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ABSTRACT
The nature of glassy dynamics and the glass transition is a long-standing problem under active debate. In the presence of a structural disorder
widely believed to be an essential characteristic of structural glass, identifying and understanding key dynamical behaviors are very chal-
lenging. In this work, we demonstrate that an energetic disorder, which usually results from a structural disorder, is instead a more essential
feature of glass. In particular, we develop a distinguishable-particle glassy crystal, in which particles are ordered in a face-centered cubic lattice
and follow particle-dependent random interactions, leading to an energetic disorder in the particle configuration space. Molecular dynamics
simulations in the presence of vacancy-induced particle diffusion show typical glassy behaviors. A unique feature of this molecular model
is the knowledge of the complete set of inherent structures with easily calculable free energies, implying a well-understood potential energy
landscape.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0278498

I. INTRODUCTION

There are many open questions regarding the dynamics of
structural glass and the nature of the glass transition despite decades
of intensive study.1–4 Glass formers constitute an immensely diverse
group of materials. Besides many fascinating phenomena in the bulk,
they also exhibit puzzling features in confined geometries.5,6 A typ-
ical glass is characterized by a structural disorder with random and
frustrated particle positions and, for non-spherical molecules, also
orientations. A type of glass, called orientational glassy crystal, pos-
sesses a crystalline structure but has random molecular orientations,

which constitute a structural disorder.7 In view of the wide range
of materials and physical conditions, identifying and understanding
the most fundamental features of glass have proven very challenging.

In general, the structural disorder of glass amounts to momen-
tarily quenched random particle separations and (or) orientations.
This implies random particle interactions and hence also an ener-
getic disorder. An important question is whether structural disorder
plays other crucial roles in glassy dynamics apart from generating
the energetic disorder. By studying a distinguishable-particle glassy
crystal (DPGC), we show that structural disorder plays no other
role in many glassy properties. The DPGC is a molecular model
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of glass with an energetic disorder, but it is structurally ordered
with neither positional nor orientational disorder, except for isolated
point defects. The DPGC is in our knowledge the simplest molecu-
lar model of glass. It is characterized by vacancy-induced dynamics.
The inherent structures are trivially known. It is also the only known
molecular model with solvable equilibrium statistics. It can be an
ideal example for studying glassy dynamics.

The model is a direct molecular generalization of the
distinguishable-particle lattice model (DPLM), which has success-
fully reproduced many glassy phenomena,8–17 including non-trivial
ones such as Kovacs paradox,10 a wide range of fragilities,11 and dif-
fusion coefficient power-laws upon partial swap.12 The energetics in
the DPLM is dictated by particle-dependent nearest neighbor pair
interactions, and the kinetics is characterized by void-induced parti-
cle hops.11 It requires no explicit kinetic or energetic constraint,18–20

enabling a generalization to a molecular model.
We consider dynamics dominated by vacancy-induced particle

hops. Voids, the counterpart of vacancy in glass, or related defects
have long been suggested to be responsible for glassy dynamics.21–24

Recently, quasivoids, i.e., voids in a fragmented form, have been
identified to dominate dynamics in glassy colloidal experiments,25

and locally averaged free volume has been found to correlate with
dynamics in hard sphere simulations.26 These motivate the use of
vacancy-induced dynamics in this work, although the importance of
quasivoids to glass in general is still an open question.

The rest of this paper is organized as follows: In Sec. II, we will
explain in detail the DPGC model. In Secs. III and IV, we demon-
strate standard glassy behaviors and the dynamic heterogeneity of
DPGC, respectively. Then, we explain the inherent structures and
their equilibrium statistics in Sec. V and conclude in Sec. VI with
further discussions.

II. MODEL
In the DPGC, N distinguishable particles form a face-centered

cubic (FCC) lattice in 3D (see the yellow region in Fig. 1). The
interaction energy Φkl(r) between particles k and l separated by a
distance r follows the Lennard-Jones (LJ) potential,

Φkl(r) = −4Vkl[(
σ
r
)

12
− (σ

r
)

6
], (1)

with a distance cutoff of 2.5σ beyond which it becomes a con-
stant with respect to r. We fix σ = 1, which defines the length
scale in our system. Each Vkl < 0 represents a particle-dependent
energy depth of the LJ potential and is a quenched random
variable following a uniform distribution g(V) in the range
[−1, −0.25].27 The random depth Vkl is analogous to random inter-
actions in the DPLM, which follows a range [−0.5, 0.5] designed to
minimize effective vacancy–vacancy attraction.11 This range is not
appropriate for the DPGC as Vkl must now be negative. To avoid
vacancy aggregation, we instead have to employ a small vacancy
density.

Our main molecular dynamics (MD) simulations are per-
formed in the NVT ensemble in a cubic box with 133 FCC unit cells
under periodic boundary conditions. The lattice points are occu-
pied by N = 8780 particles with Nv = 8 vacancies, corresponding
to a vacancy density of ϕv ≃ 0.091% per lattice point. The lattice

FIG. 1. A snapshot of a small-scale DPGC with 255 particles and one vacancy
(black arrow) following an FCC structure in a cubic simulation box at T = 0.3.
Particle colors indicate displacements from 0 to 0.4σ over a duration of 2 × 105.
Particles with displacements beyond 0.4σ (red) have hopped at least once. The
majority of particle movement is found near the vacancy. Particles at the top right
corner (yellow region) are shown at their instantaneous positions. Other particles
are shown at their inherent structural positions. A small red cube represents the
FCC unit cell.

constant is set at a0 = 1.6σ. This implies a nearest-neighbor dis-
tance of a0/

√
2 ≃ 1.131σ and a small tensile strain, which has been

found necessary to break a form of divacancy-particle complex. The
FCC structure is remarkably stable below the melting temperature of
about 0.83 (see Appendix A). In contrast, a disordered form of the
system is stable only if a bimodal distribution of particle diameters
is adopted.28 The DPGC can be brought to equilibrium using swap
and a ghost particle method (see Appendix B).

III. GLASSY CHARACTERISTICS
We now explain main measurements on our MD simulations

of the DPGC demonstrating glassy behaviors, while more details will
be elaborated in Secs. III A–III F.

A. Mean-squared displacement
We calculate the particle mean-squared displacement (MSD)

defined as ⟨∣rl(t) − rl(0)∣2⟩, where rl(t) denotes the position of par-
ticle l at time t.29 Figure 2 shows the MSD in a log–log plot for
different temperatures T. The plateau before the diffusive regime
shows typical glassy characteristics. At long time in the diffusive
regime when the MSD is beyond σ, we measure the particle diffusion
coefficient from
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FIG. 2. MSD in log–log plot against time.

D = 1
2d

MSD
t

, (2)

where d = 3 indicates three-dimensional space. Results are shown
in Fig. 3.

B. Energy hysteresis
An energy hysteresis is observed during a cooling/heating

cycle. Starting from an equilibrium system at temperature 0.7, it
is cooled to 0.2 and then heated back to 0.7 at the same cool-
ing/heating rate ν. Figure 4 plots the average potential energy
per particle E/N against temperature T for two values of ν.
We observe a clear energy hysteresis with kinks signifying glass
transitions.

FIG. 3. Semi-log plot of diffusion coefficient D, showing the Arrhenius relation for
T = 0.4 to T = 0.7.

FIG. 4. Potential energy per particle E/N against temperature T during cooling
(blue) and heating (red) with rates ν = 5 × 10−7 and 10−6. The black line shows
the equilibrium energy. Black arrows show T g for both rates. Inset shows heat
capacity Cv against T .

C. Glass transition temperature
The glass transition temperature T g can be found from the

intersection of the two relatively linear sections of the heating
curves.30 Using data from Fig. 4, we get T g ≃ 0.41 and 0.44 for
ν = 5 × 10−7 and 10−6, respectively, showing that T g increases with ν
as expected of glass.

The glass transition temperature T g separates two phases of the
system exhibiting different dynamics. Below T g , the system enters
the glass phase with largely frozen particle allocations to the lattice
points. Particle motions are mainly vibrations and back-and-forth
hops. Above T g , particles perform vacancy-induced hops around
various lattice positions within practical observation times. This
rearranges the particles in the lattice and relaxes the pair interac-
tions. We propose to call it the dynamic phase, which is analogous
to the liquid phase of conventional glass formers. Importantly, such
energy relaxation in the dynamic phase, akin to glassy materials, is
absent in conventional monoatomic crystals.

Recognizing that in the glass phase particles hop infrequently,
we measure T g based on particle MSD, which provides better
statistics. When cooling the system from 0.7 to a low temperature
T0 = 0.2 at a rate ν, we measure the MSD from the particle posi-
tion r(T) at temperature T to the final frozen position r(T0), i.e.,
MSD = ⟨∣r(T) − r(T0)∣2⟩. We define T g as the temperature at which
on average, all particles have hopped away from their initial posi-
tions once to a neighboring lattice point before becoming frozen, i.e.,
MSD = a2

0/2. Figure 5 plots ν against the measured 1/T g . The linear-
ity in the semi-log plot shows log(ν) ∼ 1/T g , consistent with typical
glassy characteristics.30 In particular, it indicates that the present
DPGC is a strong glass. The glassy crystal studied shows relaxation
behaviors of strong glass due to the choice of a uniform interac-
tion energy distribution g(V). A more fragile relaxation is observed
under a bi-component form of interaction energy distribution, in
agreement with results on the DPLM.11 This is explained in detail
in Appendix C.
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FIG. 5. A semi-log plot of cooling rate ν against 1/T g based on MSD
measurements.

D. Self-intermediate scattering function
Concerning equilibrium properties, we have measured the self-

intermediate scattering function (SISF), which is defined as

Fs(q, t) = ⟨eiq⋅(rl(t)−rl(0))⟩, (3)

where ∣q∣ = 2π/λ with λ = a0/
√

2 being the nearest neighbor dis-
tance. Results are plotted in Fig. 6(a) showing a two-step relaxation.
The second terminal decay at t ≳ 103 is well approximated by the
Kohlrausch–Williams–Watts (KWW) stretched exponential func-
tion of the form A exp[−(t/τβ)], where τ is the structural relaxation
time, β(0 < β < 1) is the stretching exponent, and decay amplitude
A decreases from around 0.9 to 0.7 with ascending T. The fit to
the KWW form is demonstrated by a linear region at large t in the
log–log plot of−log(Fs(q, t)) against t in Fig. 6(b). Figure 7(a) shows
τ against 1/T. A linear behavior in the semi-log plot again indicates a
strong glass. The stretching exponent β shown in Fig. 7(b) is less than
1 and decreases with 1/T. Note that the data for T = 0.3 have been
taken over a rather short duration slightly less than the relaxation
time; values analyzed in this case should admit larger errors.

E. Returning and escaping hops
As temperature decreases, dynamics slow down not only

because of the reduced particle hopping rate but also because of an
increased back-and-forth tendency in the hopping motions due to
the rugged potential energy landscape. We now quantify this anti-
correlation in successive hops of a particle following Refs. 24 and 25.
In particular, after a particle has hopped, we measure the probabil-
ity Pret that its next hop returns itself to the original lattice point.
The probability Pesc that it hops next instead to a new lattice posi-
tion is also measured. Figure 8 shows the results. At a high T = 0.7,
we find that Pret ≃ 0.095, which is close to 0.0833 for an uncorre-
lated random walk on the FCC lattice. As T decreases, Pret increases
monotonically and reaches 0.33 for the lowest T = 0.3 studied. This

FIG. 6. Self-intermediate scattering function Fs(q, t) against t in a semi-log plot
(a) and −log(Fs(q, t)) against t in a log–log plot (b) using the same set of data.

shows a strong anti-correlation in the hopping events, revealing the
impact of the rugged potential energy landscape due to the ran-
dom pair interactions. Analogous back-and-forth motions have also
been observed in MD simulations concerning particle hops in dis-
ordered molecular systems24,31 and rotations in orientational glassy
crystals.32

F. Computational efficiency
The DPGC is designed to illustrate a distinct type of molecu-

lar glass model, but its computational efficiency is admittedly lower
than that of standard disordered molecular models of glass or lattice
models. Both the diffusion coefficient D and relaxation time τ cover
over roughly two orders of magnitude in the studied temperature
range. The upper temperature bound is set by the FCC melting tem-
perature T = 0.83, a constraint absent in disordered models, while
the lowest temperature T = 0.3 already requires up to four months
of computation with multiple CPU cores. Exploring significantly
lower temperatures is currently unfeasible due to these limitations.
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FIG. 7. (a) Structural relaxation time τ and (b) stretching exponent β against 1/T
extracted from the self-intermediate scatter function for T = 0.3 to T = 0.7.

Instead, the main advantage of the DPGC is in its simplicity and
solvability.

Despite the narrow temperature range studied, there are indi-
cations that our system at the lowest of T = 0.3 simulated may
correspond qualitatively to deeply supercooled regimes in MD sim-
ulations of disordered molecular models. The DPGC demonstrates
clear plateau in MSD at T = 0.3 spanning nearly five decades in time,
as shown in Fig. 2. We have also shown in Fig. 8 that the return
hop probability exceeds 0.3 at T = 0.3, which is significantly larger
than the random-walk value of 1/12 for an FCC lattice, indicating
a significant dynamical slowdown driven not merely by a reduced
hopping rate. In addition, as aforementioned, the simulations at
T = 0.3 already required extensive computational resources. While
the temperature range is narrower than in some experimental or
model systems, we have pushed the simulations to a practical limit
and a temperature comparable to other MD models where key glassy
signatures are evidently observed.

FIG. 8. Probabilities Pret and Pesc for returning and escaping second hops of par-
ticles after previous hopping events against temperature T . The black dashed line
indicates the probability that no second hop occurs during the observation period.

IV. DYNAMICAL HETEROGENEITY
Dynamic heterogeneity is the behavior in glass formers that

some regions relax much faster than the others. We now show that
the DPGC exhibits dynamical heterogeneity, by real space illustra-
tions and quantitative studies. It is easy to understand in general that
dynamical heterogeneity is observed for systems following defect-
induced dynamics including glassy or simple crystals with vacan-
cies as well as partial-swap systems.12 The idea can also apply to
conventional glasses if one assumes quasivoid-induced dynamics.25

To illustrate the heterogeneity in real space, Fig. 9 highlights
particles in the DPGC with large displacements. As seen, they con-
centrate close to the vacancies. The vacancy-induced nature of
particle hops immediately explains the dynamic heterogeneity. It
also explains the observed stringlike geometries of the set of hop-
ping particles,29,33 revealing the paths taken by the vacancies. Note

FIG. 9. Particles with large displacements from 1 (blue) to 3 (green) at T = 0.7
(a) and 0.25 (b). Displacements are measured over a duration at which the par-
ticle MSD equals 0.1σ. Purple spheres represent vacancies. A black arrow in (b)
indicates a region with a strong facilitation among vacancies.
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that vacancy-induced motion realizes a defect-particle facilitation
process,8,24,34,35 which also mediates facilitation among particles.36,37

At T = 0.7 [Fig. 9(a)], various vacancies have rather similar
mobilities. As T decreases to 0.25 [Fig. 9(b)], isolated vacancies are
observed to slow down more significantly, and mobility is domi-
nated by groups of vacancies. In particular, when vacancies are ener-
getically attracted to each other, adjacent particles become loosely
bonded and hop more rapidly, speeding up locally the motions
of both the particles and the vacancies. This realizes a form of
defect–defect facilitation mainly of an energetic origin. Particles
close to groups of vacancies thus enjoy enhanced dynamics, and
this increases the dynamic heterogeneity at low T. Nevertheless,
such facilitation is distinct from facilitation of a dynamic origin
in the absence of defect attraction,24,34,35 as has been observed
in the DPLM.8,38 Further work in the future is required to con-
trol the vacancy–vacancy attraction based on alternative particle
potentials so as to implement facilitation better resembling that
in conventional glasses. We should also point out that there have
also been many important studies on dynamic facilitation without
explicit defects,18,39,40 which provide possible descriptions of disor-
dered molecular systems as well as vacancy-free orientational glassy
crystals.

To quantitatively study dynamic heterogeneity, one first defines
an overlap function as

cl(t, 0) = eiq⋅(rl(t)−rl(0)), (4)

where ∣q∣ = 2π/λ with λ = a0/
√

2. Note that the average overlap
equals the SISF Fs(q, t). Each particle contributes to an overlap field
defined by

c(r; t, 0) =∑
l

cl(t, 0)δ(r − rl(0)), (5)

where the sum is over all particles l. Consider its spatial correlation

G4(r, t) = ⟨c(r; t, 0)c(0; t, 0)⟩ − ⟨c(0; t, 0)⟩2, (6)

where the average is over the spatial origin 0 and the starting time 0.
Then, G4 measures the correlation of the fluctuations in the overlap
function between two points that are separated by r. In the Fourier
space, we get

S4(q̃, t) = ∫ eiq̃ ⋅rG4(r, t)dr, (7)

= N⟨∣ 1
N∑l

eiq̃ ⋅rl(0)(cl(t, 0) − Fs(q, t))∣
2

⟩. (8)

We then define the susceptibility as χ4(t) = limq̃→0S4(q̃, t), which is
simply the variance of the overlap function. One can interpret χ4(t)
as the typical size of correlated clusters in structural relaxation, and
it is thus a measure of the degree of dynamic heterogeneity.

Figure 10 shows χ4(t) measured from the simulations. As is
typical for structural glass, χ4(t) has a peak for each temperature,
which shifts to larger times and has a larger height when T decreases.
This reveals an increasing length scale of dynamic heterogeneity
when the system cools down.

Figure 11 plots Dτ against 1/T. We observe that Dτ increases
with decreasing T, demonstrating a violation of the Stokes–Einstein

FIG. 10. Four-point susceptibility χ4(t) against time t.

FIG. 11. Plot of Dτ against 1/T . A non-constant value indicates a violation of the
Stokes–Einstein relation.

relation as expected for glasses with dynamic heterogeneity. The vio-
lation is nevertheless slight as we cannot cover a wide temperature
range.

V. INHERENT STRUCTURES AND EQUILIBRIUM
STATISTICS

Glassy dynamics can be formulated in terms of transitions
among inherent structures, which are metastable states of the sys-
tem.41 Performing an energy minimization numerically, the DPGC
arrives always at an inherent structure, which is simply a FCC lat-
tice of a certain particle and vacancy arrangement with vibrations
suppressed, as shown in Fig. 1. The number of possible inherent
structures is (N +Nv)!/Nv!, noting the N distinguishable particles
and Nv identical vacancies.
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FIG. 12. Equilibrium distribution Peq(V) of pair interaction energy depth V
between neighbor particles from simulations (symbols) and from Eqs. (10) and (11)
(lines).

The free energy FIS of an inherent structure can be expressed as
FIS = −kBT ln PIS, where PIS is its occurrence probability. Analogous
to exact equilibrium statistics of the DPLM,8,11 we propose that PIS
can be approximately factorized over the interactions and is given by

PIS =∏
kl

Peq(Vkl), (9)

where the product is over all nearest neighboring particles k and
l. Here, Peq(V) is the equilibrium probability of a pair interaction
given by (see Appendix D for derivation)

Peq(V) =
1
N

e−V/kBTg(V)Ψ(V), (10)

where Ψ(V) accounts for energetic and entropic effects of vibrations
and can be approximated as

Ψ(V) = (−V − 3V̄ /2)−
1
2 , (11)

with V̄ being the mean value of V and N following from the
normalization ∫ Peq(V)dV = 1. For the DPLM without vibration,
Ψ(V) ≡ 1 and Eq. (10) is exact.8,10,11 For the DPGC, we have mea-
sured Peq(V) based on the inherent structures from equilibrium
simulations. Results are plotted in Fig. 12 showing a good agreement
with Eqs. (10) and (11).

VI. DISCUSSIONS
The DPGC possesses no structural disorder. It implements

directly an energetic disorder via random interactions, which usu-
ally results instead from a structure disorder. Its ability to exhibit
glassy properties suggests that energetic disorder may play a more

direct and essential role than structural disorder in glassy dynamics.
Studying structurally ordered glasses, such as the DPGC, can be a
much simpler step to understand glass. Note that spin glass42,43 also
directly assumes an energetic disorder, which, however, is quenched
in the real space. Instead, the disorder in the DPGC and the DPLM
is quenched only in the configuration space,8 making it appropriate
for structural glass.

Being a straightforward molecular generalization of the DPLM,
properties reported here for the DPGC in general are inherited from
and are closely analogous to those of the DPLM, except those related
to lattice vibrations. The realization of the DPGC strongly supports
the physical relevance of the DPLM. Conversely, we expect that
glassy phenomena already demonstrated by the DPLM8–17 likely
apply also to the DPGC. These features of the DPLM support the
idea that the DPGC describes a typical glass rather than a new type
of glass.

Our system exhibits three phases. As T increases from below
T g , it crosses over from the glass phase, in which particles hardly
hop within practical observation times, to the dynamic phase,
in which the system readily relaxes via particle rearrangements
among the lattice positions. The static structures of both phases
follow the same FCC lattice. At higher T, it melts into the liq-
uid phase. The glass and dynamic phases of the DPGC sepa-
rated by a glass transition generalize the glass and supercooled-
liquid phases of conventional glass formers. The DPGC is also
distinct from conventional non-glassy crystals with non-random
pair interactions. While some dynamic heterogeneity can occur in
such simple crystalline solids with vacancies, such models cannot
exhibit glassy features such as energy hysteresis with a kink dur-
ing a temperature cycle or a tunable fragility as demonstrated by
the DPGC.

The complete set of inherent structures41 is known with
the occurrence probabilities PIS and free energy FIS given in
Eqs. (9)–(11). This is, in our knowledge, unique in all molecular
glassy systems, including orientational glassy crystals.7 Furthermore,
the known FIS also directly implies a full knowledge of the poten-
tial energy landscape (PEL)44 expressible as a function of inherent
structures. It is a rugged PEL due to random pair interactions, in
sharp contrast to simple crystals and assumptions in early defect
theories.21

The elementary motions in the relaxation of the DPGC are
vacancy-induced particle hops. This is analogous to deeply super-
cooled liquids in which quasivoids-induced particle hops may dom-
inate.25 With the full knowledge of the PEL, a transition state
theory of the dynamics45 can be straightforwardly formulated. For
example, with Nv monovacancies, an inherent structure is directly
connected by possible transitions to 12Nv others, noting that there
are 12 possible hopping directions of each vacancy. In the con-
text of the DPLM, such an analysis implies that the energetically
favorable domain of the PEL takes a random-tree geometry in the
configuration space, leading to emergent kinetic constraints and
facilitation.38,46 Implications to the DPGC will be studied in the
future.

An accurate experimental realization of the DPGC may be chal-
lenging. One complication concerns the random particle-dependent
interactions in which interaction depth between particles k and l
is uncorrelated to that between particles k and l′ for l ≠ l′. How-
ever, allowing for correlations among the interactions, a 2D lattice
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of polydispersed colloidal particle system has shown signs of glassy
properties.47 Alternatively, limiting to few particle types, our system
is analogous to high-entropy alloys.48 The DPGC can serve as an
idealized model for studying various types of glass.

In conclusion, we have developed a distinguishable-particle
glassy crystal model, which shows typical glassy behaviors. The
inherent structures are known and numerable with their approxi-
mate equilibrium probabilities available analytically. This makes it,
in our opinion, the simplest molecular model of glass. It also demon-
strates that a structural disorder is not essential in the presence of an
energetic disorder to exhibit glassy properties.
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APPENDIX A: MELTING

To determine the temperature range for the energy hystere-
sis shown in Fig. 4, we have heated the glassy crystal to a higher
temperature as shown in Fig. 13. Akin to the energy hysteresis, we
have performed a heating and cooling cycle at a cooling/heating
rate ν = 10−6. At T ≃ 0.83, an abrupt jump of the energy indi-
cates the melting of the FCC lattice, as the system becomes struc-
turally disordered after the transition. All our main simulations
are performed well below 0.83 to make sure that the FCC lattice
is stable.

FIG. 13. Potential energy per particle E/N against temperature T during cooling
(blue) and heating (red) with a rate ν = 10−6. The abrupt jump at T ≃ 0.83 signifies
melting of the FCC lattice.

APPENDIX B: INITIALIZATION VIA
PARTICLE/VACANCY SWAP

System equilibration using standard MD steps can take a very
long runtime at low T. This can be dramatically improved using par-
ticle swaps49 in addition to the MD steps at not too low T. However,
at the lowest T = 0.3 studied, we have found surprisingly that particle
swaps fail to equilibrate our system completely. A close examina-
tion reveals that even though the distribution of the pair interaction
depth V has already converged to Peq(V), the density of di-vacancies
is not at equilibrium after particle swaps. This is because the method
does not relax the positions of the vacancies. Due to the consider-
able attraction of the vacancies, the density of di-vacancies should
increase as T decreases, but this is not achieved using swaps. For
conventional glass models, quasivoids, the counterpart of vacancies,
appear unattractive to each other and the problem thus does not
apply.

To fully equilibrate the DPGC at T = 0.3, we have developed
a particle/vacancy swap algorithm in addition to the MD steps. For
convenience of implementation in LAMMPS, we represent vacan-
cies using ghost particles. In particular, we fill up each vacancy
position with a ghost particle, which has a light mass mghost = 0.01
and a weak interaction depth V ghost = −0.01 with all other particles.
Then, they introduce negligible perturbations to the original crystal.
A small time step of 0.0001 is used in the MD steps to avoid the ghost
particles being bounced off the system.

The full algorithm for T = 0.3 is as follows. We randomly
arrange all real and ghost particles in the FCC lattice. We then per-
form non-local pairwise particle swaps, irrespective of whether they
are real or ghost. This is done as usual by choosing any two parti-
cles and swapping their positions with a probability exp(−ΔE/kBT),
where ΔE is the energy change after the swap. The swapping pro-
cess is performed periodically in between normal MD steps. When
equilibrium is attained, as indicated for example by the stabilization
of the potential energy, the ghost particles are removed. The system
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is then further relaxed using conventional swap and MD steps as a
safety precaution. We have found that these procedures successfully
equilibrate the DPGC at T = 0.3.

APPENDIX C: DPGC AS A FRAGILE GLASS

We have demonstrated that the glassy crystal discussed in the
main text exhibits strong glass relaxation behaviors as a uniform
interaction energy distribution g(V) is applied within the range
V ∈ [V0, V1] ≡ [−1,−0.25]. Here, we show that the model can also
simulate a more fragile glass. Following Ref. 11 in fine-tuning the
fragility of the DPLM, we apply a uniform-plus-delta bi-component
form

g(V) = G0

ΔV
+ (1 −G0)δ(V − V1), (C1)

where ΔV = V1 − V0 = 0.75 and δ denotes the Dirac delta function.
For G0 = 1, g(V) reduces back to the uniform distribution studied
above for strong glass.

We now consider the case of G0 = 0.3, which has led to a more
fragile glass for the DPLM.11 Figure 14 shows the results for the
DPGC with G0 = 0.3, analyzed using the same methods as explained
in the main text. The melting point in this case is roughly 0.45
so that only results for T ≤ 0.4 are reported. As seen, the diffu-
sion coefficient D and the relaxation time τ follow super-Arrhenius
temperature dependence, indicating a fragile glass. The results also
indicate a small Stokes–Einstein violation and a stretching expo-
nent β decreasing as temperature decreases. In particular, β reaches a
small value of 0.52, below that of the strong glass, similar to findings
in the DPLM.11

APPENDIX D: EQUILIBRIUM STATISTICS

Approximate equilibrium statistics of the DPGC can be cal-
culated by generalizing an exact method used for the DPLM. In

FIG. 14. Results for the system with G0 = 0.3 for T = 0.27 to T = 0.4. (a) The
super-Arrhenius relationship demonstrates fragile-type relaxation behavior. (b)
Structural relaxation time τ as a function of 1/T . (c) A non-constant value indi-
cates a violation of the Stokes–Einstein relation. (d) Stretching exponent β as a
function of 1/T .

particular, we study the equilibrium distribution Peq(V) of the
energy depth V of the pair interactions realized between neighbor-
ing particles. Measured values of Peq(V) are shown in Fig. 12 and
reproduced in Fig. 15.

A rough estimate P0
eq(V) of Peq(V), assuming naively a simple

Boltzmann weight e−V/kBT following DPLM results, is given by

P0
eq(V)∝ e−V/kBTg(V). (D1)

Equation (D1) has been proven exact for the DPLM when V is
taken as the pair interaction. Figure 15 compares P0

eq(V) with the
numerically measured Peq(V) and shows a fair agreement.

We note that the DPGC differs from the DPLM mainly by hav-
ing particle vibrations. Generalizing Eq. (D1) to account for ener-
getic and entropic effects of vibrations approximately, we replace the
Boltzmann factor in Eq. (D1) by the partition function Z1(V) of an
interaction of depth V as follows:

Peq(V)∝ Z1(V)g(V), (D2)

where

Z1(V) = ∫
∞

0
exp [−EV(r)]dr, (D3)

with EV(r) being the average system energy when an interaction
of depth V is at bond length r. More precisely, we focus on the
interaction between neighboring particles k and l of depth V sep-
arated by a distance r. Assume for simplicity that only particles k
and l vibrate in the breathing, i.e., symmetric, mode and all other
particles are stationary at the lattice positions. The separation can
be expressed in terms of particle displacement s as r = r0 + 2s with
r0 = 21/6σ. Assume that all other interactions have a uniform depth
V given by its approximate average value,

V = ∫ VP0
eq(V)dV. (D4)

FIG. 15. Equilibrium distribution Peq(V) of pair interaction depth V from simula-
tions (symbols) using data from Fig. 12 compared Eq. (D1) without considering
vibration (dashed lines) and Eqs. (10) and (11) with vibrations (solid lines).
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An analysis of the 23 interactions among particles k and l and near-
est neighbors in the FCC lattice indicates that only 11 interactions
depend on s up to the linear order and we get

EV(s) = Φ(V , 2s) + 2Φ(V ,−s) + 4Φ(V , s/
√

2) + 4Φ(V ,−s/
√

2),
(D5)

where the Lennard-Jones potential is parameterized as

Φ(V , s) = −4V[( σ
r0 + 2s

)
12
− ( σ

r0 + 2s
)

6
]. (D6)

For further simplification, we use a harmonic approximation for the
LJ potential, i.e.,

Φ(V , s) = −1
2

KV ⋅ (2s)2 + V , (D7)

where K is an effective elastic constant. Equation (D3) then involves
a simple Gaussian integral, which can be evaluated to get

Z1(V) = exp(−V + 10V
kBT

)
√
− 4πkBT

2KV + 3KV
. (D8)

Using also Eq. (D2), we have

Peq(V) =
1
N

e−V/kBTg(V)(−V − 3
2

V )
− 1

2
, (D9)

where factors independent of V , such as K−1/2, have been rescaled
away when defining the normalization constant N . Equation (D9),
equivalent to Eqs. (10) and (11), shows much better agreement with
simulations than Eq. (D1) as shown in Fig. 15.

The success of Eq. (D9) in describing our simulations shows
that interactions in a system are approximately independent of each
other, which is an exact result for the DPLM. As a consistency check,
at a very low T, Peq(V) is non-negligible only for V ≃ V so that
the last factor in Eq. (D9) approaches a constant. Then, Peq(V)
converges to P0

eq(V) as vibrations diminish.
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