCl and ZnCl2 combined solution (1.6 g/cm3, n = 1; Hu et al. 2020), 

potassium iodide (KI, 1.5-1.75 g/cm3, n = 1; Zhang et al. 2020b), and zinc bromide 

(ZnBr2, 1.7 g/cm3; n = 1; Park et al. 2020a). Zobkov et al. (2020a,b) used HCOOK on 

sediment to enable further analysis of heavy and trace metals on microplastics, due 

to its low toxicity.  

Fourteen studies (eleven sediment, two water, one biota) used multiple 

density separation steps with different solutions, either consecutively or with other 

processing steps in-between, helping to isolate different polymer types. For example, 
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Hurley et al. (2017) firstly used 1.025 g/cm3 NaCl, filtering the supernatant through a 

GF-C glass microfibre filter, then subsequently applied 1.2 g/cm3 NaCl and 1.8 g/cm3 

NaI for further density separation. Table 3.2 illustrates which density separation 

solution is effective for different polymer types according to their respective densities. 

However, it should be acknowledged that microplastic density is further influenced by 

additive concentration, homo- and hetero-aggregation, and biofouling (Quinn et al. 

2017). This can be mitigated by performing chemical digestion (see section 3.5.3) to 

remove biofilm before density separation. Solutions greater than 1.4 g/cm3 are 

recommended to separate microplastics from organic and inorganic material, as this 

exceeds the density of most polymer types and microplastic recovery increases with 

increasing solution density (Quinn et al. 2017). 
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Table 3.2 Density of polymer types and resulting effectiveness of separation solutions, adapted from Stuart (2008) and Prata et al. 

(2019b). 

 

Polymer Density 

(g/cm3) 

Oil Water SDS NaCl CaCl2, 

STD 

HCOOK, 

SPT, 

ZnCl2 

KI NaI, 

NaCl+ZnCl2 

ZnBr2 

  0.9 g/cm3 1 g/cm3 1.01 

g/cm3 

1.2 g/cm3 1.4 g/cm3 1.5 g/cm3 1.52-1.63 
g/cm3 

1.6 g/cm3 1.7 g/cm3 

SR 0.8 + + + + + + + + + 

PP 0.85-0.92 + + + + + + + + + 

LDPE 0.89-0.93 + + + + + + + + + 

HDPE 0.94-0.98 - + + + + + + + + 

PA 1.01-1.05 - - - + + + + + + 

PS 1.04-1.1 - - - + + + + + + 

PAN 1.14-1.17 - - - + + + + + + 

PMMA 1.09-1.2 - - - + + + + + + 

PMA 1.17-1.2 - - - + + + + + + 

PU 1.2-1.26 - - - ± + + + + + 

PC 1.2-1.22 - - - ± + + + + + 

PVC 1.16-1.58 - - - ± + + + + + 

PVA 1.17-1.31 - - - ± + + + + + 
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Alkyd 1.24-2.1 - - - - + + + + + 

PEST 1.24-2.3 - - - - + + + + + 

PET 1.37-1.45 - - - - ± + + + + 

POM 1.41-1.61 - - - - - ± ± ± + 

PTFE 2.1-2.3 - - - - - - - - - 

 

Key +: separation, ±: possible separation, -: no separation. Separation solutions: sodium dodecyl sulfate (SDS), sodium chloride 

(NaCl), calcium chloride (CaCl2), sodium tungstate dihydrate (STD: Na2WO4·2H2O), potassium formate (HCOOK: K(HCOO)), 

sodium polytungstate (SPT: 3Na2WO4·9WO3·2H2O), zinc chloride (ZnCl2), potassium iodide (KI), sodium iodide (NaI), zinc bromide 

(ZnBr2). Polymers: SR: silicone rubber, PP: polypropylene, LDPE: low-density polyethylene, HDPE: high-density polyethylene, PA: 

polyamide (nylon), PS: polystyrene, PAN: polyacrylonitrile PMMA: Poly(methyl methacrylate) (acrylic), PMA: poly(methyl acrylate), 

PU: polyurethane, PC: polycarbonate, PVC: polyvinylchloride, PVA: polyvinyl alcohol, PEST: Polyester, PET: polyethylene 

terephthalate, POM: polyoxymethylene, and PTFE: polytetrafluoroethylene. Polymer density adapted from Hidalgo-Ruz et al. 

(2012).
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b) Water 

c) Biota 

 

a) Sediment 

Figure 3.3 Percentage of all freshwater a) sediment (n = 141), b) water (n = 205), 

and c) biota (n = 76) microplastic studies that used different density separation 

solutions. Sodium chloride (NaCl), sodium iodide (NaI), zinc chloride (ZnCl2), zinc 
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(ZnBr2), calcium chloride (CaCl2), potassium formate (HCOOK), potassium 

metaphosphate (KO3P), sodium polytungstate (SPT), sodium dodecyl sulfate (SDS), 

sodium tungstate dihydrate (STD), canola oil, castor oil, water (H2O), or potassium 

iodide (KI). Eleven studies applied multiple density separation solutions and thus, 

percentage sums exceed 100%. 
 

3.5.3 Chemical digestion 

 Chemicals, with stirring and/or heating, have been used to digest organic 

matter, aiding the isolation of microplastic. This approach was used by three quarters 

of selected studies (n = 227) and was slightly more common in biota (80%; n = 61) 

and water (76%; n = 156) studies than sediment studies (63%; n = 89). Four main 

methods of chemical digestion were used: oxidative, acidic, alkaline, and enzymatic 

digestion. 

 Oxidative digestion with hydrogen peroxide (H2O2), known as Wet 

Peroxide Oxidation (WPO), was the most used digestive agent (84% of studies 

performing digestion), more so in sediment (92%; n = 82) and water (91%; n = 142) 

studies than biota studies (46%; n = 28) (Figure 3.4). The concentration was typically 

30% but ranged from 10% (Cera et al. 2022b) to 50% (Liu et al. 2019a; Olesen et al. 

2019). When H2O2 is used alone, digestion times range from 15 minutes to 1 week, 

with 24 hours being used most frequently amongst reviewed studies (n = 28). In 

many cases, this digestion was accelerated using ferrous iron (Fe(II)) catalysts, 

known as Fenton’s reagent: Fe(II) (n = 43), Fe(II) sulfate (FeSO4; n = 12), Fe(II) 

sulfate heptahydrate (FeSO4·7H2O; n = 8), Fe(II) chloride (FeCl2; n = 1; Peller et al. 

2019), and Fe(III) chloride (FeCl3; n = 1; Zhang et al. 2022). The most frequently 

used digestion time reduced to 30 minutes with the addition of Fe(II) (n = 7). Acids 

and bases were often added to Fenton’s reagent to alter the pH, including sulfuric 

acid (H2SO4; n = 10), hydrochloric acid (HCl; n = 1; Peller et al. 2019), or sodium 

hydroxide (NaOH; n = 2; Liu et al. 2019; Olesen et al. 2019). Fenton’s reagent is 

considered optimal as it removes significantly more organic matter than alkaline 

digestion and does not degrade microplastic (Tagg et al. 2017; Hurley et al. 2018a). 

Zobkov et al. (2020a) published a detailed method for microplastics extraction from 

freshwater sediment. This included a preliminary wet peroxide oxidation step with 

H2O2, before filtration and extraction with density separation, followed by wet 



63 
 

peroxide oxidation with Fenton’s reagent and chitin and mineral fraction digestion 

with HCl (Zobkov et al. 2020a).As well as WPO, alkalines were also used to digest 

soft tissue in biota (48% of studies; n = 30; Figure 3.4c). These include 10-30% 

potassium hydroxide (KOH; n = 41) and sodium hydroxide (NaOH; n = 6). Digestion 

time for alkalines ranges from 10 minutes to 3 weeks, with 48 hours being most 

frequently used amongst reviewed studies (n = 7). When comparing the recovery 

rate of three different methodologies for extracting microplastic from sediment, Nava 

and Leoni (2021) concluded digestion with 10% KOH to be optimal due to its 

simplicity, reproducibility, and affordability, despite recovery rate being greatest with 

NaCl and NaI density separation. Alkalines have high digestive efficiency (Wu et al. 

2020a), but are reported to damage or discolour polyethylene (PE), PVC and nylon 

(Cole et al. 2014). The more basic and potentially less damaging detergent, sodium 

dodecyl sulfate (SDS), was used to digest organic matter in water residue (n = 7), 

mostly for 24 hours (n = 4).  

The alternative of acidic digestion was used less frequently: 55-69% nitric acid 

(HNO3; n = 4) was used to digest insects (Nel et al. 2018; Stanković et al. 2021), fish 

tissue (Roch et al. 2019), and water residue (Kaliszewicz et al. 2020), for 15 minutes 

to 72 hours. 4.5% HCl (calcite digestion) digested water and sediment residue (n = 

5) for 24 to 48 hours and sodium hypochlorite (NaClO; n = 2) digested fish (Collard 

et al. 2018) and water residue (Correa-Araneda et al. 2022) for 24 hours. Acid can 

also degrade polymers, especially those with a low pH tolerance and low heat 

deflection temperature (Claessens et al. 2013; Qiu et al. 2016; Prata et al. 2019b) 

such as polystyrene (PS), poly(ethylene terephthalate) (PET), and nylon. Moreover, 

HCl is reported to have low digestion efficiency (Wu et al. 2020a) and thus, is 

sometimes used in combination with WPO (Lenaker et al. 2019; Lenaker et al. 2021; 

Shen et al. 2021). Some studies mixed digestive chemicals to increase digestion 

efficiency, including a 1:1 (v/v) mixture of 34.5-36.5% H2O2 and 10% KOH (Akindele 

et al. 2019), a 1:3 (v/v) mixture of 30% H2O2 and 69% HNO3 (Kaliszewicz et al. 

2020) and 1:1 (v/v) mixture of 30% KOH and NaClO (Yuan et al. 2022). 

Enzymes were used to digest organic material in water (n = 7) and biota       

(n = 5) (Figure 3.4b,c) and included lipase, protease, amylase, cellulase, chitinase, 

and carbohydrase. Enzymes are less damaging to both microplastics and the 

environment (Cole et al. 2014; Courtene-Jones et al. 2017), but are expensive, 
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operate at small scales, and digestion is time-consuming (Wu et al. 2020). Digestion 

times ranged from 16 hours to 5 days, with 48 hours being the most frequently used 

digestion time amongst reviewed studies (n = 4). Furthermore, enzymes are 

biological substances that require specific activation conditions. Lastly, 26 studies 

used multiple digestion steps with different solutions, with sieving, filtration, or 

density separation in between. For example, Liu et al. (2019) digested sieved water 

samples using 1) SDS, 2) 50% H2O2 with a Fe(II) catalyst, 3) Cellubrix and 

Viscozyme enzymes, 4) Alcalase enzyme, then 5) 50% H2O2 with a FeSO4 catalyst 

and NaOH. 

Digestion conditions, including temperature, stirring, and duration, varied 

among studies. Overall, duration was mentioned by 152 studies, with a large range 

from five minutes (Rakib et al. 2022; Warrier et al. 2022) to one month (Imhof et al. 

2013; Tien et al. 2020), with most digestion procedures running “overnight” or for    

24 hours (n = 47). Incubation temperature was mentioned in 146 studies, ranging 

from 20°C (Li et al. 2021b; Prata et al. 2021) to 100°C (Nel et al. 2018; Mao et al. 

2020b). Most operated at room temperature (n = 32), followed by 60°C (n = 30) and 

75°C (n = 24). Choice of temperature is partly dictated by the chemical used, but 

must consider that most plastics melt above 100°C, with some melting below 70°C. 

Stirring was mentioned in 47 studies, with rotational speed ranging from 30 rpm 

(Parker et al. 2022a) to 5,000 rpm (Collard et al. 2018). As with density separation 

(see section 3.5.2), chemical digestion techniques for microplastic extraction are not 

standardised, which may cofound the comparison of microplastic loads reported 

across studies. However, the most effective technique must be established based on 

sample type, quality, and amount of organic and inorganic material. 
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b) Water 

a) Sediment 

c) Biota 

 

Figure 3.4 Percentage of all freshwater a) sediment (n = 141), b) water (n = 205), 

and c) biota (n = 76) microplastic studies that used different digesting solutions. 

Twenty-six studies used multiple solutions and thus, percentage sums exceed 100%.
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3.5.4 Filtration 

Microplastic was extracted directly from environmental media or from density 

separated and chemically digested supernatant via filtration, either assisted by 

gravity or a vacuum. Filtration was performed by 224 studies: 149 water (of which 

19% had no pre-treatment), 106 sediment, and 58 biota studies. Peters and Bratton 

(2016) and Horton et al. (2018) filtered stomach contents of freshwater fish with no 

pre-treatment. Pore sizes used range from 0.2 μm (Akindele et al. 2019; Bordós et 

al. 2019; Mintenig et al. 2020; Negrete Velasco et al. 2020; Scherer et al. 2020; Tien 

et al. 2020; Ajay et al. 2021; Shen et al. 2021) to 500 μm (de Carvalho et al. 2021; 

Garcia et al. 2021; Haberstroh et al. 2021a), with 0.45 μm being the most used (n = 

63). Similarly to sieving (see section 3.5.1), filter paper pore size influences the type 

and abundance of microplastic extracted from samples, as it limits the size of 

particles that can be retained. Filters with larger pores are more likely to result in 

underestimation of microplastic abundance. 

Glass fibre filters were most commonly used for filtration (n = 97; Figure 3.5) 

in studies reporting filter material, ranging in pore size from 0.2 μm (Ajay et al. 2021) 

to 5 μm (Yan et al. 2021). This was followed by cellulose esters, including cellulose 

nitrate/nitrocellulose and cellulose acetate (0.22-450 μm; n = 43). Other filter material 

used include nylon (0.22-500 μm; n = 12), polycarbonate (0.45-10 μm; n = 10), 

quartz (0.3-2.2 μm; n = 4), stainless-steel (2-45 μm; n = 3), aluminium oxide (0.2 μm; 

n = 3), inorganic membrane (0.2-25 μm; n = 3), polytetrafluorethylene (0.22-5 μm;    

n = 3), silver (0.5-5 μm, n = 3), “mesh” (5-500 μm; n = 3), nickel copper alloy (Monel; 

30 μm; n = 1; Scircle et al. 2020), milling silk (10 μm, n = 1; Stanković et al. 2021), 

and microline (reverse osmosis; n = 1; Yin et al. 2019) (Figure 3.5). Polymer-based 

filters, i.e., cellulose esters, polycarbonate, and polytetrafluorethylene, should be 

avoided when identifying polymers with Fourier-transform infrared spectroscopy 

(FTIR) (see section 3.6.3), as they are identified in the spectra. This needs to be 

considered when choosing a filter type, as well as their cost, which can vary greatly. 
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3.5.5 Quality control 

 Samples can easily become contaminated by particles present in the air        

in situ and ex situ, on clothes of workers, in containers and equipment, and by 

improperly sealed samples (Hidalgo-Ruz et al. 2012). These sources of 

contamination must be minimised as much as possible to improve accuracy of 

results and avoid overestimation of microplastics in samples. Control measures 

include: (1) wearing 100% cotton clothing and laboratory coats when sampling and 

processing samples; (2) minimising traffic in the laboratory; (3) minimising use of 

synthetic materials; (4) wearing gloves; (5) processing samples in a laminar flow 

cabinet; (6) wiping down surfaces before processing; (7) rinsing all equipment before 

use; (8) filtering solutions before use; (9) storing samples and filters in glass 

containers where possible; and (10) keeping samples and filters covered whenever 

possible (Marine & Environmental Research Institute 2015). It is good practice to 

take a control sample at various stages of sampling and processing to identify 

microplastic contamination, which can be deducted from the sample microplastic 

count. 

Figure 3.5 Percentage of studies employing filtration for microplastic extraction 

(n = 224) using different filtering material. 
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3.6 Microplastic quantification and characterisation 

3.6.1 Microplastic identification 

Extracted particles were visually sorted to quantify microplastic loads in 

samples, with 91 studies using no equipment and only human eye. Microscopes 

were usually employed to aid particle detection (n = 240) up to 1 mm (Song et al. 

2015) or 500 µm (Hidalgo-Ruz et al. 2012; Löder and Gerdts 2015b). Light 

microscopes, including binocular, compound, optical, and stereo (dissecting) 

microscopes, were most common amongst studies using microscopy (n = 212; 71%). 

Other microscopes used were scanning electron (SEM; n = 28), which is also 

coupled with Energy Dispersive Spectroscopy (EDS; see section 3.6.3), UV 

fluorescence (n = 11), metallographic (n = 7), and laser confocal (n = 1).  

Criteria were used to distinguish microplastic from organic and inorganic 

particles, thereby preventing over- or underestimation of microplastic loads through 

misidentification. Reported criteria (Norén 2007; Hidalgo-Ruz et al. 2012; Nor and 

Obbard 2014; Horton et al. 2017a; Vaughan et al. 2017; Barrows et al. 2018; Horton 

et al. 2018; Tibbetts et al. 2018; Townsend et al. 2019; Khan et al. 2020; Kuśmierek 

and Popiołek 2020; Mao et al. 2020a; Uurasjärvi et al. 2020; Woodward et al. 2021) 

were reviewed and summarised as follows: 

1) Particles have no cellular or organic structure. 

2) Particles have an unnatural shape. 

3) Fibres are equally thick throughout their length, are not segmented or twisted 

flat ribbons, and have 3D bending (i.e., not entirely straight). 

4) Particles are not shiny, have clear and homogenous colour and if transparent 

or white, must be examined under high magnification and fluorescence to 

exclude organic origin. 

5) Particles have a homogenous texture. 

6) Particles maintain structural integrity when compressed, without being brittle. 

Simple tests were also used to aid microplastic identification. The break test classes 

particles that do not break when prodded with probes as plastic (Marine & 

Environmental Research Institute 2015). However, this can still misidentify particles 

as plastic, notably cotton fibres (Hendrickson et al. 2018), and was only used by two 

studies (Egessa et al. 2020; Wu et al. 2022b). The hot needle test classes particles 
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that melt or curl when prodded with a heated needle tip as plastic (De Witte et al. 

2014; Marine & Environmental Research Institute 2015) and was used by thirteen 

reviewed studies.  

Staining particles can further aid the sorting process and reduce false 

positives (Löder and Gerdts 2015b; Pastorino et al. 2021). Nile Red is a lipophilic 

dye used to stain microplastic and not biological material, and is visualised under 

fluorescent microscopy (Jee et al. 2009; Andrady 2011; Shim et al. 2016). This was 

used by six studies (Fischer et al. 2016; Crew et al. 2020; Mao et al. 2020b; Scircle 

et al. 2020; Simmerman and Wasik 2020; Prata et al. 2021). Rose-Bengal (4,5,6,7-

tetrachloro-2’,4’,5’,7’-tetraiodofluorescein) is a bright red stain that dyes biological 

material (epithelial cells, mucus, fibrous tissue) and not microplastic, and does not 

require fluorescence microscopy (Feenstra and Tseng 1992a; Ziajahromi et al. 

2017b; Pastorino et al. 2021). This was only used by Pastorino et al. (2021) and is 

limited by the exclusion of red/pink microplastic particles during enumeration, 

causing underestimation. Interestingly, Lasee et al. (2017) performed no visual 

sorting or microplastic identification test and determined microplastic mass 

concentration (mg/L) by dividing the filtrate mass by the grab sample volume, which 

does not assess whether particles are microplastic. 

 As well as microplastic enumeration, visual sorting enables microplastic 

characterisation. Particle shape, size, and colour were used to identify the primary 

and secondary origin of microplastic particles, environmental residence time, and 

fragmentation processes. This aided the identification of pollution sources and 

informed understanding of microplastic behaviour in freshwater. Moreover, particle 

characteristics drive effects on biota and thus, should be reported to inform exposure 

experiments (Thornton Hampton et al. 2022a). Particle shape was recorded in 92% 

of studies (n = 275) and described with 84 unique terms. The latter profusion limits 

comparison between studies and analysis of trends, with similar microplastic 

particles potentially classed into distinct categories. Criteria used for microplastic 

shape classification (Supplementary Information A1) were reviewed and summarised 

as follows: 
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1) Fragment – Hard, irregular shaped cube with at least one smooth plane, 

angular, jagged, incomplete, and 3D. 

2) Bead/Pellet – Hard, round, spherical, ovoid discs, cylinders, and 3D. 

3) Foam – Lightweight, sponge or bubble-like, and surface is not smooth. 

4) Fibre – Thin, fibrous, thread-like, slender, elongated, cylindrical, equally thick 

throughout (not tapered at ends), not entirely straight, 3D bending, and length 

is >3 times width. 

5) Film – Thin with two smooth planes, 2D, flat, irregular in shape soft, and 

flexible. 

6) Other. 

Future studies should use these standardised microplastic identification and shape 

criteria to aid characterisation and comparison between studies. Visual sorting is 

time intensive, subject to human error, and dependent on microscope quality and 

magnification (Löder and Gerdts 2015b). Reported error rates from visual sorting 

range from 20% (Eriksen et al. 2013) to 70% (Hidalgo-Ruz et al. 2012) and 

increases with decreasing particle size (Löder and Gerdts 2015b). This suggests that 

reported microplastic loads are underestimated. Instrumental analysis of particles 

should be carried out as standard (see section 3.6.3), to confirm their polymer status 

and limit human error. 

 

3.6.2 Reporting units and freshwater microplastic observations 

 Different quantitative results were reported based on the approaches adopted 

in sampling and processing. Microplastic loads were reported as raw values, ranges, 

and/or averages, mainly as numerical concentration (n = 290; 97% of studies), with a 

few studies reporting mass concentration (n = 28; 9%), or prevalence, i.e., 

percentage of individuals or samples contaminated with at least one microplastic 

particle (n = 49; 16%). However, researchers recommend both counts and mass 

should be reported as both influence effects in biota (de Ruijter et al. 2020; Thornton 

Hampton et al. 2022a). 

In the 141 sediment studies, microplastic numerical concentration was mainly 

reported per mass in wet weight (ww) or dry weight (dw) (particles/g or particles/kg;  

n = 118; 84% of studies), then per unit area (particles/m2 or particles/km2; n = 8; 6%) 
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or per volume (particles/m3, particles/dm3, or particles/L; n = 8; 6%) (Figure 3.6a). 

Microplastic mass concentration in sediment was only reported in eight studies, as 

particle mass per unit mass of sediment (µg/g or mg/kg). In the 205 water studies 

reviewed, microplastic numerical concentration was mainly reported per unit volume 

(particles/m3, particles/mL, or particles/L; n = 138; 67%), followed by unit area 

(particles/km2; n = 28; 14%) (Figure 3.6b). Single studies used unique numerical 

concentration units including particles/15-minute trawl (Kay et al. 2018), 

particles/m3/minute (Bertoli et al. 2022), and particles/sample (Chauhan et al. 2021), 

which are non-comparable to other studies. Microplastic mass concentration in water 

was reported almost ten times less than numerical concentration, as mass per 

volume (µg/m3, mg/m3, g/m3, µg/L, and mg/L; n = 7; 3%) or mass per area (µg/m2, 

g/km2, mg/km2; n = 4; 2%). All reporting units used in reviewed studies are listed in 

Table A2. 

Inconsistency in reported units of microplastic concentration has research 

implications as it limits comparison amongst studies, both within and between 

environmental matrices, and makes meta-analysis less reliable. Unit area is not 

representative of these matrices as they are inherently 3D, with freshwater 

hydraulics allowing microplastic to be incorporated in all dimensions. Regarding 

mass concentration, there was no standardisation of water content in sediment and 

in many cases, the distinction between wet and dry mass was not reported. 

Freshwater sediment mass depends on its water content, as well as material type, 

and grain size and thus, are non-comparable within and between freshwater 

ecosystems. Future research should report microplastic concentration in as many 

units as possible to enable comparison to previous studies. To compare microplastic 

loads between environmental matrices, a standardised reporting unit is required, for 

which particles per unit volume is the most appropriate. This is because 

environmental media are 3D and volume is a consistent measure. Moreover, it 

removes the influence of inconsistent sediment mass and water content between 

ecosystems on observed microplastic concentrations, and allows the effect of 

sediment type and grain size on microplastic retention in sediment to be measured. 

In the 76 studies sampling freshwater biota for microplastic, particle numerical 

concentration was mainly reported per whole individual (n = 52; 68%), then per unit 

mass of tissue (particles/g, particles/g ww or particles/g dw; n = 24; 32%), per 
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individual organ, i.e., GI tract, GI tract content, gill, or gizzard (n = 8; 11%), and per 

spraint (n = 2; Reynolds and Ryan 2018; O’Connor et al. 2022) (Figure 3.6c). 

Similarly to water and sediment sampling, microplastic mass concentration in 

freshwater biota was poorly reported, with only four studies reporting microplastic 

mass per individual or per wet or dry mass of individuals or tissue (mg/g dw or    

mg/g ww) (Faure et al. 2015; Olesen et al. 2019; Merga et al. 2020; Pan et al. 2021). 

Both numerical and mass concentrations are required to study microplastic effects 

on biota, as particles are insoluble and thus, have physical and chemical effects 

(Thornton Hampton et al. 2022a). Lastly, over half of reviewed biota studies reported 

prevalence of microplastic in individuals sampled (n = 43; 57%), which shows the 

extent of microplastic infiltration into the food web. 
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Figure 3.6 Percentage of all freshwater a) sediment (n = 141), b) water (n = 205), 

and c) biota (n = 76) microplastic studies that used different reporting units. 

 

3.6.3 Polymer analysis and type 

To remove false positives identified during visual identification and to assess 

pollution sources and their impact on organisms and the environment, the polymer 

type of particles should be assessed. Instrumental analysis is usually performed on a 

subset of isolated particles and was conducted by 89% of studies (n = 246). Several 

instruments were employed to identify polymer type, which are grouped into 

spectroscopy and thermal analysis with mass spectrometry. Figure 3.7 shows the 

division of these instruments between studies.  

Spectroscopy projects electromagnetic radiation at specific wavelengths onto 

polymers to determine the absorbance or transmittance response of electrons, 

providing information about specific chemical bonds and functional groups 

(GESAMP 2019). Unique particle spectra are compared with spectra of known 

polymers to identify polymer type (Hidalgo-Ruz et al. 2012). Spectroscopy was used 

in three-quarters of studies using instrumental analysis, mainly with infrared (IR). 

Fourier-transform infrared spectroscopy (FTIR; n = 44) measures transmittance, 

reflectance, and attenuated total reflectance (ATR-FTIR; n = 67). Using ATR has a 

number of advantages over transmission as it does not require IR light to pass 

through samples and thus, can be used for thick and opaque material (GESAMP 

c) Biota 
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2019). ATR also provides more stable spectra from material with typically irregular 

surfaces, can detect smaller particles compared to transmission, and has a higher 

detection rate of natural and synthetic cellulosic fibres (Rayon/Viscose) that are 

difficult to discriminate with microscopy alone (Comnea-Stancu et al. 2017). 

However, ATR requires contact between the sample and ATR crystal, which may 

hinder further analysis (Shim et al. 2017; GESAMP 2019). Smaller particles down to 

10 μm can be identified using micro-FTIR (μ-FTIR; n = 55) along with ATR (ATR-μ-

FTIR; n = 13) (La Russa et al. 2009; Shim et al. 2017; GESAMP 2019). This 

microscope is more suitable for polymer analysis of microplastic as it does not 

require the movement of particles as with macro-FTIR, which is difficult at the micron 

size.  

Automated processing using linear array or Focal Plane Array (FPA) FTIR, 

can scan and analyse whole sample filters at once, reducing manual identification 

(Levin and Bhargava 2005; Primpke et al. 2017; Scircle et al. 2020). However, 

automated techniques are expensive, require clean filters (apart from microplastic), 

take multiple hours per scan, and produce cumbersome data. This may be more 

labour intensive than manual scanning, likely resulting in automated-FTIR being 

used by only one reviewed study (Scircle et al. 2020). Other IR spectroscopy 

techniques used include near-infrared (NIR; 0.8-2.5 µm; n = 2; Van der Wal et al. 

2015; Fiore et al. 2022), short-wavelength infrared (SWIR; 0.9-1.7 µm; n = 1; 

Schmidt et al. 2018), and laser direct infrared imaging (LDIR; n = 2; Jin et al. 2022; 

Yan et al. 2022). Compared to FPA-FTIR, LDIR uses a tuneable quantum cascade 

laser as the IR source to only target particles, not empty spaces (Cheng et al. 2022). 

It therefore produces stronger signals at a faster speed than FPA-FTIR and does not 

require liquid nitrogen (Cheng et al. 2022). 

Raman mass spectroscopy (RMS) was used by one quarter of reviewed 

studies analysing polymer type (n = 65). This technique projects a laser beam (500-

800 nm) onto a sample, which produces different frequencies of back-scattered light 

depending on crystalline structure and atoms present, creating a unique spectrum for 

microplastic identification (Löder and Gerdts 2015b). Both RMS and FTIR are non-

destructive techniques, but RMS can detect microplastic down to 1 μm compared to 

10 μm using µ-FTIR (Imhof et al. 2013; Shim et al. 2017). Micro-RMS can even be 

used to identify particles below 1 μm (Löder and Gerdts 2015b), but is a lot slower 
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than μ-FTIR (GESAMP 2019) and no reviewed studies have used this technique. 

RMS was also used in combination with FTIR by three studies (Ballent et al. 2016; 

Dean et al. 2018; Sekudewicz et al. 2021). However, a disadvantage of RMS is that 

it obtains spectra for additive and pigment chemicals in microplastic, which are 

subsequently identified rather than the polymer itself (Van Cauwenberghe et al. 

2013). Alternatively, energy-dispersive x-ray spectroscopy (EDS) in combination with 

SEM determines the surface elemental composition of particles, by sending 

electrons to the sample and detecting x-ray photons. This was used by 20 reviewed 

studies. X-ray photoelectron spectroscopy (XPS) and x-ray fluorescence (XRF) 

spectroscopy are two further x-ray spectroscopy techniques, each used by single 

studies (Ballent et al. 2016 and Mao et al. 2020b, respectively). 

Despite its popularity, FTIR is limited by coloured particles that produce poor-

quality spectra, and RMS is limited by fluorescence interference from additives, or 

contaminants within or in the surrounding biofilm (Van Cauwenberghe et al. 2013). 

An alternative used by eight reviewed studies is thermal analysis, which measures 

changes in the physical and chemical properties of polymers depending on their 

thermal stability (Löder and Gerdts 2015b). Differential scanning calorimetry (DSC), 

used on sediment microplastic by Castañeda et al. (2014) (n = 1), measures heat 

flow into and out of a sample and compares this to reference material to identify 

chemical composition (Shim et al. 2017). This technique is relatively simple and fast, 

but cannot identify different polymers in the same sample (Shim et al. 2017). 

Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS; n = 7) thermally 

decomposes microplastic through pyrolysis, then separates components according 

to their boiling point and polarity (mass spectrometry). These programmes are 

compared to reference programmes of known polymer samples to identify the 

polymer type (Shim et al. 2017). However, Py-GC/MS is limited to homogenous 

samples of 0.5 mg in size, which is unsuitable for environmental samples. Particles 

also need manual handling, like macro-FTIR, to be inserted into pyrolysis tubes, 

limiting the lower size of particles that can be analysed. Liquid chromatography-

tandem mass spectrometry (LC-MS/MS) separates depolymerised samples based 

on their interaction with stationary and mobile phases. This is used to specifically 

quantify PET and polycarbonate (PC) only (Yan et al. 2022). Lastly, thermal 

extraction desorption-GC/MS (TED-GC/MS) completely decomposes samples and 
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can measure 20 mg of material (Dümichen et al. 2017), but so far has not been 

applied to freshwater samples. Disadvantages of thermal analysis is the more time- 

and energy-consuming process that also destroys samples, preventing subsequent 

analysis (Shim et al. 2017). 

Tyre wear particles (TWPs) are estimated as a major contributor of 

microplastic pollution (Hann et al. 2018). Zinc is an indicator of TWPs (Rogge et al. 

1993; Fauser 1999) and thus, collision-inductively coupled plasma-mass 

spectrometry (ICP-MS) was used by Wang et al. (2017) to assess metal content in 

microplastic. This uses collision-inductively coupled plasma (energy supplied by 

electric currents produced by electromagnetic induction) to ionise samples, before 

analysis with mass spectrometry. Wang et al. (2017) identified 2,414.8-14,815.3 μg 

of zinc per gram of microplastic sampled from Beijing River sediments, which was 

one to five orders of magnitude higher than zinc present in plastic bags and screw 

caps (Imhof et al. 2016) and three to five orders of magnitude higher than zinc found 

in pre-production microplastic pellets in the marine environment (Ashton et al. 2010; 

Rochman et al. 2014), possibly indicating TWP presence in Beijing Rivers. TWPs are 

also identified in environmental samples using other markers including sulphur 

(Rogge et al. 1993), which like zinc, have other traffic-related sources; styrene-

butadiene rubber (SBR) or natural rubber (NR) that must be broken down for 

identification due to their high molecular weight; and benzothiazoles (Kumata et al. 

2002) that leach from TWPs due to their lower molecular weight and higher polarity 

(Wagner et al. 2018). As shown, TWP markers are limited and individually have 

issues rendering them unsuitable as markers. 

It is becoming essential for researchers to check particles are plastic in origin. 

However, if researchers do not have access to the described specialised equipment, 

Rose Bengal is recommended as a low-cost option to ensure counted particles are 

not organic in origin (see section 3.6.1). 
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Polymer type of sampled microplastics was described in three-quarters of 

reviewed freshwater studies (n = 225), with a median of 5 (IQR = 4) unique polymers 

per sample. There was huge disparity in reported polymer type names, limiting 

understanding and comparison. For analysis, polymer types were standardised into 

142 names, including “other”, which are listed in Table A6. The most frequently 

identified polymers were polypropylene (PP; n = 198/225 studies; 88%), and PE      

(n = 187/225 studies; 83%), of which 13% and 11% are high-density PE and low-

density PE, respectively. Followed by PS (n = 153; 68%), PET (n = 132; 59%), 

polyamide (PA; n = 110; 49%), PVC (n = 103; 46%) (Figure 3.8). These polymers are 

commonly used for bags, bottles, containers, trays, toys, and packaging. Freshwater 

organisms specifically are most commonly contaminated with PP (n = 32/47 studies 

reporting polymer type in organisms; 68%) and PE (n = 29; 62%), followed by PA, 

PET, PS, PEST, and PMMA (Figure 3.8). Research into the effects of microplastics 

on the environment and organisms should focus on these commonly occurring 

polymers in freshwater and ensure different polymer types are tested to cover the 

range found in nature. 

Figure 3.6 Percentage of studies employing instrumental analysis to detect polymer 

type (n = 246) using different techniques. 
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3.6.4 Microplastic recovery testing  

 As there is no “one-size-fits-all” method of microplastic extraction from 

environmental media, multiple studies use recovery tests to validate the efficacy of 

their chosen method in extracting microplastic. Collected media are spiked with 

known types and amounts of microplastic and running the same extraction method to 

establish what particles are recovered. This ‘recovery rate’ indicates whether the 

extraction method underestimates (< 100% recovery) or overestimates (> 100% 

recovery) environmental microplastic loads. Such inaccuracies are problematic as 

Figure 3.7 Number of studies reporting the occurrence of the top 10 most frequent 

polymer types in reviewed studies sampling freshwater for microplastic, and 

specifically in the water, sediment, and organism matrix. 
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underestimation reduces the assessed severity of freshwater contamination, 

whereas overestimation skews our understanding of microplastic fate in the 

environment (Way et al. 2022). Therefore, microplastic recovery testing serves as a 

useful tool allowing true environmental microplastic loads to be estimated. 

Furthermore, comparing recovery rates between studies indicates which techniques 

are most effective for different environmental media. However, recovery testing was 

used sparingly amongst freshwater microplastic studies (e.g., Stolte et al. 2015;      

Di and Wang 2018) and is often poorly executed (Way et al. 2022). 

 

3.7 Knowledge gaps and research requirements 

 Despite growing evidence of microplastic contamination in freshwater biota, 

several critical knowledge gaps and research needs persist. First, current studies 

predominantly focus on fish, with far fewer investigations into other taxa such as 

mammals, birds, invertebrates, and plants, limiting our understanding of microplastic 

exposure across trophic levels. Moreover, most fish studies examine only the GI 

tract, potentially underestimating total microplastic burden by neglecting other organs 

like gills, liver, and muscle, which may also accumulate particles via different uptake 

pathways. Additionally, while some studies report microplastics in faecal matter, little 

is known about particle degradation, translocation across tissues, or cellular-level 

interactions, particularly for nanoplastics. The field would benefit from an increase in 

biota sampling and an expanded taxonomic coverage using standardised methods to 

enable a more integrated assessment, as biotic microplastic loads reflect uptake 

over time. 

There is a clear deficiency in the representation of subsurface and benthic 

water in reviewed studies, limiting our understanding of the vertical distribution of 

microplastic within freshwater ecosystems. Sampling across the water column at the 

same timepoint would reveal microplastic transport patterns and highlight exposure 

risk to freshwater biota. Note, sample collection and processing must be consistent 

at each depth for valid comparison, considering the huge diversity discussed in this 

chapter. We must also elucidate the interaction between microplastic buoyancy and 

hydrodynamics to aid prediction of microplastic fate within freshwaters. For 

freshwater sediment, research on shore and bank material was sparse. Considering 
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their role as a microplastic sink during high flow and flood events (Woodward et al. 

2020; see Chapter 2), more should be done to sample microplastics in these 

environments. Remediation of these environmental matrices after heavy rainfall 

could help reduce microplastic loads in freshwater ecosystems, which needs 

investigating. 

This review revealed huge heterogeneity amongst freshwater microplastic 

research in sample collection and microplastic extraction, quantification, and 

characterisation techniques. Research is required to compare the recovery rate and 

accuracy of microplastic identification amongst different methodologies throughout 

the process chain to understand potential under- or overestimation with different 

techniques. This can be performed using different sampling equipment on the same 

environmental matrix in the same location and using different processing methods on 

divisions of the same sample. More reliable measures of microplastic abundance 

and characteristics would also inform exposure experiments investigating 

microplastic effects. Many effect experiments use a narrow range of polymer types, 

and microplastic concentrations up to seven orders of magnitude higher than 

environmental levels (Lenz et al. 2016), which poorly represents environmental 

conditions.  

Multiple researchers call for standardisation of microplastic research (e.g., 

Prata et al. 2019b; Campanale et al. 2020; Fok et al. 2020; Skalska et al. 2020) to 

create reproducible data that is comparable between studies. However, complete 

standardisation of microplastic research is difficult to achieve as ecosystem 

characteristics and study media vary considerably within and between freshwater 

ecosystems. Therefore, a more harmonised approach should be discussed    

(Lusher et al. 2020b), where chosen methods are dependent on the environmental 

matrix in question. Since the completion of this literature review, International 

Standards for the analysis of microplastic present in environmental samples have 

been published - ISO 24187 (2023). This states that all analytical steps must be 

undertaken in plastic-free or low-plastic working conditions, using alternative 

materials, contamination controls, and laminar flow boxes where feasible. Recovery 

tests and blank value determination are recognised as essential for detecting and 

accounting for inevitable contamination. For environmental sampling, standards 1, 4, 

6, 7, 8, and 17 from the ISO 5667 series are recommended for sampling water, ISO 
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5667-12 is recommended for sampling freshwater sediment, and ISO 10870 and 

standards 1-6 from ISO 23611 are recommended for biota sampling alongside 

consideration of local laws and regulations governing such actions. For sample 

processing, it is recommended to dry samples at temperatures no higher than 40 °C, 

remove organic matter in solid samples (not water) via density separation using 

saturated salt solutions, and remove inorganic matter in solid and water samples at 

temperatures no higher than 25 °C. The standard does not recommend a single 

digestion solution, rather it highlights that oxidizing solutions are most frequently 

used, followed by acids or bases, and enzymatic processing. Furthermore, no 

specific processing times or volumes are stated. For polymer detection, the standard 

states that simple and inexpensive (pre-)screening techniques can be sufficient, but 

also lists multiple more sophisticated instrumentation as options for polymer 

detection. These include visual sorting, hot needle test, dye with fluorescence 

microscopy and spectroscopy, FTIR, ATR-FTIR, FPA-FTIR, LDIR, NIR or SWIR, Py-

GC/MS, TED-GC/MS, DSC, ICP-MS and LC (see section 3.6.3 for technique 

descriptions). The lack of specific technique recommendations in ISO 24187 (2023) 

reflects the complexity in processing different types of media, which require different 

techniques depending on their make-up and the expected particle number/mass 

content under investigation. 

 

3.8 Conclusion 

 Freshwater is an essential resource to life and freshwater ecosystems provide 

valuable services and thus, it is integral that microplastic pollution within this 

environment is investigated. This study reviews how freshwater ecosystems are 

assessed for microplastic pollution, informing researchers of the complex process 

involved. This begins with sample collection through bulk, volume-reduced, or 

selective techniques, followed by sample processing using sieving, density 

separation, chemical digestion, and filtration, to extract microplastic. Particles are 

then quantified and characterised using visual techniques and polymer analysis. This 

study reveals a huge variety of methods and equipment used in each step, which 

limits comparison of reported microplastic loads between environmental matrices 

and freshwater catchments. Evaluation of each technique informs method 

development and contributes to the harmonisation of microplastic research. 
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Moreover, identification of knowledge gaps informs future research to further 

understanding of microplastic pollution in freshwater ecosystems. 
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Chapter 4: Microplastic in the sediments and invertebrates of an 
urban river system 

 

4.1 Abstract 

Microplastics are pollutants of concern in freshwater environments, yet 

knowledge on their distribution and flux throughout continuous riverine catchments is 

still limited. This information is needed to identify sources of microplastic as well as 

areas and taxa most at risk. This chapter investigated microplastic concentration, 

characteristics, and spatial variation along the River Taff, South Wales, as a model 

river with both rural and urban land use. Sediment and four macroinvertebrate 

families from different feeding guilds (Hydropsychidae, Leuctridae, Heptageniidae, 

and Rhyacophilidae) were collected from 38 sites along the river, incorporating 

differences in land use and potential point sources of microplastic. Microplastics 

were present in sediments from 71% of sites, with concentration ranging from 73 to 

594 particles/kg dry weight. Microplastics were detected in just 5% of invertebrate 

individuals, with no variation amongst feeding guilds. These concentrations 

demonstrated a patchy distribution throughout the River Taff catchment, indicating 

that unique variables of influence may act in different locations. Fibres dominated 

sediment microplastics (99%), whilst macroinvertebrates contained fragments and 

fibres (52% and 42%, respectively), with transparent being the dominant colour for 

all sampled microplastics. Alongside the high prevalence of synthetic cellulose, this 

suggests that textiles were the major microplastic source in this system. These data 

confirm the ubiquity of microplastics in the sediments across a river catchment, yet 

the apparently limited occurrence in macroinvertebrates contrasts with previous data.  

 

4.2 Introduction 

 Historically, studies of microplastic loads in aquatic ecosystems have focused 

on the marine environment (Blettler et al. 2018). However, rivers have been 

increasingly identified as major pathways of microplastics into the oceans (Jambeck 

et al. 2015; Lebreton et al. 2017), while also being important ecosystems to protect 

(Dudgeon et al. 2006). This has brought about a recent surge in freshwater 
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microplastic investigations (Sarijan et al. 2021; see Chapter 2). Microplastic is 

thought to enter freshwaters through point sources including wastewater treatment 

plants (WWTPs; Windsor et al. 2019b; Schmidt et al. 2020; Montecinos et al. 2022), 

combined sewer overflows (CSO; Treilles et al. 2020; Gogien et al. 2023), septic 

tanks (Liu et al. 2022a), and industrial outflows (Chan et al. 2021; Magalhães et al. 

2022). Microplastic is also carried in surface water run-off and the atmosphere, 

creating diffuse sources including urban dust, tyre wear particles (TWPs), litter 

degradation, and agricultural sludge. Meta-analysis of freshwater microplastic in 

Chapter 2 revealed various spatial trends, including increases towards urban areas 

and influences of hydrodynamics. 

This apparent variability in the distribution of microplastics across highly 

connected freshwater catchments raises the need for more extensive, catchment-

scale assessments to appraise natural and anthropogenic influences on their 

distribution. Up to mid-2022, such catchment-wide published studies only equated to 

eight, with UK examples being particularly scare (see Chapter 2). Hurley et al. 

(2018a) sampled benthic sediment from 40 sites across 10 tributaries of the Irwell 

and Mersey rivers in northwest England. This allowed identification of urban hotspots 

where microplastic concentration exceeded 40,000 particles/kg, particularly 

immediately downstream of WWTPs and CSOs (Hurley et al. 2018b). Elsewhere in 

the world, catchment-wide assessments of microplastic pollution identify positive 

trends with urbanisation, transportation, waste management, and agricultural 

practices (He et al. 2020; Mao et al. 2020b; Yuan et al. 2022; Kunz et al. 2023; Chen 

et al. 2024).  

Microplastic pollution can also vary vertically throughout the freshwater 

environment, with no common trend in abundance changes with water depth in 

literature (Lenaker et al. 2019; Liu et al. 2021c; Xu et al. 2022a; Pasquier et al. 

2023). This alters the risk of microplastic in distinct habitats. Disparity is likely 

governed by physical characteristics of particles and hydrodynamics (Kumar et al. 

2021). Particle density may influence their position in the water column 

(Waldschläger and Schüttrumpf 2019), with lighter polymers under 1.1 g/cm3       

(e.g., EVA, PP, PE) dominating surface waters and denser polymers (e.g., PS, PVC, 

PA, PET) sinking to sediment (Lenaker et al. 2019; Liu et al. 2021c; Chevalier et al. 

2023; Pasquier et al. 2023; Wang et al. 2024). Yet, multiple studies report the 
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occurrence of high-density polymers in water columns and conversely, lower-density 

polymers in sediments (Lahens et al. 2018; Tibbetts et al. 2018; Eo et al. 2019; 

Corcoran et al. 2020). This highlights the complexity of microplastic pollution in 

dynamic freshwater environments. 

Microplastics occur in a variety of shapes, including fibres, fragments, films, 

pellets, and foams (section 3.6.1), each of which reflects different sources and 

degradation pathways. Fibres are frequently reported as the dominant microplastic 

shape in riverine environments, due to their widespread sources and high 

environmental persistence (Li et al. 2020; Lu et al. 2021; Wang et al. 2021f). These 

fibres primarily originate from the breakdown of synthetic textiles during washing 

processes, with WWTPs acting as major pathways for their release into aquatic 

ecosystems (Browne et al., 2011; Dris et al., 2015). Unlike fragments or beads, fibres 

are more buoyant and can remain suspended in the water column longer, facilitating 

their transport and eventual deposition in sediments or ingestion by aquatic 

organisms (Wagner et al., 2014). Their high surface-area-to-volume ratio also 

increases the likelihood of interaction with biota, leading to greater bioaccumulation 

in macroinvertebrates, which are often used as indicators of microplastic pollution 

(Silva et al., 2021). 

With the extensive distribution of microplastic in freshwater systems, aquatic 

organisms are exposed to microplastic likely through direct ingestion, respiration, 

and indirect food-web transfer (Kim et al. 2018; D’Souza et al. 2020). For freshwater 

biota, literature is biased towards assessment of microplastic in organisms at higher 

trophic levels such as fish, with less representation of aquatic invertebrates (see 

Chapter 2). Although controlled exposures (Blarer and Burkhardt-Holm 2016; 

Redondo-Hasselerharm et al. 2018; Weber et al. 2018) and meta-analysis of 

published studies on invertebrates indicate relatively few negative impacts (Foley et 

al. 2019; Castro-Castellon et al. 2022; Doyle et al. 2022), these organisms can act 

as entry points of microplastic into freshwater food webs (Windsor et al. 2019b) and 

transfer them to terrestrial food webs (Yıldız et al. 2022), making them ecologically 

important. Moreover, macroinvertebrates occupy a wide range of feeding guilds and 

ecological niches (Bonada et al. 2006), are ubiquitous across freshwater 

ecosystems, and sample the environment over space and time. Therefore, they are 

often recommended for biological monitoring of pollutants and environmental quality 
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(Milner and Roberts 1997; Markert et al. 2003). Consequently, further investigation 

into their microplastic uptake is necessary to adapt and optimise this bioindicator for 

assessing microplastic pollution. 

Microplastic uptake by aquatic invertebrates can be influenced by multiple 

factors including microplastic presence in the surrounding freshwater environment. 

For example, higher loads have been observed in macroinvertebrates living 

downstream of WWTPs compared to those upstream (Hurley et al. 2018a; Grbić et 

al. 2020; Woodward et al. 2021). Biotic factors also play a role, with microplastic load 

varying between functional feeding guilds (FFGs). Multiple studies observe greater 

microplastic loads in collector-gatherers/detritovores (Bour et al. 2018; Nel et al. 

2018; Akindele et al. 2020; Pan et al. 2021; Bertoli et al. 2022; Parker et al. 2022b; 

Di Lorenzo et al. 2023; Khedre et al. 2023). This may be linked to habitat affinity, with 

collector-gatherers and grazers feeding on material sedimented or deposited on 

submerged substrata (Berg 1995). Since sediments tend to accumulate more 

microplastic than surface water, benthic organisms are more likely to interact with 

microplastic than pelagic organisms (Schell et al. 2022a). However, many 

macroinvertebrate studies show no influence of habitat affinity nor ecological niche 

on microplastic uptake (Windsor et al. 2019b; Akindele et al. 2020; Pan et al. 2021; 

Bertoli et al. 2022b). Another explanation could be association of microplastic with 

material consumed by different FFGs. For example, leaf litter may capture and 

accumulate microplastic (López-Rojo et al. 2020; Bertoli et al. 2023a; Bertoli et al. 

2023b). Moreover, collector-gatherers and grazers may discriminate food items less 

than shredders and scrapers that selectively shear organic material and attached 

algae (Schmid-Araya and Schmid 2000). Lastly, predators obtain microplastic 

through trophic transfer and thus, their comparatively lower loads may result from 

microplastic egestion in their prey (Cole et al. 2013; Windsor et al. 2019b). 

Laboratory exposure experiments and literature review (see Chapter 2) also 

indicate that within freshwater macroinvertebrate species, feeding rate, life stage, 

and body size of individuals can influence their microplastic uptake (Burns 1968; 

Burns 1969; Zánkai 1994; Scherer et al. 2017). For example, within the same 

species, microplastic uptake per individual is shown to negatively correlate with body 

size (Windsor et al. 2019c; Garcia et al. 2021; Ng, 2023), which has also been found 

in fish (Kılıç et al. 2022; Park et al. 2020a, 2022) and crustaceans (Pegado et al. 
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2018; Hossain et al. 2019). This may result from lower food consumption by smaller 

individuals, reducing microplastic uptake and retention relative to larger individuals. 

Given this variability in exposure related to biological traits, assessing microplastic 

uptake across different FFGs within a single freshwater catchment is essential to 

disentangle the relative influence of ecological and physiological factors on ingestion 

patterns. 

 

Aims and hypotheses 

The overarching aim of this study was to assess microplastic contamination 

across a whole river catchment rather than single sites to appraise point and diffuse 

sources, including land use. The intention was to assess microplastic contamination 

in bed sediment and benthic macroinvertebrates of four different feeding guilds 

(shredder, grazer, filter feeder, predator), which could potentially be developed as 

microplastic bioindicators in freshwater ecosystems. 

 

Specific hypotheses were: 

1) Microplastic concentrations in sediment and macroinvertebrates 

(particles/individual) increase from upstream to downstream. 

2) Microplastic hotspots in sediment and macroinvertebrates occur downstream 

of WWTP outflows. 

3) Macroinvertebrates of all feeding guilds are contaminated with microplastic, 

but concentrations (particles/individual) are greatest in grazers and lowest in 

predators, irrespective of body weight. 

4) Macroinvertebrate microplastic concentration (particles/individual) decreases 

with body size. 

5) High-density microplastics and fibres dominate microplastic occurrence in bed 

sediments and benthic macroinvertebrates. 

An important objective in the work was to standardise sampling techniques with 

consistent reporting units, to enable comparison with previous studies. 
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4.3 Materials and methods 

4.3.1 Sample sites and environmental characterisation 

 The River Taff (Afon Taf) is a temperate river in south Wales, UK, which was 

historically grossly polluted by coal mining, sewage, and gasification plants (Scullion 

and Edwards 1980; Windsor et al. 2019a), but has since recovered (Vaughan and 

Ormerod 2012). It is 67 km long and begins as two main stems (Taf Fawr and Taf 

Fechan) in the central Brecon Beacons that join at Merthyr Tydfil, before flowing 

south towards the River Severn Estuary in Cardiff Bay. Over half of the catchment 

comprises of four major tributaries: the Taff Bargoed, Cynon, Nant Clydach, and 

Rhondda. Its elevation drops 11 m every 1 km, and rainfall ranges from 950 mm at 

Cardiff to 2400 mm in the Brecon Beacons (Williams and Simmons 1999). Land-use 

in the catchment ranges from rural to heavily urbanised and river water has been 

historically contaminated with litter (Williams and Simmons 1999), macronutrients, 

xenobiotic pollutants (Kasprzyk-Hordern et al. 2008; Morrissey et al. 2013a; 

Morrissey et al. 2013b; Windsor et al. 2019c), and microplastic (Windsor et al. 

2019a; D’Souza et al. 2020). 

Quantum Geographic Information System (QGIS) software (version 3.26, 

QGIS Association 2021) was used to map the river catchment (Figure 4.1). 

Secondary data was collected to: (i) environmentally characterise the catchment, 

aiding sample site identification; and (ii) investigate the influence of freshwater 

microplastic sources identified in literature (see Chapter 2) on observed River Taff 

microplastic occurrence. Land-use (urban, agricultural, grassland, heathland, and 

woodland) was obtained from UK Centre for Ecology and Hydrology’s (UKCEH) 

‘Land Cover Map 2021’ data (UKCEH 2022). Urban and agricultural land are known 

sources of microplastic pollution to freshwaters (Qiu et al. 2020; Hatinoğlu and Sanin 

2021; Li et al. 2023a) and impermeable surfaces aid microplastic transport through 

surface runoff (Sun et al. 2023). Rural land was separated into grassland, heathland, 

and woodland, to test the influence of their different surface runoff capabilities 

(Archer et al. 2012; Han et al. 2020). Roads and railways were obtained from 

©OpenStreetMap contributors (Ordnance Survey, 2021), as vehicles produce 

microplastic through tyre wear (Wagner et al. 2018; Kitahara and Nakata 2020; 

Rødland et al. 2020). 
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Potential point sources were also mapped, including landfill sites obtained 

from NRW Waste Sites (Resource identifier 116331; Lle.gov.wales, 2013) and 

WWTP and CSO outlets obtained from The Rivers Trust (provided by Dŵr 

Cymru/Welsh Water). Five WWTPs treat wastewater and discharge effluent into 

River Taff, though three of these are very small (Dŵr Cymru/Welsh Water; Table B1). 

Two serve the headwaters of the Taf Fechan: Ponticill Houses (1 residential/non-

residential person served from ONS 2021 census (PE)) and Ponticill (360 PE). One 

serves Taf Fawr headwaters: Llwyn-On Houses (44 PE). The remaining two serve 

the mid-catchment: Cilfynydd (76,521 PE) and Cynon (68,434 PE). Details of 

treatment types are found in Table B1. The Taff catchment also has 309 CSOs 

(2021), calculated from spill Event Duration Monitoring (EDM) by Dŵr Cymru/Welsh 

Water (The Rivers Trust 2022) and NRWs database of consented discharges to 

controlled waters (The Rivers Trust 2021). These monitored CSOs spilled on 

average 38 ± 41 times (range: 0-172) in 2021, for an average of 9.6 ± 18 days 

(range: 0 – 120.7 days) in total. No data are available on the volumes of wastewater 

discharged. 

A total of 38 sampling sites were selected a priori to represent the whole  

River Taff network and to reflect different land uses, accounting for river accessibility 

(Figure 4.1; Table B2). Sample sites were mapped in QGIS and snapped to the River 

Taff network obtained from a 50 m Digital Terrain Model (DTM; OS Terrain 50, 

Ordnance Survey, 2021). Overlapping subcatchments of each site were delineated 

using flow direction derived from the DTM and PCRaster tools in QGIS and 

employed to calculate percentage land use, counts of point sources, and road and 

rail length (Table B3). Human population density and vehicle density were also 

calculated based on local authority 2021 population size (Office for National 

Statistics 2021) and vehicle counts (Department for Transport 2021), respectively 

(Table B3). 

 During sample collection at each sample site, stream chemistry was assessed 

through spot measurements of pH, electrical conductivity (EC; µS/cm), and water 

temperature using HI-9813-5 potable meter (Hanna Instruments, UK), and river flow 

velocity (m/s) was measured using a magnetic-inductive flow meter (OTT MF pro 

Meter, OTT HydroMet, US) and wading rod (average of 3 measurements) (Table B2). 
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4.3.2 Macroinvertebrate and riverbed sediment sampling 

 Macroinvertebrate nymphs and larvae of four widespread families from three 

orders (Trichoptera, Plecoptera, and Ephemeroptera) were investigated: Leuctridae 

(Stonefly; shredder), Heptageniidae (Mayfly; grazer), Hydropsychidae (net-spinning 

caddisfly; filter feeder), and Rhyacophilidae (free-living caddisfly; predator), each of a 

different FFG (Cummins 1973). Samples were collected between 12th April and 20th 

May 2022 using kick sampling (Freshwater Biological Association hand net, 1 mm 

aperture) (Bradley and Ormerod 2002). Net contents were emptied into a bamboo 

tray filled with river water and five individual larvae (n = 5) of each family were 

Figure 4.1 Map of River Taff catchment with 38 sample sites (black dots), WWTPs 

(red stars), river (blue line) and land-use (urban – grey, agricultural – brown, 

grassland – light green, heathland - green, woodland – dark green). 
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identified and placed into glass vials using stainless steel forceps. No Leuctridae 

were found at sites 5 and 10, while Rhyacophilidae were absent from sites 6, 14, 15, 

21, 23, 25, 31, 32, 33, 34, and 37, precluding these taxa from microplastic analyses. 

Fourteen individuals were excluded from analysis after being identified as different 

insect families (see section 4.3.3), producing a final count of 681 macroinvertebrate 

individuals. Glass vials were immediately filled with 70% ethanol to fix specimens 

and prevent degradation and excretion of gut contents. Microplastics are not affected 

by ethanol (Courtene-Jones et al. 2017; Herrera et al. 2018). The samples were 

stored at 4°C until processing.  

 Fine riverbed sediment was sampled at 35 sites (samples from sites 3, 21, 

and 22 were excluded due to human error) simultaneously to macroinvertebrate 

collection. At each site, three < 50 ml samples (n = 3) were taken from depositing 

areas using triple-rinsed, 50 ml plastic centrifuge tubes, and stored at ~5°C until 

processing. One sediment sample was excluded from site 2 due to human error, 

producing a final count of 104 sediment samples. Section 3.5.5 recommends using 

controls throughout environmental microplastic assessments. In this case, blank filter 

papers placed on the ground during sampling would have measured potential 

atmospheric contamination of samples. This was not performed as lids were placed 

on samples immediately after they were taken, to limit environmental contamination. 

 

4.3.3 Microplastic extraction from macroinvertebrates 

 Macroinvertebrate identifications to family were confirmed under a GXMXTL3 

Stereo Microscope (GT Vision Ltd) using identification guides (Croft 1986; Pawley et 

al. 2011). Under laminar air-flow conditions, individuals were triple-rinsed with filtered 

deionised water (FDW) to remove any externally attached material including 

microplastics (Nel et al. 2018), then wet weight was measured to ± 0.1 mg using an 

analytical microbalance. 

 Microplastics were extracted from macroinvertebrates using methods adapted 

from Windsor et al. (2019b), shown in Figure 4.2a. Washed individual specimens 

were placed into individual triple-rinsed Eppendorf tubes filled with filtered 30% 

hydrogen peroxide (H2O2) solution and left to digest at room temperature for up to  

48 hours. 30% H2O2 digests organic particles more optimally compared to 37% 
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hydrochloric acid (HCl) and 20-50% sodium hydroxide (NAOH), and does not 

degrade polymers (Nuelle et al. 2014; Gulizia et al. 2022), whilst higher H2O2 

concentrations can degrade polymers (Karami et al. 2017). This digestion technique, 

known as Wet Peroxide Oxidation (WPO), was most commonly used amongst 

studies reviewed in Chapter 3. A 48-hour digestion period at room temperature was 

used in accordance with the protocol described by Windsor et al. (2019b), which was 

found to be sufficient for the effective breakdown of soft tissues in similar 

macroinvertebrate taxa.  Remaining macroinvertebrate exoskeletons were pulverised 

using a triple-rinsed pestle and mortar for one minute to enable microplastic 

extraction, as performed by Windsor et al. (2019b). This method was selected for its 

effectiveness in liberating microplastics from biological tissue without the need for 

harsher chemical treatments or high-energy mechanical disruption, which may pose 

a greater risk to particle integrity. While thermal or mechanical degradation of 

particles is possible, leading to overestimation of microplastic concentration, the 

short duration and manual nature of the grinding minimised this risk. Conversely, 

potential loss of material could result in underestimation of microplastic 

concentration. This was mitigated by rinsing the mortar thoroughly after each sample 

and combining rinsates with the main extract to ensure maximum recovery. The 

procedure was applied consistently across all samples to ensure comparability.  

The resulting material was vacuum filtered onto gridded cellulose nitrate 

membrane filters (47 mm diameter, 0.45 μm) for particle quantification. Although 

cellulose nitrate filters were second most popular in studies reviewed in Chapter 3, 

the most popular glass fibre filters are more expensive and are not gridded, which 

aids visual counting of particles. However, the filter pore size of 0.45 μm was most 

commonly used by reviewed studies (Chapter 3). Wet filters were dyed with ~2 ml 

Rose Bengal solution (200 mg/l; 4,5,6,7-Tetrachloro-2′,4′,5′,7′-tetraiodofluorescein 

disodium salt, Sigma-Aldrich, Dye content 95% with FDW) to stain organic material 

(Feenstra and Tseng 1992b) and thus, not microplastic. After five minutes, the dye 

was filtered away and washed with FDW (Liebezeit and Liebezeit 2014). Filters were 

placed in plastic petri dishes with the desiccant agent Silica gel (Fisher Scientific) to 

dry, then sealed with parafilm to prevent contamination. Plastic laboratory 

equipment, such as Eppendorf tubes, Petri dishes, and parafilm, was used during 

sample processing due to its wide availability, low cost, and compatibility with 
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standard microplastic analysis protocols. The use of plastic equipment in freshwater 

microplastic studies occurs throughout literature (e.g., Schmidt et al. 2018; 

Weideman et al. 2019; Watkins et al. 2019b; Dikareva and Simon 2019; Nan et al. 

2020; Crew et al. 2020; Negrete Velasco et al. 2020; Irfan et al. 2020a). To minimise 

the risk of contamination from these materials, strict quality control measures were 

implemented as described at the end of section 4.3.5. 

 

4.3.4 Microplastic extraction from sediment 

 The method for extracting microplastic from sediment is shown in Figure 4.2b. 

Sediment samples were weighed before drying in a 90°C drying oven (10% fan) for 

24 hours, after which dry weight (dw) was measured. This oven temperature is 

recommended by Mausra et al. (2015) and is below the threshold temperature for 

melting and decomposition of common plastics (Kandola et al. 2014). Filtered      

30% H2O2 was added to samples inside a fume hood to digest organic material for 

48 hours or until bubbles no longer formed. Digested material was sieved through 

triple-rinsed 500 µm and 63 µm stacked sieves, and material captured by the latter 

was dried at 90°C and 10% fan for 24 hours.  

Suspected microplastics were then extracted through density separation and 

centrifugation using methods adapted from Grause et al. (2022). Specifically, 10 ± 

0.3 g of dried material from each sample was placed in a 50 mL centrifuge tube with 

40 mL of filtered potassium iodide solution (KI; ρ = 1.52-1.63 g/cm3) solution and 

centrifuged at 4,000 rpm for ten minutes. KI was used despite Chapter 3 identifying 

only one freshwater microplastic study using KI (Zhang et al. 2020b), due to multiple 

reason. Firstly, KI is generally considered to be less toxic, more environmentally 

benign, and less corrosive than commonly used alternatives like zinc chloride (ZnCl2) 

and sodium iodide (NaI) (Gago et al. 2019). Therefore, it poses fewer risks to the 

researcher, the environment, and laboratory materials during its use and disposal. 

Secondly, KI is low cost, available in the study laboratory, and its solutions can be 

filtered and reused multiple times, further improving its cost-effectiveness and 

sustainability over time. Lastly, KI can reach relatively high densities, which is 

sufficient to float most of the common plastic polymers (Table 3.2), as well as dense 

polymers such as PET (1.3-1.4 g/cm3) and PVC (1.1-1.6 g/cm3) (Van Cauwenberghe 
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et al. 2015; Quinn et al. 2017) and oleophobic fibres (Crichton et al. 2017). A 

disadvantage of a higher density solution is reduced settling of fine sediment. This 

was compensated by centrifugal separation rather than gravitational separation. A 

centrifugation time of 10 minutes was chosen because, although Grause et al. 

(2022) observed a 3% reduction in microplastic recovery rate when increasing 

centrifuge time from one minute to ten to twenty minutes (98 wt% to 95 wt%), short 

times do not ensure sufficient settling of fine sand particles, which obscure 

microplastic identification after subsequent filtration. To complete microplastic 

extraction, supernatants were filtered, stained, and stored with the same procedure 

as macroinvertebrate samples (section 4.3.3). 

 

4.3.5 Microplastic quantification, characterisation, and polymer analysis 

 Each filter was systematically scanned along the grid lines under a stereo 

dissecting microscope (GXMXTL3) at 4.5x magnification, following the Marine and 

Environmental Research Institute's ‘Guide to Microplastic Identification’ (2015). 

Suspected microplastic particles were recorded if they met criteria detailed in 

Supplementary Information B1 and were characterised by shape (fibre, fragment, 

film, bead, foam; criteria in Supplementary Information B2) and colour (black, blue, 

brown, grey, white, cream, transparent). These criteria were established in Chapter 3 

after systematic literature review. Red/pink particles were excluded as organic 

material was dyed red by Rose Bengal stain. To confirm identified particles as 

plastic, subsamples (n = 112 of 1,606 and n = 66 of 318 for macroinvertebrates and 

sediment, respectively) were analysed using µ-Fourier transform infrared (FT-IR) 

spectroscopy (Perkin Elmer Spotlight 400 FT-IR Imaging System) to determine their 

polymeric structure. Subsamples covered the range of colour-shape combinations of 

extracted particles and reflected the time and funds available for analysis. Particle 

analysis was carried out in transmission mode, using a diamond compression cell to 

hold the particle, producing high quality spectra compared to reflectance mode 

(Löder et al. 2015a). 

Spectra were collected over a broad spectral range (600-4,000 cm−1) at a 

resolution of 4 cm−1 from an average of 16 sample scans and corrected for 

background variation prior to further analysis. Using PerkinElmer Spectrum software 
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(version 10.5.4.738), FT-IR spectra were compared to a spectral database from nine 

commercial polymer libraries (adhes.dlb, Atrpolym.dlb, ATRSPE~1.dlb, fibres.dlb, 

IntPoly.spl, poly1.dlb, polyadd1.dlb, POLYMER.dlb and Microplastics.spl) and one in-

house library (Greenpeace Research Laboratories, UK), allowing exclusion of 

common laboratory contaminants. For each particle, the top ten matches were 

checked to verify reliability of identification, only accepting match qualities >70% with 

the average match quality being 86.27%. Black fragments were excluded as they 

cannot be analysed by µ-FT-IR due to colour absorbance (Zhu et al. 2020). Analysed 

particles identified as non-plastic (methyl cellulose, chipboard/cellulose+lignin, 

methylergonovine maleate, cyanox, acetoacetyl coenzyme A trisodium salt, 

acetylmuramyl-l-alanyl-D-isoglutamine, fructose/glucose, and zein/poly(n-methyl 

acrylamide) film) were excluded. Analysed particles identified as cellulose, methyl 

cellulose, or cellophane were assumed synthetic if they were unnaturally coloured 

(blue, black, grey, white). Microplastic count data consisted of analysed particles 

identified as plastic and non-analysed particles corrected to reflect the proportion of 

analysed particles identified as plastic per colour-shape combination (Woodward et 

al. 2021). 
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4.3.6 Contamination control 
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Figure 4.2 Flow chart of the separation and quantification of microplastics from 
a) macroinvertebrates and b) riverbed sediment. 
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Samples are at risk of plastic contamination from external sources in the air 

and solutions used (Prata et al. 2020b; Kernchen et al. 2022). Measures to prevent 

this include pre-filtering all solutions through 0.45 µm cellulose nitrate filter paper, 

processing samples in a laminar flow cabinet, triple-rinsing all equipment before and 

during sample processing with FDW, and wearing 100% cotton clothing and nitrile 

gloves. Remaining exogenous contamination was assessed using procedural blanks 

of ethanol (5 for macroinvertebrates, 20 for sediment), processed in the same way 

as respective environmental samples. On analysis (see section 4.4.4), blank 

samples did not consistently produce values of zero. Instead, they contained low 

numbers of primarily transparent, cellulosic fibres (n = 17 of 27), likely originating 

from textiles. Macroinvertebrate sample blanks contained a mean average ± 

standard deviation (SD) of 1.8 ± 1.92 transparent fibres, 0.8 ± 0.84 black fibres, 0.2 ± 

0.45 white fibres and 0.2 ± 0.45 blue fibres. Sediment sample blanks contained on 

average 0.40 ± 0.68 transparent fibres and 0.25 ± 0.44 black fibres. These values 

were not directly subtracted from sample values. Instead, a more rigorous method 

was used, following the approach recommended by Bråte et al. (2018) and Dawson 

et al. (2023), whereby the Limit of Detection (LOD; mean + 3x SD) and Limit of 

Quantification (LOQ; mean + 10x SD) were calculated for each particle shape based 

on blank sample means and standard deviations. Sample values corrected by µ-FT-

IR analysis (see section 4.3.5) that exceed the LOQ were reported as quantified 

microplastic counts. Values falling between the LOD and LOQ were treated as 

detectable but not reliably quantifiable and were therefore excluded from reported 

total. Values below the LOD were considered indistinguishable from background 

contamination and were also excluded. This method is described in Supplementary 

Information B3. 

 

4.3.7 Statistical analysis 

 All statistical analyses were performed in ‘R’ software (version 4.3.0; R Core 

Team 2023). A paired samples t-test was conducted to compare observed 

microplastic concentration and µ-FT-IR and blank corrected concentration (see 

sections 4.3.4 and 4.3.5). For both sediment and macroinvertebrates, observed 

microplastic concentrations (mean ± 1 SD: 0.14 ± 0.19 particles/g and 0.55 ± 1.06 

particles/individual, respectively) were significantly greater than their corrected 
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concentration (mean ± 1 SD: 0.07 ± 0.12 particles/g and 0.04 ± 0.22 

particles/individual, respectively) (t(102) = 6.36, p < 0.001 and t(673) = 13.24,           

p < 0.001, respectively). Further analysis was therefore conducted on the µ-FT-IR 

and blank corrected occurrence (binomial, 0-1) and concentration of microplastic.  

Microplastic concentration data were sequentially assessed for outliers, 

normality, heteroscedasticity, and collinearity (Zuur et al. 2010). Due to the positive 

skew and large sample size of dependent variables (microplastic presence and 

concentration in sediment and macroinvertebrates), removing high outliers would 

reduce the mean relative to the true mean (Miller 1991). To avoid this bias, 

concentration outliers were identified and eliminated using Van Selst and Jolicoeur's 

(1994) modified recursive procedure with a criterion cut-off of 3.5 standard deviations 

above the mean. This correction was performed on the subset of data comprised of 

contaminated samples only, to avoid being restricted by zero-inflation. Both 

dependent and independent variables were then assessed for normality using 

Shapiro-Wilks test (Shapiro and Wilk 1965) and visual inspection of histograms and 

Q-Q plots. Microplastic concentration in sediment and macroinvertebrates, and 

distance upstream, subcatchment area, and mean river flow rate in outlier removed 

macroinvertebrate data were all non-normally distributed, even after transformation 

(Shapiro-Wilk test: p < 0.0001). The ‘orderNorm’ transformation from the 

‘bestNormalize’ package in R (Peterson and Cavanaugh 2020) was applied to 

macroinvertebrate individual wet weight and distance upstream, subcatchment area, 

and mean river flow rate in outlier removed sediment data, to achieve a normal 

distribution (Shapiro-Wilk test: p > 0.05). All independent variables were scaled using 

‘scale’ function from the ‘base’ package in R (Becker et al. 1988; R Core Team 

2023), which transforms data to have a mean of zero and a standard deviation of 

one, aiding comparison between variables. Lastly, homogeneity of variances across 

groups were assessed via Levene’s test (Levene 1960) for normally distributed data 

and Filgner-Killeen’s non-parametric test (Fligner and Killeen 1976) for non-normally 

distributed data. Variance of microplastic concentrations in sediment and 

macroinvertebrates were equal across sites (Fligner-Killeen test: 𝜒2 = 30.892,          

df = 34, p = 0.621 and 𝜒2 = 45.527, df = 37, p = 0.159, respectively). Variance of 

transformed macroinvertebrate wet weight was not equal (Levene test: F = 2.002,   

df = 37, p < 0.001). 
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 Generalised linear models (GLMs) were used to test hypotheses 1, 3, and 4 

(respective effects of distance upstream, invertebrate family and individual wet 

weight), and identify covariates (land-use, potential point sources of microplastic). 

Significantly correlated covariates according to Pearson and Spearman correlation 

tests for normally and non-normally distributed variables, respectively, were excluded 

from investigation (see section 4.4.1 for correlating covariates). Specifically, Bernoulli 

GLMs with a clog-log link function were used to model presence/absence of 

microplastic to accommodate the binomial distribution, with p-values for individual 

variables determined using Wald z-statistics. The Akaike Information Criterion (AIC; 

Akaike 1974) was used for stepwise model refinement. Goodness of fit was 

evaluated by assessing the distribution and variance of deviance residuals, and 

identifying potentially influential observations according to diagnostic measures 

including Cook’s Distance, leverage, and covariance ratio (Cook 1977;    

Montgomery et al. 2021). The model of microplastic presence in sediment   

(presence ~ distance upstream + subcatchment area + mean flow velocity) had 

deviance residuals no larger than two with homogeneous variance across the    

range of fitted values and only three potentially influential observations, indicating     

a good fit. The model of microplastic presence in macroinvertebrates (presence ~ 

family + individual wet weight + distance upstream + subcatchment area + mean flow 

velocity) had some observations with a deviance residual larger than two, alongside 

83 potentially influential observations. This indicates a lack of fit, likely due to the 

extreme zero-inflation (95%). 

To accommodate the continuous and positively skewed microplastic 

concentration data, Inverse Gaussian and Gamma error families with square root link 

function were independently used to model the data, adding a small transformation 

of +0.0001 to move the distribution away from zero. For sediment data, models were 

over dispersed according to respective overdispersion parameters of 6,667 and 17, 

and standardised residuals had a distribution significantly different to normal 

(Shapiro-Wilk test: W = 0.732, p-value < 0.001 and W = 0.638, p-value < 0.001, 

respectively). This indicates that observed variance in data was greater than the 

variance expected by the models. The same was true for macroinvertebrate models 

(overdispersion statistic of 9,256 and 11, respectively; Shapiro-Wilk test for normal 

distribution of standardised residuals: W = 0.121, p-value < 0.001 and W = 0.175,   
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p-value < 0.001, respectively). This overdispersion probably reflected zero-inflation 

and thus, a compound Poisson-Gamma GLM with square root link function was used 

via the glmmTMB R package (version 1.1.7; Magnusson et al. (2021) to account for 

positively skewed, continuous, and zero-inflated data (Zuur and Ieno 2021). Again, 

AIC was used for stepwise model refinement (Akaike 1974). Model validity was 

assessed by checking the model assumption of normally distributed residuals with 

homogenous variances, following approaches of Thomas et al. (2017). The final 

models for sediment (microplastic concentration ~ distance upstream + 

subcatchment area + mean flow velocity) and macroinvertebrates (microplastic 

concentration ~ individual wet weight + distance upstream + subcatchment area + 

mean flow velocity) still showed overdispersion but to a smaller degree 

(overdispersion parameter: 0.3 and 2.4, respectively), with residuals distributed 

significantly differently to normality (Shapiro-Wilk test: W = 0.638, p-value < 0.001 

and W = 0.200, p-value < 0.001, respectively). This may have implications for the 

validity of results. 

Hypothesis 2 was assessed by comparing microplastic presence and 

concentration upstream and downstream of WWTPs. Sites 37 and 33 were 

respectively upstream and downstream of Pontsticill and Pontsticill Houses WWTPs, 

sites 36 and 32 were respectively upstream and downstream of Llwyn-On Houses 

WWTP, and sites 13 and 11 were respectively upstream and downstream of Cynon 

and Cilfynydd WWTPs. These sites were ~2-6 km from respective WWTPs and 

upstream WWTPs were all a minimum of 5 km downstream of proximal upstream 

point-sources. These WWTP clusters differ greatly in the population size served 

(Table B1), likely influencing the amount of microplastics in their effluent. For this 

reason and with limited replication of paired sites, no statistical test could be 

performed. A two-samples Wilcoxon rank test (non-paired) was used to compare 

microplastic concentrations in sediment and macroinvertebrates between sites 

devoid of CSOs upstream to sites with CSOs upstream. This analysis considered 

their cumulative impact, as all except the most upstream were located downstream 

of CSOs. 

Finally, hypothesis 5 was tested by evaluating polymer distribution amongst 

subsampled particles analysed by µ-FT-IR, and shape (fibre, fragment, film) and 

colour (blue, black, brown, grey, white, transparent) distribution amongst corrected 
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particle counts. To assess the role of aquatic invertebrates as biological indicators of 

microplastic in freshwater ecosystems, the distribution of shape and colour amongst 

microplastic in macroinvertebrates was compared to that in sediment using Fisher’s 

exact tests (Mehta and Patel 1983), as sample sizes were low. A regression analysis 

was also used to test the relationship between microplastic abundance in 

macroinvertebrates and microplastic abundance in sediment. As the linear model 

was not normally distributed (Shapiro-Wilk test: W = 0.839, p-value < 0.001) and 

GLMs with either Inverse Gaussian or Gamma error families, and ‘inverse’ link 

function, were over dispersed (respective over-dispersion statistics: 4,847 and 8), a 

negative binomial GLM with ‘log’ link function was used. 

4.4 Results 

4.4.1 Catchment characterisation 

 Distance upstream positively correlated with percentage of the subcatchment 

covered by grassland (r(36) = 0.59, p < 0.001; Pearson Correlation Test) and 

negatively correlated with percentage cover of urban (rho(36) = -0.43, p < 0.001), 

suburban (r(36) = -0.66, p < 0.001), and agricultural land (rho(36) = -0.48, p < 0.001), 

as well as population density (r(36) = -0.54, p < 0.001). Subcatchment area  

positively correlated with road length (r(36) = 0.93, p < 0.001), 2021 vehicle count 

(r(36) = 0.91, p < 0.001), 2021 vehicle density (per km) (r(36) = 0.33, p < 0.001),     

rail length (rho(36) = 0.85, p < 0.001), area of all categorised land uses (see     

section 4.3.1; all correlation coefficients > 0.75, p < 0.001), and counts of CSOs 

(rho(36) = 0.87, p < 0.001), WWTPs (rho(36) = 0.77, p < 0.001), treated controlled 

discharge (rho(36) = 0.88, p < 0.001), untreated controlled discharge (rho(36) = 0.93, 

p < 0.001), plastic waste sites (rho(36) = 0.82, p < 0.001), and sludge distribution 

sites (rho(36) = 0.67, p < 0.001). Subcatchment area positively correlated with 2021 

population size (r(36) = 0.83, p < 0.001), but negatively correlated with 2021 

population density (r(36) = -0.32, p < 0.05). These patterns were all consistent with 

increased urbanisation downstream (see Figure 4.1). 

 

4.4.2 Occurrence of microplastics in sediment 

After data correction, microplastics were observed in 35.9% of sediment 

samples collected (37 of 103), contaminating 71% of sites (25 of 35) across the 
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River Taff. In contaminated sediment, mean microplastic concentration was         

196.9 ± 129.8 particles/kg dw (73.1 – 593.5 particles/kg dw; Figure 4.3a). Both 

presence and concentration (particles/kg dw) of microplastic did not vary significantly 

with distance upstream, subcatchment area, nor mean river flow velocity (Table 4.1; 

Figure 4.4). These models had weak Nagelkerke’s R2 values (e.g., R2 for 

microplastic presence model = 0.04) and the latter model was over-dispersed (see 

section 4.3.7). Therefore, they account for only a small proportion of the variation in 

microplastic concentration, indicating the model did not capture certain factors. 

A mean average of 197.6 and 296.3 microplastic particles/kg of sediment dw 

occurred at sites 37 and 33, respectively upstream and downstream of both 

Pontsticill and Pontsticill Houses WWTPs serving a total of 361 people in 2021. No 

microplastic particles were observed in sediment sampled from sites 13 and 11, 

respectively upstream and downstream of both Cynon and Cilfynydd WWTPs 

serving 144,955 people in 2021. A mean average of 128.7 and 148 microplastic 

particles/kg of sediment dw occurred at sites 36 and 32, respectively upstream and 

downstream of Llwyn-On Houses WWTP serving 44 people in 2021. Microplastic 

concentration did not differ significantly between sites without CSOs upstream and 

all sites downstream of CSOs (two-samples Wilcoxon rank test: W = 1,382, p = 

0.517). 
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Table 4.1 Regressions of associations between microplastic a) presence and          
b) concentration (particles/kg dw) in sediment collected across 35 sites in River Taff, 

UK, and abiotic effect measurements, using a binomial GLM. ß = estimate, SE = 

standard error, CI = confidence interval, and df = degrees of freedom. Stars indicate 

levels of statistical significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). 

 

Effect ß SE z-value p-value 95% CI 

Intercept -0.83 0.170 -4.889 1.01e-06*** [-1.19, -0.52] 

Distance upstream (m) 0.27 0.181 1.475 0.140 [-0.08, 0.63] 

Subcatchment area 

(km2) 

-0.002 0.190 -0.012 0.990 [-0.37, 0.39] 

Mean flow velocity 

(m/s) 

0.18 0.168 1.051 0.293 [-0.16, 0.51] 

df residual = 99 

 

Effect ß SE z-value p-value 95% CI 

Intercept 8.38 1.327 6.312 <2.76e-10*** [5.78, 10.98] 

Distance upstream 

(m) 

0.77 1.454 0.531 0.596 [-2.08, 3.62] 

Subcatchment area 

(km2) 

0.63 1.303 0.486 0.627 [-1.92, 3.19] 

Mean flow velocity 

(m/s) 

-0.02 1.658 -0.015 0.988 [-3.27, 3.22] 

df residual = 97 

 

 

 

 

 

 

a) 

 

b) 



104 
 

 

 
 

 

 

 

 

 

 

 

 
 
 
 

b) a) 

Figure 4.3 Map of the River Taff catchment, South Wales, with microplastic 

concentrations observed in a) sediment and b) macroinvertebrates collected from   

35 and 38 sample sites, respectively. 
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4.4.3 Occurrence of microplastics in macroinvertebrates 

Microplastics were observed in 5% of macroinvertebrate individuals             

(32 of 679) across 55% of sites (21 of 38) on the River Taff. Of those contaminated, 

mean microplastic concentration was 0.8 ± 0.3 particles/individual (0.5-1.6 

particles/individual) and 96.4 ± 150.5 particles/g (7-833.3 particles/g) (Figure 4.3b). 

Macroinvertebrates of all feeding guilds were contaminated with microplastic, and 

neither family nor individual wet weight significantly affected microplastic presence 

and concentration by individual or gram of tissue (Table 4.2). Microplastic presence 

in macroinvertebrates was not significantly affected by mean river flow velocity nor 

subcatchment area, but there was some tendency for presence to decline with 

distance upstream (p = 0.07; Table 4.2a). Models indicated that microplastic 

concentration (particles/individual) was significantly positively affected by distance 

upstream and subcatchment area, and significantly negatively affected by mean flow 

velocity (Table 4.2b). However, substantial zero-inflation in the data limited model fits 

Figure 4.4 Relationship between microplastic concentration in sediment (particles/kg 

dw) and distance upstream (m) of River Taff. 
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and reduced their ability to explain variation (e.g., R2 for microplastic presence model 

= 0.04). 

Microplastic was observed in one individual upstream of Cynon WWTP      

(site 13), two individuals upstream of Ponticill WWTP (site 37) and one individual 

downstream of Ponticill WWTP (site 33), all with the same concentration. 

Microplastic concentration did not differ significantly between sites without CSOs 

upstream and all sites downstream of CSOs (two-samples Wilcoxon rank test:        

W = 57,749, p = 0.673). Lastly, no significant relationship was observed between 

microplastic concentration in sediment and in macroinvertebrates from the same   

site (Negative Binomial GLM: ß = -3.85 e-04, SE = 0.002, z-value = -0.166,           

95% CI [-0.005, 0.004], p = 0.868). 
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Table 4.2 Regressions of associations between microplastic a) presence and          
b) concentration (particles/individual) in macroinvertebrates collected across 38 sites 

in River Taff, UK, and biotic and abiotic effect measurements, using a binomial GLM. 

ß = estimate, SE = standard error, CI = confidence interval, and df = degrees of 

freedom. Stars indicate levels of statistical significance: p < 0.05 (*), p < 0.01 (**),     

p < 0.001 (***). 

 

Effect ß SE z-value p-value 95% CI 

Intercept -3.32 0.425 -7.797 6.36e-15*** [-4.27, -2.58] 

Family: 

Hydropsychidae 

0.44 0.519 0.856 0.392 [-0.55, 1.53] 

Family: Leuctridae 0.22 0.644 0.344 0.731 [-1.01, 1.53] 

Family: Rhyacophilidae -0.20 0.655 -0.312 0.755 [-1.58, 1.07] 

Wet weight (mg) -0.34 0.256 -1.343 0.118 [-0.85, 0.15] 

Distance upstream (m) -0.38 0.207 -1.812 0.070 [-0.78, 0.04] 

Subcatchment area 

(km2) 

0.02 0.181 0.104 0.917 [-0.34, 0.37] 

Mean flow velocity 

(m/s) 

-0.04 0.184 -0.197 0.844 [-0.41, 0.32] 

df residual = 671 

 

Effect ß SE z-value p-value 95% CI 

Intercept 0.74 0.070 10.559 <2e-16*** [0.60, 0.88] 

Wet weight (mg) 0.09 0.053 1.744 0.081 [-0.01, 0.20] 

Distance upstream 

(m) 

0.80 0.081 9.923 <2e-16*** [0.64, 0.96] 

Subcatchment area 

(km2) 

0.59 0.063 9.234 <2e-16*** [0.46, 0.71] 

Mean flow velocity 

(m/s) 

-0.23 0.046 -4.968 6.76e-07*** [-0.32, -0.14] 

df residual = 671 

a) 

b) 
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4.4.4 Particle characteristics 

 Polymer analysis revealed 78.8% (n = 52) of the 66 subsampled particles 

extracted from sediments were synthetic polymers, 10.6% (n = 7) were composed of 

non-plastic materials, specifically natural cellulose (lignin) or their derivatives 

(glucose, zein), and 10.6% (n = 7) were unidentifiable by µ-FT-IR. The most 

abundant synthetic polymer found in sediment was synthetic cellulose (n = 39), 

followed by polyester (n = 12) and poly(ethylene:vinyl acetate:vinyl chloride) (n = 1). 

Out of 112 subsampled particles extracted from macroinvertebrates, polymer 

analysis revealed 37.5% (n = 42) were synthetic polymers, 36.6% (n = 41) were 

composed of non-plastic materials, including natural cellulose (lignin), organic salts 

(methylergonovine maleate and acetoacetyl coenzyme A trisodium salt), and a 

polymer additive (CYANOX® antioxidant), and 25.9% (n = 29) were unidentifiable by 

µ-FT-IR. The most abundant synthetic polymer found in macroinvertebrates was 

synthetic cellulose (n = 36), followed by polyvinyl acetate (n = 2) and polyamide 

(nylon; n = 2), then polyester (n = 1) and epoxy resin (n = 1). 

 After correcting the data to account for non-plastic particles and sample 

contamination (see sections 4.3.5 and 4.3.6), 194 out of 318 particles extracted from 

sediment samples were classified as microplastic residing in sediment. Almost all of 

these microplastics were fibres (n = 192; 99%), with 1% (n = 2) being fragments 

(Figure 4.5a). Transparent was the dominant colour (n = 119, n = 61.3%), followed 

by black (n = 47; 24.2%), white (n = 15; 7.7%), blue (n = 10; 5.2%), and grey (n = 4; 

2.1%; Figure 4.5b). For macroinvertebrates, 35 out of 1,606 extracted particles were 

classified as ingested microplastic, which were either fragments (n = 18; 51.9%) or 

fibres (n = 15; 42.3%), with a small number of films (n = 2; 5.8%) (Figure 4.5a). 

Transparent was the dominant colour (n = 19; 54.3%), followed by blue (n = 14; 

40%), white (n = 3; 8.6%), and brown (n = 1; 2.9%; Figure 4.5b). Hydropsychidae 

was the only family to have ingested brown microplastic and Leuctridae was the only 

family to ingest film. Microplastic from macroinvertebrates significantly differed in 

both shape and colour distribution compared to microplastic from sediment (Fisher’s 

exact test: p < 0.001 for both shape and colour; Figure 4.5). 
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Figure 4.5 a) Shape and b) colour distribution amongst microplastic particles 

extracted from sediment and macroinvertebrates sampled across 38 sites along 

River Taff, UK, after data correction (see sections 4.3.4 and 4.3.5). Total particle 

count after correction: sediment = 194, macroinvertebrates = 35. Different capital 

letters above bars indicate significant difference (Fisher’s exact test: p < 0.001). 
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4.5 Discussion 

This is the first study to systematically evaluate microplastic pollution across 

an entire river catchment in Wales, to determine how land use, putative point 

sources, and hydrodynamics influence microplastic concentration and type in 

freshwater ecosystems. Sampling both sediment and aquatic invertebrates offers 

dual insight into microplastic distribution and uptake into food webs, enabling the 

study of microplastic flow through different environmental matrices. The results did 

not support the hypothesised changes among locations and with taxonomic identity. 

Moreover, the results did not identify microplastic hotspots in River Taff, but instead, 

reveal a patchy distribution. The sections that follow first outline the inevitable 

caveats and limitations of correlational field studies such as this. Next, the 

occurrence of microplastic in River Taff sediment is discussed in relation to potential 

catchment influences compared with studies elsewhere. Lastly, patterns in the 

occurrence of plastic in invertebrates are described in relation to feeding guild, body 

size, and the microplastic found in surrounding benthos. 

 

4.5.1 Study limitations 

 The patchy distribution and limited occurrence of microplastics in these data 

from the Taff, particularly from macroinvertebrates, made analysis of microplastic 

distribution challenging. This spatial heterogeneity, combined with robust microplastic 

identification criteria, meant that there were many zero counts (i.e., zero-inflation), 

complicating the modelling process. Despite efforts to address these challenges - 

such as excluding zeros when calculating outliers and summary statistics, and using 

a compound Poisson-Gamma distribution specifically designed to handle such data - 

the models still deviated from ideal performance. The presence of numerous data 

points with high statistical influence, unmet model assumptions, overdispersion, and 

weak R² values all suggest models were unable to accurately capture the variability 

in microplastic concentrations. These issues raise important caveats about the 

results, but similar challenges may arise in other regions where microplastics are 

patchily distributed or have low prevalence, as observed in the River Taff. This study 

emphasises the importance of critically evaluating performance and fit of statistical 
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models, particularly in the context of ecological and environmental research, where 

data can be highly variable and complex. 

 These issues also raise important methodological caveats. Firstly, there are 

multiple pathways where microplastic concentrations may have been inflated. 

Despite measures to minimise sample contamination (section 4.3.6), the use of 

plastic equipment and materials may have introduced exogenous microplastic. While 

procedural blanks were used to account for contamination, any inherent background 

noise may still remain, particularly in low-concentration samples. The decision not to 

use field blanks (e.g., exposed filter papers) during sample collection also limits the 

ability to fully quantify atmospheric contamination. Finally, manual crushing of 

exoskeletons may result in microplastic degradation, inflating particle counts. 

There are also multiple pathways leading to potential underestimation of 

microplastic concentration. The 500 µm sieve used to remove large material also 

excluded microplastics between 0.5 mm and 5 mm – despite the standard definition 

of microplastics as particles < 5 mm (Arthur et al. 2009; GESAMP 2015). Meanwhile, 

the 63 µm sieve likely retained microfibres due to electrostatic attraction, capillary 

action, and/or cohesive forces increasing surface tension of water, despite triple-

rinsing, excluding particles from quantification. Sample agitation or the addition of 

surfactants (e.g., Tween 20) to rinse water could have been used to reduce surface 

tension and improve microfibre removal (Oladejo 2017). Also, sample digestion 

relied solely on H2O2, which may be less effective at breaking down lipid-rich or 

proteinaceous material including macroinvertebrate exoskeletons, compared to 

enzymatic treatments. This remaining biological material could have blocked 

microplastic visualisation through the stereo microscope. Furthermore, density 

separation may have been incomplete, as the maximum density of KI solution (1.75 

g/cm3) is insufficient at separating the densest polymers or undigested-biofouled 

particles. On the contrary, incomplete settling of fine sediment due to the high 

density of KI solution, may have also obscured microplastic isolation and visual 

detection. 

The second hypothesis, examining the impact of WWTP, lacks statistical 

power due to minimal replicates (only three pair site clusters), rendering the findings 

anecdotal. Additionally, sampling was conducted during a single spring period (April-
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May 2022), constraining the temporal generalisability of observed patters of 

microplastic distribution, concentration, and composition. As shown in Chapter 2, 

seasonal variables such as rainfall, flow rates, and stormwater runoff - typically 

higher in autumn and winter – can substantially influence microplastic loads, 

especially via WWTPs and CSOs. Finally, the study did not assess microplastics in 

the water column, limiting insights into their vertical distribution and bioavailability to 

aquatic organisms. 

 These difficulties in accurately modelling microplastic distribution are 

compounded by challenges in distinguishing between plastic and non-plastic 

particles. Separating plastic synthetic fibres (e.g., polyester), non-plastic synthetic 

fibres (e.g., cellulosic), natural fibres (e.g., cotton or wool), and fibrous organic 

material (e.g., plant fibres or chitin from organisms) through visual and polymer 

analysis is notoriously difficult (Primpke et al. 2018; Lusher et al. 2020a). This likely 

creates uncertainty in microplastic concentrations recorded throughout literature. In 

this study, from the subsample of particles initially classed as plastic under a stereo 

microscope using visual criteria in this study (Supplementary Information B1), 

polymer analysis revealed only 11% were plastic and 42% were non-plastic synthetic 

particles, whilst 27% were natural fibres and 20% were unidentifiable by µ-FT-IR. 

This suggests that microplastic detection using a stereo microscope overestimated 

microplastic loads in the River Taff by approximately 89%. Distinction between plastic 

and non-plastic microfibres has also been made in other freshwater studies (e.g., 

Miller et al. 2017; Dris et al. 2018b). For instance, Stanton et al. (2019) reported that 

93.8% of textile fibres extracted from River Trent water, UK, were non-plastic, closely 

aligning with the overestimation observed in this study. Natural and non-plastic 

synthetic fibres used in the textile industry are still processed with dyes, chemicals 

including flame retardants, and known carcinogens (Schreder and La Guardia 2014), 

and are often coated in resin that prolongs environmental degradation (Li et al. 2010; 

Zambrano et al. 2021). Therefore, non-plastic particles may not be exempt to 

causing physical, chemical, and biological damage to the environment as plastic 

does (Huang et al. 2021c). The inclusion of all synthetic particles in ecotoxicology 

studies would improve understanding of the environmental effects of fibres and 

particles, potentially also being extended to include non-plastic particles. 
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4.5.2 Microplastic in sediment 

Microplastics contaminated sediment in over 70% of sample sites, indicative 

of the widespread distribution of litter within river catchments (Barrows et al. 2018; 

Wang et al. 2021f) and the role of sediment as a microplastic sink (Castañeda et al. 

2014; Scherer et al. 2020). The concentration of microplastic in River Taff’s  

sediment fell at the lower end of the range reported in freshwater systems globally  

(5 – 3.35 ± 6.6 million particles/kg dw; see Chapter 2). The one order of magnitude 

variation within the catchment (lowest non-zero: 73.1 particles/kg dw, highest:     

593.5 particles/kg dw) has similarly been found in other freshwater systems, 

including the catchment-scale study of Brisbane River, Australia (He et al. 2020), but 

concentrations can range up to four orders of magnitude (Belontz et al. 2022). 

Compared to freshwater systems in UK, microplastic burden in the River Taff 

sediment was similar to that documented in the River Bourne (Parker et al. 2022a:   

0 – 0.36 particles/g), River Kelvin (Blair et al. 2019: 161 – 432 particles/kg dw),  

River Thames (Horton et al. 2017: averages of 18.5 – 66 particles/100 g), and    

River Tame (Tibbetts et al. 2018: 2 – 35 particles/100 g, when scaled by weight. 

Variance between rivers likely stems from disparities in pollution sources and river 

characteristics. The River Bourne is one-tenth the length of the River Taff and flows 

partly through rural area. In contrast, the Tame, Thames, and Irwell rivers flow 

through the top three largest cities in UK (London, Birmingham, and Manchester, 

respectively), with greater populations and built-up areas than Cardiff. This follows 

the association between microplastic load and urbanisation observed in Chapter 2, 

whilst highlighting the need to treat every freshwater river as unique systems when 

evaluating microplastic burden. 

Far greater microplastic loads have been observed in the River Tame by 

Woodward et al. (2021) (2,400-138,400 particles/kg dw), as well as the Irwell and 

Mersey rivers by Hurley et al. (2018a) (0 – 72,400 particles/kg). This may be 

influenced by their unique use of cylinder resuspension to sample sediment, which 

involves agitating sediment into suspension within a large cylinder and sampling 

turbid water. This approach samples sediment to greater depths compared to grab 

samples, and microplastic suspended in the water column may get incorporated into 

the sample. This extends comparison of sampling techniques in Chapter 3, but 

further experimental work is required to compare microplastic recovery rates from 
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sediment collected via grab sampling and via the cylinder resuspension technique. 

This will contribute to the harmonisation of microplastic sampling techniques for 

future research. 

The first hypothesis proposed that microplastic concentrations would increase 

with distance downstream due to cumulative effects, increased drainage area, and 

intensified human land-use in the River Taff catchment. However, microplastic 

concentrations in River Taff sediment did not correlate with distance downstream nor 

subcatchment area. This contrasts with multiple studies reporting accumulation 

downstream (Mani et al. 2015; Eo et al. 2019; Mani et al. 2019b; Wagner et al. 2019; 

Gallitelli et al. 2020; Mani and Burkhardt-Holm 2020; Mao et al. 2020b; Huang et al. 

2021b; Schell et al. 2021; Tamminga et al. 2022; Treilles et al. 2022) and 

microplastic pollution associated with local urbanisation (e.g., Tibbetts et al. 2018; 

Wagner et al. 2019; de Carvalho et al. 2021; Rakib et al. 2022; Tamminga et al. 

2022; Yuan et al. 2022). However, these results conform with studies reporting no 

influence of urbanisation (Barrows et al. 2018; Wen et al. 2018; Alfonso et al. 2020; 

Wang et al. 2020b; Wang et al. 2021d) or human population density (Miller et al. 

2017; Kapp and Yeatman 2018; Tibbetts et al. 2018; Dikareva and Simon 2019; 

Alfonso et al. 2020; Frank et al. 2021; Li et al. 2022b). 

Instead, microplastic occurrence in River Taff sediment demonstrated a 

patchy distribution. Such spatial trends have also been documented across the 

Scheldt River, Belgium (Troyer 2015), Yongjiang River, China (Zhang et al. 2020b), 

and River Tame sediment, UK (Woodward et al. 2021), pointing towards WWTPs 

and industrial areas as microplastic sources. However, the second hypothesis of 

microplastic hotspots at WWTP outlets cannot be confirmed by results in this study. 

Despite slight increases in microplastic concentration downstream of some WWTPs, 

no microplastic was observed immediately downstream of Cynon and Cilfynydd 

WWTPs, which serve the greatest number of people relative to other WWTPs in the 

catchment (144,955 in 2021). This may be due to the high effectiveness of local 

WWTPs at removing microplastic from wastewater. Lofty et al. (2022) reported a 

100% removal rate of microplastic from the local Nash WWTP in Newport, South 

Wales, and Johnson et al. (2020) reported an average removal of 99.99% of 

microplastics in six WWTPs across England and Wales. Three meta-analyses 

reported most WWTPs around the globe remove over 90% of microplastics from 
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inputs, but depending on treatment type, removal can be as low as 4% (Cristaldi et 

al. 2020; Iyare et al. 2020; Liu et al. 2021b). Moreover, untreated wastewater from 

CSOs and stormwater drains are likely to be laden with microplastic (0.0093 – 

5,195.8 ± 425.5 particles/L; Dris et al. 2018a; Treilles et al. 2020; Sun et al. 2023). 

For example, heavy microplastic contamination in River Tame sediment, UK,        

was attributed to routine discharge of untreated wastewaters into low river flows 

(1.69-4.09 m3/s), where microplastic deposits to sediments (Woodward et al. 2021). 

However, no cumulative effect of CSOs on microplastic loads in River Taff sediment 

was observed. This may be due to the relatively higher water flow of up to 15 m3/s 

during sample collection (eight gauging stations on River Taff described in Table B4; 

National River Flow Archive; UKCEH 2024). The high ratio of river flow to effluent 

discharge in River Taff may dilute this microplastic source and limit sedimentation 

and bioavailability (Dris et al. 2015). 

Local point sources may have also been masked by diffuse sources including 

urban dust, tyre wear particles, stormwater, and surface runoff from sewage sludge 

used as soil fertiliser. For example, Lofty et al. (2022) reported 96% of microplastic 

entering a Welsh WWTP ends up in sewage sludge used as soil fertiliser, leading to 

an estimated maximum application rate of 4.8 g or 11,489 particles of 

microplastic/m2/year. However, in the year prior to sample collection, WWTP 

digested biosolids were only delivered to two locations within the River Taff 

catchment, over 7 km upstream of any sample site. Thus, this is not considered a 

major pollution source in the River Taff catchment. 

Alternatively, the analytical approach of studying microplastic distribution 

across the whole river catchment may have limited the isolation of point sources, 

despite the high coverage of sampling sites. This may be captured over smaller 

geographic distances by sampling directly above and below postulated point 

sources. Instead, results suggest widespread but diverse sources of microplastic 

within the River Taff catchment that do not accumulate into longitudinal trends. The 

patchy distribution may also relate to the complex suspension and deposition cycles 

of microplastic within fluvial systems, influenced by hydrodynamics and variation in 

particle characteristics (Hoellein et al. 2019; Waldschläger and Schüttrumpf 2019; 

Skalska et al. 2020; Waldschläger et al. 2020; Yan et al. 2021a; Range et al. 2023); 

see Chapter 2). This underscores the multifaceted nature of microplastic pollution. 
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The dominance of transparent fibres in River Taff sediment and identification 

of synthetic cellulose, polyvinyl acetate, nylon, and polyester, all major components 

of textiles (Oerlikon 2010), suggests wastewater is the main source of microplastic 

pollution to the River Taff. Synthetic microfibres are released from domestic washing 

into wastewater (De Falco et al. 2018; Yang et al. 2019a), which enters the 

environment through untreated outlets (Habib et al. 1998). The dominance of 

synthetic cellulose supports the fifth hypothesis that predicted a prevalence of dense 

microplastic particles in bed sediment, as it has a greater density (1.5 g/cm3) 

compared to the other polymers identified by µ-FT-IR (poly(ehtyleve:vinyl 

acetate:vinyl chloride): ~1.15 g/cm3 and polyester: 1.37 g/cm3; British Plastics 

Federation 2023) and thus, are more likely to sink through the water column and 

deposit onto bed sediment. 

 

4.5.3 Microplastic in macroinvertebrates 

The observation of microplastics in River Taff aquatic macroinvertebrates 

contributes to evidence of plastic particles entering freshwater food webs from basal 

levels (Nel et al. 2018; Windsor et al. 2019b; Akindele et al. 2020; Dahms et al. 

2020; Simmerman and Wasik 2020; Garcia et al. 2021; Pan et al. 2021; Pastorino et 

al. 2021; Stanković et al. 2021; Corami et al. 2022; Ribeiro et al. 2022; 

Thamsenanupap et al. 2022; Winkler et al. 2022; Stanković et al. 2024). The 5% 

contamination rate is similar to that in Garonne River, France (2%; Garcia et al. 

2021), but is far lower than the 100% contamination rate of macroinvertebrates 

sampled across Danube River (Stanković et al. 2024). Occurrence in the present 

study is also lower than the 50% macroinvertebrate contamination rate recorded 

previously across the Rivers Taff, Wye, and Usk in south Wales (Windsor et al. 

2019b). Moreover, maximum microplastic load per contaminated individual was 

around four times lower (1.6 particles after corrections) than that observed by 

Windsor et al. (2019b) (6 particles). This inconsistency within the same river system 

could indicate a dramatic decrease in microplastic pollution over six years between 

the two sampling events. However, global plastic production, generation, and 

disposal have continuously increased since mass production started in 1950 (Geyer 

et al. 2017), with freshwater sediment cores from Japan, Thailand, and Malaysia 

revealing concurrent temporal increases in microplastic contamination of water 
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bodies (Matsuguma et al. 2017). Instead, the greater scale of sampling effort in this 

study (38 compared to 5 sites in Windsor et al. 2019b) may have diluted 

macroinvertebrate contamination rates due to the capture of a patchy distribution. 

Alternatively, this disparity could be attributed to climatic differences between 

sampling events. Precipitation increases stormwater runoff, a flux of land-based 

microplastics into freshwater environments (Shruti et al. 2021), and high freshwater 

microplastic concentrations have often been observed after rain events (Schmidt et 

al. 2018; Piñon-Colin et al. 2020; Wong et al. 2020a; Xia et al. 2020). Local rainfall in 

May and June 2016 prior to sample collection by Windsor et al. (2019b) averaged at 

109.7 mm per month, double the monthly average of 53.4 mm experienced in March 

to May 2022 during sample collection for this study (Met Office 2024; Cardiff Bute 

Park, latitude: 51.488, longitude: -3.187). This may have led to relatively higher 

microplastic loads in the River Taff during Windsor et al. (2019b) sampling compared 

to this study, creating a greater exposure risk for macroinvertebrates. 

Simultaneously, daily flow rate of the River Taff over eight gauging stations         

(Table B4) was greater in June and July 2016 (mean ± 1 SD: 2.6 ± 4.2 m3/s,     

range: 0.1-53.4 m3/s), compared to April and May 2022 (mean ± 1 SD: 1.5 ± 2 m3/s, 

range: 0.2-15 m3/s) (National River Flow Archive; UKCEH 2024). Greater flow may 

have created more unfavourable conditions for macroinvertebrates during sample 

collection by Windsor et al. (2019b), where individuals may have been less able to 

decipher between microplastic and their natural food source and/or required more 

energy and thus, were less selective about the items they ingested.  

Conversely, however, macroinvertebrate microplastic loads within this study 

were greater in sites with lower flow velocity. Amongst literature, low flow velocity has 

been associated with microplastic sedimentation (Kapp and Yeatman 2018; Tibbetts 

et al. 2018; Tien et al. 2020; see Chapter 2), whilst high flow events such as flooding, 

have reduced microplastic loads in freshwater sediment (Hurley et al. 2018a;         

Liu et al. 2019b). Therefore, within the catchment, benthic macroinvertebrates may 

be more at risk of sediment microplastic at low flow sites. This discussion suggests a 

complex relationship between microplastic uptake by invertebrates and hydraulic 

processes, as found in Chapter 2. Further work is needed to decipher the spatial 

scale at which dynamic hydraulic processes influence microplastic flux, to better 

predict their fate in different environmental matrices.  
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Sparse observation of contaminated individuals in this study constrains 

investigation into predictor variables. Results suggest that while fewer upstream 

individuals contained microplastic, those contaminated had greater microplastic 

loads compared to downstream individuals. This suggests that upstream areas may 

have fewer sources of microplastic pollution, but where contamination does occur, it 

might be from a concentrated or localised source. Conversely, however, sites with 

larger subcatchment areas also exhibited higher microplastic concentrations, despite 

being located downstream. This may be attributed to differences in microplastic 

sources between river tributaries, but likely results from the weak and poorly fitting 

statistical models created by zero-inflated data, as discussed in section 4.5.1.  

Regarding biotic predictor variables, Windsor et al. (2019b) reported greater 

microplastic concentration in Heptageniidae compared to Hydropsychidae and 

Baetidae from Welsh rivers, and attributed this to their greater mass. In this study, 

however, neither feeding behaviour nor individual biomass influenced microplastic 

concentration. This refuted the third and fourth hypotheses, but matched patterns in 

Garonne River (Garcia et al. 2021), Danube River (Stanković et al. 2024), and 

Bourne Stream, UK (Parker et al. 2022a), invertebrates. With macroinvertebrates at 

over half of sample sites ingesting microplastic, these results underscore the 

widespread bioavailability of microplastics in freshwater environments and universal 

exposure risk within aquatic invertebrates, whilst expanding the identified potential 

pathways for microplastic transfer through the food web. 

Lastly, multiple studies report an association between microplastic in 

freshwater organisms and sediments, suggesting that benthic feeders ingest 

microplastic from surrounding sediment and thus, act as indicators of microplastic 

pollution (Su et al. 2016; Hurley et al. 2017; Hu et al. 2018; Nel et al. 2018; Su et al. 

2018; Yuan et al. 2019; Merga et al. 2020; Park et al. 2020a; Hou et al. 2021; 

Kallenbach et al. 2022). However, only 13 of 35 sites had microplastic in both 

invertebrate and sediment samples, with contaminated invertebrates being less 

widespread than contaminated sediment. This lack of association has also been 

observed in European rivers (Garcia et al. 2021; Parker et al. 2022a; Winkler et al. 

2022), African streams (Dahms et al. 2020), and a Bangladesh river (Haque et al. 

2023). In a similar vein, particle characteristics differed between microplastic 

extracted from these invertebrates and sediment samples. Fibres dominated in the 
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Taff’s sediment, consistent with other studies in rivers (e.g., Horton et al. 2017; 

Vermaire et al. 2017; Blair et al. 2019) and lakes (e.g., Clayer et al. 2021; Felismino 

et al. 2021; Min et al. 2023). In macroinvertebrates, both fragments and fibres were 

prominent, as found in freshwater fish (Andrade et al. 2019; Olesen et al. 2019; Roch 

et al. 2019; Garcia et al. 2020; Wang et al. 2020b). Results, therefore, suggest that 

Hydropsychidae, Leuctridae, Heptageniidae, and Rhyacophilidae are not reliable 

bioindicators of microplastic contamination in River Taff. 

 

4.6 Conclusion 

 With reports of microplastic in freshwater environments increasing, this study 

expands evidence of catchment-wide contamination of microplastic as one of the few 

temperate studies of distribution across an entire, connected riverine system. This 

provides important environmental contamination levels to inform local pollution risk 

assessments and mitigation policy, as well as wider laboratory exposure 

experiments. Microplastics were found in sediment at over 70% of sites, but their 

concentration was apparently unaffected by land use or likely point sources. Instead, 

an observed patchy distribution suggests that other factors are involved, including 

hydrodynamics of fluvial systems or channel storage relative to catchment sources. 

The data illustrate microplastic uptake by aquatic invertebrates of different feeding 

guilds, which leads to particle entry into freshwater food webs. However, prevalence 

was low (5%) compared to 2016 sampling, likely resulting from the greater sampling 

effort capturing a patchy distribution, and relatively lower precipitation and flow rates 

during sample collection. This highlights the role of hydrodynamics on influencing 

microplastic distribution over space and time, which needs further investigation over 

different spatio-temporal scales. Differences in microplastic location, concentration, 

and characteristics amongst invertebrates and sediment sampled across the River 

Taff suggests that the families studied ingest microplastic from surrounding water 

and/or allochthonous material rather than sediment, or sample particles at different 

spatio-temporal scales to those influencing sedimentation. This reduces their use as 

microplastic bioindicators in freshwater ecosystems. Recognising these complex 

dynamics is essential to developing more accurate models of microplastic behaviour 

in freshwater systems and informing targeted, effective management strategies. 
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Chapter 5: Comparing methods to extract microfibres from leaf 
litter decomposing in fresh water 

 

5.1 Abstract 

 The occurrence of microplastic in freshwater ecosystems is well documented, 

yet their accumulation in specific microhabitats, such as accumulated leaf litter, and 

consequences for ecological processes are poorly understood. In part, this reflects 

the lack of standardised methods to extract microplastic from environmental media. 

This chapter develops, describes, and compares two methods to extract microplastic 

from ethanol-preserved leaf litter: (1) density separation with potassium iodide 

solution and (2) digestion with hydrogen peroxide followed by density separation. 

Fluorescent microfibres stained with Nile Red were used to assess recovery rates. 

No fluorescent microfibres were recovered by either method, suggesting spiked 

microfibres were degraded or lost during sample processing. However, non-

fluorescent microfibres were recovered in apparently larger quantities when using 

density separation alone, indicating reduced microfibre recovery following digestion. 

As these microfibres were homogeneous in appearance, their presence confirms 

recovery of spiked microfibres rather than external contamination of samples. The 

lack of fluorescent signal suggests loss of stain from spiked microfibres. This 

suggests that microplastic recovery studies using Nile Red may have false negatives 

and underestimate recovery rate. Methods employing density separation alone 

appear favourable for extracting microplastic from leaf litter, but must be combined 

with permanent or reliable staining techniques to isolate microplastic from fine 

sediment that is not removed by density separation alone. Options include polymer 

staining with Nile Red, or organic matter staining such as with Rose Bengal. This 

study further identified the challenge of removing ethanol used to fix and store 

samples, for which evaporation techniques were not viable. Removal through sieving 

is recommended, but risks microplastic loss if trapped on the sieve even after 

rinsing, leading to the underestimation of microplastic loads. This study offers 

insights into methods of microplastic extraction from organic media and how this can 

be optimised. 
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5.2 Introduction 

The flux, dispersion, and fate of microplastic in freshwater ecosystems is 

determined by multiple factors acting over different spatial and temporal scales (see 

Chapter 2). Current investigation into microplastic contamination of freshwater 

ecosystems is primarily focussed on material transported or suspended in water, 

followed by sediment and biota (see Chapter 3). However, there have been few 

investigations of microplastics interacting with other freshwater components 

including submerged leaf litter, benthic biofilm, or other natural sediments that could 

interact with food webs or ecosystem processes (Sanpera-Calbet et al. 2012; Lofty 

et al. 2023). Microplastic adherence to submerged leaf litter has been suggested 

after microplastic was extracted from leaf litter packs installed into the Vipacco River, 

Italy (Bertoli et al. 2023a,b), and spiked microplastics were recovered from leaf litter 

in static freshwater mesocosms (Redondo-Hasselerharm et al. 2018; Weber et al. 

2018; López-Rojo et al. 2020). Microplastic on submerged leaves could interact with 

aquatic organisms that use them for energy and habitat, leading to toxic and non-

toxic effects (Rakib et al. 2023). Furthermore, shifts in the activity, survival, and 

diversity of fungal and macroinvertebrate detritovores caused by micro- and nano-

plastics has been shown to negatively affect leaf litter decomposition (Seena et al. 

2019, 2022; López-Rojo et al. 2020; Batista et al. 2022; Du et al. 2022; Ockenden et 

al. 2022; Silva et al. 2022; Trabulo et al. 2022; Borges et al. 2024). This ecosystem 

function is crucial to freshwater health and thus, there is a call to develop our 

understanding of microplastic adherence to leaf litter in the real-world and 

subsequent influence on decomposition. Addressing this research gap is important in 

the context of the thesis and in particular, methodological development to support 

assessment of microplastic capture by leaf litter in Chapter 6. 

There is an extensive list of published methods for isolating microplastic from 

different environmental matrices of freshwater ecosystems (see Chapter 3). 

Procedural differences in sample processing include filtration size, digestion and 

density separation solutions, and mass calculation. This reflects the unique 

challenges that stem from both the make-up of samples as well as equipment 

availability to researchers. Microplastic recovery studies can be used to assess 

potential under- or over-estimation of environmental microplastic loads due to the 

method of extraction (Way et al. 2022). One option for such work involves spiking 
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matrices of interest with known types and concentrations of microplastic, running the 

extraction method, and assessing the amount of spiked microplastic recovered. 

Meta-analysis of published recovery efficiencies suggests that variation in reagents 

used for microplastic extraction affects observed microplastic loads (Way et al. 

2022). Lack of standardisation and comparative approaches compromises 

comparison of loads reported in different environments using different extraction 

procedures. Performing a recovery test alongside microplastic extraction from 

environmental media allows researchers to adjust observed microplastic loads to 

account for methodological biases. This could be used as a tool to standardise 

reported microplastic loads without the potentially inappropriate approach of 

standardising extraction methods. However, recovery testing has rarely been used in 

microplastic research to date (Way et al. 2022).  

Density separation is a major component of microplastic extraction techniques 

(see section 3.5.2 of Chapter 3), but many biological materials have lower densities 

than the solutions employed in separation processes. Consequently, biological 

material may float alongside microplastic and contaminate filtered samples, making 

isolation challenging (Herrera et al. 2018). Additionally, microplastic may be 

imbedded in organic material, preventing their isolation based on density alone 

(Herrera et al. 2018). Digestion of organic matter is therefore another major 

component of microplastic extraction techniques (see section 3.5.3 of Chapter 3). 

Oxidative digestion with hydrogen peroxide (H2O2) was most commonly used in 

freshwater studies analysed in Chapters 2 and 3 and is cheap and relatively less 

hazardous compared to other reagents. On the other hand, alkaline and acidic 

digestion both damage or discolour certain polymers and enzymatic digestion is 

expensive, time-consuming, operates at small scales, and require specific activation 

conditions.  

 

5.2.1 Aims 

The aim of this study was to devise and assess a methodology to extract 

microplastic from leaf litter following submergence in freshwater and subsequent 

recovery. Existing techniques used on other environmental matrices were tested to 

identify potential pitfalls associated with extracting microplastic from leaf litter, while 
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also verifying and validating methods by assessing microplastic recovery rate. The 

latter entailed spiking leaf litter with known types and amounts of microplastic to 

evaluate any under- or over-estimation of environmental microplastic concentrations.  

 

5.3 Methods 

5.3.1 Microplastic preparation 

Microplastic recovery from prepared leaf litter packs (see section 5.3.2) was 

tested with precision cut 1,000 X 1.1 µm (1.1 dtex), polyamide (PA) microfibres 

purchased from Barnet Europe. Fibres are frequently reported as the dominant 

microplastic shape in riverine environments, due to their widespread sources and 

high environmental persistence. These fibres primarily originate from the breakdown 

of synthetic textiles during washing processes, with WWTPs acting as major 

pathways for their release into aquatic ecosystems (Browne et al., 2011; Dris et al., 

2015). Unlike fragments or beads, fibres are more buoyant and can remain 

suspended in the water column longer, facilitating their transport and eventual 

deposition in sediments or ingestion by aquatic organisms (Wagner et al., 2014). 

Their high surface-area-to-volume ratio also increases the likelihood of interaction 

with biota, leading to greater bioaccumulation in macroinvertebrates (Silva et al., 

2021). PA has large-scale production and extensively used in textile industry 

(Wesolowski and Plachta, 2016). Microplastic recovery can be calculated as the 

difference in mass between spiking loads and recovered loads (Grause et al. 2022). 

However, preliminary testing in preparation for this chapter showed this to inflate 

microfibre recovery rates beyond 100%, likely due to inorganic material such as fine 

sediment remaining in the filtrate. Therefore, microplastic recovery was assessed by 

comparing recovered microfibre counts against estimated counts of spiking 

microfibres. To identify spiking microfibres, they were dyed with Nile Red (9-

(diethylamino)-5H-benzo[α]phenoxazin-5-one), with which PA has a high affinity to. 

This makes fibres fluorescent under ultraviolet light (blue fluorescence,  λex = 300–

405 nm), blue light (λex = 405–500 nm), or green light (λex = 500–600 nm; Shruti et 

al. 2022). 

 Microfibre staining was performed as per Maes et al. (2017). Specifically, a 

5:1 ratio of staining solution (10 µg/mL filtered acetone) to microfibres (Karakolis et 
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al. 2019) was stirred at room temperature for 30 minutes (Galvão et al. 2023) prior to 

vacuum filtration, triple rinsing with filtered acetone to remove excess Nile Red, and 

rinsing once with filtered deionised water (FDW) to remove acetone. Stained 

microfibres were left to dry in a laminar flow hood for 24 hours, before 96.6 mg was 

weighed and suspended in 100 mL of FDW. This created a spiking solution 

containing ~19 microfibre particles per 1 mL. Figure 5.1 shows the fluorescence 

signal from dyed microfibres compared to un-dyed microfibres with no 

autofluorescence, using Olympus BX61 under green light at 4x magnification. 

Aggregated microfibres were separated for individual quantification to determine the 

spiking solution concentration. To test Nile Red leaching from dyed microfibres, 

spiking solutions were centrifuged at 4,000 rpm for 10 minutes. No fluorescent 

signals were observed in the supernatant (Figure 5.2). 
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a) 

b) 

Figure 5.1 Fluorescence images: a) Fluorescent signal of PA microfibres stained 

with Nile Red. b) Un-stained microfibres with no autofluorescence. Images taken 

with Olympus BX61 under green light at 4x magnification. 
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5.3.2 Leaf litter 

 Oak (Quercus robur) leaves were collected from the study area (Llyn Brianne 

Observatory, Cambrian Mountains, mid-Wales) after abscission and cleaned with 

FDW before drying at room temperature for 48 hours (flipped halfway). Groups of 

leaves were weighed to 3 ± 0.1 g and placed in 10 x 10 cm mesh bags with 5 mm 

aperture, subsequently referred to as leaf packs. These leaf packs were placed in 

individual plastic tubs with 3.5 mL of spiking solution (mean ± 1 SD = 19 ± 8.4 

fibres/mL), equivalent to ~66 microfibres. This concentration was selected to reduce 

the margin of error in recovery rate, whilst ensuring the number of microfibres was 

manageable for manual visualisation and enumeration. Leaf packs were covered 

with filtered 100% ethanol to fix samples and prevent decomposition, and gently 

shaken. 

Figure 5.2 Fluorescence leaching test for microfibres dyed with Nile Red in filtered 

deionised water (19 particles/mL), centrifuged at 4,000 rpm for 10 minutes. Green 

background was observed under green light at 4x magnification with Olympus BX61, 

with no fluorescent signals to indicate dye leachate. 
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5.3.3 Method development 

 Two methods of extraction were tested: (1) density separation with saturated 

potassium iodide solution (KI; ρ = 1.52-1.63 g/cm3); and (2) digestion with 30% H2O2 

then density separation with saturated KI solution. Each method was tested with     

12 replicate leaf pack samples. As Bertoli et al. (2023a,b) digested leaf litter for 

microplastic extraction, in preparation for this chapter, dead Oak leaves were 

digested using 30% hydrogen peroxide (H2O2) for 72 hours. This is longer than the 

48-hour digestion period used to digest macroinvertebrates and sediment in Chapter 

4, due to the high cellulose and lignin content of leaves, which are more difficult to 

breakdown. After digestion, leaves faded in colour but remained intact, indicating that 

30% H2O2 was ineffective at breaking down dead leaf litter. Therefore, microfibres 

were extracted from the storage solution rather than the leaves themselves. 

Under laminar flow, leaves were carefully removed from their mesh bags and 

individually triple rinsed with FDW to remove any adhered microfibres, before being 

disposed. An attempt was made to examine leaves for fluorescent microplastic 

before being disposed of, using a blue light and yellow filter, but this did not show 

any fibres. Leaves could not be examined under the microscope due to their size 

and curved shape. Ethanol was removed via a triple-rinsed 63 µm sieve, and 

retained material was triple-rinsed into triple-rinsed and labelled 50 mL tubes for 

method (1) and triple-rinsed and labelled 50 mL glass beakers for method (2). 

Samples were dried at 60°C in a fan-assisted oven for 72 hours to remove water. For 

method (1), dried tubes were topped with filtered saturated KI solution and 

centrifuged at 4,000 rpm for 10 minutes, before the supernatant was vacuum filtered 

onto 0.45 µm cellulose-nitrate gridded filter paper. For method (2), dried beakers 

were topped with filtered 30% H2O2 in a fume hood for 48 hours to digest organic 

material. H2O2 was subsequently removed through a 63 µm sieve and retained 

material was triple-rinsed with FDW into triple-rinsed and labelled 50 mL tubes, 

before performing the same drying, density separation, and filtering as used in 

method (1). Each filter paper was systematically scanned along the grid lines using 

an Olympus BX61 under green light at 4x magnification. 
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5.3.4 Contamination control 

 Samples are at risk of plastic contamination from external sources in the air 

and reagents used (Prata et al. 2020b; Kernchen et al. 2022). To prevent external 

contamination during microplastic staining and sample processing, all laboratory 

processes were conducted under a laminar flow hood. All reagents were pre-filtered 

through 0.45 µm cellulose nitrate filter paper, except for acetone which was filtered 

through 0.7 µm glass microfibre filter paper. All equipment was triple rinsed with 

FDW before use and researchers wore 100% cotton clothing and nitrile gloves. 

By staining microfibres with Nile Red, only recovered spiking microfibres were 

intended for quantification, assuming external microplastics do not fluoresce under 

green light. To test the latter, airborne background contamination was assessed with 

one air blank per extraction method tested. For this, a wetted 0.45 µm cellulose-

nitrate filter was placed into a glass petri dish next to sample processing and later 

inspected for fluorescence microfibres as above. No fluorescent microfibres were 

observed on air blank filters.  

 

5.4 Results 

No fluorescent microfibres were observed on filters from method (1) and 

method (2). Non-fluorescent microfibres were observed on all filters, in far greater 

abundance on method (1) compared to method (2) filters. The abundance in the 

former was so great that they could not be accurately counted by human-eye. For 

these reasons, recovery rate could not be calculated. Fine sediment was present on 

method (1) filters but not method (2) filters. 

 

5.5 Discussion and recommendations 

This study utilised reported methods of microplastic extraction from 

environmental material (see Chapter 3) to establish protocols to extract microplastic 

from leaf litter decomposing in fresh water. The aim of identifying pitfalls in extraction 

methods that are not described in literature was fulfilled. A challenge arises where 

field samples have been fixed in ethanol which must be removed prior to the addition 

of digestion and density separation reagents. Preliminary testing in preparation for 
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this chapter showed evaporation of ethanol in both a 50°C fan-assisted drying oven 

and a rotary evaporator at 80-220 rpm and 60-90°C, were not viable because of slow 

evaporation rates. This is likely due to the hydrogen bonding of ethanol molecules 

with water molecules disrupting the ability of ethanol molecules to escape into the 

vapor phase (Nishi et al. 1995). Freeze drying (lyophilisation) may be an alternative 

solution to remove ethanol and water, but could not be tested due to time and 

equipment availability constraints. Therefore, in this thesis, reagents were removed 

through sieving (Mai et al. 2018), despite this invariably leading to some loss of 

microplastic (Nakajima et al. 2019). A sieve aperture of 63 µm may have allowed 1.1 

µm diameter microfibres to pass through, or may have retained microfibres even 

after triple-rinsing. This could be due to electrostatic attraction, capillary action, 

and/or cohesive forces increasing surface tension of water. Literature suggests the 

addition of surfactants (amphiphilic composites) to rinsing water to reduce surface 

tension and limit microfibre adherence to equipment (Oladejo 2017). Sieves could 

not be examined to quantify potential microfibre retention as the particles are too 

small for the human eye, and the sieve does not fit under a microscope. 

The aim of quantitatively verifying and validating extraction methods could not 

be fulfilled, as only non-fluorescent microfibres were recovered, and their abundance 

was too high to be accurately counted by the human eye, even after attempts to 

separate fibres. This suggests that not all spiking microfibres were dyed, possibly 

due to the degradation of Nile Red dye over time before its use in this study. A 

fluorescence leaching test demonstrated that Nile Red-stained fibres maintained 

fluorescence when incubated in artificial freshwater and seawater for 24 hours (Ma 

er al. 2020a). However, the presence of surfactants like Tween-20 affected the 

fluorescence retention, indicating that chemical environments can influence staining 

stability (Ma er al. 2020a). Alternatively, Nile Red is known to protonate in very acidic 

environments (pH < 4) (Sturm et al. 2021). Therefore, the use of 30% H2O2 with a pH 

of 3.5-4.5 may have protonated the Nile Red stain in microfibres and reduced their 

fluorescence intensity. Prata et al. (2020a) reported a complete loss of Nile Red 

fluorescence from low-density polyethylene (LDPE) microplastics washed with 30% 

H2O2 with 0.05 Fe(II) or acetone. However, Porter et al. (2023) used 30% H2O2 to 

digest marine worms exposed to Nile Red dyed PA microfibres and successfully 

recovered fluorescent fibres, refuting loss of fluorescence. Our results suggest that 
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previous studies focussing only on fluorescent microplastic recovery may have 

underestimated recovery rates, as non-fluorescent particles were overlooked. This 

skews reported microplastic loads and limits previously used methods of microplastic 

extraction. Underestimation of environmental microplastic loads underrates the 

severity of this pollution, which may lead to lack of mitigation.  

Recovery rate could not be calculated as the initial spiking load was based on 

fluorescent microfibres only. This limits the calculation of under- or over-estimation of 

microplastic concentration in leaf litter samples. The homogeneity in the appearance 

of recovered microfibres and the clear blank controls confirming no external 

contamination, indicates that microfibres can be recovered from leaf packs. Despite 

the visible reduction of non-fluorescent microfibres with the additional digestion step, 

the lack of recovery rate quantification means no conclusions can be drawn.  
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Chapter 6: Microplastic addition has minimal effects on 
invertebrate communities or litter decomposition in stream 
mesocosms of contrasting pH 

 

6.1 Abstract 

Microplastic occurs throughout freshwater environments and is ingested by 

organisms. Previous research has mostly focused on individual interactions with 

microplastics, yet little is known about effects at higher levels of ecological 

organisation or on ecosystem processes. The magnitude of any such effects relative 

to other stressors is also poorly understood. For example, leaf-litter decomposition 

might be sensitive to changes in invertebrate communities caused by microplastics 

either alone or in conjunction with other pollutants and/or environmental changes, 

and therefore susceptible to the multiple-stressor effects typically seen in real 

ecosystems. This study, therefore, assessed the effects of environmentally realistic 

pulse-injections of microplastic (1,000 x 1.1 µm polyamide microfibres dyed with Nile 

Red) on the density, diversity, and community composition, alongside leaf litter 

decomposition, in experimental mesocosms of contrasting pH (acid versus 

circumneutral). Macroinvertebrate density and family diversity was hypothesised to 

be lower downstream of microfibre addition and in acidic conditions. This was 

expected to reduce leaf-litter decomposition as decomposition rate positively 

correlates with macroinvertebrate density. 

Few microfibres were recovered from macroinvertebrates and leaf litter, 

suggesting limited immobilisation of spiked fibres within mesocosms and/or limited 

interaction with biological media. Changes in macroinvertebrate density, family 

diversity, and community composition were all limited, and microplastic had no 

effects on leaf decomposition downstream of microfibre pulse-injection. Acidic 

mesocosms had greater macroinvertebrate densities of benthic communities 

compared to circumneutral mesocosms, with Leuctridae being more dominant at 

lower pHs. Overall, variance in population, community, and ecosystem functional 

responses were poorly explained by either microfibre addition or pH treatment. 

These findings suggest that the negative effects of microplastics sometimes 

observed in laboratory systems may be overridden by other processes in dynamic 
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freshwater environments and thus, highlight the need for more realism in future 

microplastic experiments to decipher potential impacts at different ecological scales. 

 

6.2 Introduction 

Microplastic, as defined in previous chapters, is widespread in freshwater 

ecosystems. Catchment-scale assessments of rivers have detected microplastic at 

83% of sites in Wu River, Taiwan (Kunz et al. 2023), and up to 100% of sites across 

the Huangpu, Wei, Yangtze, and Yellow rivers, China (Chen et al. 2020a; Yuan et al. 

2022; Chen et al. 2024; Zhao et al. 2023; Zhang et al. 2024; Zong et al. 2024), 

Chapora River, India (Kalangutkar et al. 2024), Brisbane River, Australia (He et al. 

2020), and the upper Mersey and Irwell rivers, England (Hurley et al. 2018b). In 

Wales, polluted rivers such as the River Taff contained microplastic in sediment and 

macroinvertebrates from 71% and 55% of 38 sites, respectively, during 2022 

(Chapter 4). Microplastic enters freshwaters through both diffuse and point sources 

(Ding et al. 2021). As detailed in earlier chapters, diffuse sources are widespread 

and include urban runoff (Wang et al. 2022), agricultural drainage (Hatinoğlu and 

Sanin 2021), and atmospheric deposition (Su et al. 2020; Tan et al. 2022), where 

microplastics are transported by wind and rain from a variety of dispersed locations. 

Point microplastic sources include specific, identifiable origins such as Wastewater 

Treatment Plant (WWTP) outflows (Ziajahromi et al. 2016; Kay et al. 2018), 

Combined Sewer Overflows (CSOs; divert excess wastewater and stormwater; Dris 

et al. 2018a; Parizi 2021), and industrial discharges (Bitter and Lackner 2020; Chan 

et al. 2021). These point sources could act as “pulse-injections” of microplastic, with 

average CSO spill duration in England being 5.8 hours in 2022 (The Rivers Trust 

2023). Most WWTPs investigated by researchers removed over 85% of microplastic 

(Cristaldi et al. 2020; Iyare et al. 2020), whereas CSOs are not treated and thus, 

could form a considerable source of microplastic to freshwater ecosystems 

(Woodward et al. 2021). With point microplastic sources being easier to identify 

compared to diffuse sources, understanding their environmental impact will support 

direct management, regulation, and mitigation of this pollution. 

One possible sink for microplastic in freshwater environments is ingestion by 

organisms. At the individual level, microplastic has caused reduced energy intake, 
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oxidative stress, genotoxicity, and neurotoxicity (Ma et al. 2020b; Li et al. 2023b; 

Rakib et al. 2023; Harmon et al. 2024), with subsequent changes in growth, activity, 

and survival having the potential to affect populations (Foley et al. 2018; Martins and 

Guilhermino 2018). However, most information about the effects of microplastics has 

arisen from acute toxicity tests on single species, with microplastic concentrations in 

organisms seldom observed in the field (Ockenden et al. 2021; Harmon et al. 2024). 

This lacks environmental realism and limits our knowledge on the impact of 

microplastic on different trophic guilds, the composition of whole communities, and 

freshwater ecosystem function (Ma et al. 2020b). 

Among a wide range of ecosystem processes, leaf-litter decomposition is 

crucial to freshwater ecosystem function and is mediated by a combination of 

microorganisms (dominantly fungi) and invertebrates, particularly leaf shredders 

(Willoughby 2012). The process releases essential nutrients into water, adds organic 

matter to sediment which maintains its structure and fertility, and increases 

downstream fluxes of particulate carbon used by filter-feeding organisms (Cummins 

et al. 1989; Wallace et al. 1997; Willoughby 2012). Leaf litter breakdown is used as a 

functional indicator of freshwater ecosystem health (Gessner and Chauvet 2002; 

Young et al. 2008). Microplastic adherence to freshwater leaf litter has been 

suggested by Straub et al. (2017), Redondo-Hasselerharm et al. (2018), Weber et al. 

(2018), López-Rojo et al. (2020), and Bertoli et al. (2023a, c). Concomitant shifts in 

the feeding behaviour and survival of macroinvertebrate shredders have been shown 

to have negative effects on the leaf-litter processing under experimental conditions 

(López-Rojo et al. 2020; Ockenden et al. 2022; Silva et al. 2022; Borges et al. 2024). 

Reduced fungal activity, sporulation, and diversity due to micro- and nano-plastic 

also limits leaf-litter decomposition (Seena et al. 2019, 2022; Batista et al. 2022; Du 

et al. 2022; Trabulo et al. 2022). Similar trends have been observed with other 

pollutants including heavy metals (Sridhar et al. 2001; Duarte et al. 2008; Roussel et 

al. 2008; Fernandes et al. 2009; Moreirinha et al. 2011; Bergmann and Graça 2020) 

and pesticides (Rasmussen et al. 2012; Magali et al. 2016; Rossi et al. 2018; 

Sumudumali et al. 2022). In contrast with other pollutants, however, the effects of 

microplastic on litter decomposition are still poorly understood – presenting an 

important gap in understanding (Wu et al. 2024). 
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Leaf-litter decomposition can also be affected by changes in abiotic conditions 

of freshwater ecosystems, both directly, and indirectly by the alteration of detritivore 

activity and community composition (Webster and Benfield 1986; Taylor and Chauvet 

2014). Surface-water acidification, for example, can result from acidic groundwater 

discharge from abandoned mine workings (Johnson and Hallberg 2005), or ammonia 

(NH3) emission from agriculture (Skinner et al. 1997). More geographically extensive 

acidification also arose previously due to the emission and deposition of acidifying 

compounds from fossil fuel combustion (Singh and Agrawal 2006; Rice and Herman 

2012). This issue was further exacerbated locally in base-poor landscapes by 

afforestation (Ormerod et al. 1989; Gagkas et al. 2008). Freshwater acidification 

decreases pH, alters base cation fluxes, and increases concentrations of toxic 

metals, notably monomeric aluminium (Schindler et al. 1980; Herrmann et al. 1993; 

Prakash et al. 2023). This has been observed to reduce leaf-litter decomposition due 

to concomitant changes in invertebrate community composition (Meegan et al. 1996; 

Dangles and Guérold 1998; Dangles and Guérold 2001a; Simon et al. 2009; Pye     

et al. 2012), activity of shredding invertebrates (Meegan et al. 1996; Dangles and 

Guérold 2001a; Dangles and Guérold 2001b; Cornut et al. 2012; Ferreira and 

Guérold 2017), and microbial activity and biomass (Griffith et al. 1995; Meegan et al. 

1996; Dangles et al. 2004; Simon et al. 2009; Clivot et al. 2013), particularly in 

hyphomycete fungi (Iqbal and Webster 1977; Shearer and Webster 1985; Griffith  

and Perry 1994; Dangles et al. 2004; Baudoin et al. 2008; Cornut et al. 2012; Seena 

et al. 2019, 2022). Although many streams in affected areas are now substantially 

recovered chemically (Ormerod and Durance 2009; Whelan et al. 2022), in some 

systems, biological recovery is delayed or partial due to continued episodes of 

acidity during hydrological events (Carr et al. unpublished data; Kowalik et al. 2007). 

In the real-world, environmental stressors (physical, chemical, or biotic entities 

that move biological systems out of normal range; Segner et al. 2014) do not operate 

in isolation, including within freshwater ecosystems (Ormerod et al. 2010). The 

impact of co-occurring stressors can be additive (net effects = sum of single effects) 

or interact in a synergistic or antagonistic manner (net effects respectfully > or < the 

sum of single effects) (Johnson and Penaluna 2019; Pirotta et al. 2022). Interactions 

of these types are theoretically possible between acidification and microplastics, for 

example, because pH can alter the environmental behaviour of microplastics. 
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Acidification has been suggested to lead to: (i) aggregation of certain microplastic 

particles due to weakened electrostatic repulsive force (Lu et al. 2018; Wang et al. 

2021e); (ii) modulation of microplastic degradation by affecting microorganism 

survival and activity (Auta et al. 2018); (iii) enhancement of photodegradation (Ariza-

Tarazona et al. 2020); (iv) increased leaching of anion and heavy metals (Cui et al. 

2019); and (v) reduced adsorption of trace metals (Turner and Holmes 2015; Llorca 

et al. 2018). These interactions could change the availability of microplastic and 

associated pollutants to detritovores, enhancing their impact in acidic environments. 

Alternatively, the well-described adverse effects of acidification on freshwater 

communities and ecosystem function (Muniz 1990; Gray et al. 2016) may override 

any impacts of microplastic suggested in laboratory studies. 

To date, potential effects of microplastic in freshwater ecosystems have not 

been studied at contrasting pH. In marine environments, this combined stress has 

inhibited digestive enzymes in mussels while only slightly affecting their oxidative 

responses (Wang et al. 2020d), and did not affect bacterial and algal growth rate 

(Piccardo et al. 2020). However, ocean acidification (0.1 pH unit reduction since the 

industrial revolution; Pachauri et al. 2014) is far smaller than freshwater acidification 

(1-2 pH units), implying the potential for more deleterious effects in freshwaters. 

Bolstering the available information on ecosystem function effects of microplastic 

and acidification would aid ecological risk assessment and subsequent development 

of appropriate control strategies (Fleeger 2020). 

 Laboratory microcosm experiments are important in ecotoxicology as they 

allow for control of environmental variables (Diamond 1986), enabling researchers to 

isolate specific processes or interactions with pollutants. Compared to field studies, 

microcosms are often more cost-effective and accessible (Carpenter 1996) and 

minimise disturbances to natural ecosystems. However, the oversimplification of 

complex natural systems can lead to results that do not fully represent real-world 

dynamics over different spatial and temporal scales, of both abiotic variables (e.g., 

hydrodynamics, habitat etc.) and biotic interactions (e.g., predation, competition, 

symbiosis etc.), often using single species (Diamond 1986). Moreover, laboratory 

conditions themselves may induce stress in organisms (Calisi and Bentley 2009).  
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This gap between controlled laboratory microcosms and the complex real 

world can be bridged using mesocosms: bounded and partially enclosed outdoor 

experimental setups (Odum 1984). Mesocosms can be replicated and controlled to a 

certain extent, while still maintaining a level of realism that is not achievable in 

laboratory systems, making them valuable for studying the impacts of environmental 

stressors (e.g., Graney et al. 1994; Stewart et al. 2013). Yıldız et al. 2022 conducted 

the first in situ community-level mesocosm experiment testing the effects of 

microplastic on a model aquatic food web, including herbivorous, predator, and 

detritivore invertebrates, in a static system. Microplastic particles were added at two 

different concentrations in a single pulse to the water surface, water column, and 

sediment. Yıldız et al. 2022 observed a variation in microplastic ingestion according 

to particle size, invertebrate body size, and feeding guild. Microplastic ingestion by 

zooplankton was limited, but microplastic presence in faecal pellets of predators 

indicate trophic transfer (Yıldız et al. 2022). Comparing such results to a fluvial 

mesocosm would aid understanding of flow effects. 

 This novel study therefore uses field mesocosms to investigate the potential 

independent and interactive effects of microplastic and pH on stream organisms at 

the population (macroinvertebrate density), community (diversity; abundance of 

different feeding guilds), and ecosystem function levels (leaf litter decomposition). 

Additionally, ingestion of microplastic by macroinvertebrates and adherence to leaf 

litter was estimated to establish any entry of microplastic into the freshwater food 

web, and to connect microplastic exposure to potential density and trait-mediated 

effects on ecosystem functioning. The experiment aimed to test the following 

hypotheses: 

1) Pulse-injected microplastics are ingested by macroinvertebrates and adhere 

to submerged leaf litter. 

2) Leaf-litter decomposition positively correlates with macroinvertebrate density. 

3) Macroinvertebrate density and family diversity, and leaf-litter decomposition 

decrease downstream of microplastic input versus upstream. 

4) Macroinvertebrate density and family diversity, and leaf-litter decomposition is 

lower in acidic versus circumneutral mesocosms irrespective of plastic 

addition. 
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6.3 Methods 

6.3.1 Study area and stream mesocosms 

 The study was conducted at the Llyn Brianne Stream Observatory            

(52°8′ N 3°45′ W; Figure 6.1a), where a series of replicate upland streams receive 

drainage from c. 300 km2 of the upper catchment of the upper Afon Tywi. The area 

experiences an oceanic climate with stream temperatures ranging 0-16°C, a mean 

annual precipitation of c. 1900 mm, and mean solar radiation of 7.85 MJ/m2/d 

(Weatherley and Ormerod 1990) - see Weatherley and Ormerod (1987) and 

Edwards et al. (1990) for detailed descriptions of the Observatory. 

 Four of the streams have been fitted with mesocosms, each consisting of 

three, parallel cascading steel channels (0.2 x 0.2 x 20 m) one-fifth of the size of 

adjacent streams (Figure 6.1b,c). The mesocosms have a coarse benthic substrate 

layer of mixed cobbles (D50 = 5 cm; Seymour et al. 2018) and receive water and 

naturally occurring particles directly from their respective streams, making them 

physiochemically and ecologically representative. Mesocosm water reaches a depth 

of ~0.05 m above the substrate (cross-sectional area: 𝐴 = 0.05 x 0.2 m) and flows at 

a rate of 1.1 L/s (𝑄). This suggests an average flow velocity (𝑣) of ~0.1 m/s, using the 

equation 𝑣 = 𝑄 / 𝐴. In the month prior to this experiment, a preceding experiment 

exposed mesocosm channels to different drought treatments (100%, 50%, or 10% 

flow). Moreover, apparatus issues during this experiment caused short-term drying 

and re-wetting of different channels. Flow was limited in Davies mesocosm in the left 

and right channels for 3 weeks, and the middle channel for 4 weeks, whilst Hanwell, 

Carpenter, and Sidaway had limited flow in their left and right channels for 1 week. 

As mesocosms were visited once a week, the duration of limited flow is unknown 

could have ranged from 1 to 6 days. The effects of this are discussed in section 6.5. 

Two mesocosms (Carpenter and Davies) receive water from first order 

circumneutral streams (Ll6 and Ll7, respectively) that drain rough, sheep-grazed 

moorland and have respective pH ± SD of 6.7 ± 0.03 and 6.8 ± 0.04. Two 

mesocosms (Hanwell and Sidaway) receive water from acidic streams (Ll3 and Ll8, 

respectively) that drain through plantations of Sitka spruce Picea sitchensis Carr. 

with lodgepole pine Pinus contorta Doug and have respective pH ± SD of 5.9 ± 0.07 

and 5.35 ± 0.07 (pH data recorded in 2018; Seymour et al. 2018). Differences in pH 
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result in different invertebrate communities among the streams, with fewer grazers 

occupying acidic mesocosms Hanwell and Sidaway (Ormerod and Durance 2009). 

This was measured using invertebrate density, Shannon’s index (Shannon 1948) and 

Bray-Curtis dissimilarity (see section 6.3.5), to test hypothesis 4. Replicating 

mesocosms and their channels enhances both statistical power and the reliability of 

results. This approach helps to account for the limited control of environmental 

variables in field settings, which is more precisely managed in laboratory 

microcosms (Diamond 1986). 
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Figure 6.1 Study area and stream mesocosms with treatments. a) Location       

of Llyn Brianne Stream Observatory, UK, consisting of four mesocosms: acidic 

Hanwell (adjacent to stream Ll3) and Sidaway (adjacent to steam Ll8), and 

circumneutral Carpenter (adjacent to stream Ll6) and Davies (adjacent to stream 

Ll7). b) Experimental design and microplastic treatment – grey = non-experimental 

sections, spotted = microfibre (MF) addition, white = experimental sections (including 

upstream control with no microfibre exposure and 3 downstream sections exposed to 

microfibres at increasing distances from the pollution source). c) Photos of 

mesocosm design, consisting of three, parallel cascading channels, each made of 

twenty 0.2 x 0.2 x 1 m stainless steel sections. White arrows represent flow direction 

and white lines represent dimensions of a single section within a mesocosm channel. 

Red circles show how leaf packs were installed into mesocosms and were fully 

submerged. 

 

c) 
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6.3.2 Microplastic preparation 

Polyamide (PA) microfibres precision cut to 1,000 µm x 1.1 µm (1.1 dtex) were 

purchased from Barnet Europe. Microfibres were used due to their extensive 

occurrence in freshwater environments (see Chapter 2) and dominance in point 

source effluent (Šaravanja et al. 2022; Parashar and Hait 2023). Fibres also have 

longer gut retention times and slower egestion than spherical particles, resulting      

in more severe effects on individuals (Au et al. 2015; Ziajahromi et al. 2017a; Qiao et 

al. 2019). PA was chosen due to its large-scale production and extensive use in the 

textile industry (Wesolowski and Plachta 2016). PA are easily dispersed in freshwater 

due to their density (1.01-1.05 g/cm3) and are reported to have a widespread 

distribution in the freshwater environment (see Chapter 2). 

To identify recovered particles and assess their distribution, microfibres were 

dyed with the lipophilic dye, Nile Red (9-(diethylamino)-5H-benzo[α]phenoxazin-5-

one). Nile Red is detected as blue, green, or red fluorescence under ultraviolet light 

(blue fluorescence, λex = 300–405 nm), blue light (λex = 405–500 nm), or green light 

(λex = 500–600 nm; Shruti et al. 2022). PA microfibres have a high affinity to Nile 

Red dye (Erni-Cassola et al. 2017; Prata et al. 2019a; Savage et al. 2022), which 

helped distinguish added microfibres from inorganic matter (e.g., sediment), organic 

matter (e.g., macroinvertebrates), and external microplastic contamination. 

Microfibres were dyed as per Maes et al. (2017), which is described in section 5.3.1 

of Chapter 5.  

 

6.3.3 Leaf litter preparation 

 The leaf pack technique (Petersen and Cummins 1974) was used to assess 

environmental endpoints of microplastic and detrital processing by 

macroinvertebrates. This technique mimics the natural accumulation of vegetal 

organic matter in freshwater ecosystems, serving as a trophic resource and refugia 

for macroinvertebrates. Submerged leaf litter may also act as a retention structure 

for microplastics transported by aquatic flow. This technique was used by Bertoli et 

al. (2023a, c) to assess microplastic adherence to leaf litter submerged in the 

Vipacco River, Italy, verifying that mesh bags with a 5 mm aperture collect and retain 

microplastics including PA after 45 days of submersion.  
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 In this study, Oak (Quercus robur) leaves were collected after abscission    

from the study area in June 2023, cleaned with water, and left to air dry at room 

temperature for 48 hours (flipped halfway). Groups of leaves were weighed to     

3,000 ± 0.1 mg and placed in 10 x 10 cm mesh bags with a 5 mm aperture, making 

them accessible for biofilm development as well as fungi, invertebrates, and 

microfibres. Three leaf packs (n = 3) were installed into sections 10, 12, 14, and 18 

(Figure 6.1b,c) at increasing distances from the intended microplastic injection point 

at the start of the experiment (T0), using plastic cable ties. Oak leaves were chosen 

due to their abundance within the study area making them a likely source of organic 

matter in mesocosms, as well as being preferred to bryophytes by local aquatic 

invertebrates (Johnston et al. 2015). Non-woody plant leaves also breakdown faster 

than woody plant leaves (Webster and Benfield 1986). 

 

6.3.4 Experimental design and microfibre exposure 

The experiment was conducted over the most downstream 10 m of the 

mesocosms, with a spiking solution of stained microfibres added in section 11 of 

each channel (Figure 6.1b) on days T0, T7, T14, T21, T28, T35, and T42. The 

suspension of spiking microfibres in the water column of mesocosms was not tested 

as the appropriate equipment was not available. Each weekly spiking solution 

contained 655.2 ± 1 mg of dry, dyed microfibres suspended in 500 mL of filtered 

deionised water (FDW). This represented pulse injections that would occur in a 

typical river from a point source such as a CSO. Few measurements of 

concentration exist for such sewer overflows, but based on microfibre concentrations 

in Paris CSO effluent between 2014 and 2016  (200 fibres/L; Dris et al. 2018a), 

mesocosm flow rate (1.1 L/s), and average CSO spill duration in England, 2022 (5.8 

hours; The Rivers Trust 2023), ~4,593,600 fibres would be expected to enter 

mesocosms during a single CSO spill event. In this study, the spiking solution added 

weekly to each mesocosm channel contained ~4,363,920 microfibres, 95% of the 

expected quantity. The scale of a CSO spill relates to the capacity, dispersal, and 

dilution in the system receiving it. If all spiking microfibres settled equally into the 

treatment reach (2 m2), the average microfibre concentration in sediment would be 

2,181,960 microfibres/m2. To date, freshwater sediment microplastic concentration 
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reported per unit area ranges from 67 (Xiong et al. 2018) to 517,142 (Hurley et al. 

2018b) particles/m2, with an average of 44,224 particles/m2. 

The experiment ended after 48 days, when environmental samples 

(macroinvertebrates and leaf litter) were collected from sections 10 (control = no 

microfibre addition), 12 (treatment = 1 m downstream of microfibre addition),           

14 (treatment = 3 m downstream of microfibre addition), and 18 (treatment = 7 m 

downstream of microfibre addition) (Figure 6.1b). Benthic macroinvertebrates were 

sampled via three 71.3 cm2 Hess samples (Hess 1941) collected across each 

sampling section. These were stored in individual sealed plastic bags with filtered 

99% ethanol at room temperature (n = 48). Leaf packs (total 144) with leaf-dwelling 

macroinvertebrate colonisers were stored in individual sealed plastic pots with 

filtered 99% ethanol at room temperature. Ethanol was used to preserve the organic 

material and prevent gut content excretion of macroinvertebrates (Windsor et al. 

2019b). 

This is a control vs treatment experimental design, i.e., within each 

mesocosm, sections 10 with no microfibre addition are compared to sections 12, 14 

and 18 subject to microplastic addition. This allows direct comparison at the same 

time point, isolating any effect of microplastic from temporal or environmental 

changes. However, differences in pH between mesocosms result in different 

invertebrate communities among the streams, causing different starting conditions. 

This was accounted for by the three replicate channels within each mesocosm, and 

two replicate mesocosms for each pH type. A before-and-after experimental design, 

where the system is measured at two time points, before and after microplastic 

addition, would have controlled for pH variability between mesocosms. Although this 

does not control for temporal or other environmental changes, sampling before 

microplastic addition would have aided the investigation of effective variables. 

 

6.3.5 Measuring microfibre uptake and effect on macroinvertebrates 

Benthic and leaf-dwelling macroinvertebrate individuals were identified to 

family level under a GXMXTL3 Stereo Microscope (GT Vision Ltd) using 

identification guides (Croft 1986; Bouchard Jr 2004; Sundermann et al. 2007; Pawley 

et al. 2011; Eversham 2013; Hackston 2019) and assigned to a Functional Feeding 
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Guild (FFG) following Merritt et al. (1996; 2002; 2017) and Moog (2002). Family 

diversity was calculated using Shannon’s Index (Shannon 1948) and community 

composition was compared between samples using Bray-Curtis dissimilarity (see 

section 6.3.8). 

Under laminar flow, individuals were triple rinsed with FDW to remove any 

externally attached material including fluorescent microfibres (Nel et al. 2018), and 

wet-weighed to ± 0.1 mg using an analytical microbalance. Microfibres were 

extracted from all macroinvertebrate individuals as described in section 4.3.3 of 

Chapter 4. This includes digestion with 30% H2O2, which does not degrade PA (Gao 

et al. 2023) nor fluorescence intensity of Nile Red (Wang et al. 2021a; Gulizia et al. 

2022; Gao et al. 2023). As in Chapter 4, exoskeletons of every macroinvertebrate 

individual remained after this digestion (quantification was not recorded), which may 

have interfered with microplastic quantification. 

 

6.3.6 Measuring microfibre uptake and effect on leaf litter 

Under laminar flow, leaf litter was carefully removed from individual mesh 

bags before bags were triple rinsed with FDW to remove attached microfibres. 

Leaves were triple rinsed with FDW and placed in a pre-weighed paper bag. To 

determine leaf litter decomposition rate and mass loss, leaves were dried at 50 °C 

for 24 hours and weighed to ± 0.1 mg. Microfibres were extracted through density 

separation and centrifugation, as determined in Chapter 5. Firstly, the leaf rinsate 

and preserving solution was poured through a triple-rinsed   63 µm sieve to remove 

ethanol and capture the 1,000 µm long microfibres. Captured debris was triple-rinsed 

with FDW into triple-rinsed 50 mL polypropylene centrifuge tubes (autoclave-safe) 

and dried at 50°C and 10% fan for 10 days to remove water. Tubes were then filled 

with filtered potassium iodide solution (KI; ρ = 1.6-1.66 g/cm3) and centrifuged at 

4,000 rpm for ten minutes (reasoning discussed in section 4.3.4 of Chapter 4), after 

which the supernatant was vacuum filtered onto gridded cellulose nitrate membrane 

filters (47 mm diameter, 0.45 μm pore size). All filters were systematically visually 

examined along the grid lines for fluorescent microfibres using an Olympus SZX12 

Stereo Microscope under the Green Fluorescent Protein (GFP) filter, which were 

counted manually. 
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6.3.7 Contamination control 

 Samples used in microplastic investigations are at risk of plastic 

contamination from external sources in the air, equipment, and solutions used (Prata 

et al. 2020; Kernchen et al. 2022). By staining microfibres with Nile Red, only the 

microfibres added and recovered were quantified, assuming external microplastics 

do not fluoresce under green, fluorescent light. To prevent external contamination 

during microfibre staining and sample processing, all laboratory processes were 

conducted under a laminar flow hood. All solutions were pre-filtered through 0.45 µm 

cellulose nitrate filter paper, except for acetone which was filtered through 0.7 µm 

glass microfibre filter paper. All equipment was triple rinsed with FDW before use  

and researchers wore 100% cotton clothing and nitrile gloves. Remaining external 

contamination was assessed using negative blanks of a dampened filter paper        

(n = 3). These contained a low number of particles that do not fluoresce under green, 

fluorescent light. Microfibre recovery tests in Chapter 5 act as positive controls to 

show the capability of detecting microfibres extracted from leaf litter.  

 

6.3.8 Statistical analysis 

All statistical analyses were performed in ‘R’ software (version 4.3.0; R Core 

Team 2023). Per mesocosm channel, data outliers were iteratively identified and 

removed if more than 1.5-times the interquartile range (IQR) below the first quartile 

or above the third quartile (Tukey 1977). Data were then assessed for normality 

using Shapiro-Wilks test (Shapiro and Wilk 1965) and visual inspection of histograms 

and Q-Q plots. Macroinvertebrate density and Shannon’s Index in both benthic and 

leaf-dwelling communities were not normally distributed (e.g., Shapiro-Wilk test on 

benthic macroinvertebrate density data: W = 0.727, p < 0.0001), even after 

transformation. The ‘orderNorm’ transformation from the ‘bestNormalize’ package in 

R (Peterson and Cavanaugh 2020) was applied to leaf litter decomposition rate to 

achieve a normal distribution (Shapiro-Wilk test: W = 0.999, p = 1). Homogeneity of 

variances across groups were assessed via Levene’s test (Levene 1960) for 

normally distributed data and Filgner-Killeens non-parametric test (Fligner and 

Killeen 1976) for non-normally distributed data. Variances of macroinvertebrate 
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density in both communities were not equal across mesocosms, i.e., heterogeneous 

(Fligner-Killeen test: 𝜒2 = 15.414, df = 3, p < 0.01 and 𝜒2 = 9.759, df = 3, p < 0.05 for 

benthic and leaf-dwelling communities, respectively). Variance of leaf litter 

decomposition was not equal (Levene test: F = 2.776, df = 3, p < 0.05). Variances of 

Shannon’s Index of both communities were equal, i.e., homogeneous (𝜒2 = 3.630,   

df = 3, p = 0.303 and 𝜒2 = 2.283, df = 3, p = 0.516 for benthic and leaf-dwelling 

communities, respectively). 

To examine hypothesis 2, correlation between both macroinvertebrate density 

and Shannon’s Index and leaf litter decomposition rate were analysed using 

Kendall’s Tau correlation. This accounts for the distribution of macroinvertebrate 

density and Shannon’s Index being different to normal, as well as “tied” observations. 

Hypotheses 3 and 4 were examined as follows. The effect of position along 

mesocosms (i.e., upstream or downstream microfibre input) and pH on 

macroinvertebrate density and Shannon’s Index, independently for benthic and leaf-

dwelling macroinvertebrate communities, were all assessed with Generalised Linear 

Mixed-effect Models (GLMMs). This accounted for the non-normal distribution in 

data. GLMMs included channel nested within mesocosm as random effects to 

account for correlations within these groups at each level of the hierarchy. GLMMs 

were fitted with a Gamma error distribution and log link function, adding a small 

transformation of +0.0001 to move the distribution away from zero. Density models 

with no overdispersion according to the dispersion parameter (variance-to-mean 

ratio) were selected, as this indicates a better fit to the data (Thomas et al. 2017). 

However, these models had a singular fit and non-normally distributed residuals, 

indicating poor reliability of estimated random effect parameters. Shannon’s Index 

data of both benthic and leaf-dwelling communities were zero-inflated, with 28% and 

21% of data being zero, respectively. A Shannon’s Index value of zero indicates a 

single-family community. This led to under-dispersed GLMMs and thus, excess zeros 

were accounted for by setting the ‘zeroInflation’ parameter to “TRUE” in the 

glmmadmb() model-fitting function, which removed under-dispersion and singular fit. 

However, these models had non-normally distributed residuals.  

Differences in community composition in relation to position along 

mesocosms and pH was measured using Bray-Curtis dissimilarity based on square 
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root transformed taxa abundance (to reduce variation), and analysed using a two-

way PERMANOVA (Anderson 2001; McArdle and Anderson 2001). Prior to this, 

multivariate homogeneity of group dispersions was checked using PERMDISP2 

(Anderson 2006). Similarity Percentage (SIMPER) analysis was applied to the data 

matrix to identify the taxa that contributed the most to the significant differences 

highlighted by the PERMANOVA (Clarke 1993). 

The effect of position along mesocosms and pH on leaf decomposition was 

assessed with a GLMM that included channel nested within mesocosm as random 

effects, as GLMMs with Gamma error distribution were severely under-dispersed. 

The model was fitted with Restricted Maximum Likelihood (REML) using the Laplace 

approximation method. Residuals were normally distributed (Shapiro-Wilk test: W = 

0.990, p = 0.470), but the model was slightly under-dispersed according to a 

dispersion parameter of 0.517, with 1 indicating “normal” dispersion (Thomas et al. 

2017).  

 

6.4 Results 

6.4.1 Macroinvertebrates 

Microplastic uptake 

 Fluorescent microfibres were observed in 0.5% (5 of 1,043) of benthic 

macroinvertebrate individuals, three of which were Leuctridae sampled from acidic 

Sidaway mesocosm and two were Heptageniidae sampled from circumneutral 

mesocosms. All contaminated individuals were sampled downstream of microfibre 

input, 40% from 3 m downstream, and 60% from 7 m downstream. Zero fluorescent 

microfibres were observed in all leaf-dwelling macroinvertebrates. Zero non-

fluorescent microfibres were observed in any samples, as observed in Chapter 5. 

 

Density 

 Across the four sites of cascading mesocosms, 1,049 benthic and 891 leaf-

dwelling aquatic macroinvertebrate individuals were collected via Hess sampling and 

leaf packs, respectively. Benthic macroinvertebrate density was significantly greater 

in acidic (mean ± 1 SD: 1,243 ± 1,322 individuals/m2) than circumneutral mesocosms 
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(501± 503 individuals/m2; p < 0.01; Table 6.1a), but there was no effect of microfibre 

addition: in no mesocosms did benthic density differ between dosed and non-dosed 

sections (p > 0.05; Table 6.1a,b; Figure 6.2a). There was no difference between 

acidic (mean ± 1 SD: 2.6 ± 2.5 individuals/g final leaf-litter) and circumneutral 

mesocosms (3.8 ± 3.4 individuals/g final leaf-litter) in the number of leaf-dwelling 

macroinvertebrates and again, there was no effect from microfibres (p > 0.05; Table 

6.1b; Figure 6.2b). Marginal R2 values for the lognormal distribution were 0.2605 and 

0.1117 for the benthic and leaf-dwelling community model, respectively. Both models 

had a singular fit and thus, conditional R2 values equalled marginal R2 values.  

 

Table 6.1 Effect of microfibre addition (1 m upstream versus 1 m, 3 m, and 7 m 

downstream of spiking) and pH (acid versus circumneutral) on density of a) benthic 

(individual/m2) and b) leaf-dwelling macroinvertebrate communities (individuals/g 

final leaf litter), accounting for random effects within channels nested within 

mesocosms. Colon indicates interaction. SD = standard deviation, ß = estimate,    

SE = standard error, and df = degrees of freedom. Stars indicate levels of statistical 

significance: p-value < 0.05 (*), p-value < 0.01 (**), p-value < 0.001 (***). 

 

Benthic macroinvertebrates    

Random effects Variance SD    

Channel:Mesocosm 0 0    

Mesocosm 0 0    

Residual 1.002 1.001    

Number of observations: 134. 

Number of groups: Channel : Mesocosm: 12, Mesocosm: 4. 

 

 

 

 

 

a) 
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Fixed effects ß SE t-value p-value 

Intercept 6.7666 0.3566 18.975 <2e-16 *** 

pH circumneutral -0.8474 0.3031 -2.796 0.00518 ** 

1 m downstream 0.1055 0.4256 0.248 0.80416 

3 m downstream 0.5818 0.4350 1.337 0.18108 

7 m downstream 0.5043 0.4290 1.175 0.23980 

df residual = 126 

 

Leaf-dwelling macroinvertebrates    

Random effects Variance SD    

Channel:Mesocosm 0 0    

Mesocosm 0 0    

Residual 0.7876 0.8875    

Number of observations: 136. 

Number of groups: Channel : Mesocosm: 12, Mesocosm: 4. 

 

Fixed effects ß SE t-value p-value 
Intercept 1.13236 0.27630 4.098 4.16e-05 *** 

pH circumneutral 0.39422 0.24995 1.577 0.115 

1 m downstream -0.03968 0.35245 -0.113 0.910 

3 m downstream -0.32820 0.35693 -0.920 0.358 

7 m downstream -0.42917 0.35288 -1.216 0.224 

df residual = 128 

 

 

 

 

 

b) 
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Figure 6.1 Effect of microfibre addition (1 m upstream versus 1 m, 3 m, and 7 m 

downstream of spiking) on macroinvertebrate density of a) benthic (individuals/m2) 

and b) leaf-dwelling (individuals/leaf pack) communities. GLMMs showed no 

significant difference between downstream and upstream mesocosm sections. 

a)  

 

 

 

 

 

 

 

 

 

 

b) 
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Community composition 

Macroinvertebrates collected by Hess sampling and leaf packs belonged to  

26 families dominated by leuctrid Plecoptera (42.1% of all individuals; shredders), 

followed by chironomid (10.2%; gathering collectors and shredders), simuliid     

(8.2%; filtering collectors), and Thaumaleid (6%; shredder) dipterans. Community 

type (benthic or leaf-dwelling) and FFG were significantly associated (Cochran-

Mantel-Haenszel test: χ²(4, N = 1,934) = 194.39, p < 0.001 after controlling for pH), 

with gathering collector families being more dominant in leaf packs (22.7% of 

individuals) than in the benthos (6.9% of individuals), largely because of chironomids 

and nemourids in the former (Table C1). A two-way PERMANOVA confirmed 

significant differences in both benthic and leaf-dwelling communities with pH     

(Table 6.2; Figure 6.3), mainly due to greater Leuctridae dominance in acidic (60.3% 

of benthic individuals and 42.8% of leaf-dwelling individuals) than circumneutral 

mesocosms (23.5% of benthic individuals and 28.7% of leaf-dwelling individuals), 

while Heptageniidae (grazers/scrapers) were only dominant in benthic communities 

in circumneutral mesocosms (34.2-36.7% of individuals) (Table 6.2, Table C1). 

Simuliidae (filtering collectors) were most dominant in acidic Hanwell mesocosm 

(34.9% of individuals) (Table C1). Other than these variations, however, microfibre 

addition had no effect on community composition (Table 6.2). 

Despite some variations in community composition, there were few variations 

in diversity, and none involved microfibre addition (p > 0.05; Table 6.3). Shannon’s 

Index per section ranged from 0 – 1.55 for benthic macroinvertebrates and 0 – 2.02 

for leaf-dwelling macroinvertebrates. There was no difference between acidic and 

circumneutral mesocosms (p > 0.05; Table 6.3), although the effect of pH on leaf-

dwelling communities was almost significant (p = 0.063; Table 6.3b), reflecting higher 

values in circumneutral (1 ± 0.527) than acidic mesocosms (0.595 ± 0.451). Marginal 

R2 values for the lognormal distribution were 0.0033 and 0.0533 for the benthic and 

leaf-dwelling community model, respectively. Both models had a singular fit and thus, 

conditional R2 values equalled marginal R2 values. 
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Table 6.2 Results of two-way PERMANOVA and SIMPER test based on 

macroinvertebrate community (benthic versus leaf-dwelling, represented below as 

type), at varying distances from microfibre addition (1 m upstream versus 1 m, 3 m, 

and 7 m downstream of spiking, represented below as section), across two acidic 

and two circumneutral mesocosms (represented below as pH). For SIMPER test, 

only taxa with contributions higher than 2% are reported. df = degrees of freedom, 

SS = sums of squares. Colon indicates interaction. Stars indicate levels of statistical 

significance: p-value < 0.05 (*), p-value < 0.01 (**), p-value < 0.001 (***). 

 

Two-way PERMANOVA 

Source df SS  R2 F-value p-value 

Type 1 5.321 0.225 30.795 0.001 *** 

pH 1 1.594 0.068 9.224 0.001 *** 

Section 3 0.382 0.016 0.737 0.802 

Type:pH 1 1.465 0.062 8.481 0.001 *** 

pH:Section 3 0.235 0.010 0.453 0.987 

Type:Section 3 0.368 0.016 0.710 0.833 

Type:pH:section 3 0.426 0.018 0.823 0.698 

Residual 80 13.822 0.585   

Total 95 23.613 1.000   
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SIMPER 

Taxon Average dissimilarity 
(± 1 SD) % 

Contribution of 
variability % 

Cumulative % 

Leuctridae 17.43 ± 12.56 27.9 27.9 

Chironomidae 7.69 ± 4.51 12.3 40.2 

Heptageniidae 6.97 ± 7.58 11.1 51.3 

Simuliidae 5.26 ± 5.14 8.4 59.7 

Nemouridae 5.20 ± 3.22 8.3 68 

Thaumaleidae 4.56 ± 2.56 7.3 75.3 

Baetidae 2.69 ± 2.29 4.3 79.6 

Scirtidae 1.76 ± 1.89 2.8 82.4 

Lymnaeidae 1.58 ± 1.78 2.5 84.9 

Oligochaeta 1.43 ± 0.87 2.3 87.2 

Pediciidae 1.32 ± 1.02 2.1 89.3 

Rhyacophilidae 1.22 ± 1 2 91.3 
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Table 6.3 Effect of microfibre addition (1 m upstream versus 1 m, 3 m, and 7 m 

downstream of spiking) and pH (acid versus circumneutral) on Shannon’s Index of  
a) benthic (individual/m2) and b) leaf-dwelling macroinvertebrate communities 

(individuals/g final leaf litter), accounting for random effects within channels       

nested within mesocosms. Colon indicates interaction. SD = standard deviation,       

ß = estimate, SE = standard error, and df = degrees of freedom. 

 

Benthic macroinvertebrates    

Random effects Variance SD    

Channel:Mesocosm 1.177e-07 0.0003431    

Mesocosm 1.316e-07 0.0003628    

Number of observations: 141. 

Number of groups: Channel : Mesocosm: 12, Mesocosm: 4. 

 

Fixed effects ß SE z-value p-value 

Intercept -0.49297 0.32993 -1.494 0.135 

pH circumneutral -0.02625 0.29618 -0.089 0.929 

1 m downstream -0.01532 0.41715 -0.037 0.971 

3 m downstream 0.06040 0.41711 0.145 0.885 

7 m downstream 0.15680 0.41706 0.376 0.707 

df residual = 132 

 

 

 

 

 

 

 

 

a) 
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Leaf-dwelling macroinvertebrates    

Random effects Variance SD    

Channel:Mesocosm 1.125e-07 0.0003355    

Mesocosm 1.125e-07 0.0003355    

Number of observations: 133. 

Number of groups: Channel : Mesocosm: 12, Mesocosm: 4. 

 

Fixed effects ß SE z-value p-value 

Intercept -0.4460 0.3128 -1.43 0.154 

pH circumneutral 0.5221 0.2811 1.86 0.063 . 

1 m downstream -0.0499 0.3895 -0.13 0.898 

3 m downstream -0.1277 0.3979 -0.32 0.748 

7 m downstream -0.1338 0.3980 -0.34 0.737 

df residual = 126 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
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a) Benthic macroinvertebrates 
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b) Leaf-dwelling macroinvertebrates 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Community composition of a) benthic and b) leaf-dwelling 

macroinvertebrate communities 1 m upstream and 1 m downstream of microfibres 

addition, in acidic and circumneutral mesocosms. 
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6.4.2 Leaf litter 

Microplastic adherence 

 Only one fluorescent microfibre was observed in all leaf litter samples, which 

was from acidic Sidaway mesocosm, 1 m downstream of microfibre addition. 

 

Decomposition rate 

 Overall, mean leaf litter decomposition rate was 24.5 ± 5.9 mg/day (± 1 SD). 

Leaf litter packs lost 35.6-96% of original mass in 48 days, with a mean ± 1 SD loss 

of 1,177.8 ± 284.8 mg. Decomposition rate was more strongly affected by density of 

macroinvertebrates in leaf packs compared to the benthos. Decomposition was 

significantly faster with more leaf-dwelling individuals (Kendall’s Tau: τ = 0.314,         

Z = 5.364, n = 138, p < 0.001), which in turn was positively correlated with both their 

shredder density (τ = 0.611, Z = 10.118, n = 138, p < 0.001) and family diversity 

(Shannon’s Index) (τ = 0.467, Z = 7.523, n = 128, p < 0.001). Leaf litter 

decomposition rate did not correlate with benthic macroinvertebrate density              

(τ = 0.063, Z = 1.034, n = 134, p = 0.301). Otherwise, there was no effect of either 

microfibre addition or pH. 

A GLMM suggested leaf litter degradation rate was 0.3 ± 0.2 mg (± standard 

error (SE)) lower per day at 1 m downstream of microfibre addition compared to 1 m 

upstream of addition, but this effect was not statistically significant (p = 0.142; Table 

6.4; Figure 6.4). Decomposition rate 3 m and 7 m downstream of microfibre addition 

did not differ significantly to rates observed 1 m upstream (p > 0.05; Figure 6.4). 

Decomposition rate was not significantly affected by pH (p > 0.05; Figure 6.4). 

Overall mean ± 1 SD variability in leaf litter decomposition rate was 0.3 ± 0.6 mg/day 

between channels and 0.1 ± 0.3 between mesocosms. The model’s marginal and 

conditional R2 values were 0.0955 and 0.5008, respectively. 
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Figure 6.2 Effect of microfibre addition (1 m upstream versus 1 m, 3 m, and 7 m 

downstream of spiking) on leaf litter decomposition rate (mg/day). 
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Table 6.4 Effect of microfibre addition (1 m upstream versus 1 m, 3 m, and 7 m 

downstream of spiking) and pH (acid versus circumneutral) on leaf litter 

decomposition rate, accounting for random effects within channels nested within 

mesocosms. Colon indicates interaction. SD = standard deviation, ß = estimate,     

SE = standard error, and df = degrees of freedom. 
 

Random effects Variance SD    

Channel:Mesocosm 0.3647 0.6039    

Mesocosm 0.07894 0.2810    

Residual 0.54644 0.7392    

Number of observations: 136. 

Number of groups: Channel : Mesocosm: 12, Mesocosm: 4. 

 

Fixed effects ß SE Df t-value p-value 

Intercept -0.1972 0.3470 2.4663 -0.568 0.617 

pH circumneutral 0.5406 0.4655 1.9958 1.161 0.366 

1 m downstream -0.2638 0.1783 121.199 -1.479 0.142 

3 m downstream 0.1557 0.1797 121.2373 0.867 0.388 

7 m downstream -0.2279 -/1812 121.2646 -1.258 0.211 

 

 

6.5 Discussion 

 Pulse-injection of PA microfibres into freshwater mesocosms did not induce 

changes at the population (macroinvertebrate density), community (diversity, 

abundance of different feeding guilds), nor ecosystem levels (leaf litter 

decomposition), falsifying hypothesis 3. However, recovery of added microfibres was 

extremely limited in macroinvertebrates and non-existent in leaf litter, refuting 

hypothesis 1. Greater macroinvertebrate density in leaf litter led to faster 

decomposition rates, supporting hypothesis 2. Nevertheless, as pH only affected 

benthic community density (greater in acid versus circumneutral mesocosms), 

decomposition rate did not vary with pH, refuting hypothesis 4. The sections that 
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follow first describe macroinvertebrate community composition in the mesocosms 

benthos and leaf litter. Next, reasons for negligible microfibre recovery and effects on 

measured responses are discussed, before discussing the observed influence of pH.  

 

6.5.1 Macroinvertebrate communities 

Community composition of macroinvertebrates in the mesocosms is in line 

with temperate freshwater environments (Croft 1986; Vaughan and Ormerod 2012). 

Overall, 25 invertebrate families were observed, belonging to six taxonomic orders. 

Shredders made up over half of sampled macroinvertebrates (61% and 56% of 

benthic and leaf-dwelling communities, respectively), dominated by Leuctridae, 

Nemouridae, and Thaumaleidae (Table C1). Remaining individuals were filtering-

collectors (12-19%), gathering-collectors (7-23%), scrapers (4-11%), and predators 

(3-5%) (Table C1). 

Differences highlighted by PERMANOVA and SIMPER analysis are likely 

related to the feeding habit and acid-sensitivity of different families. Leuctridae was 

the most abundant family in all mesocosms, accounting for 49% and 34% of total 

benthic and leaf-dwelling communities, respectively. Although this does not meet the 

80% coverage of total litter-dwelling invertebrates observed in mesocosm feeder 

streams reported by Johnston et al. (2015), it conforms with their observed 

dominance. This likely results from the generalist feeding habit of Leuctridae, 

ingesting organic matter, algae, fungi, and bacteria (Feminella and Stewart 1986), 

and their acid tolerance (Braukmann 2001). However, this contradicts the greater 

dominance of plecopteran shredders in litter bags compared to benthic samples 

observed previously in both circumneutral and acidic streams in Llyn Brianne (Pye  

et al. 2012). 

Chironomidae larvae were more dominant in leaf-dwelling (22%) compared   

to benthic communities (1%), with Bertoli et al. (2023a) also reporting high 

Chironomidae abundance in leaf packs in Vipacco River, Italy. Despite variation in 

their FFG (Stout and Taft 1985; Oertli 1993; Callisto et al. 2007), larvae mainly feed 

on organic material and thus, would be attracted to the leaf presence (Grubbs et al. 

1995; Mathuriau and Chauvet 2002; Ligeiro et al. 2010). Conversely, Simuliidae 

larvae were more dominant in benthic communities (13%) compared to leaf-dwellers 
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(2%), likely due to their habit of filtering suspended organic particulates through 

labral fans and attachment to substratum by posterior hooks (Hemphill and Cooper 

1983; Zhang and Malmqvist 1997). The presence of Leuctridae, Chironomidae, and 

Simuliidae in both acid and circumneutral sites conforms to their previously reported 

acid tolerance (Ormerod and Durance 2009). 

Lastly, Heptageniidae larvae were mostly absent from acidic mesocosms, 

supporting evidence of their acid-sensitivity (Courtney and Clements 1998; 

Braukmann 2001; Kowalik and Ormerod 2006). In circumneutral conditions, their 

greater dominance in benthic (36%) compared to leaf-dwelling communities (1%) 

may be due to their feeding habit of grazing-scraping periphyton (Cummins and  

Klug 1979), which grows on coarse sediment. Pye et al. (2012) similarly observed 

depleted grazer-scraper dominance in leaf packs in both circumneutral streams in 

Llyn Brianne, compared to benthic samples. As with other leaf pack studies, the 

presence of non-shredding taxa in leaf-dwelling communities could be due to the 

refugia they provide (Richardson 1992; Mutshekwa et al. 2020), whilst the presence 

of predators could be related to the high abundance of prey within leaf packs 

(Karádi-Kovács et al. 2015). 

 

6.5.2 Effect of microplastic 

The negligible recovery of added PA microfibres from mesocosms falsifies 

adherence to leaf litter and subsequent ingestion by macroinvertebrates that was 

suggested by microcosm experiments (Straub et al. 2017; Redondo-Hasselerharm   

et al. 2018; Weber et al. 2018; López-Rojo et al. 2020). These studies created a 

ubiquitous microplastic presence contained within indoor lentic conditions, similar     

to and exceeding environmental concentrations. Bertoli et al. (2023a,c) reported 

microfibre adherence to leaf litter in the lotic Vipacco River, but observed lower 

concentrations in leaf packs at times of high flow. Moreover, high flow regimes are 

often associated with reduced microplastic pollution in freshwaters (Chapter 2; Zhao 

et al. 2014; Wang et al. 2017a; Peng et al. 2018; Pol et al. 2022). With flow velocity 

of mesocosms in this study being ~0.1 m/s, it is likely that pulse-injected microfibres 

were mobilised and removed before adherence to leaves and macroinvertebrate 

ingestion. Microfibres may have also remained on the water surface due to surface 
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tension, preventing their interaction with leaf packs and invertebrates. Addition of 

small amounts of tween (detergent) to the spiking solution, would have broken this 

surface tension to aid suspension. Sampling the outflow of mesocosms would have 

indicated the degree of microfibre mobilisation and loss. Despite this, fluorescent 

microfibres were recovered from three Leuctridae and two Heptageniidae individuals, 

supporting evidence of microplastic uptake by freshwater macroinvertebrates, 

especially microfibres (e.g., Windsor et al. 2019b; Stankovic et al. 2024; Chapter 4). 

Egestion of microplastic has also been reported in literature (Cole et al. 2013; Blarer 

and Burkhardt-Holm 2016; López-Rojo et al. 2020), with Windsor et al. (2019b) and 

Khedre et al. (2023) observing an almost 50% reduction in average microplastic 

abundance within 24 hours. In this study, samples were collected six days after the 

last microfibre addition, by which time, microfibres may have been completely 

egested from macroinvertebrates, limiting their recovery. 

Other artefacts of experimental design may have also prevented microfibre 

recovery. Any microfibres that did adhere to leaves or were ingested by 

macroinvertebrates, could have been lost during sample processing through 

adherence to samples and/or equipment or settlement in precipitate of centrifuged 

samples (Nakajima et al. 2019). As mentioned in Chapter 5, microfibres 1.1 µm in 

diameter could have passed through the 63 µm sieve, or stay adhered to the sieve 

due to electrostatic attraction, capillary action, and/or cohesive forces increasing 

surface tension of water. This may disproportionately reduce recovery rates of 

smaller microplastic particles (Enders et al. 2020) and fibres due to the higher 

surface area-to-volume ratio increasing their electrostatic attraction. Another artefact 

is the potential loss of Nile Red stain or its fluorescence from spiking microfibres as 

suggested in Chapter 5, after recovering non-fluorescent microfibres from leaf litter 

spiked with Nile Red stained PA microfibres. Ma et al. (2021) reported dye leaching 

from polyethylene (PE) fibres after centrifugation with 80 rpm at 65 °C. This would 

prevent visualisation under detection methods, leading to false negatives or data 

inconsistencies if some fibres retained dye better than others. However, the Nile Red 

used in Chapter 5 was one year older than that used in this study, leaving time for 

the dye to degrade. Moreover, Gao et al. (2022) found strong fluorescence of Nile 

Red dyed microplastics incubated in freshwater at room temperature, suggesting dye 

leaching in mesocosms is unlikely. Lastly, a layer of sediment remained on filters of 
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leaf litter rinsate that was not removed through density separation and centrifugation, 

and exoskeletons remained on filters due to incomplete digestion. This could have 

covered microfibres and prevented visual observation of their fluorescence. Adding 

further digestion steps such as enzymes, could have prevented this limitation, but 

required specific equipment that was not available. 

 The mobilisation of microfibres and/or methodological limitations to their 

recovery are the most plausible reasons for their absent effect on macroinvertebrate 

abundance, diversity, community composition, and leaf litter decomposition. This 

prevented the investigation of population or ecosystem effects in real-world lotic 

systems. In corroboration, Silva et al. (2022) attributed an absent effect of short-term 

PE particle exposure on leaf litter decomposition in an indoor artificial stream, to an 

absent change in shredder abundance. Redondo-Hasselerharm et al. (2020) and 

Stanković et al. (2022) also reported no significant changes in freshwater 

macroinvertebrate abundance, species richness, and diversity with microplastic 

exposure, and a meta-analysis by Ockenden et al. (2021) found mortality to be the 

least responsive effect of microplastic in most freshwater functional groups. In 

contrast, Borges et al. (2024) observed greater macroinvertebrate density and 

richness with increased microplastic concentration, and subsequent increased leaf 

litter decomposition. However, this opposite effect was attributed to large 200-600 

µm PE microspheres serving as substrate for biofilm growth and thus, promoting 

resource availability for invertebrates (Borges et al. 2024), which were far larger than 

the 1,000 µm x 1.1 µm PA microfibres used in this study. Lastly, in this open 

mesocosm, potential species dispersal from upstream of microfibre addition to 

downstream may have compensated any alteration in population or ecosystem level 

effects (Medina Madariaga et al. 2024). 

 

6.5.3 Effect of pH 

 The greater density of benthic macroinvertebrates observed in acidic 

mesocosms and absent change in macroinvertebrate diversity across the pH range, 

contrasts with negative impacts of acidification on freshwater organisms widely 

reported in literature (e.g., Townsend et al. 1983; Morris 1989; Courtney and 

Clements 1998). Acidic conditions are said to be stressful for many organisms, 
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limiting the number of species that can survive there. Even within acidic streams 

adjacent to mesocosms, significantly lower invertebrate abundance and family 

richness and different community compositions have been observed compared to 

adjacent circumneutral streams (Ormerod and Durance 2009; Pye et al. 2012; 

Johnston et al. 2015). Dominance of acid-tolerant Leuctridae in both communities 

suggests they were able to survive in large numbers in acidic conditions due to 

reduced competition. Moreover, acidic conditions support greater algal growth 

(Hendrey 1976; Sholar et al. 2015), which was visually observed in the mesocosms. 

This could have heightened benthic macroinvertebrate density due to a more 

abundant food source, as well as limited leaf litter colonisation due to blockage of 

leaf pack apertures. Lastly, the 0.8-1.45 pH unit difference in mesocosm pH may not 

have been large enough to elicit significant differences in measured responses, 

despite them falling within the range used by (Ward Jr. 1963) to classify acid-tolerant 

and sensitive aquatic invertebrates.  

The observed increase in leaf decomposition rate with leaf-dwelling 

macroinvertebrate density and concurrent shredder density, conforms with literature 

(Benfield and Webster 1985; van Dokkum et al. 2002; Hieber and Gessner 2002; 

Cornut et al. 2010; Raposeiro et al. 2017; Bertoli et al. 2020; Bertoli et al. 2022a; 

Bertoli et al. 2023b). Shredders play a major role in leaf degradation, with increases 

in their density leading to increased leaf litter decomposition (Taylor and Chauvet 

2014). Therefore, perturbation in their abundance due to environmental stressors are 

likely to impact leaf degradation. However, despite benthic community density being 

greater in acidic mesocosms, leaf-dweller density was no different to circumneutral 

mesocosms, resulting in similar decomposition rates. These results contrast with 

multiple studies who observed reduced decomposition with acidification, attributed   

to reduced shredder invertebrate abundance, biomass and feeding activity (Meegan 

et al. 1996; Dangles and Guérold 1998; Dangles and Guérold 2001a; Dangles and 

Guérold 2001b; Simon et al. 2009; Cornut et al. 2012; Ferreira and Guérold 2017). 

Artefacts of the experimental design may have limited leaf litter decomposition rate 

and its response to microplastic and pH. For example, Pye et al. (2012) highlight 

potential decomposition retardation of Oak leaves due to their high polyphenolic 

content and thus, suggest the examination of multiple species over longer timescales 

to strengthen our understanding of this ecosystem function effect. Moreover, the    
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45-day treatment design is short when considering the extended timeframe required 

for leaf decomposition in freshwater streams, with reported breakdown duration of 

oak leaves to range from 54 to 255 days (Abelho 2001). 

Overall, microplastic and pH treatment only explained 11-26% and 0.3-5% of 

variance in macroinvertebrate density and diversity, respectively, according to R2 

values. When additionally accounting for sample location within mesocosms and 

their channels, explanation of variance in leaf litter decomposition rate increased 

from 10% to 50%. This suggests that other stressors varying across channels and 

mesocosms either directly influenced or indirectly influenced decomposition rates by 

affecting detritivores. In the month prior to this experiment, a preceding experiment 

exposed mesocosm channels to different drought treatments (100%, 50%, or 10% 

flow). Moreover, apparatus issues during this experiment caused short-term drying 

and re-wetting of different channels. The negative impact of drought on freshwater 

ecosystems is well understood, broadly reducing macroinvertebrate abundance and 

diversity (e.g., Boulton 2003; García and Pardo 2016; Aspin et al. 2019) and leaf 

litter degradation (Schlief and Mutz 2011; Ferreira et al. 2023). Recovery after 

drought can be rapid for species that possess strategies to survive drying or are 

highly mobile, but other taxa take longer to recolonise. Ephemeroptera, Plecoptera, 

and Trichoptera have been reported as drought-sensitive in temperate climates (King 

et al. 2016; Storey 2016; Doretto et al. 2018), whereas Diptera may be more 

drought-tolerant (King et al. 2016). This may have had an overriding impact on 

macroinvertebrate communities and subsequent leaf litter degradation.  

Mesocosm channels may have also experienced different shading regimes 

due to surrounding vegetation growth, which could have influenced water 

temperature and dissolved oxygen availability. In ectothermic organisms, metabolic 

turnover increases with temperature (Hochachka and Somero 2002; Brown et al. 

2004; Rezende and Bozinovic 2019) and dissolved oxygen availability (Winter et al. 

1996; Lowell and Culp 1999; Connolly et al. 2004). This results in elevated feeding 

and ventilation rates and greater sensitivity to microplastics (e.g., Jaikumar et al. 

2018; Chang et al. 2022; Na et al. 2023; Sanpradit et al. 2024). The could have been 

controlled for by maintaining the area around mesocosms. However, environmental 

variables occurring at wider scales, e.g., rain evets and heat waves, change for all 

mesocosms simultaneously, and simulating complex ecological interactions and 
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processes that occur in natural environments provides a more realistic setting and 

result than laboratory experiments. 

 

6.6 Conclusion 

This study provides novel evidence to suggest negligible adherence of 

environmentally relevant pulse-injections of microplastic to leaf litter in lotic 

freshwater ecosystems, leading to no effect on macroinvertebrate populations and 

decomposition of leaf litter. Moreover, pH mediated changes in benthic invertebrate 

abundance and community composition may not always alter leaf litter breakdown 

when multiple stressors are at play. This does not support reduction in efforts to 

reduce environmental microplastic, as the complexity of microplastic particle shape, 

size, density, and sorbed chemicals was not captured in this study and requires 

further investigation, whilst environmental concentrations of microplastic are likely to 

increase. A priority for future research is to determine the individual and population 

level effects of microplastic at environmentally relevant concentration, to understand 

potential ecosystem function impairment relative to or in addition to other 

contaminants and stressors. 
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Chapter 7: General Conclusion 

7.1 Overview 

 This thesis aimed to improve understanding of the sources, fate, and 

emergent ecological effects of microplastic pollution in freshwater ecosystems, and 

to review practical methods for extracting, characterising, and quantifying 

microplastics from freshwater media. In testing two overarching hypotheses about 

biological exposure and methodological influences on their assessment, the work 

aimed for an unusual and unique perspective on pattern and process at a wide range 

of scales to improve risk assessments for freshwater ecosystems generally. Using a 

combination of empirical and literature-based assessments, this thesis highlights the 

challenges of researching such a diverse class of pollutants under the dynamic 

conditions in freshwater ecosystems. The work also underscores ongoing difficulties 

in extracting microplastics from complex environmental media and accurately 

estimating environmental loads and relevant impacts. Whilst the findings highlight 

the extent of microplastic pollution in freshwaters around the globe, analysis 

suggests that apparent global patterns do not appear to represent universal patterns. 

Instead, identified patchiness at all addressed spatial scales highlights the need for 

continued research into microplastic sources, distribution patterns, behaviour in 

relation to hydrological dynamism, and interactions with individual organisms, 

communities, and ecological functions. For example, limited biological effects after 

short-term point-source spills of microplastic appear to reveal that adverse effects 

are not inevitable, while other stressors could potentially be more important. 

 This final chapter summarises the main findings within each chapter of the 

thesis and synthesises interconnections between them to come to an overall view of 

what has been achieved, what more is needed, and what practical applications might 

arise. Caveats and assumptions that affect the interpretation of thesis results are 

also discussed. 

 

7.2 Main findings 

 In Chapter 2, despite the identified patchy spatial distribution in freshwater 

microplastic quantification around the globe and skew towards the global north, the 
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data reviewed found greater microplastic loads in all environmental matrices 

associated with urban areas as well as in less developed countries. This trend was 

greatly influenced by human population density, suggesting that plastic usage and 

waste disposal are substantial sources of environmental microplastic pollution. 

However, this pattern does not always hold true due to the influence that other 

microplastic sources and hydrodynamics play on site-specific plastic fluxes, fate, or 

distribution. Chapter analysis revealed contrasting phenomena associated with 

changes in water flow over both space and time, across their hierarchy of scales and 

axes. High flows are either reported to increase or decrease microplastic transport 

and concentration in different freshwater compartments, due to mechanisms 

including resuspension, sedimentation, dispersal, and dilution. This further 

complicates patterns associated with hydrological events, with evidence of 

microplastic loads changing within hours after flooding and high rainfall events. 

Multiple putative explanations for these differences provided in this chapter, highlight 

how microplastic transport is unique in each freshwater system, emphasising the 

need for site-specific research to bolster local risk assessment and regulation. 

 Another key outcome of this meta-analysis was identification of the research 

gap in microplastic contamination of freshwater biota, especially lower trophic level 

communities that support freshwater food webs. Reviewed microplastic loads in 

organisms generally followed seasonal trends seen in surface water and sediment, 

yet risk assessment for individuals, populations, and communities is cofounded by a 

myriad of biotic factors that influence microplastic uptake. This limits our 

understanding of effects of microplastic on individuals, food-web transfer, community 

interactions, and potential effects on ecosystem processes, especially as most effect 

studies have been performed on single species with environmentally irrelevant 

microplastic concentrations. 

 The global variation in reported freshwater microplastic concentrations, 

ranging over 11, 6, and 3 orders of magnitude in surface waters, organisms, and 

sediment respectively, and inconsistent evidence for spatio-temporal trends identified 

in Chapter 2, adds to widely reported concerns about the standardisation of methods 

and reporting units in microplastic research. Chapter 3 identified three microplastic 

extraction techniques used for freshwater media: volume-reduction, bulk, and 

selective sampling. Volume-reduction sampling of surface water, the most commonly 
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sampled freshwater media, was cofounded by complex interactions between an 

observed array of net dimensions and apertures, and site- and time-specific water 

quality and flow velocity. Analysis revealed this may lead to under- or over-estimation 

of environmental microplastic loads and limits comparison both within and between 

studies. Bulk-sampling was therefore recommended, as subsequent microplastic 

extraction techniques are easier to standardise when performed ex-situ. 

 Chapter 3 also synthesised the four techniques of microplastic extraction from 

sampled freshwater media - sieving, density separation, digestion, and filtration - 

each varying in the way they are implemented. This gave rise to recommendations 

aiming at harmonising future microplastic research. For example, fine-mesh and 

multiple stacked sieves were most commonly used for sieving media, but aperture 

needs to be standardised to enable comparison between studies. Density separation 

was important in microplastic extraction from sediment, with solutions greater than 

1.4 g/cm3 ideally needed to extract all particle types. Chemical digestion was used to 

remove organic matter, with hydrogen peroxide being most popular. Finally, filtration 

of subsequent residues was most commonly performed with glass fibre filters to 

avoid polymer contamination and interactions with chemicals, with 0.45 μm 

concluded as the recommended pore size. 

 Synthesis also led to production of standardised contamination control 

measures, and criteria for microplastic and particle shape classification. This 

followed identification of the profusion of unique terms used to describe particle 

characteristics, polymer types, and concentration reporting units. Particles per unit 

volume was established as the most appropriate reporting unit for standardisation as 

(i) environmental media are 3D, (ii) volume is a consistent measure, (iii) it removes 

factors influencing sediment mass, such as water content, and (iv) it accounts for the 

effect of sediment grain size on microplastic retention. Due to recognised human 

error during visual identification and difficulty in standardising methods when working 

with different media, polymer analysis of particles and recovery tests were 

recommended as standard practice, despite their limited use in reviewed studies. 

The effects of identified variations in sampling, processing, quantifying, and 

characterising microplastics in freshwater, raise questions about: (i) the 

representativeness of studies carried out so far; and (ii) the limitations in spatio-

temporal trends identified by meta-analysis in this thesis and elsewhere. 
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 Chapter 4 built on this observed inconsistency in freshwater microplastic 

distribution and need to investigate microplastic in freshwater sediment and biota. To 

this point, systematic evaluation of microplastic pollution in sediment and aquatic 

invertebrates across entire river catchments were extremely scarce, and the River 

Taff offered an important model river with both rural and urban land-use. Microplastic 

contamination of sediment was widespread across the River Taff catchment, 

indicative of its role as a microplastic sink, but no trends were observed with land-

use nor river flow velocity. The observed patchy distribution suggests diversity in 

microplastic sources within this catchment, which do not accumulate into longitudinal 

trends at the catchment-scale. This may relate to complex suspension and 

deposition cycles of microplastic within fluvial systems, influenced by site-specific 

hydrodynamics and particle characteristics. Results, therefore, underscore the 

multifaceted nature of microplastic pollution and need for individual risk assessments 

of unique freshwater systems. Microplastic concentrations in River Taff sediment 

were comparable to those in other freshwater systems within UK, but were lower 

than the amounts obtained using cylinder resuspension technique, highlighting 

methodological variations discussed in Chapter 3. With transparent fibres and 

synthetic cellulose dominating extracted particles, textiles in wastewater were 

predicted to be the major microplastic source in the River Taff catchment. 

Microplastic uptake by aquatic invertebrates in River Taff was limited to 5% of 

individuals, constraining investigation into potential links to feeding guild or individual 

biomass. Analysis suggests substantial variation in contamination of Welsh 

freshwater invertebrates between this study and historic estimates, may be attributed 

to methodological differences including more accurate identification of false positives 

in this work, site selection, or differences in hydrological conditions between 

sampling events. Synthesis reveals little association between microplastic in River 

Taff sediment and invertebrates, indicating sampled families are not reliable 

bioindicators of microplastic in this freshwater system. 

 Turning to the gaps in investigating different freshwater media identified in 

Chapter 2 and methodological issues highlighted in Chapter 3, Chapter 5 

investigated potential protocols for extracting microplastics from leaf litter 

decomposing in freshwater. To address the challenge of removing fixing agents from 

field samples prior to the addition of processing reagents, evaporation tests were 
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apparently non-viable. Sieving was therefore recommended for reagent removal, as 

used in Chapter 4. The aim to quantitatively verify and validate extraction methods 

by assessing recovery rate of fluorescent microfibres could not be fulfilled, as only 

non-fluorescent microfibres were recovered. This suggests that previous studies 

focussing only on fluorescent microplastic recovery may underestimate recovery 

rates, underrating estimated pollution severity. Despite the lack of recovery rate 

quantification, recovery of non-fluorescent microfibres was visibly reduced with the 

additional digestion step, suggesting density separation alone was the optimal 

method for extracting microplastics from leaf litter. 

 Chapters 2 and 4 revealed widespread distributions of microplastic in 

freshwater river catchments. However, identified patchy uptake by aquatic 

invertebrates underscores the challenges in assessing microplastic sources across 

broad spatial scales. Lack of environmental realism in microplastic effect studies is, 

therefore, a concern in ecotoxicology and impairs risk assessment across all levels 

of biological organisation. Chapter 4 also showed differences in microplastic 

presence, concentration, and characteristics between benthic invertebrates and 

surrounding sediment across the River Taff catchment, suggesting the families 

studied ingest microplastic from alternative habitats. Utilising methods developed in 

Chapter 5, Chapter 6 investigated immobilisation of point source microplastics in leaf 

litter submerged in streams and potential effects on aquatic invertebrates at various 

levels of biological organisation, across contrasting pH. Negligible recovery of pulse-

injected PA microfibres from mesocosms falsifies adherence to leaf litter, with 

subsequent limited ingestion by macroinvertebrates suggesting particle mobilisation 

in streams. This may be explained by potential rapid loss of microplastic in flow 

water and lack of suspension of microfibres, preventing microplastic exposure. 

Microplastic, therefore, did not induce changes at the population (invertebrate 

density), community (diversity, abundance of different feeding guilds), nor ecosystem 

levels (leaf litter decomposition). pH had a greater influence on community 

composition compared to microfibre addition, highlighting a need to include multiple 

stressors in microplastic research. Greater densities of leaf-dwelling invertebrates 

resulted in faster leaf breakdown, but pH only affected benthic community density 

and thus, decomposition rate did not vary with pH. Best-fitting statistical models 
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poorly explained variance in data, suggesting that other stressors varying across 

mesocosms influenced measured response variables. 

 

7.3 Research design and potential caveats 

 As with all ecological studies, the findings and outcomes of this thesis are 

affected by caveats and assumptions that were outlined in individual chapters. Here, 

however, broader caveats are acknowledged. Firstly, meta-analysis conducted at the 

start of this thesis reviewed articles published prior to September 2022. This cannot 

be an exhaustive list given the current rates of publication. Over 200 new studies 

have since been published that would fit into the selection criteria. Chapters 2 and 3, 

therefore, are viewed as a sample of the state of knowledge on freshwater 

microplastic pollution at the timepoint prior to subsequent primary data chapters, 

providing context and reasoning for the thesis. There is no reason to believe the 

sample to be unrepresentative, but developments are very likely to have moved the 

field on since the review. 

 Secondly, the field-based nature of work reported in the thesis means that 

findings are influenced by spatial and temporal variations across a hierarchy of 

scales, characteristic of dynamic freshwater systems. These include variations in 

hydrodynamics, habitat structure, biotic communities, as well as microplastic sources 

within and between freshwater systems and across seasons. This limits comparison 

between studies and makes it difficult to pinpoint influential variables. The diversity of 

sample sites and their land uses within the River Taff catchment allows for 

comparison among locations, whilst using biological sampling ensures some 

integration of temporal variation. Studying microplastic effects in stream mesocosms 

created environmental realism, adding ecological value, whilst replication accounted 

for uncontrollable environmental differences. Similar dynamism comes from 

microplastic particles themselves. These physical pollutants range in shape, size, 

polymer type, and chemical additives, resulting in fluxes, fates, and effects that 

interact with environmental variation. Moreover, non-plastic particles – such as the 

cellulose that was detected widely in the Taff system - may still pose similar physical, 

chemical, and biological threats to ecosystems as plastic particles and thus, should 

be evaluated in future ecotoxicology studies. Using a singular particle type to test 
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microplastic effect does not represent the complexity of microplastic pollution in the 

environment, but provides consistency and control in thesis work. 

 

7.4 Regulatory and policy implications 

 The findings presented in this thesis lead to several important considerations 

for regulatory organisations and policymakers. Firstly, the acknowledged 

environmental dynamism and variation in methodological techniques pose 

substantial challenges for monitoring microplastic pollution. Effective monitoring 

programs must account for spatial and temporal scales to accurately assess trends. 

Additionally, the lack of standardised protocols for microplastic sampling and 

analysis complicates data comparison across different studies and regions. It is, 

therefore, essential to evaluate and account for methodological differences when 

estimating environmental loads. 

Secondly, despite the low environmental concentrations of microplastics 

observed in a Welsh riverine catchment and unidentified ecological effect of point 

pollution sources, policymakers should not dismiss the potential threat of 

microplastics. Continued monitoring and research are vital to fully understand the 

long-term impacts of microplastics on freshwater ecosystems, particularly given the 

potential for microplastics to affect a wider range of biota. Proactive measures 

should be taken to mitigate microplastic pollution, considering its persistence in the 

environment and potential to bioaccumulate in organisms, posing significant risks 

over time. 

Integrating microplastic into existing environmental policies will require 

adaptive management strategies capable of responding to new information and 

emerging threats. Policymakers should also consider the cumulative effects of 

microplastics in conjunction with other pollutants and environmental stressors, 

ensuring a holistic approach to environmental protection and sustainable 

management of water resources.  
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7.5 Future directions 

Each chapter of this thesis leverages its findings to highlight specific research 

needs. The following section outlines the overarching future research directions 

necessitated by this thesis. Within thesis findings, the distribution of microplastic was 

relatively widespread but patchy and weakly related to potential sources. It therefore 

remains unclear whether microplastic occurrence are linked to current environmental 

contamination or long-term accumulation and remobilisation from sediment sinks and 

other stores within the catchment. Given the complex interplay between dynamic 

microplastic sources and environmental variation (Windsor et al. 2019a), it is 

essential to understand the entire material lifecycle and develop site-specific 

exposure assessments to manage microplastics across catchments. Further focus 

should be on analysing diffuse sources of microplastics. Recent work on sustainable 

drainage systems (SuDS) indicates how achievable town planning can mitigate 

surface run-off (Rasmussen et al. 2024), yet atmospheric fallout remains poorly 

understood. 

Overall, there is a need to focus on the effect of microplastic on freshwaters. 

Current research often elicits effects on using single species with limited and pristine 

microplastic particle types at extreme microplastic concentrations that are not 

representative of real-world scenarios (Thornton Hampton et al. 2022b). This 

approach can be problematic, as it may not accurately reflect the actual risks posed 

by microplastic in natural environments, which may lead to misguided risk 

assessments and ineffective policy decisions. Further research is, therefore, required 

to understand the implications of observed individual-level biological effects on 

populations and ecosystem function, as interactions among individuals and 

populations may alter food webs and ecological function (e.g., Borges et al. 2024). 

Ecosystem-scale investigations and effect assessments will, therefore, facilitate risk 

assessment and identify areas for mitigation. 

Lastly, investigating the interactions between microplastic and other pollutants 

and environmental stressors is vital in determining net ecological effects and 

prioritising research and mitigation efforts (Nguyen et al. 2023). The impact of 

microplastic in relation to other stressors is poorly understood, whilst the occurrence 

of microplastic could alter ecotoxicity of chemical pollutants. A holistic approach is 

crucial for developing comprehensive regulations that efficiently address the 
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multifaceted nature of environmental contamination and ecotoxicology. Ongoing 

research should focus on building data on temporal trends to monitor sources, 

evaluate regulations and mitigation policies, and increase public awareness to 

reduce plastic waste. 

Success of these future directions in microplastic research is somewhat 

determined by the optimisation of methods to sample and extract microplastic from 

the environment. This thesis addresses calls to standardise microplastic research 

(Horton et al. 2017b; Akdogan and Guven 2019) by formulating classification and 

quantification criteria with respect to composition, morphology, and reporting units. 

However, due to the inherent variation with and across environmental matrices, 

harmonisation of sampling methods and microplastic extraction is a more realistic 

goal for future research (Lusher and Primpke 2023). These protocols must be 

adaptable and consider local conditions and specific research requirements (Bakir  

et al. 2024). This requires continued large-scale collaboration between microplastic 

researchers to: (i) develop a global agreement on plastic pollution (UNEA-5.2 

Resolution); (ii) implement established guidelines (e.g., GESAMP 2019); (iii) follow 

regulators (e.g., Marine Strategy Framework Directive); (iv) develop sharable 

national facilities (e.g., Commonwealth Litter Programme); and (v) transfer 

knowledge. This will optimise protocols and improve research reliability. 

Addressing these knowledge gaps will enhance assessments of microplastic 

distribution and the severity of associated ecological risks, leading to a better 

understanding of microplastics as agents of global biological change. This will 

support the 6th and 14th Sustainable Development Goals (SDG) that respectively aim 

to improve freshwater and marine water quality by reducing pollution, including 

microplastic (indicator 14.1.1). Additionally, this work aligns with SDG 12, which 

addresses sustainable consumption and production patterns. 

 

7.6 Thesis conclusion 

 Microplastic is distributed widely across freshwater ecosystems around the 

globe, with concentrations increasing over time and in proximity to urban sources. 

While methodological inconsistencies and caveats pose challenges to research 

synthesis, they are inherent when dealing with such a diverse and complex physical 
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pollutant. Data from this thesis indicate limited microplastic loads in a Welsh riverine 

catchment, yet underscore the persistent exposure within freshwater ecosystems. 

Although negligible effects of point source injections were observed in 

environmentally relevant flowing water, the potential threat of microplastics cannot be 

ignored. Continued research is essential to investigate the diverse types of 

microplastics, their impact on downstream habitats and sinks, and their long-term 

accumulation in the environment. Plastic is essential to the function and health of 

modern society, with a lower carbon footprint than other synthetic materials and thus, 

should not be demonised. Yet comprehensive and adaptive management strategies 

are necessary to address the multifaceted nature of microplastic pollution and its 

potential ecological consequences, with the ultimate goal of eliminating non-natural 

materials to restore natural environments. 
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Supplementary material 

Appendix A 

Table A1 List of 300 freshwater microplastic articles used for meta-analysis (Chapter 2 and Chapter 3), grouped by the continent in 

which data was collected. 

 

Continent Freshwater microplastic studies 

Asia Free et al. 2014; Zhang et al. 2015; Su et al. 2016; Zhang et al. 2016; Jabeen et al. 2017; Sruthy and Ramasamy 

2017; Wang et al. 2017a; Wang et al. 2017b; Zhang et al. 2017; Di and Wang 2018; Hu et al. 2018; Jiang et al. 

2018; Lahens et al. 2018; Lin et al. 2018; Peng et al. 2018; Su et al. 2018; Wang et al. 2018a; Wen et al. 2018; 

Xiong et al. 2018; Alam et al. 2019; Cheung et al. 2019; Di et al. 2019; Ding et al. 2019; Eo et al. 2019; Fan et al. 

2019; Jiang et al. 2019; Kataoka et al. 2019; Li et al. 2019; Liu et al. 2019b; Luo et al. 2019; Mai et al. 2019; Tan et 

al. 2019; Wang et al. 2019; Xiong et al. 2019; Yan et al. 2019; Yin et al. 2019; Yuan et al. 2019; Zheng et al. 2019; 

Deng et al. 2020; Chen et al. 2020a; Gopinath et al. 2020; Han et al. 2020; Hu et al. 2020; Hwi et al. 2020; Irfan et al. 

2020a; Irfan et al. 2020b; Lestari et al. 2020; Liu et al. 2020; Mao et al. 2020a; Mao et al. 2020b; Pan et al. 2020; 

Pariatamby et al. 2020; Park et al. 2020a; Park et al. 2020b; Pico et al. 2020; Tien et al. 2020; Wang et al. 2020a; 

Wang et al. 2020b; Wong et al. 2020; Wu et al. 2020; Xia et al. 2020; Zhang et al. 2020a; Zhang et al. 2020b; Abbasi 

2021; Ajay et al. 2021; Bharath et al. 2021; Chanpiwat and Damrongsiri 2021; Chauhan et al. 2021; Chen et al. 

2021; Kabir et al. 2021; Fan et al. 2021; Feng et al. 2021a; Feng et al. 2021b; Frank et al. 2021; Haberstroh et al. 

2021b; He et al. 2021b; Huang et al. 2021a; Huang et al. 2021b; Li et al. 2021a; Li et al. 2021b; Lin et al. 2021; Liu et 

al. 2021; Mai et al. 2021; Napper et al. 2021; Niu et al. 2021; Parvin et al. 2021; Shen et al. 2021; Singh et al. 2021; 
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Tang et al. 2021; Tsering et al. 2021; Wang et al. 2021b; Wang et al. 2021d; Wicaksono et al. 2021; Xu et al. 2021; 

Yan et al. 2021; Yin et al. 2021; Zhang et al. 2021a; Zhang et al. 2021b; Aslam et al. 2022; Bashir and Hashmi 2022; 

Bian et al. 2022; Dai et al. 2022; Deng et al. 2022; Ghanbari et al. 2022; Jin et al. 2022; Kabir et al. 2022; Kılıҫ; Li et 

al. 2022a; Li et al. 2022b; Liu et al. 2022b; Ma et al. 2022; Masoudi et al. 2022; Neelavannan et al. 2022; Park et al. 

2022; Rakib et al. 2022; Tang et al. 2022; Tran-Nguyen et al. 2022; Warrier et al. 2022; Wu et al. 2022a; Wu et al. 

2022b; Xu et al. 2022a; Xu et al. 2022b; Yan et al. 2022; Yin et al. 2022; Yu et al. 2022; Yuan et al. 2022; Zhang et 

al. 2022 

Europe Faure et al. 2012; Imhof et al. 2013; Lechner et al. 2014; Sanchez et al. 2014; Wagner et al. 2014; Dris et al. 2015; 

Faure et al. 2015; Klein et al. 2015; Mani et al. 2015; Stolte et al. 2015; Troyer 2015; Van der Wal et al. 2015; 

Fischer et al. 2016; Imhof et al. 2016; Horton et al. 2017; Hurley et al. 2017; Leslie et al. 2017; McGoran et al. 2017; 

Vaughan et al. 2017; Collard et al. 2018; Dris et al. 2018b; Horton et al. 2018; Hurley et al. 2018b; Kay et al. 2018; 

Lusher et al. 2018; Rodrigues et al. 2018b; Schmidt et al. 2018; Sighicelli et al. 2018; Tibbetts et al. 2018; Akindele 

et al. 2019; Blair et al. 2019; Bordós et al. 2019; Frei et al. 2019; Liu et al. 2019a; Mani et al. 2019a; Olesen et al. 

2019; Roch et al. 2019; Scopetani et al. 2019; Simon-Sánchez et al. 2019; Slootmaekers et al. 2019; Turner et al. 

2019; Windsor et al. 2019b; Bosshart et al. 2020; Campanale et al. 2020; Constant et al. 2020; Erdoğan 2020; 

Kaliszewicz et al. 2020; Karaoğlu and Gül 2020; Kuśmierek and Popiołek 2020; Mani and Burkhardt-Holm 2020; 

Mintenig et al. 2020; Negrete Velasco et al. 2020; O’Connor et al. 2020; Scherer et al. 2020; Stanton et al. 2020; 

Uurasjärvi et al. 2020; Winkler et al. 2020; Zobkov et al. 2020; de Carvalho et al. 2021; Clayer et al. 2021; Garcia et 

al. 2021; Guven 2021; Laermanns et al. 2021; Munari et al. 2021; Pan et al. 2021; Pastorino et al. 2021; Prata et al. 

2021; Sekudewicz et al. 2021; Stanković et al. 2021; Tanentzap et al. 2021; Woodward et al. 2021; Almas et al. 

2022; Atamanalp et al. 2022; Atici 2022; Atici et al. 2022; Bertoli et al. 2022; Cera et al. 2022a; Cera et al. 2022b; 
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Eibes and Gabel 2022; Fiore et al. 2022; Kallenbach et al. 2022; Murphy et al. 2022; O’Connor et al. 2022; Parker et 

al. 2022a; Pittura et al. 2022; Pol et al. 2022; Winkler et al. 2022; Zhdanov et al. 2022 

North 

America 

Moore et al. 2011; Eriksen et al. 2013; Castañeda et al. 2014; McCormick et al. 2014; Yonkos et al. 2014; Corcoran 

et al. 2015; Phillips and Bonner 2015; Baldwin et al. 2016; Ballent et al. 2016; Estahbanati and Fahrenfeld 2016; 

Holland et al. 2016; Mason et al. 2016; McCormick et al. 2016; Peters and Bratton 2016; Anderson et al. 2017; 

Cable et al. 2017; Campbell et al. 2017; Hoellein et al. 2017; Lasee et al. 2017; Miller et al. 2017; Vermaire et al. 

2017; Barrows et al. 2018; Dean et al. 2018; Hendrickson et al. 2018; Kapp and Yeatman 2018; McNeish et al. 2018; 

Forrest et al. 2019; Lenaker et al. 2019; Peller et al. 2019; Ryan et al. 2019; Shruti et al. 2019; Watkins et al. 2019a; 

Watkins et al. 2019b; Corcoran et al. 2020; Crew et al. 2020; Dias 2020; Grbić et al. 2020; Mason et al. 2020; Scircle 

et al. 2020; Simmerman and Wasik 2020; Wardlaw and Prosser 2020; Bujaczek et al. 2021; Eppehimer et al. 2021; 

Felismino et al. 2021; Haberstroh et al. 2021a; Hou et al. 2021; Lenaker et al. 2021; Martinez-Tavera et al. 2021; 

Munno et al. 2021; Wardlaw 2021; Belontz et al. 2022; Rowenczyk et al. 2022; Talbot et al. 2022b; Xiong et al. 2022 

Africa Biginagwa et al. 2016; Nel et al. 2018; Reynolds and Ryan 2018; Akindele et al. 2019; Toumi et al. 2019; Weideman 

et al. 2019; Dahms et al. 2020; Egessa et al. 2020; Khan et al. 2020; Mbedzi et al. 2020; Merga et al. 2020; Migwi et 

al. 2020; Oni et al. 2020; Blankson et al. 2022; Dahms et al. 2022; Ditlhakanyane et al. 2022; Malla-Pradhan et al. 

2022 

South 

America 

Silva-Cavalcanti et al. 2017; Andrade et al. 2019; Blettler et al. 2019; Alfonso et al. 2020; Garcia et al. 2020; Gerolin 

et al. 2020; Martínez Silva and Nanny 2020; Bertoldi et al. 2021; Lucas-Solis et al. 2021; Pastorino et al. 2021; 

Correa-Araneda et al. 2022 

Oceania Dikareva and Simon 2019; Townsend et al. 2019; He et al. 2020; Nan et al. 2020 
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Table A2 Reporting units of microplastic concentration in 300 freshwater microplastic articles used for meta-analysis (Chapter 2 

and Chapter 3), grouped by sample matrix. dw = dry weight, ww = wet weight, GI tract = gastrointestinal tract, excluded = data 

points were excluded from microplastic concentration summaries. 

 

Sample matrix Original reporting units Standardised 
reporting units 

Water particles/m3, particles/1,000 m3, microfibres/m3, fibres/m3, fragments/m3, particles/dm3, 

particles/ml, particles/10 ml, particles/L, fibres/L, microfibres/L, particles/m2, 

particles/km2, fibres/km2 

particles/m3 

 ug/m3, g/m3, mg/m3, mg/1000 m3, mg fibres/m3, mg fragments/m3, mg/1000 m3, ug/L, 

mg/L, ug/m2, mg/km2, g/km2 

mg/m3 

 particles/m3/min, particles/15-minute trawl Excluded 

Sediment particles/kg particles/kg 

 particles/g dw, particles/10 g dw, particles/42.235 g dw, particles/103.241 g dw, 

particles/kg dw, microfibres/kg dw 

particles/kg dw 

 particles/g ww, particles/kg ww, fibres/kg ww particles/kg ww 

 particles/m3, particles/L particles/m3 

 particles/m2, microbeads/m2 particles/km2 

 particles/m2/year particles/m2/year 

 mg/kg mg/kg 

 ug/g dw, mg/kg dw mg/kg dw 
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Organism particles/individual, particles/5 individuals, particles/10 individuals, fibres/individual, 

particles/organism, particles/individual gill, particles/individual GI tract, 

particles/individual GI tract & gill combined, particles/gizzard, particles/individual 

stomach contents 

particles/individual 

 particles/spraint particles/spraint 

 particles/mg, particles/g, particles/kg, particles/g body weight, particles/g GIT content particles/g 

 particles/mg dw, particles/g dw, particles/kg dw particles/g dw 

 particles/mg ww, particles/g ww, particles/kg ww GIT, particles/kg ww gill particles/g ww 

 ug/individual, mg/individual mg/individual 

 ug/g dw, mg/kg dw mg/g dw 

 ug/g ww, mg/kg ww mg/g ww 
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Table A3 Best normalised transformations of secondary social data from United 

Nation’s 2021 International Statistical Yearbook (Department of Economic and Social 

Affairs, Statistics Division 2021), used in meta-analysis (Chapter 2). 

 

Independent variable Transformation Shapiro-Wilk p-value 

Population density per km2, 2021 Box-Cox 0.464 

GDP per capita (US$), 2019 Box-Cox 0.065 

Tourist arrivals, 2018 Box-Cox 0.853 

Agriculture production index, 2019 Ordered Quantile 1.000 

Proportion of population with access 

to safe water supply, 2020 

Ordered Quantile 0.920 

*p-values < 0.05 indicate the distribution of data does not significantly deviate from 

normality (*) 
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Table A4 Average microplastic concentration in the water matrix (particles/m3 ± SD) 

of freshwater ecosystems reviewed in meta-analysis (Chapter 2). n = study count. 

Data are grouped by continent and country and ordered by continent averaged 

concentration. Averages include original microplastic concentrations in particles/km2 

converted to particles/m3 using 1 item/km2 = 10-6 particles/m3 (Chen et al. 2020a). 

Excludes samples recorded in the following units: particles, particles/15-minute trawl, 

particles/m3/minute (three studies). 

 

Continent n Microplastic 
concentration (n) 

Country n Microplastic 
concentration (n) 

Asia 79 99,815 ± 487,851 

(137) 

China 

Japan 

India 

Saudi Arabia 

Vietnam 

Indonesia 

Pakistan 

Thailand 

Malaysia 

South Korea 

Iran 

Russia 

Cambodia 

Mongolia 

53 

2 

5 

1 

1 

3 

2 

1 

3 

3 

1 

2 

1 

1 

142,524 ± 594,067 (91) 

129,436 ± 96,877 (5) 

4,573 ± 8,373 (6) 

3,200 (1) 

1,482 (1) 

1,466 ± 2,922 (4) 

1,389 ± 655 (3) 

1,108 ± 476 (4) 

919 ± 1,942 (5) 

675 ± 860 (9) 

300 (1) 

32 ± 28 (3) 

5 ± 4 (2) 

0.02 (1) 

North 

America 

30 7,249 ± 18,146 

(95) 

USA 

Canada 

19 

9 

9,435 ± 20,489 (71) 

973 ± 3,512 (19) 
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Continent n Microplastic 
concentration (n) 

Country n Microplastic 
concentration (n) 

Europe 38 4,396 ± 29,696 

(153) 

Portugal 

Denmark 

Netherlands 

Germany 

Poland 

Turkey 

Switzerland 

UK 

Finland 

France 

Hungary 

Italy 

Spain 

Romania 

Norway 

Sweden 

Croatia 

Austria 

Slovenia 

1 

3 

3 

5 

3 

3 

3 

2 

2 

5 

1 

9 

1 

1 

1 

2 

1 

2 

1 

231,000 (1) 

90,470 ± 155,479 (3) 

20,304 ± 44,553 (5) 

5,414 ± 8,424 (5) 

5,223 ± 5,270 (5) 

2,244 ± 3,687 (3) 

578 ± 1,146 (9) 

463 ± 825 (4) 

57 ± 97 (3) 

31 ± 25 (19) 

14 (1) 

4 ± 8 (21) 

3.5 (1) 

1 (1) 

0.79 ± 0.65 (9) 

0.50 ± 0.80 (36) 

0.47 ± 0.59 (3) 

0.31 ± 0.36 (9) 

0.28 (1) 

Africa 6 516 ± 861 (13) Nepal 

Ghana 

South Africa 

1 

1 

2 

2,235 ± 1,025 (2) 

490 ± 481 (2) 

251 ± 273 (5) 
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Continent n Microplastic 
concentration (n) 

Country n Microplastic 
concentration (n) 

   Kenya 

Uganda 

1 

1 

2 ± 2 (2) 

0.43 ± 0.43 (2) 

Oceania 2 266 ± 179 (3) Australia 

New Zealand 

1 

1 

363 ± 89 (2) 

72 (1) 

South 

America 

3 85 ± 70 (5) Columbia 

Chile 

Argentina 

1 

1 

1 

134 ± 27 (1) 

22 (1) 

0.90 (1) 
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Table A5 Average microplastic concentration in the sediment (particles/kg ± SD) of 

freshwater ecosystems reviewed in meta-analysis (Chapter 2). n = study count. Data 

are grouped by continent and country and ordered by continent averaged 

concentration. Averages include original microplastic concentrations in dry and wet 

sediment. Excludes samples recorded in the following units: particles, particles/m3, 

particles/km2, particles/m2/year (172 studies). 

Continent n Microplastic 
concentration (n) 

Country n Microplastic 
concentration (n) 

Europe 23 114,483 ± 560,596 

(38) 

Denmark 

Russia 

Netherlands 

Finland 

UK 

Germany 

Turkey 

Norway 

Ireland 

Italy 

Hungary 

Switzerland 

2 

1 

1 

1 

7 

2 

1 

1 

1 

4 

1 

1 

275,000 ± 671,732 (2)  

2,189 (1) 

2,071 (1) 

396 (1) 

374 ± 7,158 (17) 

359 ± 1,933,564 (3)  

226 (1) 

200 (1) 

172 (1) 

39 ± 89 (6) 

1 (1) 

0 ± 31 (3) 

Asia 41 1,740 ± 3,594 (56) Vietnam 

Pakistan 

Bangladesh 

South Korea 

Japan 

Indonesia 

1 

1 

1 

2 

1 

1 

6,120 (1) 

1,318 ± 1,899 (2) 

1,177 (1) 

657 ± 899 (3) 

167 (1) 

30 (1) 
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Continent n Microplastic 
concentration (n) 

Country n Microplastic 
concentration (n) 

   India 

Iran 

China 

6 

1 

27 

4 ± 751 (7) 

4 (1) 

2 ± 4,143 (39) 

North 

America 

10 1,485 ± 4,284 (26) Mexico 

Canada 

USA 

1 

5 

3 

20 ± 65 (4) 

10 ± 333 (9) 

5 ± 6,168 (12) 

South 

America 

2 487 ± 842 (4) Ecuador 

Colombia 

1 

1 

1,748 (1) 

15 ± 43 (3) 

Africa 4 192 ± 164 (6) Ghana 

South Africa 

1 

3 

188 ± 18 (2) 

2 ± 81 (4) 
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Figure A1 Correlation coefficients between independent variables in the statistical 

model assessing the effect of social factors on country-averaged freshwater 

microplastic concentration from meta-analysis (Chapter 2). 
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Supplementary Information A1 Reference articles used to create microplastic 

shape classification criteria (Chapter 2). 

 

Castañeda et al. 2014; Free et al. 2014; Wagner et al. 2014; Dris et al. 2015; Phillips 

and Bonner 2015; McCormick et al. 2016; Su et al. 2016; Anderson et al. 2017; 

Cable et al. 2017; Jabeen et al. 2017; McGoran et al. 2017; Sruthy and Ramasamy 

2017; Vaughan et al. 2017; Di and Wang 2018; Hendrickson et al. 2018; Jiang et al. 

2018; Pivokonsky et al. 2018; Rodrigues et al. 2018a; Su et al. 2018; Wen et al. 

2018; Akindele et al. 2019; Andrade et al. 2019; Ding et al. 2019; Townsend et al. 

2019; Watkins et al. 2019b; Watkins et al. 2019a; Yin et al. 2019; Campanale et al. 

2020; Constant et al. 2020; Egessa et al. 2020; Hwi et al. 2020; Mani and Burkhardt-

Holm 2020; Mao et al. 2020a; Mao et al. 2020b; Martínez Silva and Nanny 2020; 

Pariatamby et al. 2020; Scircle et al. 2020; Wang et al. 2020a; Wang et al. 2020b; 

Wardlaw and Prosser 2020; Zobkov et al. 2020; Bertoldi et al. 2021; Bujaczek et al. 

2021; Felismino et al. 2021; Garcia et al. 2021; Huang et al. 2021a; Lin et al. 2021; 

Parvin et al. 2021 
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Table A6 Standardised polymer name and acronym from articles reviewed in meta-

analysis, in alphabetical order. 

 

Polymer name Polymer acronym 

Acrylonitrile butadiene styrene ABS 

Acrylonitrile butadiene ACNB 

Aramid / Aromatic Polyamide AD 

Acrylonitrile AN 

Acrylates / Polyurethanes / Varnish cluster APV 

Alkyd resin / Alkyd varnish AR 

Butadiene rubber BR 

Cellulose acetate CA 

Cellophane CP 

Chlorinated polyethylene CPE 

Cellulose propionate CPRO 

Cellulose triacetate CTA 

Didecyl phthalate plasticizer resin DIDP 

Ethylene/ethylene/ethyl acrylate copolymer EEA 

Ethylene glycol stearate EG-S 

Epoxide / Epoxy Resin EP 

Ethylene propylene diene rubber / Polypropylene-vistalon / 

Ethylene propylene diene monomer rubber 

EPDM 

Ethylene propylene diene terpolymer EPDT 

Ethylene-propylene rubber / Ethylene-propylene copolymer EPR 

Expanded polystyrene EPS 

Ethylene propylene ETP 

Poly(ethylene-co-vinyl acetate) / Ethylene-vinyl acetate / 

Ethylene–vinyl acetate copolymer 

EVA 

Ethylene vinyl alcohol EVOH 

Fluorinated ethylene propylene FEP 

High density polyethylene HDPE 

Isoprene rubber / Polyisoprene IR 
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Polymer name Polymer acronym 

Low density polyethylene LDPE 

Low density polypropylene LDPP 

Melamine-formaldehyde resin MF 

Nitrocellulose NC 

Nitrile rubber NR 

Other miscellaneous/unidentifiable names Other 

Oxidized Polyethylene OPE 

Polyamide / Nylon PA 

Polyacrylic / Poly(acrylic acid) PAA 

Poly(acrylate) PAC 

Polyacetylene PACL 

Polyalkene PAK 

Poly(acrylamide) / Polyacrylamide PAM 

Polyacrylonitrile PAN 

Poly(acrylonitrile: acrylic acid) PANAA 

Polyacrylonitrile Vinyl Chloride PANVC 

Poly acrylate Polyester PAPE 

Poly(acrylate-styrene) / Polyacrylate & styrene co-polymer PAS 

Polyacrylonitrile-Polystyrene-Polymethyl acrylate PASM 

Poly(1-butene) PB 

Poly(butyl methacrylate) PBMA 

Poly(butadiene:acrylonitrile) PB/PAN 

Polybutylene terephthalate PBT 

Polycarbonate PC 

Polycarbonate-Acrylonitrile butadiene PC/ABS 

Polycaprolactone / Polycaprolactone diol PCL 

Polychloroprene / Neoprene PCP 

Polycaprolactam PCPL 

Polysulfide crude rubber PCR 

Poly(cyclohexylenedimethylene terephthalate) PCT 

Polydiene PD 
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Polymer name Polymer acronym 

Polydiallyl isophthalate PDAIP 

Polydimethylsiloxane PDMS 

Poly(dimer acid-co-alkyl polyamine) PDPA 

Polyethylene PE 

Poly(ethyl acrylate) PEA 

Poly(ethyl acrylate):st:acrylamide PEA/AC 

Polyether ether ketone PEEK 

Polyethylene glycol PEG 

Poly ethylenimine PEI 

Poly(ethyl methacrylate) PEM 

Polycarbonate-Polyethylene mix PE/PC 

Polyethylene-Polypropylene copolymer PE/PP 

Poly epoxy PEP 

Polyethersulfone PES 

Polyester PEST 

Polyester-Polyamide copolymer PEST/PA 

Polyester-Polyethylene copolymer PEST/PE 

Polyester-Polyethylene terephthalate copolymer PEST/PET 

Polyester-Poly(methyl methacrylate) copolymer PEST/PMMA 

Polyester-Rayon copolymer PEST/RA 

Polyethylene terephthalate PET 

Polyethylene terephthalate-polyurethane copolymer PET/PU 

Polyester urethane PEUU 

Polyethylene vinyl chloride PEVC 

Phenol formaldehyde resin PF 

Propylene glycol monooleate PGM 

Poly(hexadecyl methacrylate) PHM 

Poly(lactic acid) / Polylactide PLA 

Poly(lauryl acrylate) / Poly(dodecyl acrylate) PLYA 

Poly(methyl acrylate) PMA 

Poly(methyl methacrylate) / Acrylic / Acrylic acid PMMA 
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Polymer name Polymer acronym 

Polymethyl methacrylate-Polyacrylonitrile PMMA/PAN 

Poly(ethyl methacrylate-co-methyl acrylate) PMMA/PMA 

Polymethyl methacrylate-Polystyrene copolymer PMMA/PS 

Polymethyl methacrylate-Poly(vinyl chloride) PMMA/PVC 

Poly(methylpentene) PMP 

Poly(octyl acrylate) POA 

Poly(octadecyl methacrylate) POCM 

Poly(octadecyl acrylate) PODA 

Poly(oxymethylene) POM 

Polypropylene PP 

Polypropylene/ethylene-propylene / 

Polypropylene+poly(ethylene:propylene) 

PP/EPR 

Poly(phenylene sulfide) PPS 

Phenoxy resin PR 

Polystyrene / Poly(styrene) atactic PS 

Polystyrene divinylbenzene PS/DVB 

Polysulfone PSF 

Polystyrene/Polyacrylate copolymer PS/PAC 

Polystyrene Polyacrylonitrile Poly(methyl methacrylate) 

copolymer 

PS/PAN/PMMA 

Polystyrene sulfonate PSS 

Polyarylsulphone PSU 

Polystyrene Vinyl Chloride PSVC 

Polysiloxane PSX 

Polyterpene PT 

Polytetrafluoroethylene / Fluoro-polymer/Teflon PTFE 

Poly(tetrafluoroethylene:propene) PTFE/PP 

Poly(trimellitamide imide) / Poly(trimellitic Amide imide) PTI 

Polyurethane PU 

Polyurethane acrylic resin / Polyurethane acrylate PUAR 

Polyvinyl acetate PVA 
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Polymer name Polymer acronym 

Polyvinyl acetate / Polyvinyl/vinyl acetate copolymer PVAC 

Polyvinyl acrylonitrile PVAN 

Polyvinyl butyral PVB 

Polyvinyl chloride PVC 

Polyvinyl Chloride:Ethylene PVC/E 

Poly(4-vinylpyridine) PVD 

Polyvinylidene chloride PVDC 

Polyvinyl ester PVE 

Poly(vinyl fluoride) / Polyvinyl fluoride PVF 

Polyvinyl alcohol / Synthetic fibre polyvinil alcohol / Vinylon PVOH 

Poly(vinylpyrrolidone) PVP 

Polyvinyl propionate:acrylate PVP/A 

Polyvinyl stearate PVS 

Polyvinyltoluene:Butadiene PVT/B 

Rayon / Viscose RA 

Styrene acrylonitrile SAN 

Styrene butadiene rubber/ Poly(styrene:butadiene) SBR 

Synthetic cellulose / Chemically modified cellulose SCL 

Synthetic rubber SR 

Tire & bitumen microplastic particles TBMP 

Urethane U 

Urethane alkyd UA 

Urea-formaldehyde resin UF 

Vinyl chloride VC 

Vinyl chloride / Vinyl acetate copolymer VC/VA 
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Appendix B 

 
Table B1 Summary of wastewater treatment plants (WWTPs) discharging into River Taff, obtained from Dŵr Cymru/Welsh 
Water. Population equivalent (PE) represents the number of residential and non-residential persons the plant serves, calculated 

from 2021 census (Office for National Statistics 2021). Preliminary treatment involves the removal of rags, paper, macroplastics, 

and metals from wastewater through CopaSac®, escalator, or rake screens, and/or grit removal. Storm settlement involves storage 

of excess stormwater for later treatment once the storm has passed. Primary and secondary treatment involves sludge settlement 

with liquid outflow. Biological treatment removes biological pollutants via filter beds (wastewater passes through a bed of coke, 

gravel, or clinker where surface bacteria, fungi and other organisms digest organic matter) or activated sludge (air pumped into tank 

of wastewater for bacteria to multiply digest organic matter). Tertiary treatment improves effluent, with reed beds allowing further 

organic matter digestion from microorganisms. Inflow and outflow data from the year prior to sample collection (12th April 2021 to 

20th May 2022) recorded by a MCERT (Monitoring Certification Scheme) flow meter, reported as mean average (± 1 standard 

deviation); range. There is no recorded flow data for Llwyn-On Houses and Pontsticill Houses WWTPs, due to either flow being less 

than 50 m3/day or no Environmental Permit in place requiring flow to be recorded. Missing inflow and outflow data from Cynon and 

Cilfynydd WWTPs, respectively, is due to only one MCERT at each site. 
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Name Asset 
number 

Outlet 
Latitude 

Outlet 
Longitude 

PE Treatment (trt) process Inflow (L/s) Outflow 
(L/s) 

Llwyn-On 

Houses 

30973 51.789281 -3.432257 44 Preliminary trt (CopaSac® screening), 

primary trt, biological trt (gravity-fed 

rotating filter bed). 

- - 

Pontsticill 

Houses 

31055 51.795154 -3.364071 1 Primary trt, secondary trt (septic tank), 

biological trt (gravity-fed rotating filter 

bed). 

- - 

Pontsticill 31054 51.790354 -3.363912 360 Preliminary trt, storm settlement, primary 

trt, biological trt (gravity-fed rotating filter 

bed), secondary trt (humus tank), tertiary 

trt (reed bed). 

2.29 ± 1.37;  

0-5 

1.85 ± 1.61; 

0.08-20.02 

Cynon 30861 51.628263 -3.328372 68,434 Preliminary trt (grit settlement channel, 

escalator and rake screening), storm 

settlement, primary trt, biological trt 

(activated sludge), secondary trt. 

- 352.79 ± 

131.67; 42.8 

– 646.9 

Cilfynydd 30843 51.627054 -3.327152 76,521 Preliminary trt (automatic grit removal, 

escalator screening), storm settlement, 

primary trt, biological trt (gravity-fed 

rotating filter bed), secondary trt (humus 

tanks). 

411.26 ± 

146.86;  

98.4 – 905.5 

- 
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Table B2 Summary of sample sites and water status at time of macroinvertebrate and sediment sampling in April-May 
2022. Electrical conductivity (EC; µS/cm), pH, and temperature (°C) were measured using a HI-9813-5 potable meter (Hanna 

Instruments, UK) and river flow velocity (m/s) was measured using a magnetic-inductive flow meter (OTT MF pro Meter, OTT 

HYdroMet, US) and wading rod (average of 3 measurements). Site elevation obtained from 50 m Digital Terrain Model (OS Terrain 

50, Ordnance Survey). Distance upstream and subcatchment area was calculated using QGIS © OpenStreetMap (Ordnance 

Survey, 2021) and catchment delineation. Sediment from sites 3, 21, and 22 were not analysed. 

 

Site Latitude Longitude Site 
elevation 
(masl) 

Distance 
upstream 
(km) 

Sub-
catchment 
area (km2) 

Sample 
date 

pH EC 
(µS/cm) 

Temp. 
(°C) 

Mean 
flow 
velocity 
(m/s) 

1 51.497102 -3.207883 17 7463.39 500.88 20/05/22 8.0 0.23 15.4 0.24 

2 51.499069 -3.221589 17 8290.47 500.17 10/05/22 7.5 0.05 16.5 0.18 

3 51.518819 -3.253622 27 12396.38 0.28 20/05/22 7.9 0.23 15.9 0.31 

4 51.541798 -3.231026 125 13613.61 1.59 22/04/22 7.8 0.27 10.0 0.36 

5 51.539410 -3.244901 83 15106.98 1.82 17/05/22 8.3 0.37 13.3 0.12 

6 51.538466 -3.275206 125 16192.06 2.06 28/04/22 8.3 0.25 9.5 0.11 

7 51.549117 -3.259740 79 16437.01 7.81 25/04/22 8.0 0.19 11.3 0.09 

8 51.569228 -3.289420 41 19957.45 469.28 10/05/22 8.1 0.25 16.7 0.33 

9 51.586148 -3.317746 47 22467.89 460.94 10/05/22 8.4 0.24 17.3 0.25 

10 51.608484 -3.337020 63 26054.11 342.64 13/04/22 8.4 0.28 17.9 0.27 
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Site Latitude Longitude Site 
elevation 
(masl) 

Distance 
upstream 
(km) 

Sub-
catchment 
area (km2) 

Sample 
date 

pH EC 
(µS/cm) 

Temp. 
(°C) 

Mean 
flow 
velocity 
(m/s) 

11 51.625370 -3.327363 67 28546.36 330.72 13/04/22 8.2 0.32 16.0 0.18 

12 51.609517 -3.396408 93 29011.25 101.15 19/04/22 6.3 0.04 9.8 0.50 

13 51.640774 -3.331310 83 30769.48 303.79 10/05/22 7.3 0.29 16.0 0.36 

14 51.625410 -3.339430 104 30782.25 18.25 14/04/22 7.8 0.10 9.4 0.25 

15 51.646880 -3.326300 85 31821.48 103.28 14/04/22 8.3 0.22 11.7 0.30 

16 51.656963 -3.338510 91 33160.14 101.75 13/05/22 8.2 0.29 11.0 0.16 

17 51.659924 -3.306860 101 34265.82 33.31 10/05/22 7.8 0.27 11.8 0.12 

18 51.660940 -3.382085 244 35249.11 7.48 14/04/22 7.8 0.07 10.5 0.30 

19 51.670605 -3.300060 150 36432.34 19.85 17/05/22 8.2 0.27 11.4 0.16 

20 51.655353 -3.436591 203 36526.31 21.24 28/04/22 7.9 0.16 11.4 0.11 

21 51.623553 -3.501314 344 31821.49 1.59 22/04/22 8.3 0.17 11.2 0.21 

22 51.651469 -3.494547 154 33160.15 2.77 22/04/22 8.7 0.12 11.5 0.05 

23 51.707498 -3.321267 218 39993.54 9.89 27/04/22 7.9 0.32 10.2 0.36 

24 51.683331 -3.490218 300 42607.58 11.40 28/04/22 8.0 0.15 12.2 0.31 

25 51.712698 -3.350070 146 42926.46 143.81 26/04/22 8.6 0.29 12.2 0.24 

26 51.704280 -3.427718 118 43724.22 59.52 27/04/22 8.8 0.21 11.6 0.21 

27 51.713080 -3.457495 152 44935.96 8.17 28/04/22 8.2 0.15 11.8 0.43 
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Site Latitude Longitude Site 
elevation 
(masl) 

Distance 
upstream 
(km) 

Sub-
catchment 
area (km2) 

Sample 
date 

pH EC 
(µS/cm) 

Temp. 
(°C) 

Mean 
flow 
velocity 
(m/s) 

28 51.686008 -3.458121 206 45145.17 3.33 27/04/22 7.5 0.05 10.9 0.18 

29 51.728471 -3.463451 150 46676.67 41.00 27/04/22 8.5 0.18 11.7 0.23 

30 51.684645 -3.551364 214 47235.14 9.78 25/04/22 8.4 0.13 12.1 0.04 

31 51.753454 -3.393764 185 48597.18 110.61 26/04/22 8.8 0.11 11.0 0.16 

32 51.769901 -3.418894 228 50428.08 54.55 27/04/22 8.3 0.09 10.0 0.15 

33 51.777314 -3.387186 163 52193.27 38.58 20/04/22 8.6 0.08 11.4 0.12 

34 51.776586 -3.519024 273 54182.42 1.17 25/04/22 8.5 0.18 11.7 0.18 

35 51.793688 -3.364854 307 55758.68 34.01 20/04/22 8.1 0.04 11.1 0.35 

36 51.807776 -3.445226 270 57832.92  22.75 27/04/22 7.8 0.27 11.8 0.32 

37 51.835329 -3.383297 340 61059.82 13.17 20/04/22 7.8 0.06 9.9 0.33 

38 51.856376 -3.469610 408 64336.84 3.23 20/05/22 8.2 0.06 10.8 0.09 
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Table B3 Summary of landscape characteristics and environmental conditions of subcatchments of sample sites. 
Population size and density was calculated from population density of local authorities recorded in 2021 census (Office for National 

Statistics 2021). Vehicle density (vehicles/km2) was calculated from © OpenStreetMap contributors (Ordnance Survey, 2021). 

Land-use was calculated as a percentage of subcatchment area, from UK Centre for Ecology and Hydrology’s (UKCEH) ‘Land 

Cover Map 2021’ data (UKCEH 2022). Counts of WWTPs and CSOs in subcatchments were respectively calculated from Dŵr 

Cymru Welsh Water (November 2022) and The Rivers Trust (monitored CSOs 2021: The Rivers Trust 2022, unmonitored CSOs 

2020: The Rivers Trust 2021). Sediment from sites 3, 21, and 22 were not analysed. 
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Land Use (%) 

Upstream 
point 
sources 
(count) 

Urban Sub-
urban 

Agricult-
ural 

Grass-
land 

Heath-
land 

Wood-
land 

Rock 

W
W

TP
s 

C
SO

s 

1 286,256 572 276,642 0.978 14.019 0.378 48.086 4.363 30.513 0.875 6 234 

2 284,448 569 277,091 0.978 13.928 0.379 48.142 4.369 30.547 0.876 6 234 

3 713 2,546 157,423 0 93.594 0 5.338 0.000 0 0 6 0 

4 2,156 1,356 378,301 0 4.774 0 48.116 0 46.859 0.251 0 0 

5 2,825 1,552 169,973 0 8.929 0 18.963 0 61.905 10.204 0 0 

6 5,272 2,559 157,743 0 5.379 0 51.149 0 43.472 0 0 0 
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7 1,012 130 193,628 0 5.130 1.267 39.772 0 53.832 0 0 0 

8 230,858 492 294,342 0.801 12.996 0.309 49.305 4.656 30.390 0.806 6 223 

9 226,130 491 296,927 0.778 12.727 0.298 49.297 4.739 30.609 0.820 6 220 

10 159,994 467 367,821 0.557 11.660 0.389 50.981 6.368 28.094 1.070 6 114 

11 152,967 463 368,532 0.574 11.575 0.397 50.347 6.598 28.558 1.054 6 111 

12 56,536 559 103,921 1.464 14.530 0.009 44.503 0.012 39.191 0.113 0 80 

13 137,875 454 394,254 0.625 11.944 0.408 51.266 7.187 26.471 1.148 4 101 

14 10,233 561 98,495 0 5.056 0.077 35.044 0 59.687 0 0 5 

15 57,869 560 101,958 0.639 15.811 0.133 45.456 1.078 34.339 2.312 0 68 

16 57,013 560 101,815 0.644 15.610 0.135 45.910 1.094 34.037 2.347 0 66 

17 18,599 558 686,431 0.107 7.451 1.081 68.736 9.910 11.347 1.252 0 2 

18 4,197 561 98,515 0 0.067 0.187 21.036 0 78.376 0 0 0 

19 10,702 539 693,906 0.035 3.107 0 71.654 15.347 8.462 1.394 0 1 

20 11,903 560 98,505 0.156 8.762 0 47.842 0 42.471 0 0 15 

21 1,553 977 102,068 0 0.493 0 11.841 0 87.666 0 0 0 

22 1,026 370 98,446 0.164 4.438 0 85.041 0 10.356 0 0 0 

23 5,387 545 691,760 0 0.589 0 60.568 29.173 6.870 2.801 0 0 

24 6,394 561 98,496 0 0.167 0 45.950 0 52.555 0 0 0 

25 48,472 337 505,638 0.767 9.040 0.334 52.473 11.822 23.291 0.467 4 19 

26 33,350 560 100,611 0.510 13.353 0 59.716 1.500 20.677 3.990 0 24 

27 4,578 560 98,508 0 10.032 0 62.540 0.171 26.829 0.073 0 2 
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28 1,872 562 98,521 0 1.049 0 42.720 0 56.231 0 0 0 

29 22,973 560 100,436 0.017 10.042 0 65.785 1.418 17.123 5.361 0 9 

30 4,313 441 118,910 0.000 1.694 0 29.606 0 67.563 1.138 0 0 

31 31,337 283 422,154 0.061 3.489 0.182 62.096 9.312 22.535 0.025 4 3 

32 16,521 303 313,452 0 0.558 0.092 66.750 7.120 23.639 0.035 1 0 

33 5,461 142 420,104 0 0.962 0 62.862 6.743 25.448 0.021 2 1 

34 5,486 4,689 98,501 0 2.229 0 89.495 0 4.606 3.670 0 0 

35 3,219 95 340,836 0 0.450 0 62.038 6.518 26.494 0 1 0 

36 996 44 162,949 0 0.191 0 85.405 0.009 12.645 0 0 0 

37 338 26 169,213 0 0 0 70.873 0.230 28.897 0 0 0 

38 83 26 169,386 0 0 0 99.288 0.062 0.650 0 0 0 
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Supplementary Information B1 Criteria used to identify suspected microplastic 

particles, summarised from Norén 2007; Hidalgo-Ruz et al. 2012; Nor and Obbard 

2014; Horton et al. 2017; Vaughan et al. 2017; Barrows et al. 2018; Horton et al. 

2018; Tibbetts et al. 2018; Townsend et al. 2019; Khan et al. 2020; Kuśmierek and 

Popiołek 2020; Mao et al. 2020a; Uurasjärvi et al. 2020; Woodward et al. 2021. 
 

1) Particles have no cellular or organic structure. 

2) Particles have an unnatural shape. 

3) Fibres are equally thick throughout their length, are not segmented or twisted flat 

ribbons, and have 3D bending (i.e., not entirely straight). 

4) Particles are not shiny, have clear and homogenous colour and if transparent or 

white, must be examined under high magnification and fluorescence to exclude 

organic origin. 

5) Particles have a homogenous texture. 

6) Particles maintain structural integrity when compressed, without being brittle. 
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Supplementary Information B2 Criteria used to classify suspected microplastic 

particles by shape, summarised from Castañeda et al. 2014; Free et al. 2014; 

Wagner et al. 2014; Dris et al. 2015; Phillips and Bonner 2015; McCormick et al. 

2016; Su et al. 2016; Anderson et al. 2017; Cable et al. 2017; Jabeen et al. 2017; 

McGoran et al. 2017; Sruthy and Ramasamy 2017; Vaughan et al. 2017; Di and 

Wang 2018; Hendrickson et al. 2018; Jiang et al. 2018; Pivokonsky et al. 2018; 

Rodrigues et al. 2018a; Su et al. 2018; Wen et al. 2018; Akindele et al. 2019; 

Andrade et al. 2019; Ding et al. 2019; Townsend et al. 2019; Watkins et al. 2019b; 

Watkins et al. 2019a; Yin et al. 2019; Campanale et al. 2020; Constant et al. 2020; 

Egessa et al. 2020; Hwi et al. 2020; Mani and Burkhardt-Holm 2020; Mao et al. 

2020a; Mao et al. 2020b; Martínez Silva and Nanny 2020; Pariatamby et al. 2020; 

Scircle et al. 2020; Wang et al. 2020a; Wang et al. 2020b; Wardlaw and Prosser 

2020; Zobkov et al. 2020; Bertoldi et al. 2021; Bujaczek et al. 2021; Felismino et al. 

2021; Garcia et al. 2021; Huang et al. 2021a; Lin et al. 2021; Parvin et al. 2021 

 

1) Fragment – Hard, irregular shaped cube with at least one smooth plane, angular, 

jagged, incomplete, and 3D. 

2) Bead/Pellet – Hard, round, spherical, ovoid discs, cylinders, and 3D. 

3) Foam – Lightweight, sponge or bubble-like, and surface is not smooth. 

4) Fibre – Thin, fibrous, thread-like, slender, elongated, cylindrical, equally thick 

throughout (not tapered at ends), not entirely straight, 3D bending, and length is 

>3 times width. 

5) Film – Thin with two smooth planes, 2D, flat, irregular in shape soft, and flexible. 

6) Other. 
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Supplementary Information B3 Limit of Detection (LOD)/Limit of Quantification 

(LOQ) calculations per shape for procedural blank adjustment (Bråte et al. 2018). 

 

LOD was calculated as the average of total procedural blank particles for each 

individual shape plus 3x standard deviation, i.e., 𝐿𝑂𝐷ௌ௡ = Χ௬ௌ௡തതതതതത + ൫3 × 𝑆𝐷௬ௌ௡൯ and 

LOQ was calculated as the average of total procedural blank particles for each 

individual shape plus 10x standard deviation, i.e., 𝐿𝑂𝑄ௌ௡ = Χ௬ௌ௡തതതതതത + ൫10 × 𝑆𝐷௬ௌ௡൯, 
where X = sample, Y = procedural blank, S = shape, X̄ = mean, and SD = standard 

deviation of the mean. Sample counts were reported if their mean exceeds the LOQ. 

Sample counts were excluded if their mean is < LOQ and > LOD where microplastics 

are present but unquantifiable, or <LOD where microplastics are indistinguishable 

from the background. 

 

 

Table B4 List of gauging stations on the River Taff from which average, 
minimum, and maximum flow rate (m3/s) were calculated. 
 

ID Name Grid Reference 

57005 Taff at Pontypridd ST0792489715 

57006 Rhondda at Trehafod ST0528390946 

57017 Rhondda Fawr at Tynewydd SS9325998687 

57004 Cynon at Abercynon ST0794095652 

57007 Taff at Fiddlers Elbow ST0892095153 

57015 Taff at Merthyr Tydfil SO0430806814 

57001 Taf Fechan at Taf Fechan Reservoir SO060117 

57002 Taf Fawr at Llwynon Reservoir SO0118611166 
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Appendix C 

 
Table C1 Percentage of macroinvertebrate individuals per mesocosm that belong to 

each family, grouped by their Functional Feeding Guild (FFG). Only taxa with 

contributions higher than 2% in any group, are reported. Mesocosms: H = Hanwell, S 

= Sidaway, C = Carpenter, and D = Davies. 

 

 
 
 
FFG 

 
 
 
Family 

Acidic Circumneutral 
Benthic Leaf-

dwelling 
Benthic Leaf-

dwelling 
H S H S C D C D 

Shredder Leuctridae 45.5 74.1 37.6 18.8 19.4 27.2 33.9 55.7 

Thaumaleidae 8.9 12.5 0 0 3.9 18.9 0 0 

Nemouridae 0 0.3 5 13.9 0 0 16.5 23.6 

Limnephilidae 1.4 0.8 7.2 0.6 0 0.6 0 0 

Lepidostomatidae 0 0 8.8 0.6 0 0 0.3 0 

Filtering 

Collector 

Simuliidae 34.9 0.3 5 3.6 7.7 2.4 0.8 0.7 

Oligochaeta 2.6 2.4 3.3 3.6 1.9 1.2 6.2 2.1 

Scirtidae larvae 0 0 0.6 8.5 0 0 5.4 0 

Hydropsychidae 0 0.8 0 3 7.7 0 0 1.4 

Gathering 

collector 

Chironomidae 0 0.3 30.4 26.1 2.6 1.2 23 5.7 

Baetidae 1.7 3.2 0 0 16.8 8.9 0 0 

Predator Rhyacophilidae 0 1.8 0 9.7 0.6 0.6 2.4 5 

Dytiscidae adult 2.9 0 0.6 3.6 0 0.6 0.5 1.4 

Scraper/ 

Grazer 

Heptageniidae 0 0 0 1.2 34.2 36.7 0.8 0 

Lymnaeidae 0 0 0 0 0 0 8.4 0 

 

 

 

 

 


